
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Follow the Path: Hierarchy-Aware Extreme Multi-Label
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ABSTRACT

Extreme Multi Label (XML) problems, and in particular XML com-
pletion – the task of prediction the missing labels of an entity –
have attracted significant attention in the past few years. Most
XML completion problems can organically leverage a label hierar-
chy, which can be represented as a tree that encodes the relations
between the different labels. In this paper, we propose a new algo-
rithm, HECTOR – Hierarchical Extreme Completion for Text based
on transfORmer, to solve XML Completion problems more effec-
tively. HECTOR operates by directly predicting paths in this tree,
instead of simple labels, thus taking advantage of information en-
coded in the hierarchy. Due to the sequential aspect of these paths,
HECTOR can leverage the effectiveness and performance of the
Transformer architecture to outperform state-of-the-art of XML
completion methods. Extensive evaluations on three real-world
datasets demonstrate the effectiveness of our approach for XML
completion. We compare HECTOR with several state-of-the-art
XML completion methods for various completion problems, and
in particular for label refinement, i.e., the scenario where only the
coarse labels (i.e. the first few top levels in a taxonomy) are ob-
served. Empirical results on three different datasets show that our
method significantly outperforms the state of the art, with HEC-
TOR frequently outperforming previous techniques by more than
10% according to multiple metrics.
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1 INTRODUCTION

As the number of textual documents has grown exponentially over
the past decades, [7], Multi-Label text Classification (MLC), which
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is the task of assigning the most relevant subset of labels to docu-
ments, has received significant attention [17, 34, 37]. Indeed, MLC
is able to represent the semantic contents of a document using a
series of key concepts (also known as semantic tags), which in turn
eases the organization of information and helps users navigate large
text collections. MLC is for instance key for online scientific liter-
ature: as the number of scientific papers getting published online
is rapidly increasing, semantic tagging becomes crucial to support
the discovery of new scientific results as well as exploratory efforts
within and across fields of interest [31].

The number of potential labels has also increased dramatically –
collections of thousands to tens of thousands of labels are now rou-
tinely used to tag documents – and new dedicated methods called
Extreme Multi-Label text Classification (XMLC) [34] have been de-
veloped. Indeed, XMLC poses additional computational challenges
due to the large number of labels and the uneven distribution of
their occurrences, typically leading to a long tail of rare labels.

XMLC problems can typically leverage a label hierarchy, since
managing large collections of labels is in itself a challenge in real
world settings. For scientific literature, there exist for instance many
well-designed hierarchical ontologies and taxonomies of concepts,
which can be used as hierarchy of labels for scientific text tagging
[37]. Today, some of the most popular ontologies in that context
include the ACM CCS1, a poly-hierarchical ontology containing
concepts related to Computer Science, the MeSH thesaurus2, which
was developed to index and search biomedical and health related
data, and the Microsoft Academic Graph (MAG) [31], which pro-
vides a taxonomy of concepts from different domains. These hier-
archies impose natural partial orders on labels, from more general
to more specific, and can provide valuable information for XMLC
tasks. Following this observation, several recent studies have pro-
posed approaches to embed this meta-information into the XMLC
problem. Notably, [5] proposed to learn an embedding of the label
space by first performing a clustering of labels using their short
descriptions, and thus reducing the complexity of the output space,
while [37], leveraged metadata by modifying the loss function to
force proximity in the joint embedding space.

An interesting sub-problem of XMLC that is the focus of this
work is Extreme Multi-Label Completion (XMLCo), where each
document instance is already tagged with a partial set of labels
that the model has to complete, by leveraging both the document
content as well as existing labels. The problem of incomplete labels
is frequently encountered in many application domains due to
multiple compounding factors, including the subjectivity of human
annotators, time-dependent data, the addition of new sub-concepts
as leaves to a taxonomy, time constraints, or privacy concerns. Label
completion plays a crucial role in enhancing the completeness and
accuracy of datasets [25]. This sub-problem is particularly relevant

1https://dl.acm.org/ccs
2https://www.nlm.nih.gov/mesh/meshhome.html
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in the context of the taxonomies, as they frequently abide by the
hierarchy constraint [26], i.e. taxonomies that can be represented as
trees. Indeed, it has been observed that in this case, data instances
are equipped with general, high level labels, while more specific
labels are more often missing [25]. We refer to the task of adding
more specific label to a data instance as Label Refinement.

In the present work, we introduce a new Transformer-based
encoder-decoder model for XMLCo, named HECTOR3 (Hierarchi-
cal Extreme Completion for Text based on transfORmer), which
directly takes advantage of the hierarchical structures of the label
space to better predict missing labels and solve Label Refinement.
Transformers [30] have demonstrated state-of-the-art results on
many NLP-related tasks, such as document summarization, text
generation, or named entity recognition [29], and in particular have
been successfully applied to XMLC [5, 13]. However, to the best
of our knowledge, previous applications focused on the encoder
part of the original Transformer architecture [5], or the label were
predicted as an unstructured set (see [13] and reference therein), as
labels do not intrinsically possess a sequence structure. Conversely,
our technique HECTOR fully leverages the sequence-to-sequence
(Seq2Seq) nature of transformers, by predicting paths in the hierar-
chy of labels. This approach has two significant advantages:

(1) HECTOR benefits from the performance of transformer on
Seq2Seq tasks, which have been proven to be very effective
for MLC tasks (Raffel et al., 2020; Chung et al., 2022).

(2) HECTOR organically leverages all the meta-information
contained in the hierarchical tree organizing the labels,
without needing to learn or approximated it through pre-
training or regularization.

We evaluate the effectiveness of our approach through a wide range
of experiments of label completion, with particular focus on Label
Refinement – the case of label completion where general labels
are provided, i.e. labels representing broader categories or higher-
level concepts in the hierarchy. Our evaluation results highlight
the advantage of HECTOR over existing methods, and show that
it significantly outperforms other methods for label refinement
on a wide range of metrics and on three datasets, with HECTOR
frequently outperforming previous techniques by more than 10%
according to multiple metrics.

The rest of the paper is organized as follows. In Section 2, we
provide some background information and review related works
on XMLCo. We present our approach and HECTOR’s architecture
in Section 3. Section 4 introduces the baselines and presents our
experimental results.

2 BACKGROUND AND RELATEDWORK

ExtremeMulti-Label ClassificationTraditionalMLC approaches
can be divided into three groups: one-vs-all, embedding-based and
tree-based methods [16]. One-vs-all methods independently train a
binary classifier for each label. In extreme settings with thousands
of labels, this approach can be prohibitively expensive. To reduce
training complexity and model size, different techniques were pro-
posed, among them margin-maximizing loss with 𝑙1 penalty [33],
parameter thresholding [1], label filtering [19], learned label trees
[14, 22] and negative sampling [11]. Tree-based methods recursively
3We will release the code of the model upon acceptance

partition the instance set or the label set and at each non-leaf node
train a classifier focusing on a small subset of the original large-
scale problem [12, 21, 23]. Embedding methods aim at learning
the latent low dimensional vector space of the labels, and perform
classification by finding the nearest label neighbors for each test
instance [2, 10, 28]. Closer to the present work, there have been
a growing number of works demonstrating the efficiency of deep
learning for the XMLC task in the last few years. XML-CNN [15]
is one of the pioneers in this area, proposing to apply a convo-
lutional neural network (CNN) to learn the text representation.
More recently, [34] introduced AttentionXML, which leveraged a
multi-label attention mechanism and shallow probabilistic label
trees (PLT). X-Transformer [5] was the first attempt to fine-tune
deep Transformer models to the XMLC task, and was then further
improved by [36] through the use of recursive fine-tuning. More
recently, [13] analyzed different types of Transformer-derived ar-
chitecture for the XMLC task, and show that model using a seq2seq
approach tend to perform better – a prime motivation behind HEC-
TOR. Furthermore, compared to these methods, HECTOR is able to
efficiently leverage the hierarchical taxonomy of the labels.
Hierarchical Multi-Label Classification Hierarchical classifiers
have long been used in MLC [3], and recent works have proposed
strategies to enhance XMLC methods using the structure of la-
bels. [8] proposed to incorporate the tree of labels directly into
the architecture of the neural network, while Gargiulo et al. [9]
proposed a convolutional neural network to address this task. More
recent work has combined ideas from Hierarchical Multi-Label and
transformers. MATCH [37] used hierarchical relations among labels
for regularization, enforcing each label to be similar to its parents,
while Caled et al. [3] introduced a recurrent neural network with a
hierarchical output layer, where each deeper level gets predictions
from the previous levels as an additional input. However, to the
best of our knowledge, HECTOR is the first to predict a path di-
rectly following the hierarchy of labels, thus combining the Seq2Seq
strengths of transformers with Hierarchical Multi-Label strategies.
Label Completion Many label completion techniques rely on ma-
trix completion, where the correlation between labels occurrences
is used to predict missing labels. For instance, [6] proposed an
approach that uses both local and Global attention to improve Ma-
trix completion. However these methods generally do not scale
to XMLCo problems, due to the size of the dataset and the num-
ber of labels. More recently, Romero et al. [25] used a hierarchical
approach to complete the annotation of genes with biological func-
tions. They first train a global classifier which predicts probabilities
of each label independently, and then aggregate these probabilities
along the path in a hierarchical label tree to compute final proba-
bilities for leaf labels. Compared to these methods, HECTOR uses
the performance of transformers and directly embeds the label tree
by predicting paths on this tree.

3 METHOD

3.1 Intuition

We begin by introducing the intuition behind HECTOR, and the
use of transformers for XMLCo problems.

First, positive labels assigned to a document are usually repre-
sented by specific tokens in an input document. Figure 1 illustrates
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Figure 1: Token-label interaction: highlighted text tokens

correspond to different labels (grouped by color)

the idea. Transformers, through their cross-attention mechanism,
are able to take into account fine-grained dependencies between to-
kens, and focusing on the most relevant parts of the input sequence
with respect to each label. The advantages of this approach has
been demonstrated by previous work, that used attention mecha-
nisms and transformers to achieve state-of-the-art performance on
XMLCo, such as AttentionXML [34] and XR-Transformer [36].

Second, the available label hierarchy contains valuable infor-
mation that can be used for XMLCo. For example, the presence of
label SQL can be a strong indicator of relevance for label RDBMS
and vice versa. This idea is at the heart of many successful label
completion approaches such as [25]. A notable previous approach
to label correlation modeling was proposed in [24], where authors
constructed a chain of binary classifiers (one for each label) and
where the output of each following classifier was conditioned on
outputs of all previous classifiers. Interestingly, this multi-label
classification approach with a chain of classifiers is similar to the
decoding process in a Seq2Seq model, where an output sequence is
generated one token at a time, with each subsequent token being
conditioned on the previously generated tokens.

HECTOR combines these two ideas, by using a novel paradigm
for multi-label completion: instead of predicting individual labels,
it predicts paths in a label tree.

3.2 Path Prediction

In the rest of this paper, we assume that labels are organized hi-
erarchically, e.g., in a taxonomy. In particular, we assume that the
taxonomy abides by the hierarchy constraint [25], and therefore
can be represented as a tree. Hereinafter we will use the terms
taxonomy and label tree4 interchangeably to refer to the hierarchi-
cal label structure. Using the taxonomy, we model a set of labels
assigned to a document as a set of paths in a label tree, as shown
in Figure 2. As opposed to a set of labels, each path does naturally
yield a sequence structure, and thus can be used in Seq2Seq models.

Path Completion. It is important to note that while many XMLC
datasets may abide by the hierarchy constraint [25], the set of
labels assigned to each document may be incomplete, e.g. they do
not constitute complete paths in the tree. This is due to the fact
that labels are sometimes assigned inconsistently: for instance, in
some cases only leaves are included, whereas in other cases top-
level labels and some leaves are included, but not all labels in the
4A taxonomy can also have a graph structure, but within the present research we focus
on trees and leave more complex data structures for future work.

(a) Taxonomy

(b) Set of Labels (c) Set of Paths

Figure 2: Converting a set of labels into a set of paths lever-

aging a label hierarchy

middle of the paths. We thus complete the label sets for each data
point by adding all the missing ancestors to each label in order to
obtain coherent paths, similarly to Hierarchical Label Set Expansion
proposed by [9]. Formally, we proceed as follows:

• For each label 𝑙 𝑗 from the original label set L, we build a
path 𝑝 𝑗 from the root of the label tree to 𝑙 𝑗 .

• We update L with labels 𝑙𝑘
𝑗
∈ 𝑝 𝑗 , if 𝑙𝑘𝑗 ∉ L.

Throughout this paper, we operate on datasets modified as de-
scribed above, i.e., with positive label sets extended to contain full
paths in a label tree. For example, using a toy taxonomy from Fig-
ure 2(a), if the original label set consists of labels L ={ NLP, Logistic
Regression}, its completed version will be L′ ={NLP, Logistic Re-
gression, Machine Learning}5.

To summarize, we reformulate a multi-label completion task as
a path decoding task, which can be outlined as follows:

(1) Preprocessing: complete and regroup positive labels as-
signed to each document to form a set of paths in the tree.

(2) Training: train a Seq2Seq model, where a document is an
input sequence, and a path is a target sequence.

(3) Inference: given an input document and an incomplete
set of labels, decode path(s) in the label tree. they are then
merged and sorted by label scores to generate a final rank-
ing of labels, which is then used for prediction.

One additional advantage of our approach is that labels in a
path are decoded sequentially, from the most general concepts (first
level of the taxonomy) to more specific concepts. We argue that
this approach is particularly well suited for label completion, as
illustrated by our experiment results (see Section 4).

5We do not add the root label to the label set since it is trivial to predict.
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3.3 Model Architecture

In this subsection, we introduce HECTOR – aHierarchical Extreme
Completion for Text Based on TransfORmer. HECTOR’s architec-
ture is based on Transformers [30] – the last generation Seq2Seq
model, which proved extremely efficient on several NLP tasks. Sim-
ilar to previous Seq2Seq models, Transformers utilize an encoder-
decoder architecture, but they dispenses with recurrence and con-
volutions relying entirely on the attention mechanism to compute
representations of their input and output. More specifically, Trans-
formers feature the following types of attention:

• Encoder self-attention: enables the encoder to consider the
context of each word based on the entire input sequence.

• Decoder self-attention: allows the decoder to consider the
influence of previously generated tokens on the current
token generation step.

• Encoder-decoder cross-attention: allows the decoder to fo-
cus on relevant parts of the encoder’s output during the
generation process.

In the context of our task, these three types of attention perform
the following functions: the encoder self-attention learns contextu-
alized embeddings of tokens in the input document; the encoder-
decoder cross-attention captures fine-grained dependencies be-
tween input tokens and output labels; the decoder self-attention
considers previously predicted labels to generate a coherent path
in the label tree. HECTOR’s architecture is outlined in Figure 3. In
the following, we introduce the main components of Transformers
as well as the key changes we made to the original architecture to
adapt it to our setting.
Encoder. The encoder in the Transformer model extracts features
from the input sequence, enabling the model to capture the rela-
tionships between the input tokens and create rich representations
for further processing by the decoder. The encoder is composed
of a stack of 𝑁 = 6 identical layers. Each layer consists of a multi-
head self-attention mechanism and a fully connected feed-forward
network with a residual connection. In HECTOR’s encoder, we
mostly follow the original Transformer architecture with some spe-
cific changes. We use pre-trained GloVe embeddings [20] as our
initial word representation, hence both encoder input and output
are 300-dimensional. For this reason, we also changed the number
of attention heads from 8 to 12 (as a rule of thumb, model dimension
should be dividable by the number of heads).
Decoder. The decoder in the Transformer model takes the encoded
input and uses attention mechanisms to generate a coherent output
sequence, capturing contextual relationships between the generated
tokens. During training, the decoder takes the ground-truth output
sequence in addition to the encoder output to learn dependencies
between output tokens – this algorithm is referred to as teacher
forcing. During inference, the decoder takes the encoder output and
generates the output sequence from scratch, one token at a time. As
the encoder, the decoder is composed of a stack of 𝑁 = 6 identical
layers, with an additional encoder-decoder cross-attention block
at each layer. As opposed to traditional Seq2Seq tasks, where both
input and output sequences consist of words, in our case the output
is a sequence of labels. In natural language there are synonymous
words that are semantically similar, therefore their embeddings
can be very close to each other in the vector space. On the other

hand, in the label space all embeddings should be clearly separated,
as we assume that there are no semantically similar labels. For
better distinguishability, we increase the dimensionality of label
embeddings from 𝑑 = 300 to 𝑑 = 600. Label embeddings are initial-
ized randomly and learned during the training phase. Since in the
Transfomer model the encoder output and decoder input should
be of the same dimension, we add an additional fully connected
layer between the encoder and the decoder, which performs dimen-
sionality expansion. We refer to this component as the adapter. We
empirically investigate the effect of the increased dimensionality
of label embeddings in Section 4.3.

Prediction Layer. The decoder generates contextualized label rep-
resentations, which are projected onto final |𝑉 |-dimensional vec-
tors, where |𝑉 | is the size of the label vocabulary. Each element of
the resulting vector represents the probability of the correspond-
ing label. The prediction layer consists of a fully-connected layer
followed by a Softmax activation function.

Loss Function. Following the original Transformer architecture,
we use the Kullback-Leibler divergence loss, which measures the
dissimilarity between two probability distributions. During training,
we use label smoothing of value 𝜖𝑙𝑠 = 0.2 [27]. Label smoothing
is a regularization technique, which involves replacing the one-
hot encoding of the target labels with a smoothed distribution.
Instead of assigning a probability of 1 to the true label and 0 to
all other labels, label smoothing assigns a confidence score to the
true label and redistributes the smoothing mass among the other
labels. In HECTOR, we introduce some prior knowledge about the
label taxonomy into the loss function. Since we aim at decoding
tree paths rather than unstructured sequences, we know in advance
which labels can occur at each position. Thus, at the 𝑖-th position
only labels from the 𝑖-th level (i.e., at depth 𝑖) of the taxonomy
can appear. We leverage this knowledge by applying a mask onto
the labels, such that the smoothing mass is redistributed on the
corresponding level, setting the probabilities of all other labels to 0.
We discuss the impact of this approach in Section 4.3.

Training. In multi-label problems, each document can have labels
from different (sub)-domains, resulting in multiple paths in the
label tree. During training, we randomly select one path per docu-
ment as the ground-truth for each training epoch. The idea behind
this approach is to introduce some variability during training and
avoid overfitting to a specific output sequence – in line with the
observations of [32]. By randomly selecting one of the possible
output paths as the ground-truth during training, the model learns
to generate all the possible output paths with equal probability.

3.4 Label Completion with HECTOR

At inference time, the prefix of known labels is provided toHECTOR.
Then, we use beam search to generate multiple paths for each
data point and to predict missing labels. As opposed to greedy
search, where at each step a candidate with the highest probability
is selected and passed to the next step, the beam search algorithm
maintains a set of the most promising candidate sequences, known
as the beam. More formally, the beam search algorithm proceeds
as follows:

• The model generates a set of candidate labels for position 𝑖 .
4
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Figure 3: HECTOR’s model architecture

• The top-k candidates with the highest probabilities are
selected, where 𝑘 is the beam width.

• The selected candidates are appended to preceding partial
sequences (predicted labels from positions 1 through 𝑖 − 1)
and joint probabilities of extended sequences are computed.

• The top-k extended sequences are passed to the next step
for generating a set of candidate labels for position 𝑖 + 1.

The beam search algorithm aims at maximizing probabilities
of full sequences rather than individual elements of a sequence.
Additionally, it allows decoding multiple sequences simultaneously,
which is important in the context of our task since each document
may have multiple relevant label sequences.

After performing beam search, we merge all decoded paths in
a flat list and sort labels by their individual probabilities to pro-
duce the final ranking. Formally, we proceeded as follows. For a
document 𝑑 , let P(𝑙 𝑗 |𝑙1, . . . 𝑙 𝑗−1) denote the predicted probability
of observing label 𝑙 𝑗 given the path 𝑙1, . . . 𝑙 𝑗 − 1. We compute the
path-independent marginal probability of the label 𝑙 𝑗 as

P(𝑙 𝑗 ) = max
possible paths 𝑙1,...,𝑙 𝑗−1

(
𝑗∏

𝑖=1
P(𝑙𝑖 |𝑙1, . . . 𝑙𝑖−1)

)
In other words, we take the maximum probability of the label
occurring across all possible paths in the taxonomy.

4 EXPERIMENTAL EVALUATION

In this section, we extensively evaluate HECTOR on label refine-
ment tasks through multiple experiments. As introduced above,
label refinement is an important task in practice (as new concepts
are typically appended as leaves in the taxonomy) and a special
case of label completion, where documents are labeled with general
concepts (corresponding to the first level(s) of a label hierarchy),

Table 1: Dataset statistics

𝑁𝑡𝑟𝑎𝑖𝑛 𝑁𝑡𝑒𝑠𝑡 𝐿 𝐿 𝑃 𝑊 𝐻

MAG-CS 89,920 54,008 2,641 4.4 2.9 87 6
PubMed 100,042 39,890 5,911 18.5 3.3 142 15
EURLex 45,000 6,000 4,492 10.4 4.9 288 7

𝑁𝑡𝑟𝑎𝑖𝑛 : #training instances, 𝑁𝑡𝑒𝑠𝑡 : #test instances, 𝐿: #labels, 𝐿:

average #labels per instance, 𝑃 : average #paths per instance,

𝑊 : average #words per instance, 𝐻 : height of the label tree.

and the algorithm is tasked to predict more specific (lower level)
concepts. The exact nature of the task depends on the level 𝐿, from
which we start the refinement process, i.e., we assume that labels
from level 1 to 𝐿−1 are observed. Interestingly, since the taxonomies
we study abide by the hierarchy constraint and are complete (see
Section 3.2), all label completion tasks can be seen as label refine-
ment, since predicting general labels given specific labels is trivial
in this setting. Furthermore, the XML classification task can be seen
as a specific case of label refinement with 𝐿 = 1 (since the root of
the tree is common to all data points, and therefore does not bring
any information).

4.1 Experimental Setting

Datasets. We evaluate our method on three well-known and large-
scale datasets: MAG-CS, PubMed and EURLex. We report important
statistics from our datasets in Table 1, and Figure 4 summarizes
label distribution per level in 3 datasets.

• MAG-CS. The Microsoft Academic Graph (MAG) Com-
puter Science (CS) is a subset of the MAG dataset [31] fo-
cused on the computer science domain, containing papers
published at 105 top CS conferences from 1990 to 2020,
while the label tree contains relevant concepts descendants
of the root-level “Computer Science”. [37]

• PubMed. we use a subset of PubMed released by [37],
which comprises papers published in 150 top journals in
medicine from 2010 to 2020. Each PubMed paper is labeled
with relevant concepts from the Medical Subject Headings
(MeSH) hierarchically-organized thesaurus.

• EURLex. EURLex [18] is one of the most common XMLC
benchmark datasets. It contains English EU legislative doc-
uments from the EUR-LEX portal6, tagged with concepts
(labels) from the European Vocabulary (EuroVoc)7. We use
the latest version of EURLex released by [4] in 2019.

Baselines. We compare our method against the following deep
learning-based XMLC models and hierarchical label completion
methods :

• XML-CNN [15] uses a convolutional neural network with
dynamic pooling to learn representations of input docu-
ments and to project them onto the output label space.

6https://eur-lex.europa.eu/
7EuroVoc is EU’s multilingual and multidisciplinary thesaurus. It contains key-
words, organized in 21 domains and 127 sub-domains in a hierarchical manner
https://publications.europa.eu/en/web/eu-vocabularies
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• AttentionXML [34] first builds a shallow probabilistic
label tree (PLT) to partition labels, and then for each level
of the constructed PLT trains a deep learning model with
multi-label attention.

• MATCH [37] leverages documents metadata and a label
hierarchy for extreme multi-label classification.

• XR-Transformer [35] is a transformer based framework
where the pre-trained transformer is recursively fine-tuned
on a series of easy-to-hard training objectives defined by a
hierarchical label tree.

• REASSIGN [25] is a state-of-the-art multi-label comple-
tion method, which leverages label hierarchy to aggregate
probabilities of individual labels along paths in the tree and
select paths with highest aggregated scores. Contrary to
matrix completion based techniques, REASSIGN is able to
scale to XMLCo problems.

Implementation and Hyperparameters. All baselines are re-
trained from scratch on our completed versions of the three datasets.
We use GloVe.840B.300d as initialized word emdeddings for all mod-
els. For baselines, we directly use the default hyperparameter values
as provided by the authors. REASSIGN requires a pre-trained clas-
sifier to compute the probability of every instance-label association.
As such, we trained a vanilla Transformer, i.e. the Transformer
encoder for input document representation followed by a fully
connected layer to perform multi-label classification. Our model
HECTOR was trained using the Adam optimizer with an initial
learning rate of 1e-4 and a weight decay of 0.01.
Metrics. In line with previous XMLC works [15, 34, 37], we use
𝑃@𝑘 (Precision at 𝑘) and 𝑁𝐷𝐶𝐺@𝑘 (Normalized Discounted Cu-
mulative Gain at 𝑘) as our evaluation metrics for performance
comparison (hereinafter ranking metrics). 𝑃@𝑘 is defined as the
number of correct predictions considering only the top 𝑘 elements
divided by 𝑘 :

𝑃@𝑘 =
1
𝑘

𝑘∑︁
𝑙=1

𝑦𝑟𝑎𝑛𝑘 (𝑙 ) (1)

where 𝑦 ∈ {0, 1}𝐿 is the vector of true labels, and 𝑟𝑎𝑛𝑘 (𝑙) is the
index of the 𝑙-th top predicted label. Discounted cumulative gain
(DCG) measures the quality of ranking, assigning higher scores to
hits at top ranks. nDCG is a normalized version of DCG, which
accounts for the varying number of positive labels per instance.
𝑛𝐷𝐶𝐺@𝑘 is defined by the following formulas:

𝐷𝐶𝐺@𝑘 =

𝑘∑︁
𝑙=1

𝑦𝑟𝑎𝑛𝑘 (𝑙 )
𝑙𝑜𝑔(𝑙 + 1) (2)

𝑛𝐷𝐶𝐺@𝑘 =
𝐷𝐶𝐺@𝑘∑𝑚𝑖𝑛 (𝑘, | |𝑦 | |0 )

𝑙=1
𝑦𝑟𝑎𝑛𝑘 (𝑙 )
𝑙𝑜𝑔 (𝑙+1)

(3)

where | |𝑦 | |0 is the number of positive labels in the true label 𝑦.
To get additional insight about models’ performance on low-

resource (i.e., corresponding to lower levels of taxonomy) classes,
we also report results on 𝑚𝑖𝑐𝑟𝑜_𝑓 1 and 𝑚𝑎𝑐𝑟𝑜_𝑓 1 (hereinafter
classification metrics). 𝑚𝑖𝑐𝑟𝑜_𝑓 1 is calculated globally by count-
ing the total true positives, false negatives and false positives. For

Figure 4: The number of labels per level of ontology

𝑚𝑎𝑐𝑟𝑜_𝑓 1, the metric is calculated for each label, and then their
unweighted mean is computed.

4.2 Label Refinement

Experimental design. For the task of label refinement, each doc-
ument is accompanied with a set of general labels pertaining to
it, and the model must predict more specific labels. In our context,
general labels are the labels that belong to the higher levels of the
taxonomy, while specific labels are labels of deeper levels. In this set
of experiments, we view the label refinement task as a function of
𝐿, where 𝐿 is the level from which we start the refinement process.
For example, when 𝐿 = 3, we assume that a document is labeled
with labels of level 1 and 2 and the task is to predict labels starting
from level 3 and deeper. For the baseline methods, we run a normal
inference step and then skip model predictions of labels from level
1 to 𝐿 − 1, since we assume that all relevant labels of these levels
are provided. Thus we measure the performance on labels of level
𝐿 and deeper. For ranking metrics, we further rank labels by their
predicted probabilities. For classification metrics, we select the best
decision boundary for each model and for each experiment. For
HECTOR, we use labels from level 1 to 𝐿 − 1 associated with a
document as path prefixes and pass them as input to the decoder.
More specifically, we build path prefixes from the provided labels,
pass them to the decoder as a leftward context and predict the next
label(s) in the path starting from the given prefix. All predictions
are then merged into a flat list and sorted by their individual scores
(see Section 3.3 for more details).

Results.We report the key results of our label refinement experi-
ment in Table 2. Interestingly, even when provided with only very
general labels (i.e. labels from the first level of taxonomy), HECTOR
already significantly outperforms the competing methods across
all datasets -– from 2.5% on MAG-CS to 5.9% on EURLex (measured
by 𝑃@1). Furthermore, the advantage ofHECTOR on 𝑃@1 tends
to be even more pronounced for higher values of 𝐿, such as 12%
for 𝐿 = 3 on EURLex. Importantly, while this advantage varies
with the dataset and the structure of the taxonomy, it is present
across all metrics. Notably, AttentionXML performs consistently
good across all datasets and is often a close second to HECTOR by
ranking metrics on MAG-CS and PubMed datasets. This shows that
AttentionXML is a strong baseline for label completion, especially
for scientific document collections. Similarly, Transformer-XR, per-
forms well in our experiments, closely following AttentionXML
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Table 2: Performance comparison of HECTOR and other competing methods on Label Refinement task. 𝐿 denotes the level of

taxonomy, from which the refinement starts. 𝑃@𝑘 – Precision@k; 𝑁@𝑘 – nDCG@k.

L Algorithms

MAG-CS PubMed EURLex

P@1 P@3 N@3 N@5 P@1 P@3 N@3 N@5 P@1 P@3 N@3 N@5

2

XML-CNN 0.7002 0.4516 0.6366 0.6390 0.9190 0.8942 0.9026 0.8902 0.8998 0.8136 0.8471 0.8147
AttentionXML 0.8665 0.5884 0.8381 0.8406 0.9288 0.9103 0.9175 0.9082 0.9205 0.8344 0.8676 0.8334

MATCH 0.8434 0.5363 0.7795 0.7721 0.9190 0.8967 0.9047 0.8937 - - - -
XR-Transformer 0.8027 0.5437 0.7677 0.7717 0.9180 0.9041 0.9104 0.9029 0.9276 0.8587 0.8890 0.8568

REASSIGN 0.6680 0.4224 0.5942 0.5901 0.9196 0.8554 0.8713 0.8417 0.8655 0.773 0.8061 0.7691
HECTOR 0.8917 0.5931 0.8530 0.8527 0.9753 0.9436 0.9554 0.9392 0.9861 0.9419 0.9691 0.9563

3

XML-CNN 0.6747 0.4121 0.6681 0.6913 0.8993 0.8638 0.8775 0.8681 0.8028 0.5038 0.7942 0.8146
AttentionXML 0.8346 0.4973 0.8290 0.8448 0.9177 0.887 0.9006 0.8925 0.8220 0.5158 0.8111 0.8345

MATCH 0.7818 0.4496 0.7583 0.7725 0.9025 0.8691 0.8827 0.8737 - - - -
XR-Transformer 0.7906 0.4770 0.7879 0.8015 0.9093 0.8827 0.8960 0.8892 0.8441 0.5211 0.8239 0.8343

REASSIGN 0.6019 0.3636 0.5836 0.6025 0.8916 0.8301 0.8484 0.8238 0.7598 0.4791 0.7522 0.7735
HECTOR 0.8818 0.5141 0.8745 0.8885 0.9754 0.9363 0.9589 0.9468 0.9579 0.6034 0.9506 0.9595

4

XML-CNN 0.6662 0.3777 0.7358 0.7724 0.8743 0.8547 0.8650 0.8571 0.8115 0.3690 0.8655 0.8794
AttentionXML 0.8113 0.4257 0.8581 0.8788 0.9021 0.8816 0.8944 0.8884 0.8251 0.3775 0.8836 0.8957

MATCH 0.7330 0.3843 0.7789 0.8071 0.8820 0.8627 0.8747 0.8678 - - - -
XR-Transformer 0.7775 0.4083 0.8197 0.8364 0.8980 0.8765 0.8907 0.8846 0.8163 0.3448 0.8289 0.8360

REASSIGN 0.5416 0.3174 0.6015 0.6478 0.8716 0.8469 0.8584 0.8476 0.7636 0.3613 0.8359 0.8518
HECTOR 0.8494 0.4390 0.8961 0.9140 0.9711 0.9294 0.9601 0.9523 0.9177 0.3991 0.9542 0.9583

5

XML-CNN 0.7815 0.3376 0.8581 0.8736 0.8926 0.8742 0.8871 0.8742 0.9640 0.3393 0.9739 0.9774
AttentionXML 0.8612 0.3492 0.9101 0.9209 0.9203 0.8975 0.9150 0.9072 0.9640 0.3483 0.9841 0.9841

MATCH 0.7802 0.3256 0.8368 0.8585 0.9026 0.8788 0.8962 0.8877 - - - -
XR-Transformer 0.8213 0.3243 0.8551 0.8664 0.9139 0.8891 0.9077 0.8997 0.9189 0.3273 0.9346 0.9480

REASSIGN 0.7121 0.3205 0.8022 0.8283 0.8912 0.8723 0.8857 0.8759 0.9279 0.3393 0.9611 0.9659
HECTOR 0.8946 0.3526 0.9292 0.9370 0.9788 0.9359 0.9711 0.9610 0.9989 0.3483 0.9978 0.9978

Table 3: Performance Comparison of ablation versions of

HECTOR on Label Refinement task with 𝐿 = 1.

Dataset Algorithms P@1 N@3 N@5

MAG-CS
300_300 0.8881 0.8247 0.8170

UniSmooth 0.8813 0.8263 0.8219
HECTOR 0.8918 0.8341 0.8286

PubMed
300_300 0.9244 0.9068 0.8890

UniSmooth 0.9193 0.9001 0.8912
HECTOR 0.9340 0.9173 0.9002

PubMed
300_300 0.9207 0.8954 0.8710

UniSmooth 0.9173 0.8951 0.8779
HECTOR 0.9233 0.9048 0.8809

300_300: HECTOR with 300d label embeddings; UniSmooth:

HECTOR with uniform smoothing among all labels.

in most of the experiments and outperforming it on some. Con-
versely, XML-CNN tends to perform significantly worse than the
other approaches in our experiments. Since XML-CNN is one of the
first deep-learning methods for XMLC, it neither features attention
mechanism nor transformer architectures, contrary to the other
methods considered in our experiments. This further highlights the

advantage of the transformer approach for XMLCo. While MATCH
yields the best results for the XML Classification task on MAG-CS
dataset [37], its performance turns out to rather low on label re-
finement tasks. Finally, REASSIGN’s performance is subpar in our
experiments. This may be explained by the fact that while com-
patible with XMLCo, REASSIGN is designed for a leaf-mandatory
problem, and tends to focus on full paths prediction, resulting in
increase weights for labels that are at the deepest level. However,
in the different dataset considered in this experiment, many texts
are only equipped with labels that are of average depth, and do not
include any terminal label, which might considerably deteriorate
the performance of the method.

We also report classification metrics (𝑚𝑖𝑐𝑟𝑜_𝑓 1 and𝑚𝑎𝑐𝑟𝑜_𝑓 1)
in Figure 5. Overall, these metrics strengthen our previous observa-
tions. HECTOR demonstrates the best, or close to the best, results
for both metrics, highlighting its advantage when predicting low-
resource classes. For instance, on EURLex with 𝐿 = 2, HECTOR
outperforms the next best competing method by 10.9% and 19.4%
at𝑚𝑖𝑐𝑟𝑜_𝑓 1 and𝑚𝑎𝑐𝑟𝑜_𝑓 1, respectively, while on MAG-CS it lags
behind by resp. 1.1% and 3.5%. This difference be explained by the
properties of the labels tree of each document, that significantly
differ across datasets. Indeed, in MAG-CS, label trees are wider, and
consequently, documents are tagged with multiple sibling labels,
while trees in PubMed and EURLex tend to be narrower, which

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

TheWebConf2024, May 13–17, 2024, Singapore Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

(a) MAG-CS - Micro F1 (b) PubMed - Micro F1 (c) EURLex - Micro F1

(d) MAG-CS - Macro F1 (e) PubMed - Macro F1 (f) EURLex - Macro F1

Figure 5: Performance comparison of HECTOR and other competing methods on Label Refinement task by Micro F1 and Macro

F1 scores. The x-axis represents the taxonomy level 𝐿 from which we start the refinement process.

allows to fully leverage HECTOR’s sequential path decoding algo-
rithm. Finally, while most baselines perform similarly for classifica-
tion metrics than for ranking metrics, XR-transformer performance
is better for the𝑚𝑖𝑐𝑟𝑜_𝑓 1 and𝑚𝑎𝑐𝑟𝑜_𝑓 1, where it mostly outper-
forms other baselines. This demonstrates that XR-Transformer has
a consistent performance across all labels, including low-resource
ones. In summary, these results highlight the effectiveness of HEC-
TOR for both XMLCo and classification metrics on the label refine-
ment task. For completion purpose, we report further metrics in
the supplementary material that further illustrate this observation.

4.3 Ablation Study

Finally, we perform ablation studies to justify specific design choices
discussed in Section 3.3. In particular, we aim at evaluating the im-
pact of the 600d label embeddings and the smoothing loss function.
The results of this experiment are reported in Table 3.
600d label embeddings.HECTOR uses 300d GloVe embeddings as
initial word representation, and 600d embeddings for label represen-
tation to ensure better separability in the vector space. To evaluate
the impact of 600d label embeddings, we trained an ablation version
of the full HECTOR model where both word and label embeddings
are 300-dimensional – HECTOR 300_300. The adapter between the
encoder and the decoder is eliminated in this architecture, since
there is no need for dimension expansion. The results of this exper-
iment are reported in Table 3. HECTOR 300_300 perform slightly
worse than HECTOR on all three datasets, justifying the choice of
a 600 dimensional embedding and of the adapter.
Smoothing by level. The loss function used for the training of
HECTOR incorporates prior knowledge about label taxonomy into
the smoothing function: at each position in the output sequence
(each level of the label tree), the smoothing value is uniformly

distributed among the labels of the corresponding level rather than
all available labels. To evaluate our smoothing-by-level algorithm,
we trained HECTOR UniSmooth – a variation of HECTOR with a
smoothing value uniformly distributed among all false labels. This
way, the model does not know in advance which labels are valid at a
specific position and learns the taxonomy structure from data alone.
Experimental results reported in Table 3 indicate that incorporating
prior knowledge about the taxonomy into the model improves
model performance. The improvement is especially evident at 𝑃@1,
which corresponds to the prediction of the first label in a path. This
can be explained by the fact that at the start of the path there is no
left context and the task of predicting the first label is particularly
challenging for the decoder, hence it profits from a reduced search
space. We also note that although HECTOR UniSmooth performs
worse than the full HECTOR model, it still demonstrates strong
performance, which shows that our method is capable of learning
the structure of labels without any prior knowledge.

5 CONCLUSION AND FUTUREWORK

In this paper, we introduced a novel paradigm in the context of
XMLCo, where labels are predicted as paths on a hierarchical label
tree. This paradigm allowed us to reformulate XMLCo as a Seq2Seq
task. Our proposed approach, HECTOR, is able to leverage the trans-
former architecture on this task to model fine-grained dependencies
between text tokens and labels and encode meta-information con-
tained in hierarchical label trees, resulting in HECTOR substantially
outperforms state-of-the-art methods on label refinement tasks in
our experiments, across all considered datasets. Future works in-
clude the use of different ensemble techniques in combination with
Hector to further improve our results.
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A ADDITIONAL EXPERIMENTAL RESULTS

A.1 Label Refinement

In this section we report the full results on our label refinement
experiments (Table 4, Table 5 and Table 6 for MAG-CS, PubMed
and EURLex datasets, respectively). These tables contain additional
metrics, namely micro and macro Precision and Recall, as well as
several additional values of ranking metrics. Overall the new met-
rics confirm the observations and conclusions made in Section 3.4.
We refer the reader to Section 4 of the main paper for the complete
discussion around our experimental design and results.

A.2 Extreme Multi-Label Classification

We additionally evaluate HECTOR on a traditional XMLC task,
i.e., with no labels provided. We note that this is not the task for
which HECTOR was developed and that this is not the focus of the
present work. Despite this, our method still demonstrates competi-
tive performance compared to other state-of-the-art methods and
outperforms several of the baselines in this different context also.
We report results on the XMLC task in Table 7.
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Table 4: Performance comparison of HECTOR and other competing methods on Label Refinement task on MAG-CS dataset. 𝐿

denotes the level of taxonomy, from which the refinement starts. 𝑃@𝑘 – Precision@k; 𝑁@𝑘 – nDCG@k; 𝜇𝑋 – micro average;

𝑀𝑋 – macro average.

L Algorithms 𝑃@1 𝑃@3 𝑃@5 𝑁@3 𝑁@5 𝜇𝑃𝑟𝑒𝑐 𝜇𝑅𝑒𝑐𝑎𝑙𝑙 𝜇𝐹1 𝑀𝑃𝑟𝑒𝑐 𝑀𝑅𝑒𝑐𝑎𝑙𝑙 𝑀𝐹1

2

XML-CNN 0.7002 0.4516 0.3283 0.6366 0.6390 0.6658 0.4712 0.5518 0.2639 0.1570 0.1969
AttentionXML 0.8665 0.5884 0.4245 0.8381 0.8406 0.7965 0.7125 0.7522 0.4073 0.4732 0.4378

MATCH 0.8434 0.5363 0.3763 0.7795 0.7721 0.7826 0.5895 0.6724 0.3989 0.3107 0.3494
XR-Transformer 0.8027 0.5437 0.3958 0.7677 0.7717 0.7325 0.6350 0.6803 0.3926 0.4417 0.4157

REASSIGN 0.6680 0.4224 0.3017 0.5942 0.5901 0.7054 0.4300 0.5343 0.0709 0.0851 0.0773
HECTOR 0.8917 0.5931 0.4239 0.8530 0.8527 0.7745 0.7113 0.7416 0.3397 0.4936 0.4025

3

XML-CNN 0.6747 0.4121 0.2931 0.6681 0.6913 0.6115 0.5106 0.5565 0.3213 0.1781 0.2291
AttentionXML 0.8346 0.4973 0.3440 0.8290 0.8448 0.8042 0.6674 0.7294 0.4362 0.4693 0.4521

MATCH 0.7818 0.4496 0.3097 0.7583 0.7725 0.7381 0.5909 0.6563 0.3979 0.3658 0.3812
XR-Transformer 0.7906 0.4770 0.3297 0.7879 0.8015 0.7432 0.6417 0.6887 0.4540 0.4927 0.4726

REASSIGN 0.6019 0.3636 0.2574 0.5836 0.6025 0.6879 0.4027 0.5080 0.0846 0.1241 0.1006
HECTOR 0.8818 0.5141 0.3521 0.8745 0.8885 0.7513 0.7181 0.7343 0.4106 0.6507 0.5035

4

XML-CNN 0.6662 0.3777 0.2555 0.7358 0.7724 0.5899 0.4959 0.5388 0.4167 0.2129 0.2818
AttentionXML 0.8113 0.4257 0.2748 0.8581 0.8788 0.7311 0.6297 0.6766 0.4691 0.5711 0.5151

MATCH 0.7330 0.3843 0.2547 0.7789 0.8071 0.6675 0.5491 0.6025 0.3876 0.4731 0.4261
XR-Transformer 0.7775 0.4083 0.2607 0.8197 0.8364 0.7053 0.6620 0.6830 0.5378 0.5499 0.5438

REASSIGN 0.5416 0.3174 0.2250 0.6015 0.6478 0.4013 0.4879 0.4404 0.1341 0.2735 0.1799
HECTOR 0.8494 0.4390 0.2814 0.8961 0.9140 0.7084 0.7567 0.7317 0.5217 0.7197 0.6049

5

XML-CNN 0.7815 0.3376 0.2126 0.8581 0.8736 0.8454 0.4014 0.5443 0.3845 0.1346 0.1994
AttentionXML 0.8612 0.3492 0.2162 0.9101 0.9209 0.7526 0.7534 0.7530 0.5181 0.5013 0.5096

MATCH 0.7802 0.3256 0.2080 0.8368 0.8585 0.8370 0.5298 0.6489 0.5886 0.4099 0.4832
XR-Transformer 0.8213 0.3243 0.2015 0.8551 0.8664 0.7735 0.7087 0.7397 0.5512 0.5733 0.5621

REASSIGN 0.7121 0.3205 0.2067 0.8022 0.8283 0.5365 0.6067 0.5694 0.2213 0.2466 0.2333
HECTOR 0.8946 0.3526 0.2170 0.9292 0.9370 0.7675 0.8028 0.7848 0.5704 0.7597 0.6516
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Table 5: Performance comparison of HECTOR and other competing methods on Label Refinement task on PubMed dataset. 𝐿

denotes the level of taxonomy, from which the refinement starts. 𝑃@𝑘 – Precision@k; 𝑁@𝑘 – nDCG@k; 𝜇𝑋 – micro average;

𝑀𝑋 – macro average.

L Algorithms 𝑃@1 𝑃@3 𝑃@5 𝑁@3 𝑁@5 𝜇𝑃𝑟𝑒𝑐 𝜇𝑅𝑒𝑐𝑎𝑙𝑙 𝜇𝐹1 𝑀𝑃𝑟𝑒𝑐 𝑀𝑅𝑒𝑐𝑎𝑙𝑙 𝑀𝐹1

2

XML-CNN 0.9190 0.8942 0.8723 0.9026 0.8902 0.8303 0.6271 0.7145 0.1007 0.1350 0.1153
AttentionXML 0.9288 0.9103 0.8914 0.9175 0.9082 0.8003 0.7170 0.7563 0.2583 0.2974 0.2765

MATCH 0.9190 0.8967 0.8759 0.9047 0.8937 0.8114 0.6571 0.7261 0.2162 0.2434 0.2290
XR-Transformer 0.9180 0.9041 0.8867 0.9104 0.9029 0.8176 0.7016 0.7552 0.3720 0.3667 0.3693

REASSIGN 0.9196 0.8554 0.8132 0.8713 0.8417 0.8672 0.4151 0.5615 0.0525 0.1675 0.0800
HECTOR 0.9753 0.9436 0.9101 0.9554 0.9392 0.7967 0.8011 0.7989 0.3758 0.4051 0.3899

3

XML-CNN 0.8993 0.8638 0.8443 0.8775 0.8681 0.8488 0.6360 0.7271 0.0984 0.1282 0.1114
AttentionXML 0.9177 0.8870 0.8674 0.9006 0.8925 0.8171 0.7262 0.7690 0.2575 0.2920 0.2737

MATCH 0.9025 0.8691 0.8487 0.8827 0.8737 0.8342 0.6653 0.7402 0.2147 0.2390 0.2262
XR-Transformer 0.9093 0.8827 0.8636 0.8960 0.8892 0.8346 0.7110 0.7678 0.3708 0.3637 0.3673

REASSIGN 0.8916 0.8301 0.7931 0.8484 0.8238 0.8927 0.4757 0.6207 0.0614 0.1391 0.0852
HECTOR 0.9754 0.9363 0.9019 0.9589 0.9468 0.8295 0.8445 0.8369 0.4173 0.4842 0.4483

4

XML-CNN 0.8743 0.8547 0.8334 0.8650 0.8571 0.8734 0.6844 0.7674 0.0957 0.1176 0.1055
AttentionXML 0.9021 0.8816 0.8597 0.8944 0.8884 0.8491 0.7678 0.8064 0.2569 0.2974 0.2757

MATCH 0.8820 0.8627 0.8401 0.8747 0.8678 0.8666 0.7107 0.7809 0.2209 0.2375 0.2289
XR-Transformer 0.8980 0.8765 0.8538 0.8907 0.8846 0.8384 0.7723 0.8040 0.3762 0.3661 0.3711

REASSIGN 0.8716 0.8469 0.8225 0.8584 0.8476 0.7802 0.6978 0.7367 0.0684 0.1249 0.0884
HECTOR 0.9711 0.9294 0.8937 0.9601 0.9523 0.8561 0.8808 0.8683 0.4587 0.5248 0.4895

5

XML-CNN 0.8926 0.8742 0.8447 0.8871 0.8742 0.8961 0.7467 0.8146 0.0822 0.1268 0.0998
AttentionXML 0.9203 0.8975 0.8709 0.9150 0.9072 0.8836 0.8183 0.8497 0.2526 0.3114 0.2789

MATCH 0.9026 0.8788 0.8520 0.8962 0.8877 0.8959 0.7672 0.8266 0.2261 0.2382 0.2320
XR-Transformer 0.9139 0.8891 0.8622 0.9077 0.8997 0.8732 0.8197 0.8456 0.3854 0.3712 0.3781

REASSIGN 0.8912 0.8723 0.8467 0.8857 0.8759 0.8930 0.7656 0.8244 0.0675 0.1199 0.0863
HECTOR 0.9788 0.9359 0.8956 0.9711 0.9610 0.8870 0.9047 0.8958 0.4564 0.5514 0.4994

6

XML-CNN 0.9094 0.8801 0.8564 0.8980 0.8879 0.9035 0.7866 0.8410 0.0874 0.0969 0.0919
AttentionXML 0.9368 0.9049 0.8815 0.9276 0.9213 0.9012 0.8475 0.8735 0.2632 0.2985 0.2797

MATCH 0.9170 0.8855 0.8614 0.9073 0.9002 0.8983 0.8082 0.8509 0.2240 0.2346 0.2291
XR-Transformer 0.9268 0.8941 0.8700 0.9172 0.9102 0.8867 0.8472 0.8665 0.3933 0.3784 0.3857

REASSIGN 0.9087 0.8818 0.8606 0.8994 0.8924 0.9046 0.8055 0.8522 0.0673 0.1102 0.0836
HECTOR 0.9832 0.9341 0.8999 0.9730 0.9648 0.9053 0.9178 0.9115 0.4546 0.5561 0.5003

7

XML-CNN 0.9429 0.8984 0.8790 0.9123 0.9050 0.9076 0.8108 0.8565 0.0712 0.1204 0.0895
AttentionXML 0.9583 0.9241 0.9031 0.9396 0.9351 0.9140 0.8625 0.8875 0.2630 0.2939 0.2776

MATCH 0.9392 0.9043 0.8828 0.9197 0.9147 0.9071 0.8256 0.8644 0.1911 0.2883 0.2298
XR-Transformer 0.9447 0.9108 0.8888 0.9262 0.9207 0.8951 0.8620 0.8782 0.3976 0.3694 0.3830

REASSIGN 0.9403 0.9043 0.8869 0.9167 0.9122 0.9118 0.8299 0.8689 0.0648 0.1211 0.0844
HECTOR 0.9873 0.9430 0.9143 0.9682 0.9617 0.9007 0.9263 0.9133 0.4356 0.5459 0.4846

8

XML-CNN 0.9066 0.8973 0.8706 0.9058 0.9020 0.9007 0.8164 0.8565 0.0726 0.1079 0.0868
AttentionXML 0.9383 0.9230 0.8934 0.9375 0.9353 0.9143 0.8642 0.8885 0.2388 0.2639 0.2507

MATCH 0.9171 0.9016 0.8701 0.9160 0.9122 0.9036 0.8280 0.8641 0.1872 0.2782 0.2238
XR-Transformer 0.9234 0.9070 0.8766 0.9219 0.9184 0.8901 0.8636 0.8767 0.3854 0.3458 0.3645

REASSIGN 0.9167 0.9054 0.8781 0.9153 0.9132 0.9079 0.8379 0.8715 0.0605 0.1521 0.0866
HECTOR 0.9593 0.9348 0.9005 0.9557 0.9524 0.8839 0.9273 0.9051 0.4053 0.4797 0.4394

9

XML-CNN 0.9136 0.8975 0.7334 0.9111 0.9137 0.9038 0.8260 0.8631 0.0654 0.1019 0.0797
AttentionXML 0.9436 0.9211 0.7501 0.9421 0.9437 0.9197 0.8692 0.8937 0.1963 0.2993 0.2371

MATCH 0.9228 0.9001 0.7281 0.9209 0.9194 0.9088 0.8333 0.8694 0.1880 0.2573 0.2172
XR-Transformer 0.9276 0.9041 0.7319 0.9255 0.9236 0.8936 0.8689 0.8810 0.3375 0.3688 0.3524

REASSIGN 0.9229 0.9084 0.7384 0.9237 0.9245 0.9122 0.8470 0.8784 0.0551 0.1387 0.0789
HECTOR 0.9926 0.9621 0.7782 0.9902 0.9893 0.9565 0.9748 0.9655 0.3904 0.6192 0.4789

10

XML-CNN 0.9370 0.8981 0.6010 0.9287 0.9432 0.9107 0.8321 0.8696 0.0747 0.1292 0.0947
AttentionXML 0.9539 0.9156 0.6095 0.9495 0.9605 0.9258 0.8710 0.8976 0.1929 0.3181 0.2401

MATCH 0.9340 0.8924 0.5895 0.9271 0.9351 0.9041 0.8449 0.8735 0.2248 0.2693 0.2451
XR-Transformer 0.9350 0.8969 0.5899 0.9301 0.9355 0.8987 0.8708 0.8846 0.3450 0.3614 0.3530

REASSIGN 0.9431 0.9053 0.6032 0.9387 0.9504 0.9180 0.8536 0.8846 0.0686 0.1854 0.1002
HECTOR 0.9957 0.9474 0.6223 0.9900 0.9914 0.9470 0.9738 0.9602 0.4263 0.6046 0.5000
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Table 6: Performance comparison of HECTOR and other competing methods on Label Refinement task on EURLex dataset. 𝐿

denotes the level of taxonomy, from which the refinement starts. 𝑃@𝑘 – Precision@k; 𝑁@𝑘 – nDCG@k; 𝜇𝑋 – micro average;

𝑀𝑋 – macro average.

L Algorithms 𝑃@1 𝑃@3 𝑃@5 𝑁@3 𝑁@5 𝜇𝑃𝑟𝑒𝑐 𝜇𝑅𝑒𝑐𝑎𝑙𝑙 𝜇𝐹1 𝑀𝑃𝑟𝑒𝑐 𝑀𝑅𝑒𝑐𝑎𝑙𝑙 𝑀𝐹1

2

XML-CNN 0.8998 0.8136 0.7082 0.8471 0.8147 0.7823 0.6560 0.7136 0.3937 0.4236 0.4081
AttentionXML 0.9205 0.8344 0.7249 0.8676 0.8334 0.7618 0.6782 0.7176 0.3965 0.5537 0.4621

MATCH - - - - - - - - - - -
XR-Transformer 0.9276 0.8587 0.7486 0.8890 0.8568 0.7924 0.7293 0.7595 0.4869 0.6077 0.5407

REASSIGN 0.8655 0.7730 0.6668 0.8061 0.7691 0.6758 0.6513 0.6633 0.2120 0.3704 0.2697
HECTOR 0.9861 0.9419 0.8494 0.9691 0.9563 0.8170 0.9258 0.8680 0.6863 0.7902 0.7346

3

XML-CNN 0.8028 0.5038 0.3509 0.7942 0.8146 0.7510 0.6598 0.7025 0.4064 0.4069 0.4066
AttentionXML 0.8220 0.5158 0.3618 0.8111 0.8345 0.7200 0.6792 0.6990 0.3874 0.5773 0.4636

MATCH - - - - - - - - - - -
XR-Transformer 0.8441 0.5211 0.3551 0.8239 0.8343 0.7600 0.7342 0.7469 0.5037 0.5866 0.5420

REASSIGN 0.7598 0.4791 0.3350 0.7522 0.7735 0.6944 0.6338 0.6627 0.2265 0.3703 0.2810
HECTOR 0.9579 0.6034 0.4081 0.9506 0.9595 0.8091 0.9239 0.8627 0.7414 0.7744 0.7575

4

XML-CNN 0.8115 0.3690 0.2310 0.8655 0.8794 0.8115 0.6731 0.7359 0.4410 0.3781 0.4071
AttentionXML 0.8251 0.3775 0.2350 0.8836 0.8957 0.8069 0.7099 0.7553 0.4173 0.6799 0.5171

MATCH - - - - - - - - - - -
XR-Transformer 0.8163 0.3448 0.2125 0.8289 0.8360 0.8393 0.7558 0.7954 0.6044 0.6483 0.6256

REASSIGN 0.7636 0.3613 0.2276 0.8359 0.8518 0.7152 0.6848 0.6997 0.3027 0.4469 0.3609
HECTOR 0.9177 0.3991 0.2435 0.9542 0.9583 0.7858 0.9244 0.8495 0.7669 0.8334 0.7988

5

XML-CNN 0.9640 0.3393 0.2054 0.9739 0.9774 0.9659 0.7328 0.8333 0.4480 0.3442 0.3893
AttentionXML 0.9640 0.3483 0.2090 0.9841 0.9841 0.9352 0.8707 0.9018 0.7726 0.8534 0.8110

MATCH - - - - - - - - - - -
XR-Transformer 0.9189 0.3273 0.2036 0.9346 0.9480 0.9604 0.8362 0.8940 0.9021 0.6449 0.7521

REASSIGN 0.9279 0.3393 0.2072 0.9611 0.9659 0.9333 0.7241 0.8155 0.5504 0.5932 0.5710
HECTOR 0.9989 0.3483 0.2090 0.9978 0.9978 0.9355 0.9974 0.9667 0.8636 0.9037 0.8832

Table 7: Performance comparison of HECTOR and other competing methods on the XMLC task. 𝑃@𝑘 – Precision@k; 𝑁@𝑘 –

nDCG@k; 𝜇𝑋 – micro average;𝑀𝑋 – macro average.

Dataset Algorithms 𝑃@1 𝑃@3 𝑃@5 𝑁@3 𝑁@5 𝜇𝑃𝑟𝑒𝑐 𝜇𝑅𝑒𝑐𝑎𝑙𝑙 𝜇𝐹1 𝑀𝑃𝑟𝑒𝑐 𝑀𝑅𝑒𝑐𝑎𝑙𝑙 𝑀𝐹1

MAG-CS

XML-CNN 0.8628 0.7049 0.5555 0.7819 0.7638 0.6666 0.6042 0.6338 0.2558 0.1655 0.2010
AttentionXML 0.8830 0.7732 0.6336 0.8397 0.8395 0.7404 0.7383 0.7394 0.3907 0.4723 0.4276

MATCH 0.9228 0.7797 0.6182 0.8574 0.8421 0.7604 0.6814 0.7187 0.3872 0.3168 0.3484
XR-Transformer 0.8607 0.7309 0.5886 0.8008 0.7905 0.7244 0.6489 0.6846 0.3692 0.4455 0.4038

REASSIGN 0.8706 0.7023 0.5512 0.7808 0.7604 0.6555 0.6079 0.6308 0.0730 0.0957 0.0828
HECTOR 0.8918 0.7616 0.6155 0.8341 0.8286 0.7073 0.7016 0.7045 0.3263 0.3663 0.3451

PubMed

XML-CNN 0.9408 0.9231 0.9007 0.9272 0.9145 0.8123 0.6507 0.7226 0.1012 0.1363 0.1162
AttentionXML 0.9434 0.9317 0.9132 0.9344 0.9249 0.7931 0.7304 0.7604 0.2587 0.2984 0.2771

MATCH 0.9418 0.9231 0.9024 0.9275 0.9161 0.8047 0.6709 0.7317 0.2168 0.2443 0.2297
XR-Transformer 0.9401 0.9246 0.9077 0.9281 0.9199 0.8110 0.7130 0.7589 0.3723 0.3674 0.3698

REASSIGN 0.9446 0.9055 0.8647 0.9154 0.8880 0.8660 0.4374 0.5812 0.0520 0.1701 0.0797
HECTOR 0.9340 0.9119 0.8822 0.9173 0.9002 0.6808 0.7141 0.6971 0.3548 0.2617 0.3012

EURLex

XML-CNN 0.9258 0.8922 0.8462 0.9019 0.8734 0.7838 0.6807 0.7287 0.4027 0.4408 0.4209
AttentionXML 0.9382 0.9083 0.8623 0.9172 0.8887 0.7710 0.6916 0.7291 0.4046 0.5536 0.4675

MATCH - - - - - - - - - - -
XR-Transformer 0.9417 0.9202 0.8812 0.9270 0.9042 0.7894 0.7466 0.7674 0.5065 0.5894 0.5449

REASSIGN 0.9162 0.8453 0.7759 0.8629 0.8152 0.6495 0.6247 0.6369 0.2112 0.3581 0.2657
HECTOR 0.9233 0.8972 0.8569 0.9048 0.8809 0.7614 0.7264 0.7435 0.4197 0.5802 0.4871
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