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ABSTRACT

Scaling laws guide the development of large language models (LLMs) by offering
estimates for the optimal balance of model size, tokens, and compute. More re-
cently, loss-to-loss scaling laws that relate losses across pretraining datasets and
downstream tasks have emerged as a powerful tool for understanding and improv-
ing LLM performance. In this work, we investigate which factors most strongly
influence loss-to-loss scaling. Our experiments reveal that the pretraining data
and tokenizer determine the scaling trend. In contrast, model size, optimization
hyperparameters, and even significant architectural differences, such as between
transformer-based models like Llama and state-space models like Mamba, have
limited impact. Consequently, practitioners should carefully curate suitable pre-
training datasets for optimal downstream performance, while architectures and
other settings can be freely optimized for training efficiency.

1 INTRODUCTION

Loss-to-Loss Scaling
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Figure 1: LLMS’ loss-to-loss scaling follows power laws primarily shaped by the choice of
pretraining data and tokenizer. Using Llama trained on FineWeb-Edu as a baseline, we intervene
on various factors to assess their impact on train-to-test loss scaling. Changing the pretraining data
has the largest effect, followed by the choice of tokenizer. Switching the architecture, e.g., from
Llama to Mamba, has limited impact, while factorslike model size, context length, and optimizer
settings exert little-to-no influence.

Scaling laws have long guided Large Language Model (LLM) pretraining, determining model and
data size under a fixed compute budget (Kaplan et al.,2020; Hoffmann et al., 2022} Grattafiori et al.,
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2024). Typically, scaling laws relate model performance, usually measured as training or validation
loss, to total compute measured in floating point operations (FLOPs). FLOPs account for both
parameter count and the number of training tokens. While useful for pretraining, scaling laws do not
capture how well a model ultimately performs on downstream tasks (Gadre et al., |2024; Schaeffer
et al.,|2024; Du et al.| 2025). Consequently, multiple works have begun to investigate downstream
scaling laws: Scaling laws that directly predict downstream loss from FLOPs (Schaeffer et al., [2024;
Gadre et al.| [2024).

Brandfonbrener et al.|(2024) show that downstream scaling laws can be decomposed into compute-to-
train-loss scaling laws and (train)-loss-to-(test)-loss scaling laws. The combination of compute-to-loss
and loss-to-loss scaling laws enables efficient and accurate prediction of a model’s downstream
performance. Moreover, holistic downstream scaling laws often optimize for a single task or average
performance across tasks (Gadre et al., 2024 [Schaeffer et al., 2024), whereas loss-fo-loss (especially
test-to-test) scaling laws can help tune a model’s performance across a broader range of downstream
tasks, e.g., to ensure broad or robust generalization.

While the impact of design choices like pretraining distribution, architecture, tokenizer, optimizer
settings, etc. on compute-to-loss scaling laws is fairly well understood (Kaplan et al.,[2020; |Hoffmann
et al., 2022} Tay et al., |2022; Wang et al., 2024} |Porian et al., [2025; Du et al.l 2025)), a similar
understanding is missing for loss-to-loss scaling laws. To close this gap, we extend the work of
Brandfonbrener et al.| (2024); Du et al.| (2025)), which analyze loss-to-loss relationships within a
single architectural and training setup. Adding to that, our study systematically explores how multiple
factors influence scaling laws across a diverse range of architectures and training configurations.

Our analysis additionally draws inspiration from a body of work in robustness evaluation of vision
(and later language) models (Taori et al.| 20205 Miller et al., 2021; [Fang et al., 2022} Awadalla
et al.l 2022). These works show that model performance on different distributions is frequently
strongly correlated, and most model and training settings have little-to-no impact on the task-to-task
scaling trend of model performance. We treat loss-to-loss curves similarly and perform a series of
interventions using over 6000 model checkpoints to understand what design choices causally affect
scaling trends.

We make three main observations, illustrated in Fig. [T}

1. LLMs’ loss-to-loss scaling consistently follows shifted power laws.
2. Pretraining data and tokenizer are the most salient factors for these scaling laws.

3. In contrast, architecture plays a minor role, while model size, context length, and
optimizer settings have negligible impact on loss-to-loss scaling.

. J

Further, we put our observations in the context of downstream scaling laws and discuss the relationship
between loss-to-loss and compute-to-loss scaling laws. Our results indicate that different LLM
architectures might encode very similar inductive biases, freeing practitioners to optimize architectures
for training efficiency without adversely affecting downstream scaling laws.

2 FROM SCALING LAWS TO INTERVENTIONS

Compute-to-Train Scaling Laws Scaling laws aim to optimize model size and token allocation
within a fixed compute budget (expressed in FLOPs) by modeling the relationship between parameters,
training tokens, and training loss (Hestness et al., 2017} [Kaplan et al.| 2020; Hoffmann et al.||2022).
However, these laws are inherently shaped by the data distribution, architecture, and optimization
settings (Tay et al.|[2022; 'Wang et al., [2024; |Brandfonbrener et al.| 2024} |Porian et al.| |2025)), making
their application across setups non-trivial.

Compute-to-Downstream Scaling Laws Recent works extend scaling laws to directly predict
downstream task performance from compute (Gadre et al.l 2024 [Isik et al.| 2024; Du et al., [2025).
While some initial works attempt to map compute budgets to accuracy on individual tasks, multiple
tasks, or aggregate benchmarks, this mapping is usually noisy due to several transformations in the
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accuracy computation that degrade the statistical relationship (Schaeffer et al., [2024)). More recent
efforts instead use the model’s average loss on the correct answers of the task as a proxy (Madaan
et al., [2024; |Brandfonbrener et al.| 2024). Such compute-to-downstream scaling laws provide a more
practical perspective on scaling but are still specific to a given training setup.

Loss-to-Loss Scaling Laws Loss-to-loss scaling laws aim to improve the transferability of scaling
insights between training setups by examining the relationship between training (or validation) and
test losses, between different validation losses, or between different test losses (Brandfonbrener et al.|
2024)). This perspective is crucial for several reasons. First, train-to-train (or validation-to-validation)
scaling implies how scaling laws transfer across datasets (Brandfonbrener et al.| [2024). Second,
incorporating train-to-test (or validation-to-test) scaling laws alongside compute-to-train scaling laws
provides more precise insight into how compute budgets translate to downstream performance and
can help study emergent abilities of models (Du et al., 2025). Third, while compute-to-loss scaling
laws often target a single downstream task or average task performance, train-to-test and test-to-test
scaling laws can help tune a model’s performance across diverse tasks, e.g., to foster the development
of generalist LLMs with a balanced task performance.

Accuracy on the Line Our work is inspired by robustness research in image classification. Prior
studies (Taori et al.| 2020; Miller et al 2021} Fang et al.| 2022)) demonstrate a strong and consistent
correlation between in-distribution and out-of-distribution (OOD) accuracy across various image
classification models and settings. We are not the first to observe the similarity to LLMs, where recent
works (Gadre et al.,2024; |Brandfonbrener et al., 2024; |Du et al.|[2025)) highlight strong scaling trends
(linear or power-law-like) between losses. However, these studies are typically constrained to a single
architecture or training setup. In contrast, we examine trends across a wide range of architectures
and training conditions (see [§4), showing for the first time that loss-to-loss scaling follows consistent
laws across settings.

Robustness Interventions Accuracy-to-accuracy relationships in the vision, vision-language, and
language domain have also been used to study how scaling laws shift under robustness interventions
like dataset size, adversarial training, architectural details, loss functions, supervision type, or OOD
shifts (Taor1 et al.l [2020; Fang et al., 2022} |/Awadalla et al., [2022; Mayilvahanan et al., [2024azb;
Wiedemer et al.| 2024). For vision-language models, [Taori et al.| (2020); [Fang et al.|(2022)) find that
most interventions do not impact OOD performance; only increasing data diversity has a significant
positive impact. Their findings suggest that curating better datasets is crucial for training vision and
vision-language models that generalize broadly.

Motivated by these insights, we aim to uncover the factors determining loss-to-loss scaling to guide
practitioners in developing models for specific downstream performance. Our insights complement
the findings from |Awadalla et al.| (2022), who show that accuracy-accuracy scaling trends in compre-
hension tasks are agnostic to architecture type (e.g., encoder-only, encoder-decoder, decoder-only)
after fine-tuning. In contrast to their study, we focus on zero-shot generalization across a diverse set
of tasks, specifically investigating state-of-the-art decoder-only architectures such as GPT Radford
et al. (2019), Llama (Grattafiori et al., |2024)), and Mamba |Gu & Daol| (2024); Dao & Gul(2024).

3 FITTING LOSS-TO-L.OSS SCALING LAWS

We focus our analysis on train-to-train and train-to-test scaling. Combined with known compute-to-
train scaling laws, these loss-to-loss scaling laws paint a complete picture of a model’s downstream
performance given a compute budget and characterize a model’s downstream performance distribution
across tasks (Brandfonbrener et al., |2024).

As is standard in the recent literature, we report test loss as a proxy for downstream performance.
Following |Brandfonbrener et al.|(2024)); Madaan et al.[(2024); |Schaeffer et al.|(2024)), we track the
test loss as a model’s loss on only the correct answer given the question as context. This is sometimes
called the cloze formulation of a task since the model is essentially evaluated on its ability to fill in
blanks.
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Brandfonbrener et al.| (2024])) predict train-to-train and train-to-test scaling laws to follow a shifted
power la

Ly (FYP) ~ K - (Lo (FYP) = Eutp) + Byjps (M

where L, L, are the losses on datasets D,, D, shown on the x- and y-axis. fI],V *D is a model trained
with N parameters on D tokens on the pretraining set D), and K and x are parameters to be fit.
E.|p, Ey)p are the irreducible errors (i.e., minimum loss) that f,, trained on D), can achieve on the
datasets D, D,,.
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Overall, across training setups—defined by a model, dataset, tokenizer, and optimization hyperpa-
rameters—shifted power laws describe loss-to-loss scaling well (Eq. (I))). On some datasets, the
performance of models with high loss (towards the top right of each curve) is not captured perfectly
by the power law formulation proposed by Brandfonbrener et al.|(2024)). This is unsurprising, given
that these data points typically represent models in early training stages but might hint at a refined
formulation of Eq. (I)) for the high-loss regime.

Note also that loss-to-loss scaling follows a power law even for datasets on which the model never
reaches high accuracy. E.g., Mamba in Fig. 2] never surpasses chance performance on ARC-Challenge
and OpenBookQA, yet Eq. (T) describes the test loss equally well. This underlines the usefulness of
loss-to-loss scaling laws to study model behavior.

Takeaway 1 Across architectures and training settings, loss-to-loss scaling generally follows a
shifted power law as described in Eq. ().

4 A CAUSAL ANALYSIS OF LOSS-TO-LOSS SCALING
We now perform interventions on the model and training configurations to find what factors cause the
exact shape of loss-to-loss scaling laws.

Our basic procedure is outlined in Fig.[3] As mentioned in[§2] our approach is motivated by similar
studies in the robustness literature. In contrast to that setting, we here lack paired in-distribution and

'Brandfonbrener et al.|(2024) do not state a train-to-train scaling law for non-compute-matched data. Our
form here follows from their Eq. 4 when assuming an irreducible error as in Eqgs. 6, 7.
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out-of-distribution datasets. Instead, we simply consider all combinations of validation and test sets.
For ease of visualization when intervening on the pretraining data, we always show FineWeb-Edu
validation loss on the x-axis, even for models trained on different pretraining distributions. This
choice is arbitrary and does not affect our results; see App.[D} Similarly, we here report results for
scaling laws of average validation and test loss; results for individual losses can be found in App.[E]

For our analysis, we consider the impact of pretraining data, tokenizer, architecture, model size,
context length, and optimizer settings.

Pretraining Sets Our models are trained on
FineWeb-Edu (Penedo et al., [2024)), C4 (Dodge
et al., 2021)), and an uncopyrighted version of n
The Pile dubbed The Pile UC. Some models

from Hugging Face are trained on the original E 8 ective | o
version of The Pile (Gao et al., |2020) and The S " "
Pile Deduped (Biderman et al., [2023)), a dedu- *“ee Model
plicated version. " Ineffective
" ® Intervention
Validation Sets Models are evaluated on
5000 sequences sampled from the validation Loss 1
sets of FineWeb-Edu, C4, The Pile, Re- Figure 3: Schematic of our causal analysis.

finedWeb (Penedo et al., 2023)), and SlimPa-
jama (Shen et al., 2024)).

Test Sets We use LM Harness frame-
work (Gao et al.l 2024) to assess model per-
formance on HellaSwag (Zellers et al., [2019),
COPA (Gordon et al., [2011), WinoGrande (Sak+
aguchi et al.|, 2019), PIQA (Bisk et al.| |2019),
OpenBookQA (Mihaylov et al.,|2018), as well

Checkpoints of a base model trained on different
numbers of tokens and with different seeds lie on
the same loss-to-loss line. Better-performing mod-
els (typically with higher compute) lie closer to the
origin. We intervene on training settings (e.g., pre-
training data, architecture) and retrain from scratch,
yielding new models whose checkpoints again con-
stitute lines. An effective intervention produces
models on a new line; an ineffective intervention
yields models that lie on the base line.

as ARC-Easy and ARC-Challenge (Clark et al.|
2018).

Architectures We train Llama-3 (Grattafiori et al.| 2024)) with 417 M parameters and Mamba (Gu
& Daol 2024) with 420 M parameters using the Lingua framework (Videau et al.,|[2024), following
Chinchilla scaling laws (Hoffmann et al., 2022). We supplement our analysis with pretrained
GPT (Black et al.| 2021;2022; |[Biderman et al., [2023)), Llama (Penedo et al., 2024}, and Mamba |Gu
& Dao| (2024); Dao & Gu|(2024) variants from Hugging Face (Wolf et al., |2020).

Tokenizers We train Llama and Mamba with either a t ikt oken tokenizer (128 k vocabulary
size) or the gpt 2 tokenizer (50 257 vocabulary size). Pretrained models from Hugging Face use an
almost identical GPT-2 tokenizer, dubbed gpt 2-HF'. This version does not explicitly pad text with
beginning and end-of-sequence tokens. A few Hugging Face GPT models instead use the gpt —neox
tokenizer with a slightly different vocab size of 50 254, which results in a different internal mapping
compared to gpt2,

4.1 PRETRAINING DATA, TOKENIZER, AND ARCHITECTURE

First, we jointly examine the effect of pretraining data, architecture, and tokenizer. Since we
face limited compute to train models from scratch, we do not have checkpoints for all possible
combinations of these factors. Instead, we analyze the effect of an intervention on each factor when
matching models in the two other factors. Note that we do not have sufficient checkpoints for some
Hugging Face models to fit a power law. Nevertheless, in all these cases, the available data points
follow a clearly discernible trend.

Effect of Pretraining Data Fig. [illustrates the substantial impact pretraining data has on loss-
to-loss scaling. Across architectures and compute (in different columns), changing the pretraining
data leads to a large shift in the loss-to-loss curve. The only exception is the last column, where we
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Figure 4: Pretraining data has a substantial impact on loss-to-loss scaling laws. Models are
matched on architecture and tokenizer.
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compare Hugging Face models trained on The Pile and a deduplicated version. Models trained on
either version lie on the same curve, suggesting that the deduplication procedure successfully reduced
the dataset size while producing a similar distribution that does not significantly impact loss-to-loss
scaling.

Takeaway 2 With fixed architecture and tokenizer, changing the pretraining data leads to substan-
tial shifts in loss-to-loss scaling laws.

Effect of Tokenizer Fig. |§| shows that the tokenizer, too, affects loss-to-loss scaling laws, albeit
less strongly than pretraining data. It is interesting to see how slight deviations in the tokenizer can
have a pronounced effect, particularly for train-to-train scaling laws. While the slight vocabulary size
difference between gpt 2-HF and gpt —neox has little impact on loss-to-loss scaling (last column),
the different handling of special tokens in gpt 2 and gpt 2—HF does. To the best of our knowledge,
this effect has not been observed before and could be explored in future work.

Takeaway 3 With fixed architecture and pretraining data, changing the tokenizer leads to moderate
changes in loss-to-loss scaling laws.
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Effect of Architecture Lastly, Fig. [f] illustrates that changing the architecture results in only
very slight changes in the loss-to-loss curves across pretraining data and tokenizer settings. Unlike
pretraining data and tokenizer, architecture has little influence on train-to-train and train-to-test scaling.
This is particularly surprising given the significant architectural differences between Llama or GPT
(transformer-based models) and Mamba (a state-space model). These results raise an important
question: Do current architectures encode distinct inductive biases or converge to similar solutions
given the same training data? Further research is needed to understand the implications of this finding.

Takeaway 4 With fixed pretraining data and tokenizer, changing the architecture has limited
impact on loss-to-loss scaling laws — raising questions about the distinctiveness of their inductive
biases.

4.2 MODEL SIZE, CONTEXT LENGTH, AND OPTIMIZATION

We now examine the effect of other common design decisions, such as the number or width
of layers, the context length, optimizer, learning schedule, learning rate, and weight decay.
In contrast to[§4.1] we can perform these interventions Architecture Llama | Mamba

separately since we can compare among our own Llama Tokenizer tiktoken }

and Mamba models whose training settings are matched Pretraining C4 | FineWeb-Edu | The Pile UC

by default. To provide a more succinct overview, we :;e
only show train-to-train scaling laws in this section; addi- g ° X -4
tional train-to-test scaling laws for the same intervention g - 7 .;L. bl
can be found in App. [} We also do not show fitted 5 > f,f; 3
power laws here since we display many more models 5 °© J‘.:’/;‘{?*‘
per plot than in[§4.T] and the scaling trends are clearly & V) ,
discernible. g /.

Z, // |
Effect of Model Size We first examine the influence s 4 s & 7 s
of model size by training Llama and Mamba models FineWeb-Edu Validation Loss
with varying depths and widths (see App. [B] for de- Pretraining Data
tails). Fig. |Z] shows the results: Despite significant e C4  m FineWeb-Edu ¢ The Pile UC

differences in parameter count, the loss-to-loss scal- Fjgyre 7: Model size does not affect loss-
ing trends remain unchanged. These findings align ¢q.10ss scaling. The distinct lines corre-

well with (2025), who observed that model - non to different pretraining distributions
size has little effect on loss-to-loss scaling for GPT (e Fig. @), reinforcing that their influence
models. We extend this conclusion to Llama and

Mamba and across multiple pretraining distributions.

is consistent across scales.
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Effect of Context Length We next investigate the
effect of varying the context length between 1024, 2048,
and 3076 tokens. As shown in Fig.[8] this change does
not meaningfully affect the loss-to-loss scaling curves.

Effect of Optimization Settings Finally, we eval-
uate a range of common optimization settings: We
consider the Adam (Kingma & Ba, [2017) and
AdamW (Loshchilov & Hutter, 2019) optimizers, co-
sine (Loshchilov & Hutter, 2017) and WSD (Hu et al.|
2024) schedules, learning rates of 0.0003 and 0.003,
and a weight decay of 0.1 or 0.033. In our training
setup, models using the Adam optimizer generally did
not converge, and we exclude them from the analysis.
Variations of the other settings do not affect loss-to-loss
scaling coefficients, as shown in Fig.[9]

Given the limited impact of the factors studied in this
section, the conclusions from |'§Z_T| should generalize
well across variations in model size, context length, and
optimization settings. For example, the substantial im-
pact of the pretraining distribution can also be observed

in Figs. [7]and [§]

Architecture Llama | Mamba
Tokenizer tiktoken
Pretraining C4 | FineWeb-Edu | The Pile UC
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Figure 8: Context length does not affect
loss-to-loss scaling. Again, distinct lines
correspond to different pretraining distri-
butions (compare Fig. ), validating their
consistent impact.

loss-to-loss scaling laws.

Takeaway 5 Model size, context length, and optimization settings have negligible impact on

5 DISCUSSION AND FUTURE WORK

Our findings add to the understanding of loss-to-loss
scaling laws and reinforce prior results from vision and
vision-language research (Taori et al.| 2020; Fang et al.|
2022) on the importance of choosing the pretraining
data.

Implications for Optimizing Downstream Perfor-
mance Our results emphasize that the data distribution
is the key for achieving a desireable loss-to-loss scaling
and a in turn achieve a great downstream performance.
Conversely, since architecture has little impact on the
train-to-test conversion, it can be freely optimized for
better compute scaling without affecting downstream
scaling or performance.

Implications for Balancing Performance If the aim
is not only optimal average downstream performance but
also a specific weighting between different tasks, e.g., to
ensure a balanced downstream performance, individual
train-to-test scaling laws can be used to tune a model’s
performance. Here, too, the pretraining data has the

Architecture Llama | Mamba
Tokenizer tiktoken
Pretraining FineWeb-Edu
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Optimizer | Schedule | LR | Weight Decay
® AdamW | Cosine | 3.0e-4|3.3e-2
AdamW | Cosine | 3.0e-4 | 1.0e-1
AdamW | Cosine | 3.0e-3 | 3.3e-2
AdamW | Cosine | 3.0e-3 | 1.0e-1
AdamW | WSD | 3.0e-4 | 3.3e-2
AdamW | WSD | 3.0e-4 | 1.0e-1
AdamW | WSD | 3.0e-3 | 3.3e-2
% AdamW |WSD | 3.0e-3 | 1.0e-1

Figure 9: Optimization settings do not
affect loss-to-loss scaling.

Adr o

largest impact and practitioners should thus consider the final application of their model already
during the data curation stage. Ultimately, our findings underscore that pretraining data curation,
rather than architectural innovation, can be the primary driver in developing robust, generalist models.

On Architectural Biases The limited impact of even drastically different architectures on loss-to-
loss scaling behavior illustrated in[§4.T]and Fig. [] suggest that architectures trained on the same data
may implicitly learn highly similar representations. This might seem intuitive, as all models minimize
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the same loss function. One might expect them to converge toward comparable solutions when the
training loss approaches zero (Roeder et al., 2020). However, even checkpoints of our smaller models,
when trained on fewer tokens, follow the same scaling across architectures. Understanding whether
this implies representational and behavioral similarity remains an intriguing open question. Beyond
this, it remains to be seen whether it is possible to formulate architectures that fit the data well but
exhibit different scaling trends.

On New Training Paradigms Our study intentionally focuses on models trained with standard
loss functions and conventional training settings to guide practitioners. The limited impact of
existing paradigms does not preclude innovative training approaches from improving loss-to-loss
scaling. In fact, a recent work by |Saunshi et al.| (2024) demonstrates that gradually increasing
model depth and initializing based on layers from a smaller model produces markedly different
scaling behavior, particularly in how perplexity translates to downstream accuracy. Similar structured
growth approaches could offer new pathways for improving scaling efficiency and generalization for
decoder-only LLMs trained with next-token prediction. We leave this exercise for future work.

On the Exhaustiveness of Interventions in Our study clearly distinguishes between factors
with substantial and limited impact on loss-to-loss scaling. While our conclusions are inherently
shaped by the specific settings we explored, the observed trends provide strong empirical evidence
for these distinctions. Given the strong and consistent impact of pretraining data and tokenizer, we
can confidently conclude that these interventions affect loss-to-loss scaling. While we observed
only a limited impact of the architecture, this effect was also consistent across major state-of-the-art
architectures including Llama, GPT, and Mamba — which collectively represent the dominant
paradigms in large-scale language modeling. Given this exhaustive set, it is hard to argue that other
architectures would meaningfully alter loss-to-loss scaling.

On the Exhaustiveness of Interventions in Across the wide range of size configurations
(App. [B)) we test, all models exhibit very consistent loss-to-loss scaling. Similarly, the effect we
observed for different context lengths is very consistent within our test range (1024, 2048, 3076),
which aligns with commonly used configurations (Black et al., 2021; [ Wang & Komatsuzakil 2021}
Biderman et al., [2023; Penedo et al.,|2024; Black et al., 2022). While we acknowledge the possibility
that larger models or longer context lengths could influence loss-to-loss scaling, such an effect — if
present — is unlikely. For optimization settings, we again consider configurations widely used in
LLM training (Shoeybi et al.| |2020; Karpathy, 2022} Videau et al., 2024)), including variations in
optimizer type, learning rate, weight decay, and scheduling. While our results indicate that these
choices do not meaningfully alter loss-to-loss scaling within the explored settings, we acknowledge
that the space of optimization techniques is vast, and our list is not exhaustive. It remains possible
that a principled optimization strategy, different from current best practices, could induce new scaling
behaviors. However, our findings suggest that optimization settings are not a primary driver of
loss-to-loss scaling trends within the bounds of conventional language model training.

6 CONCLUSION

In this work, we systematically investigate loss-to-loss scaling in LLMs, identifying key factors that
shape its behavior. Our large-scale interventional analysis — spanning over 6000 model checkpoints
across architectures, tokenizers, and training setups — reveals that loss-to-loss scaling consistently
follows shifted power-law trends, enabling predicting test performance from training loss.

We identify pretraining data and tokenizer as the dominant factors shaping these scaling laws,
highlighting the importance of data curation. Architecture has limited impact, with models as
different as LLaMA (transformer-based) and Mamba (a state-space model) exhibiting nearly identical
scaling when trained on the same data and tokenizer. Model size, context length, and optimization
settings have negligible influence, such that loss-to-loss scaling remains stable across different
configurations.

Our findings underline the importance of pretraining data for downstream performance and robustness
and suggest that different LLM might share similar architectural biases. Given our observations, prac-
titioners should prioritize curating high-quality pretraining data to optimize downstream performance,
while architectures and training settings can be adjusted freely for efficiency.
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Table 1: Details of the models we trained from scratch.

Architecture | Width | Depth | No. of Parameters (in millions)
Llama 1024 12 416
Llama 1024 8 365
Llama 1024 4 314
Llama 512 12 172
Llama 512 8 158
Llama 512 4 145
Llama 256 12 76
Llama 256 8 72
Llama 256 4 59
Mamba 1024 24 420
Mamba 1024 16 367
Mamba 1024 8 315
Mamba 512 24 172
Mamba 512 16 158
Mamba 512 8 145
Mamba 256 24 76
Mamba 256 16 73
Mamba 256 8 69
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Figure 10: Loss-to-Loss Scaling for FineWeb-Edu-trained Llama.

A APPENDIX

B MODEL DETAILS

In addition to the models discussed in[§4.1] we add additional details of Llama and Mamba models
we trained of different depths and widths.

C Lo0SS-TO-L0OSS SCALING ACROSS SETTINGS

We supplement Fig. 2] from [§3] with additional architecture-pretraining pairings in Figs. [I0]to I3}
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Figure 15: Loss-to-Loss Scaling for The Pile-trained Mamba.

Archi

Architecture Llama Archi

Tokenizer tiktoken

e Llama
Tokenizer gpt2

Llama
Tokenizer gpt2-HF

Architecture Mamba  Archi e Mamba

Archi

e GPT

Tokenizer tiktoken Tokenizer gpt2

Tokenizer gpt-neox

2 .

kS ) ) . .
c T 45 2 v . / 52 B /
ez S A 7
5 240 / / - / e
T o v o rd Yy
£ > /7 < e
£ gas / // ’a / // v

g I ”

< 3.0 y,

2 7
g 2 / /
£ Y i o I = s —
s g ¥ o o e p
£ 5 P e s 2l ,
<&
4.0 4.5 4 5 3.5 4.0 4.5 4.0 4.5 4 5 3.5 4.0 4.5
C4 Validation Loss C4 Validation Loss C4 Validation Loss C4 Validation Loss C4 Validation Loss C4 Validation Loss
Pretraining Data
e C4 e ThePile e ThePileUC e  The Pile Deduped ®  FineWeb-Edu
Figure 16: Pretraining data has a substantial impact on loss-to-loss scaling laws.

D INTERVENTION RESULTS FOR DIFFERENT CHOICES OF X-AXIS

We show variations of Figs. ] to[6|from [§4.1| with C4 validation loss as the x-axis in Figs.[T6]to[I8]
Variations for Figs. [7]to 0] from are shown in Figs. 19 to[2T]

E INTERVENTION RESULTS WITHOUT AVERAGING

The causal analysis in[§4 was performed on scaling laws for average validation or test loss. Figs.[22]
to[27) show illustrative results on scaling laws for individual datasets.

F ADDITIONAL TRAIN-TO-TEST SCALING LAWS

We provide train-to-test scaling laws for the interventions performed in [§4.2] and Figs. [7]to 0] in

Figs.[28|to[33]
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Figure 17: The tokenizer has a moderate impact on loss-to-loss scaling laws.
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Figure 18: Architecture has limited impact on loss-to-loss scaling laws.
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Figure 19: Model size does not affect train-to-test scaling.
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Figure 21: Optimizer settings do not affect train-to-test scaling.
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Figure 22: Pretraining data has a substantial impact on loss-to-loss scaling laws.
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Figure 23: Pretraining data has a substantial impact on loss-to-loss scaling laws.
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Figure 24: The tokenizer has a moderate impact on loss-to-loss scaling laws.
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Figure 25: The tokenizer has a moderate impact on loss-to-loss scaling laws.
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Figure 26: Architecture has limited impact on loss-to-loss scaling laws.
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Figure 27: Architecture has limited impact on loss-to-loss scaling laws.

Architecture Llama|Mamba
Tokenizer tiktoken
Pretraining C4 | FineWeb-Edu | The Pile UC

Size
¢ 1e8

8 } - 4
[} -
17, L g
o
)
g7 3
|_
(V]
(=)
©
L6 -2
<

5 -1

3 4 5 6 7 8

FineWeb-Edu Validation Loss

Pretraining Data
e C4 = FineWeb-Edu ¢ ThePileUC

Figure 28: Model size does not affect train-to-test scaling.
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Figure 29: Context length does not affect train-to-test scaling.
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Figure 30: Optimizer settings do not affect train-to-test scaling.
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Figure 31: Model size does not affect train-to-test scaling.
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Figure 32: Context length does not affect train-to-test scaling.
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Figure 33: Optimizer settings do not affect train-to-test scaling.
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