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Abstract

Recent work has shown that methods that regularize second order information like
SAM can improve generalization in deep learning. Seemingly similar methods
like weight noise and gradient penalties often fail to provide such benefits. We
investigate this inconsistency and reveal its connection to the the structure of
the Hessian of the loss. Specifically, its decomposition into the positive semi-
definite Gauss-Newton matrix and an indefinite matrix, which we call the Nonlinear
Modeling Error (NME) matrix. Previous studies have largely overlooked the
significance of the NME in their analysis for various reasons. However, we provide
empirical and theoretical evidence that the NME is important to the performance
of gradient penalties and explains their sensitivity to activation functions. We
also provide evidence that the difference in regularization performance between
gradient penalties and weight noise can be explained by the NME. Our findings
emphasize the necessity of considering the NME in both experimental design and
theoretical analysis for sharpness regularization.

1 Introduction

There is a long history in machine learning of trying to use information about loss landscape geometry
to improve gradient-based learning. This has ranged from attempts to use the Fisher information
matrix to improve optimization [1], to trying to regularize the Hessian to improve generalization [2].
More recently, first order methods which implicitly use or penalize second order quantities have been
used successfully, including the sharpness aware minimization (SAM) algorithm [3]. On the other
hand, there are many approaches to use second order information which once seemed promising
but have had limited success [4]. These include methods like weight noise [5] and gradient norm
penalties [6, 7, 8, 9, 10], which have shown mixed success.

Part of the difficulty of using second order information is the difficulty of working with the Hessian
of the loss. With the large number of parameters in deep learning architectures, as well as the large
number of datapoints, many algorithms use stochastic methods to approximate statistics of the Hessian
[1, 11]. However, there is a conceptual difficulty as well which arises from the complicated structure
of the Hessian itself. Methods often involve approximating the Hessian via the Gauss-Newton (GN)
matrix - which is PSD for convex losses. This is beneficial for conditioners which try to maintain
monotonicity of gradient flow via a PSD transformation of the gradient. Thus indefinite part of the
Hessian is often neglected due to its complexity.

In this work we show that it is important to consider both parts of the Hessian to understand
certain methods that use second order information for regularization. We study the non-PSD part
of the Hessian, which we call the Nonlinear Modeling Error (NME). In contrast to commonly
held assumptions, this work reveals the NME is key to understanding two previously unexplained
phenomena in sharpness regularization:
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• Training with Gradient Penalties. We show that the performance of gradient penalties is
sensitive to the choice of activation functions. Our theoretical analysis reveals that the NME
is particularly sensitive to the second derivative of the activation function, and we show that
gradient penalties fail to improve performance when these derivatives have poor numerical
properties. We also design an intervention that can mitigate this issue. To the best of our
knowledge, this work is the first to show that methods using second order information are
more sensitive to the choice of activation function.

• Training with Hessian penalties. Conventional analysis of weight noise casts it as a penalty
on the GN part of the Hessian, but in reality it also penalizes the NME. Our experimental
ablations show that the NME exerts a significant influence on generalization performance,
and minimizing it is generally bad for training.

We conclude with a discussion about how these insights might be used to design activation functions
not with an eye towards forward or backwards passes [12, 13], but for compatibility with methods
that use second order information.

2 Understanding the structure of the Hessian

In this section, we lay the theoretical ground work for our experiments by explaining the structure of
the Hessian. Given a model z(θ,x) defined on parameters θ and input x, and a loss function L(z,y)
on the model outputs and labels y, we can write the gradient of the training loss with respect to θ as

∇θL = JT(∇zL) (1)

where the Jacobian J ≡ ∇θz. The Hessian∇2
θL can be decomposed as:

∇2
θL = JTHzJ︸ ︷︷ ︸

GN

+∇zL · ∇2
θz︸ ︷︷ ︸

NME

(2)

where Hz ≡ ∇2
zL. The first term, often referred to as the Gauss-Newton (GN) part of the Hessian, is

a generalization of the classical Gauss-Newton matrix [14, 15]. If the loss function is convex with
respect to the model outputs/logits (such as for MSE and CE losses), then the GN matrix is positive
semi-definite. This term often contributes large eigenvalues. The second term has previously been
studied theoretically where it is called the functional Hessian [16, 17]; in order to avoid confusion
with the overall Hessian we call it the Nonlinear Modeling Error matrix (NME). It is in general
indefinite and vanishes to zero at an interpolating minimum θ∗ where the model “fits”the data
(∇zL(θ∗) = 0), as can happen in overparameterized settings. Due to this, it is quite common for
studies to drop this term entirely when dealing with the Hessian. For example, many second order
optimizers approximate the Hessian ∇2

θL with only the Gauss-Newton term [11, 18]. It is also
common to drop this term in theoretical analysis of the Hessian ∇2

θL [19, 20]. However, we will
show why this term should not be ignored.

While the NME term can become small late in training, it encodes significant information during
training. More precisely, it is the only part of Hessian that contains second order information from the
model features∇2

θz. The GN matrix only contains second order information about the loss w.r.t. the
logits with the term Hz. All the information about the model function in the GN matrix is first-order.
In fact, the GN matrix can be seen as the Hessian of an approximation of the loss where a first-order
approximation of the model z(θ′,x) ≈ z(θ,x) + Jδ (δ = θ′ − θ) is used [18]

∇2
δL(z(θ,x) + Jδ, y)|θ′=θ = JTHzJ (3)

Thus we can see the GN matrix as the result of a linearization of the model and the NME as the
part that takes into account the non-linear part of the model. The GN matrix exactly determines the
linearized (NTK) dynamics of training, and therefore controls learning over small parameter changes
when the features can be approximated as fixed (see Appendix A.1). In contrast, the NME encodes
information about the changes in the NTK [21]. For additional intuition in the ReLU setting, see
Appendix A.3.

2.1 Sharpness regularization and the NME: Case of the Gauss-Newton trace

Sharpness regularization often relies on geometric quantities of the loss landscape such as the largest
eigenvalue [3] or combinations of the eigenvalues [22]. To illustrate the impact of the NME, let
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us consider the sharpness measure given by the trace of the Gauss-Newton tr(G) =
∑

i λi, which
gives information about the average eigenvalue λi of the Gauss-Newton. This measure, studied in
Section 5, also shares some similarities to Section 4’s gradient penalties but is simpler to analyze.
Surprisingly, even though the quantity purposely ignores the NME, we will see that its gradient still
crucially relies on it.

For GN matrix G, if the loss can be written as the log-likelihood of an exponential family distribution,
this measure can be expressed as a gradient penalty [23]:

tr (G) = Eŷ∼p(z)[∥∇θL(θ, ŷ)∥2] (4)

Here, the expectation is taken over labels ŷ sampled from p(z) - that is, the probability distribution
induced by the model logits z(θ) via the log-likelihood. ∇θL(θ, ŷ) is the gradient of this loss defined
with the sampled labels; derivatives are taken after the sampling process. For MSE loss, the gradient
of tr(G) can be written as:

∇θtr (G) = Eŷ∼p(z)[Nŷ∇θL(θ, ŷ)] (5)
where Nŷ is NME of the loss defined with the sampled labels. In this case if the NME is set to 0,
gradient descent could not effectively minimize this sharpness measure. The rest of the work will
explore the relationship between the structure of the Hessian and various curvature regularization
techniques beyond this case through experimental and theoretical work.

3 Experimental Setup

Our analysis of the Hessian begs an immediate question: when does the NME affect learning
algorithms? We conducted experimental studies to answer this question in the context of curvature
regularization algorithms which seek to promote convergence to flat areas of the loss landscape. We
use the following setups for the remainder of the paper:

Fashion MNIST We also include results on Fashion MNIST [24]. All experiments use the WideRes-
net 28-10 architecture with the same setup and hyperparameters as those used in our CIFAR-10
experiments.

CIFAR-10 We provide results on the CIFAR-10 dataset [25]. All experiments use the WideResnet
28-10 architecture with the same setup and hyperparameters as [26], except for the use of cosine
learning rate decay. Batch size is 128. Models are trained on 8 Nvidia Volta GPUs.

Imagenet We conduct experiments on the popular Imagenet dataset [27]. All experiments use the
Resnet-50 architecture with the same setup and hyperparameters as [28], except that we use cosine
learning rate decay [29] over 350 epochs. Batch size is set to 1024. Models are trained on using on
TPU V3 chips.

4 Explaining the pitfalls of gradient penalties

In this section we explore the sensitivity of gradient penalty regularizers to the activation function
via the NME. We first establish gradient penalty regularizers as an approximation of the Sharpness
Aware Minimization (SAM) learning rule, and then present a mystery: why do gradient penalties
recover the benefits of SAM for GELU and not for ReLU? We resolve the mystery with a theoretical
analysis of the NME, combined with a series of ablation studies and design a simple intervention
which alleviates the issue.

4.1 SAM and gradient penalties

The SAM algorithm originates from seeking a minimum with a uniformly low loss in its neighborhood
(hence flat). This is formulated in Foret et al. [3] as a minmax problem,

min
θ

max
ϵ
L(θ + ϵ) s.t. ∥ϵ∥ ≤ ρ . (6)

For computational tractability, [3] approximates the inner optimization by linearizing L w.r.t. ϵ
around the origin. Plugging the optimal ϵ into the objective function yields

min
θ
L
(
θ + ρ

∇θL(θ)
∥∇θL(θ)∥

)
. (7)
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The SAM algorithm approximately minimizes the objective with the following learning rule:

θ ← θ − η∇θL (θ + ρg̃) , g̃ ≡ ∇θL(θ)/||∇θL(θ)|| (8)

for some step-size parameter η > 0.

For small ρ, there is an alternative to the SAM rule. We may approximate L in (7) by its first order
Taylor expansion around the point ρ = 0 as below.

LPSAM(θ) ≜ L(θ)ρ=0 + ρ
( ∂

∂ρ
L
(
θ + ρ

∇θL(θ)
∥∇θL(θ)∥

))
ρ=0

+O(ρ2) (9)

= L(θ) + ρ

〈
∇θL(θ) ,

∇θL(θ)
∥∇θL(θ)∥

〉
+O(ρ2) (10)

= L(θ) + ρ ∥∇θL(θ)∥+O(ρ2) . (11)

Dropping terms of O(ρ2) we arrive at a gradient penalty regularizer. In general we can define
gradient penalties as additive regularizers of the form

Lpen,p = ρ||∇L0||p (12)

for a base loss L0. Gradient penalties have recently gained popularity as regularizers [6, 7, 8, 9, 10].
We will focus on the p = 1 case in the remainder of the section which we will refer to as Penalty SAM
(or PSAM for short).

4.2 Penalty SAM vs Original SAM

A natural question arises: when do SAM and PSAM have similar effects? We find, surprisingly, that the
answer is highly dependent on the activation function of the architecture. On Resnet50 trained on
Imagenet, networks trained with GELU activation show similar performance for SAM training and
PSAM training (Figure 1a); in contrast, with ReLU activation PSAM performs significantly worse than
SAM as ρ is increased - indeed, becoming worse than the baseline for the best values of ρ for SAM
(Figure 1b).

In order to understand this difference, we must first look at the update rule for PSAM. Given the base,
pre-regularized loss L0, the update to the parameters θt under SGD can be written as:

θt+1 − θt = −η
(
∇θL0 +

1

||∇θL0||
H∇θL0

)
(13)

where H ≡ ∇2
θL0. Therefore, PSAM captures curvature information via an explicit Hessian-gradient

product. This is in contrast to SAM, which captures curvature information by evaluating the gradient at
the alternative point in the g̃ direction (Equation 8). This lets SAM effectively “integrate” over in this
direction and benefit from higher order information - in contrast to PSAM which only has access to the
Hessian. The natural followup question is: how does the activation function influence the Hessian?
In the remainder of this section, we provide evidence that it is in fact the NME component that is
sensitive to this choice - and in general, it is the most important term to the overall performance of
PSAM.

4.3 Effect of Activation functions on the NME

One important feature of the NME is that it depends on the second derivative of the activation
function. We can demonstrate this most easily on a fully-connected network, but the general principle
applies to most common architectures. Given an activation function ϕ, a feedforward network with L
layers on an input x0 defined iteratively by

hl = Wlxl, xl+1 = ϕ(hl) (14)

The gradient of the model output xL with respect to a weight matrix Wl is given by

∂xL

∂Wl
= JL(l+1) ◦ ϕ′(hl)⊗ xl, Jl′l ≡

l′−1∏
m=l

ϕ′(hm) ◦Wm, ϕ′(x) ≡ dϕ

dx
(x)
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Figure 1: Test Accuracy as ρ increases across different datasets and activation functions averaged over
5 seeds. PSAM with GELU networks more closely follows the behavior of SAM. For ReLU networks
and large ρ, there is a significant difference between PSAM and SAM.

where ◦ is the Hadamard (elementwise) product. The second derivative can be written as:

∂2xL

∂Wl∂Wm
=

[
∂JL(l+1)

∂Wm
◦ ϕ′(hl)+ JL(l+1) ◦

∂ϕ′(hl)

∂Wm

]
⊗ xl (15)

where without loss of generality m ≥ l. The full analysis of this derivative can be found in Appendix
A.4. The key feature is that the majority of the terms have a factor of the form

∂ϕ′(ho)

∂Wm
= ϕ′′(ho) ◦

∂ho

∂Wm
, ϕ′′(x) ≡ d2ϕ

dx2
(x) (16)

via the product rule - a dependence on the second derivative ϕ′′ of the activation function. On the
diagonal m = l, all the terms depend on ϕ′′. We note that a similar analysis can be found in Section
8.1.2 of [15].

We immediately see how the role of the activation function differs in the NME compared to the
gradient or even the GN: only the NME is sensitive to the second derivatives of the activation. GELU
has a numerically stable second derivative function:

d2

dx2
GELU(x) =

1√
2π

e−x2/2
[
2− x2

]
(17)

Therefore, there are no issues computing the NME for GELU networks.

In contrast, the second derivative of ReLU is 0 everywhere except the origin, where it is undefined.
In theoretical settings, the ReLU second derivative is defined as the Dirac delta “function” - more
formally, the measure attained by a sequence of Gaussians centered at zero, as the standard deviation
σ → 0. It is integrable to 1 despite not attaining non-zero value anywhere. Therefore ReLU does not
have a numerically well-posed second derivative, which affects computations involving the NME.

4.4 Ablating activation NME explains the gap
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Figure 2: Test accuracy as ρ increases for penalty SAM with parts of the NME ablated (average of 5
seeds). The removal of information from the NME controls the effectiveness of the gradient penalty.

5



In practical settings ReLU suffers from a “missing curvature” phenomenology: the second derivative
is set to 0 in most autodifferentiating frameworks. This means that much of the information in the
NME is inaccessible through the Hessian-vector product that at the heart of the update rule in Equation
13. Therefore PSAM suffers from a mismatch between the true NME information and the information
available to the implemented algorithm. In contrast, SAM does not suffer from this issue; any curvature
information is gained via differences in first derivatives - which by the fundamental theorem of
calculus, are equivalent to integrals of second derivatives (and therefore of NME information).

We can confirm that the missing second derivative information in Equation 16 for ReLU networks
is key for gradient penalties by removing it in GELU networks, and performing training with PSAM.
This can be done by taking the second derivative of the GeLU to be zero:

d2

dx2
ĜELU(x) := 0 (18)

and leaving the forward and backward propagation of the activation intact (see Appendix C.2 for
implementation). This removes terms related to the activation in the same way ReLU does, so we
denote as GeLU ablating activation NME for brevity. We see that across all 3 datasets in Figure 2
removing this portion of the NME degrades the performance of the GeLU with ρ similar to that of
the ReLU, even though only the NME has been affected.

We can see similar results when we use a different method to approximate ReLU with GELU. The
activation function GELU(βx)/β converges uniformly to ReLU as β →∞, while having well-posed
derivatives for any finite β. We show in Appendix B.3 that gradient penalty performance degrades for
large β > 103 - which we tie to high input sensitivity and increased sparsity of the second derivative.
This suggests that even differentiable ReLU-like activation functions can fail to have compatibility
with gradient penalties. We also confirm in Appendix C that ablating the full NME is also detrimental
to generalization, though in a different way than ablating in the same manner as ReLU.

4.5 Adding synthetic activation NME improves results
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Figure 3: Test accuracy as ρ increases for penalty SAM with parts of the NME replaced synthetically
(average of 5 seeds). The addition of information to the NME improves the performance as ρ
increases.

Using this insight, we can modify the ReLU activation function to improve performance as follows.
The issue with the ReLU is that the second derivative is a delta function - which can’t be implemented
numerically. However, we know that the delta function itself can be approximated by a Gaussian
distribution. Therefore we replace the second derivative of ReLU with such a Gaussian

d2

dx2
R̂eLU(x) :=

β√
2π

e−β2x2/2 (19)

where β is the kernel width. We see that this prevents the drastic degradation at ρ = 0.1 of the
original ReLU (Figure 3, β = 100). This suggests that it may be possible to design interventions
to approximately access NME information in cases where second derivatives have poor numerical
properties.

5 Explaining the pitfalls of Hessian penalties

In this section, we explore the impact of the NME on the effectiveness of Hessian penalties like
weight noise. We first review the previously claimed link between gradient penalties and weight noise
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[30], and then present a mystery: if this link is correct, why is there a difference in regularization
boost between gradient penalties and weight noise? In contrast to the previous section where the
NME solely featured in the update rule, weight noise implicitly minimizes the NME. We will show
through ablations that minimizing the NME is detrimental, and explain why NME minimization is a
poor strategy.

5.1 Weight noise equivalence assumes zero NME

We first review the analysis of training with noise established by [19]. Though the paper considers
input noise, the same analysis can be applied to weight noise. Adding Gaussian ϵ ∼ N (0, σ2) noise
with strength hyper-parameter σ to the parameters can be approximated to second order by

Eϵ[L(θ + ϵ)] ≈ L(θ) +������
Eϵ[∇θL · ϵ] + Eϵ[ϵ

THϵ]

= L(θ) + σ2tr(H)
(20)

where the second term has zero expectation since ϵ is mean 0, and the third term is a variation of
the Hutchison trace estimator [31]. (We note that though the second term vanishes in expectation,
it still can have large effects on the training dynamics.) [19] argues that we can simplify the term
related to the Hessian by dropping the NME in Equation 2 for the purposes of minimization, which
in combination with 4 yields

tr(H) ≈ tr (G) = Eŷ∼Cat(z)[∥∇θL(θ, ŷ)∥2]

The argument is that for the purposes of training neural networks, the NME can be dropped because
it is zero at the global minimum we are trying to reach. However, the hypothesis that the NME has
negligible impact in this setting has not been experimentally verified and we address this gap in the
next section.

5.2 Minimizing the NME is detrimental

In order to study the impact of the NME in this setting, we evaluate ablations of weight noise to
determine the impact of the different components. Recalling Equation 20, the methods we will
consider are given by

Eϵ[L(θ + ϵ)]︸ ︷︷ ︸
Weight Noise

=

Hessian Trace Penalty︷ ︸︸ ︷
L(θ) + σ2tr (G)︸ ︷︷ ︸

Gauss-Newton Trace Penalty

+σ2tr (N)+O(∥ϵ∥2)

where G ≡ JTHzJ is the Gauss-Newton, N ≡ ∇zL · ∇2
θz is the NME.

Hessian Trace penalty This ablation allows to us to single out the second order effect of weight
noise, as it’s possible the higher order terms from weight noise affect generalization. We implement
this penalty with Hutchinson’s trace estimator (tr(H) = Eϵ∼N (0,1)[ϵ

THϵ]).

Gauss-Newton Trace penalty This ablation removes the NME’s contribution, enabling us to
isolate and measure its specific influence on the model. We use the estimator from Equation 4,
tr (G) = Eŷ∼Cat(z)[∥∇θL(θ, ŷ)∥2], to compute the penalty. This is the norm of the gradients,
with respect to labels ŷ sampled via the distribution Cat(z) induced by the model logits via the
softmax [23]. This is an alternative gradient penalty, a point we will return to later. We do not
pass gradients through the sampling of the labels ŷ, but find similar results if we pass gradients
using the straight-through estimator [32]. We also run experiments with the Hutchison’s estimator
tr(G) = Eϵ∼N (0,1)[ϵ

TGϵ] to control for the effect of the estimator.

Our experiments show that the methods perform quite differently for similar values of σ2 (Figure
4) – confirming the influence of the NME. We can see that the generalization improvement of the
Gauss-Newton Trace penalty is consistently greater than either weight noise or Hessian Trace penalty.
Its improvement on Imagenet is a significant 1.6%. In contrast, the other methods provide little
accuracy improvement. While these experiments use different estimators with a single sample, results
are consistent even when compared with the same estimator and with 5 samples to get a better trace
estimate (Figure 5).
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Figure 4: Test Accuracy as σ2 increases across different datasets and activation functions averaged
over 5 seeds. Large σ2 reveals a stark contrast between the Gauss-Newton trace penalty, which
excludes NME, and methods incorporating it, highlighting the NME’s influence.
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with 5 samples (curves are averaged over 2 seeds). Despite the larger number of samples, Hessian
trace penalty remains unstable, while Gauss-Newton trace penalty is stable. This suggests the
instability is not due the estimator.

In fact, both the weight noise and Hessian trace penalties show severe performance degradation for
larger σ2 - with the Hessian trace penalty in particular showing degradation as low as 10−6, at least
two orders of magnitude lower than the optimal GN trace regularizer values ≥ 10−4. This may be
related to the fact that the full Hessian trace has no lower bound as it includes the indefinite NME,
while the GN is a PSD matrix whose trace is bounded by 0. Measurements of the trace during training
shows that indeed the trace grows large and negative superlinearly in the number of training iterations
for the Hessian trace penalty (Figure 6, σ2 = 10−3).

Our experiments suggest that the Gauss-Newton trace is a better (and indeed, qualitatively different)
regularizer than the full Hessian trace penalty. As computed in Section 2.1, this regularizer is a
gradient penalty whose gradient relies crucially on the information in the NME. These results indicate
that minimizing the NME in the loss is counter-productive. Similarly, Section 4.4 shows that zeroing
out portions of the NME is also detrimental. This suggests that the NME is important in understanding
the effects of curvature regularization.
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Figure 6: Trace penalty over training iterations for different methods averaged over 5 seeds. The
trace of the Hessian can be negative due to the NME, while the trace of the Gauss-Newton cannot.
Minimizing the Hessian trace causes it to become very negative, which is detrimental to training
stability.
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6 Discussion

Our theoretical analysis gives some understanding of the structure of the Hessian - in particular, the
Nonlinear Modeling Error matrix. This piece of the Hessian is often neglected as it is generally
indefinite and doesn’t generate large eigenvalues, and is 0 at an interpolating minimum. However,
the NME is the only part of the Hessian that encodes important second order information about the
features, as it depends on ∇2

θz - the gradient of the Jacobian. Another intriguing observation was
that the gradient of the trace of the Gauss Newton matrix ∇θtr(G) can be written in terms of an
NME-vector product. We also saw that the NME, particularly the diagonal, is sensitive to the second
derivative of the activation function.

Our experiments suggest that these second derivative properties can be quite important when training
with gradient penalty regularizers. ReLU has a poorly defined pointwise second derivative, and the
resulting regularizer harms training. In contrast, GELU has a well defined one and gains benefits
from modest values of the regularizer. Our ablation experiments showed that removing the second
derivatives prevented gradient penalties from usefully using the NME information. We also found an
alternative approximation for ReLU second derivatives which added NME information and improved
training.

These results suggest that some second order methods may benefit from tuning the NME. This is
especially true for methods which result in Hessian-vector products in update rules (like the gradient
and Hessian trace penalties studied here). Another interesting avenue for research is to replace
explicit second order methods with implicit second order methods which use first order information at
discrete intervals - analogous to how SAM avoided sensitivity to bad second derivatives by “integrating”
over a direction via differences, which accessed averaged quantities and higher order information.

Our experiments on Hessian trace penalties confirmed that the NME is important to understanding
the successes and failures of those methods. It is intriguing that the variant which performed best, the
GN trace penalty, can itself be written as an alternative gradient penalty. Exploring other gradient
penalties is a promising research direction; they are non-negative, easy to compute, and generally
contain NME information in their update rules.

7 Conclusion

Our work sheds light on the complexities of using second order information in deep learning. We
have identified clear cases where it is important to consider the effects of both the Gauss-Newton and
Nonlinear Modeling Error terms, and design algorithms and architectures with that in mind. This
insight may unlock new classes of second order algorithms which use loss landscape geometry in
qualitatively different ways.
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A Hessian structure

A.1 Gauss-Newton and NTK learning

In the large width limit (width/channels/patches increasing while dataset is fixed), the learning
dynamics of neural networks are well described by the neural tangent kernel, or NTK [33, 34].
Consider a dataset size D, with outputs z(θ,X) over the inputs X with parameters θ. The (empirical)
NTK Θ̂ is the D ×D matrix given by

Θ̂ ≡ 1

D
JJT, J ≡ ∂z

∂θ
(21)

For wide enough networks, the learning dynamics can be written in terms of the model output z and
the NTK Θ̂ alone. For small learning rates we can study the gradient flow dynamics. The gradient
flow dynamics on the parameters θ with loss function L (averaged over the dataset) is given by

θ̇ = − 1

D
∇θL = − 1

D
JT∇zL (22)

We can use the chain rule to write down the dynamics of z:

ż =
∂z

∂θ
θ̇ = − 1

D
JJT∇zL = −Θ̂∇zL (23)

In the limit of infinite width, the overall changes in individual parameters become small, and the Θ̂ is
fixed during training. This corresponds to the linearized or lazy regime [35, 36]. The NTK encodes
the linear response of z to small changes in θ, and the dynamics is closed in terms of z. For finite
width networks, this can well-approximate the dynamics for a number of steps related to the network
width amongst other properties [34].

In order to understand the dynamics of Equation 23 at small times, or around minima, we can linearize
with respect to z. We have:

∂ż

∂z
= −∂Θ̂

∂z
∇zL − Θ̂Hz (24)

where Hz = ∂2L
∂z∂z′ . In the limit of large width, the NTK is constant and the first term vanishes. The

local dynamics depends on the spectrum of Θ̂Hz. From the cyclic property of the trace, the non-zero
part of the spectrum is equal to the non-zero spectrum of 1

DJTHzJ - which is the Gauss-Newton
matrix.

Therefore the eigenvalues of the Gauss-Newton matrix control the short term, linearized dynamics of
z, for fixed NTK. It is in this sense that the Gauss-Newton encodes information about exploiting the
local linear structure of the model.

A.2 GN and second order information

The GN part of the Hessian may seem like it must contain second order information about the model
due to its equivalence to the Fisher information matrix for losses that can be written as negative
log-likelihoods, like MSE and cross-entropy. For these, the Fisher information itself can be written as
the Hessian of a slightly different loss [37]:

F = Eŷ∼pz

[
∇2

θL(z, ŷ)
]

(25)

where the only difference is that the labels ŷ are sampled from the model instead of the true labels.
However, the NME is 0 for this loss. For example, in the case of MSE using Equation 2 we have

Eŷ

[
∇2

θL(z, ŷ)
]
= Eŷ

[
JTHzJ+∇zL(z, ŷ) · ∇2

θz
]

= JTHzJ+((((((((
Eŷ∼N (z,I)[z− ŷ] · ∇2

θz

The second term vanishes because we are at the global minimum for this loss. Therefore, as expected,
the Fisher information (and therefore, the Gauss Newton matrix) carry no information about the
model second derivatives∇2

θz.
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A.3 Intuitions about NME with ReLU

In a piecewise multilinear model like a ReLU network, we can think of the GN part of the Hessian as
exploiting the linear (NTK) structure, while the NME gives information on exploration - namely, the
benefits of switching to a different multilinear region where different neurons are active. The NME is
made out of the sum of Dirac delta functions, whose “spikes” are given by the boundaries between
the multilinear regions corresponding to ReLU reaching the saturated regime. The NME is small
outside those regions.

We can gain additional intuition by constructing a differentiable approximation of ReLU. We define
the β-GELU by

β-GELU(x) = xΦ(βx) (26)

where Φ is the standard Gaussian CDF. We can recover GELU by setting β = 1. β-GELU converges
uniformly to ReLU in the limit β →∞. The second derivative is given by

d2

dx2
β-GELU(x) =

1√
2πβ−2

e−x2/2β−2 [
2− (x/β−1)2

]
(27)

For large β, this function is exponentially small when x≫ β−1, and O(β) when |x| = O(β−1). As
β increases the non-zero region becomes smaller while the non-zero value becomes larger such that
the integral is always 1.

The choice of β determines how much information the NME can convey in a practical setting. This
second derivative is large only when the input to the activation is within distance 1/β of 0. In a deep
network this corresponds to being near the boundary of the piecewise multilinear regions where the
activations switch on and off in an equivalent ReLU newtork.

We can illustrate this using two parameters of an MLP in the same layer, where with ReLU activation
the model is in fact piecewise linear with respect to those parameters (Figure 7). For GELU with
large β, the second derivative serves as an “edge detector”1 (more generally, hyperplane detector) of
the corresponding multilinear boundaries for the equivalent ReLU network (denoted by the blue lines
in the right panel of Figure 7). Therefore, the NME can be used to probe the usefulness of crossing
these edges.
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Figure 7: Loss (left) and Nonlinear Modeling Error matrix (NME) norm (right) as a function of 2
parameters in the same hidden layer of an MLP (MSE loss, one datapoint). For ReLU activation
model is piecewise multilinear, and piecewise linear for parameters in same layer. Loss is piecewise
quadratic for parameters in same layer (left). There is little NME information accessible pointwise
and the main features are the boundaries of the piecewise linear regions (blue, right). For β-GELU,
NME magnitude is high only within distance 1/β of those boundaries. Therefore the NME encodes
information about the utility of switching between piecewise multilinear regions.

1In fact, the negative of the second order derivative of GELU is closely related to the Laplacian of Gaussian,
which is a well-known edge-detector in image processing and computer vision.
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A.4 Nonlinear Modeling Error and second derivatives of FCNs

We can explicitly compute the Jacobian and second derivative of the model for a fully connected
network. We write a feedforward network as follows:

hl = Wlxl, xl+1 = ϕ(hl) (28)

The gradient of xL with respect to Wl can be written as:

∂xL

∂Wl
=

∂xL

∂hl

∂hl

∂Wl
(29)

which can be written in coordinate-free notation as

∂xL

∂Wl
=

∂xL

∂hl
⊗ xl (30)

If we define the partial Jacobian Jl′l ≡ ∂xl′
∂xl

, l′ > l

∂xL

∂Wl
= JL(l+1) ◦ ϕ′(hl)⊗ xl (31)

Here ◦ denotes the Hadamard product, in this case equivalent to matrix multiplication by
diag(ϕ′(hm)).

The Jacobian can be explicitly written as

Jl′l =

l′−1∏
m=l

ϕ′(hm) ◦Wm (32)

Therefore, we can write:

∂xL

∂Wl
=

[
L−1∏

m=l+1

ϕ′(hm) ◦Wm

]
◦ ϕ′(hl)⊗ xl (33)

The second derivative is more complicated. Consider

∂2xL

∂Wl∂Wm
=

∂

∂Wm

[
JL(l+1) ◦ ϕ′(hl)⊗ xl

]
(34)

for weight matrices Wl and Wm. Without loss of generality, assume m ≥ l.

We first consider the case where m > l. In this case, we have

∂ϕ′(hl)

∂Wm
= 0,

∂xl

∂Wm
= 0 (35)

since Wm comes after hl. If we write down the derivative of JL(l+1), there are two types of terms.
The first comes from the direct differentiation of Wm; the others come from differentation of ϕ′(hn)
for n ≥ m. We have:

∂JL(l+1)

∂Wm
= JL(m+1)ϕ

′(hm)
∂Wm

∂Wm
J(m−1)(l+1) +

L−1∑
o=m

JL(o+1)
∂ϕ′(ho)

∂Wm
WoJ(o−1)(l+1) (36)

The Wm derivative projected into a direction B can be written as:

∂JL(l+1)

∂Wm
·B = JL(m+1)ϕ

′(hm)BJ(m−1)(l+1)

+

L−1∑
o=m

JL(o+1)

(
ϕ′′(ho) ◦Wo

∂xo−1

∂Wm
·B

)
WoJ(o−1)(l+1)

(37)
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From our previous analysis, we have:

∂JL(l+1)

∂Wm
·B = JL(m+1)ϕ

′(hm)BJ(m−1)(l+1)

+

L−1∑
o=m

JL(o+1)

(
ϕ′′(ho) ◦

[
WoJo(m+1) ◦ ϕ′(hm+1) ◦Bxm

]) ∂ϕ′(ho)

∂Wm
WoJ(o−1)(l+1)

(38)

In total, the second derivative projected into the (A,B) direction for m > l is given by:

∂2xL

∂Wl∂Wm
· (A⊗B) =

[
JL(m+1)ϕ

′(hm)BJ(m−1)(l+1)+

L−1∑
o=m

JL(o+1)

(
ϕ′′(ho) ◦

[
WoJo(m+1) ◦ ϕ′(hm+1) ◦Bxm

]) ∂ϕ′(ho)

∂Wm
WoJ(o−1)(l+1)

]
◦ ϕ′(hl)Axl

(39)

Now consider the case m = l. Here there is no direct differentiation with respect to Wm, but there is
a derivative with respect to ϕ′(hm). The derivative is written as:

∂2xL

∂Wm∂Wm
· (A⊗B) = JL(m+1) ◦ [ϕ′′(hm) ◦Bxl]Axm+[

L−1∑
o=m

JL(o+1)

(
ϕ′′(ho) ◦

[
WoJo(m+1) ◦ ϕ′(hm+1) ◦Bxm

]) ∂ϕ′(ho)

∂Wm
WoJ(o−1)(m+1)

]
◦ ϕ′(hm)Axm

(40)

There are two key points: first, all but one of the terms in the off-diagonal second derivative depend
on only first derivatives of the activation; for a deep network, the majority of the terms depend on
ϕ′′. Secondly, on the diagonal, all terms depend on ϕ′′. Therefore if ϕ′′(x) = 0, the diagonal of the
model second derivative is 0 as well.

B SAM and gradient penalties

The gradient penalties studied in Section 4 are related to the Sharpness Aware Minimization algorithm
(SAM) developed to combat high curvature in deep learning [3]. In this appendix we review some
additional facts about SAM and gradient penalties.

B.1 USAM

A related learning algorithm is unnormalized SAM (USAM) with update rule [38]

θ ← θ − η∇θL (θ + ρg) , g ≡ ∇θL(θ) (41)

USAM has similar performance to SAM and is easier to analyze [39]. The unnormalized gradient penalty
equivalent PUSAM is

LPUSAM(θ) ≜ L(θ) + ρ ∥∇θL(θ)∥2 +O(ρ2) . (42)

which corresponds to the p = 2 case of the gradient penalty.

B.2 Penalty SAM vs. implicit regularization of SGD

The analysis of [7] suggested that SGD with learning rate η is similar to gradient flow (GF) with
PUSAM with ρ = η/4. In this section we use a linear model to highlight some key differences between
PUSAM and the discrete effects from finite stepsize SGD.
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Consider a quadratic loss L(θ) = 1
2θ

THθ for some parameters θ and PSD Hessian H. It is
illustrative to consider gradient descent (GD) with learning rate η and (unnormalized) penalty SAM
with radius ρ.

The gradient descent update rule is

θt+1 − θt = −η(H+ ρH2)θt (43)

The “effective Hessian” is given by H+ρH2 (see [39] for more analysis). Solving the linear equation
gives us

θt =
(
1− η(H+ ρH2)

)t
θ0 (44)

This dynamics is well described by the eigenvalues of the effective Hessian - λ+ ρλ2, where λ are
the eigenvalues of H. The effect of the regularizer is therefore to introduce eigenvalue-dependent
modifications into the Hessian.

There is a special setting of ρ which can be derived from the calculations in [7]. Consider ρ = η/2,
and consider the dynamics after 2t steps. We have:

θ2t =

(
1− η(H+

1

2
ηH2)

)2t

θ0 (45)

which can be re-written as

θ2t =

(
1− 2ηH+ η3H3 +

1

4
η4H4

)t

θ0 (46)

To leading order in ηH, this is the same as the dynamics for learning rate 2η, ρ = 0 after t steps:

θt = (1− 2ηH)
t
θ0 (47)

We note that these two are similar only if ηH≪ 1. Under this condition, ηρH2 = 1
2η

2H2 ≪ ηH,
and the gradient penalty only has a small effect on the overall dynamics. In many practical learning
scenarios, including those involving SAM, ηλ can become O(1) for many eigenvalues during training
[39]. In these scenarios there will be qualitative differences between using penalty SAM and training
with a different learning rate.

In addition, when ρ is set arbitrarily, the dynamics of η and 2η will no longer match to second order in
ηH. This provides further theoretical evidence that combining SGD with penalty SAM is qualitatively
and quantitatively different from training with a larger learning rate.

B.3 β-GELU experiments

We can understand the failure of NME information accessibility in ReLU via another method -
constructing a sequence of ever closer approximations of ReLU which are still differentiable. We
return to the β-GELU defined in Equation 26:

β-GELU(x) = xΦ(βx)

We recall that limβ→∞ β-GELU(x) = ReLU(x) - in fact, with uniform convergence. Note that this
uniform convergence does not extend to second derivatives; β-GELU for large β is different from
standard ReLU implementations at the origin, since it has second derivative β, and not 0, at the origin.

We can then ask: does β-GELU with large β behave similarly to ReLU? Training with SGD, we
see that performance is close to invariant across 6 orders of magnitude of β (Figure 8, blue curves -
average and standard deviation over 5 seeds). This is consistent with the uniform convergence which
implies that forward and backwards passes of β-GELU become more similar to ReLU at large β.

In contrast, if we train with PSAM with ρ = 0.1 (the best setting we found for regular GELU with
β = 1), we find that performance degrades with β, decreasing rapidly on a log scale for β ≥ 103

(Figure 8, orange). This once again suggests that choice of activation function matters, and that
ReLU-like activations combine poorly with gradient penalties.

This is interesting because for any finite β, β-GELU is in fact infinitely differentiable. Why are there
issues with large β then? We can return to the form of ∇2

θz for the answer. Recall from Equation 15
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Figure 8: Accuracy vs β for SGD and SGD with gradient penalty (ρ = 0.1) using β-GELU activations
(average of 5 seeds). We observe that accuracy decreases with larger β with the gradient penalty but
not without it. As our theory suggests that the sparsity of the NME increases with β, this is evidence
that it has significant impact on gradient penalties.

that much of the NME depends on the second derivative of the activation function. From Equation
27, the second derivatives are exponentially small outside of a narrow band of width β−1. Within this
band, the derivatives are O(β).

Therefore, for large β, the elements of the NME become “high frequency” functions - a small change
in parameter values can lead to a massive change in the function value. Indeed, the statistics are
characterized by sparse, large entries. For the Imagenet and CIFAR10 examples we can measure
sparsity in the second derivative of the activation directly (Figure 9). We see that at initialization, the
fraction of nonzero second derivatives drops with β (blue curve); this trend becomes much stronger
after training, particularly in the Imagenet case (orange curve). This gives us a possible explanation
for the failure at large β; even though the second derivatives exist, the NME becomes a sparse, high
frequency estimate of local curvature information and does not provide value during training.
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Figure 9: Fraction of non-zero activation second derivatives for β-GELU trained on Imagenet (left)
and CIFAR10 (right). At initialization, fraction of non-zeros decreases somewhat with β (blue); after
training, fraction of non-zeros depends strongly on β (orange).

Note that we are not claiming that the choice of the activation function is a sufficient condition for
gradient penalties to work with larger ρ. There are many architectural changes that can affect the
NME matrix and we have shown that the statistics of the activation function is a significant one.

C NME ablation details

In this section we go into more detail about how to implement various ablations of the NME shown
in the experiments.
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C.1 Gradient penalty, Gauss-Newton only
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Figure 10: Test Accuracy as ρ increases ablating full NME from the update. We can see ablating the
full NME is detrimental to performance.

For cross-entropy loss, we can completely remove the NME from the update rule in Equation 13
using a modified version of the penalty. Given model logits z(θ), let p(z) be the probability induced
by z (via the softmax). Given the true labels y, consider the quantity:

g(θ,y, t) ≡ ∇θL(θ,y) · ∇θL(θ, t) (48)

for a probability vector t. Differentiating with respect to θ, we have:

∇θg(θ,y, t) = ∇2
θL(θ,y)∇θL(θ, t) +∇2

θL(θ, t)∇θL(θ,y) (49)

This is simply the sum of two Hessian vector products.

Consider the special case where t = p(z). In this case, ∇θL(θ,p(z)) = 0 - since the choice of
logits z minimizes the loss with respect to true distribution p(z). The first term vanishes. This leaves
us with the second term. Expanding the Hessian∇2

θL(θ, t) into the GN and NME, we have:

∇2
θL(θ, t) = JTHz(θ, t)J+∇zL(z(θ), t) · ∇2

θz (50)

For cross-entropy loss, Hz is independent of the labels, and the first term is simply the GN matrix G.
For t = p(z), we have ∇zL(z(θ),p(z)) = 0 once again. Combining, we have:

∇θg(θ,y,p(z)) = G∇θL (51)

Note that we are only differentiating with respect to the first coordinate of g. This is exactly the
GN-vector product, rather than the Hessian-vector product found in Equation 13.

Therefore, if we define LGNpen,p to be the version of Lpen,p with NME set to 0 in the update rule,
we have:

LGNPen,2(θ) =
1

2
ρg(θ,y,p(z)) (52)

where we differentiate with respect to the first coordinate only (easily implemented in any AD
framework). For arbitrary gradient penalty, recall that:

∇θLpen,p(θ) = ∇θ[Lpen,2(θ)
p/2] =

p

2
Lpen,2(θ)

p/2−1∇θLpen,2(θ) (53)

Therefore, we can implement LGNPen,p(θ) as

LGNpen,p(θ, θ̃) =
p

4
ρ[g(θ̃,y,p(z))]p/2−1g(θ,y,p(z)) (54)

where the derivative is taken with respect to the first coordiante, and θ̃ is set to the value θ during
evaluation. Alternatively, we can apply the stop gradient operation (from the autodifferentiation
framework) to the copy of g raised to the p/2− 1 power, and maintain a function with a single input
θ only.

We note that this method works for any loss such that Hz is independent of the labels.

An alternative approach is to use vjp and stop gradient operations. Consider the vector valued
function g̃:

g̃(θ1,θ2) = JT(θ2)∇zL(z(θ1),y) (55)
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This can be implemented by taking a vjp of the model at θ2 with cotangent vector ∇zL(z(θ1),y).
We then have:

LGNpen,p(θ, θ̃) = ρ||g̃(θ, θ̃)||p (56)

Once again, derivatives are taken with respect to the first θ, and set θ̃ = θ on evaluation (or
alternatively, use the stop gradient).

A third, orthogonal approach is to modify the update rule directly. That is, the second term in Equation
13 can be added explicitly to the update rule, but with the Hessian-vector product replaced with a
GN-vector product. This is analogous to how for simple optimizers, ℓ2 regularization of parameters
can be added either to the loss or to the update rule as weight decay.

C.2 Implementing activation NME modifications

The experiments in Section 4.4 and 4.5 require us to define custom second derivatives for activa-
tion functions. The code below shows how to implement such a method in JAX [40], using the
custom vjp capability.

from jax import grad, custom_vjp
import jax.numpy as jnp

def get_custom_act_fn(base_fn, second_deriv_fn):
"""Return version of base_fn replacing second derivative with second_deriv_fn."""

dbase_fn_dx = jnp.vectorize(grad(base_fn)) # derivative function

# Define custom derivative function, whose own derivative is second_deriv_fn.
@custom_vjp
def new_deriv(x):
return dbase_fn_dx(x)

def new_deriv_fwd(x):
# Returns primal output and residuals to be used in backward pass.
return dbase_fn_dx(x), second_deriv_fn(x)

def new_deriv_bwd(res, g):
return (res * g, )

new_deriv.defvjp(new_deriv_fwd, new_deriv_bwd)

# Define new version of base_fn, with custom derivatives

@custom_vjp
def mod_base_fn(x):
return base_fn(x)

def mod_base_fwd(x):
return base_fn(x), new_deriv(x)

def mod_base_bwd(res, g):
return (res * g, )

mod_base_fn.defvjp(mod_base_fwd, mod_base_bwd)

return mod_base_fn

The GELU ablation was obtained by calling get_custom_act_fn(gelu, lambda x: 0.), and
the ReLU custom derivative example called get_custom_act_fn(relu, gauss_pdf_b) where

import jax.numpy as jnp

beta = 100. # beta value, can be adjusted
def gauss_pdf_b(x):
return (beta/jnp.sqrt(2*jnp.pi))*jnp.exp(-(beta*x)**2))

We used the setting β = 100 in our experiments. This framework can be used generally to define
custom second derivatives for activations.
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