
FicGCN: Unveiling the Homomorphic Encryption Efficiency
from Irregular Graph Convolutional Networks

Zhaoxuan Kan 1 2 3 Husheng Han 1 2 Shangyi Shi 1 2 Tenghui Hua 1 2 Hang Lu 1 3 Xiaowei Li 1 3 Jianan Mu 1

Xing Hu 1 3 4

Abstract

Graph Convolutional Neural Networks (GCNs)
have gained widespread popularity in various
fields like personal healthcare and financial sys-
tems, due to their remarkable performance. De-
spite the growing demand for cloud-based GCN
services, privacy concerns over sensitive graph
data remain significant. Homomorphic Encryp-
tion (HE) facilitates Privacy-Preserving Machine
Learning (PPML) by allowing computations to be
performed on encrypted data. However, HE intro-
duces substantial computational overhead, partic-
ularly for GCN operations that require rotations
and multiplications in matrix products. The spar-
sity of GCNs offers significant performance po-
tential, but their irregularity introduces additional
operations that reduce practical gains. In this pa-
per, we propose FicGCN, a HE-based framework
specifically designed to harness the sparse char-
acteristics of GCNs and strike a globally optimal
balance between aggregation and combination
operations. FicGCN employs a latency-aware
packing scheme, a Sparse Intra-Ciphertext Ag-
gregation (SpIntra-CA) method to minimize rota-
tion overhead, and a region-based data reordering
driven by local adjacency structure. We evalu-
ated FicGCN on several popular datasets, and the
results show that FicGCN achieved the best per-
formance across all tested datasets, with up to a
4.10× improvement over the latest design.

1State Key Lab of Processors, Institute of Computing Technol-
ogy, Chinese Academy of Sciences, Beijing, China 2University
of Chinese Academy of Sciences, Beijing, China 3Zhongguancun
Laboratory, Beijing, China 4Shanghai Innovation Center for Pro-
cessor Technologies, Shanghai, China. Correspondence to: Jianan
Mu <mujianan@ict.ac.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Graph-based machine learning has gained significant promi-
nence across numerous domains, with Graph Convolutional
Neural Networks (GCNs) (Kipf & Welling, 2016) emerging
as a key paradigm demonstrating superior performance in
various applications, including human action recognition (Si
et al., 2018; Yan et al., 2018), financial recommendation sys-
tems (Wu et al., 2022), and drug discovery (Bongini et al.,
2021). As the demand for cloud-based GCN services contin-
ues to grow, privacy concerns surrounding sensitive graph
data have become especially critical, given that graph data
typically include large amounts of confidential information.

Privacy-Preserving Machine Learning (PPML) using Ho-
momorphic Encryption (HE) offers a promising solution
to alleviate these concerns by allowing clients to encrypt
their data before sending it to the cloud server. This setup
ensures that the server can perform computation directly on
ciphertexts without ever decrypting them, effectively safe-
guarding user privacy. Specifically, in a privacy-preserving
GCN cloud service, the server holds the well-trained weight
matrices W and adjacency matrix A which are all plain-
texts. The client sends the encrypted data to the server (Ran
et al., 2022) thus preventing data leakage to the server. Al-
though this framework successfully protects sensitive graph
embeddings, it also introduces substantial overhead.

When a Cheon-Kim-Kim-Song (CKKS) (Cheon et al., 2017)
scheme is employed, the computational overhead increases
a lot, often resulting in performance degradation by a factor
of over three orders. Two primary factors contribute to
this overhead. First, due to the requirements for security
and correctness, homomorphic ciphertexts are much larger
than the original data size, and the operation complexity is
increased. Second, for batched CKKS ciphertext, moving
and accumulating data within a vector, require expensive
homomorphic ciphertext rotation operation. This results in
high overhead for matrix multiplication on the ciphertext.

For HE-GCN computation, the bottleneck in computation
speed still lies in performing the aggregation and combina-
tion operations, specifically the plaintext-ciphertext matrix
multiplication AXW where A and W are plaintexts and X

1

FicGCN: Unveiling the Homomorphic Encryption Efficiency from Irregular Graph Convolutional Networks

A(Sparsity) X W(Density)

Sparse
Matrix Mult

Dense
Matrix Mult

(a) Inconsistency in computation patterns.

N0

N1

N2

N3

A01

A02

N0

N1

N2

N3

Aggregation

(b) Irregularity in neighbor aggregation patterns.

Figure 1. The contradiction between the computing characteristics
of GCN and CKKS.

is ciphertext, which includes a large number of rotations
and multiplications. Drawing inspiration from the efficiency
optimization of plaintext GCN computations, recent work
leverages the sparsity of A for optimization. To this end,
an adjacency-matrix-aware data packing and multiplication
method is proposed (Ran et al., 2022), which reduces the
rotation overhead in the X ′ = AX process by exploiting
the irregular sparsity of A. Unluckily, due to the irregular
sparsity of A, additional SIMD multiplication operations
are introduced when calculating X ′ = AX , which results in
limited overall speedup. Therefore, the main bottleneck in
improving the computational efficiency of existing designs
lies in how to leverage the irregular sparsity of GCN com-
putations while adhering to the SIMD calculation pattern of
HE, ultimately reducing the computational overhead.

Addressing this challenge is difficult, as GCN’s irregular
operational patterns stand in stark contrast to HE’s SIMD-
based data processing. We analyze the conflicts as follows:
1. Inconsistency in computation patterns. As shown in
Figure 1(a), in AXW , the left multiplication of X by A is
calculating sparse weighted aggregation between a partial
set rows of X . The right multiplication of X by W is dense,
achieving weighted aggregation between all columns of X .
This introduces the conflict: for dense multiplication, fully-
packed ciphertexts can improve efficiency, while for sparse
multiplication, fully-packed ciphertexts lead to redundant
rotations and multiplications. Additionally, The best data
packing of X required for left multiplication and right mul-
tiplication is also different. 2. Irregularity in neighbor
aggregation patterns. As shown in Figure 1(b), in the
calculation of AX , since the adjacency matrix A is sparse
and irregular, each node in the graph requires performing
different aggregation patterns. In CKKS ciphertexts, these
nodes are encrypted into one vector. Therefore, this necessi-
tates rotating the corresponding nodes and summing them.

However, the contradiction between irregular sparsity and
SIMD makes it challenging to balance ciphertext utiliza-
tion and minimize the number of rotations. When using
packed ciphertexts, rotation is required for each node’s spe-
cific aggregation needs, leading to significant computational
overhead.

In this paper, we propose FicGCN, a CKKS-based frame-
work designed to exploit the irregular sparsity of GCNs. To
resolve the mismatch between the aggregation and combina-
tion operations, we devise a latency-aware packing scheme
that strikes a globally optimal balance for overall perfor-
mance. For the irregular sparsity of A within aggregation,
we employ a two-pronged strategy: first, a Sparse Intra-
Ciphertext Aggregation (SpIntra-CA) technique that lever-
ages HE’s operational properties to minimize total rotation
overhead; second, a region-based data reordering based on
the structural local adjacency of A. We implement and eval-
uate these designs, and our experimental results show that
FicGCN achieves up to 4.10× improvement on different
datasets compared to the latest work. Our contributions can
be summarized as follows:

• We propose an optimal layer-wise aggregation schedul-
ing strategy based on the data dimensions, model struc-
ture, and the latency of different HE operations. This
enables efficient inference for data of various scales.

• We propose a sparse intra-ciphertext rotation technique
and a region-based data reordering to minimize total
rotation overhead in aggregation.

• We evaluate FicGCN on four popular datasets and the
results show that FicGCN achieved the best perfor-
mance across all tested datasets, with up to a 4.10×
improvement over the latest design.

2. Preliminary
2.1. CKKS Homomorphic Encryption Scheme

CKKS (Cheon et al., 2017), as a popular HE scheme, has
been widely employed in confidential neural network in-
ference since its ability for floating-point numbers encryp-
tion and computing using a scaling factor ∆. In CKKS,
a ciphertext c ∈ R2

Q can be decrypted by computing
c · sk mod Q = m + e, where RQ = ZQ[X]/XN + 1
is the residue cyclotomic polynomial ring and sk refers to
secret keys held by the client, e is a small error that provides
security. The modulus is Q =

∏L
i=1 qi, where L is the mul-

tiplication level of the ciphertext. Each time a homomorphic
multiplication is performed, L decreases by one, making the
next homomorphic operation faster. A ciphertext has N/2
slots to accommodate N/2 complex numbers and it supports
homomorphic addition, multiplication and rotation:

2

FicGCN: Unveiling the Homomorphic Encryption Efficiency from Irregular Graph Convolutional Networks

(a) Node Order Optimizing

0

2 5

7

4

6

1

3

5

6

2

3

0

1

7

4

Region 2

Region 1

Strongly Connected
Region Detection

Interleaved
Arrangement

Seperate Heuristic
Search for Conflict

Minimizaion

5

2

0

7

4

6

3

1

Divide &
Conquer

N*F'

F*n

Pack t columns
into a ciphertext

(c) Packing Method

HE
Params

Adjacency Matrix

ct1

Results of
Last Layers

ct1 ctF

(b) Aggregation Mode Selection

ct1

Rot(20) Rot(N/2)Rot(21)

PMult & Add is
Proportion to F

Inter-CA

Rot is Proportion
to log2(N)

SpIntra-CA

Decrypt

IECA &
Combination

Activation

FC

Encrypt

Feature
Matrix

Inference
Result

Client Cloud

ct2 ctF

ct2 ct3

ct2 ct3 ctF
Mode

Selection

× L

Calculation

Calculation

Figure 2. Workflow of FicGCN. (a) Three main steps of the HE-specific reordering algorithm: Detect, Arrange and Search. (b) The
computational complexity comparison between Inter-CA and SpIntra-CA, SpIntra-CA encompasses log(N) fundamental rotations along
with several additional rotations triggered by conflicts. (The dashed lines represent optional data paths, and the modules shown in detail
are those that represent the optimization achieved through our innovative HE graph computation scheduling strategy, while the white
modules retain the SOTA structure.)

Dec(c1 ⊕ c2) = m1 ⊕m2 ; Dec(c1 ⊗ c2) = m1 ⊗m2;
Dec(m⊗ c1) = m⊗m1 ; Rot(Enc(v0, ..., vN

2 −1), k) =

Enc(vk, ..., vN
2 −1, v0, ..., vk−1)

2.2. Graph Convolution Network and GraphSage

GCN contains multiple linear layers (consecutive matrix
multiplications, GCNConv) and nonlinear layers. In GCN-
Conv, there are two stages, Aggregation and Combination,
corresponding to the left and right multiplications involving
the feature matrix X . The layer-wise forward propagation
can be expressed as follows (Kipf & Welling, 2016):

X l+1 = GCNConv(X l) = σ(ÂX lW l)

where Â is normalized adjacency matrix , W l is the weight
matrix for feature dimension transformation in lth layer,
σ(·) denotes the non-linear activation function.

GraphSage (Hamilton et al., 2017) is a popular GCN
scheme that introduces neighbor sampling in Aggregation,
allowing each node’s update to depend only on features from
a subset of neighboring nodes. This significantly reduces
the computational complexity while maintaining inference
accuracy. The forward propagation chosen in this paper is:

X l+1
v = σ(MEAN({X l

v}∪{X l
u, u ∈ N eighbor(v)})·W l)

2.3. Related Work

GCN inference under HE is an effective method com-
monly used in cloud computing scenarios to protect privacy-

sensitive data, such as clients’ fingerprint information, med-
ical data, and financial transaction records (Choi et al.,
2024; Yan et al., 2018; Matsunaga et al., 2019). Early
cloud computing was mainly integrated with CNN. Cryp-
toNets (Gilad-Bachrach et al., 2016) is the first to introduce
HE into cloud computation. Due to the time overhead gap
of 106× between plaintext and ciphertext, existing work
such as HEMET (Lou & Jiang, 2021) made a trade-off
between model parameters and encryption parameters to
utilize mobile networks. (Lee et al., 2022) also observed
the parallelism between CNN channels and leveraged this
to effectively combine with the SIMD property of CKKS
but still cost 6351 seconds when predicting on 50 images in
CIFAR-100.

The most distinguishing feature of GCN compared to other
types of networks is its inherent sparsity. The plaintext in-
ference has direct access to the feature vectors of the nodes,
which enables fully exploiting their sparsity based on ad-
jacency information, thereby simplifying the computation.
(Jia et al., 2020)also identified common aggregation patterns
and reused them, further enhancing cache performance and
reducing computational overhead. Multi-Party secure Com-
putation (MPC) methods (Reagen et al., 2021; Hao et al.,
2022; Zeng et al., 2023a;b; Wu et al., 2024) are also in-
troduced in confidential GCN to simulate the property of
arbitrary node access in plaintext (Srinivasan et al., 2019;
Reagen et al., 2021; Hao et al., 2022), but face significant
communication overhead and rely on client computation.

Recent works tend to optimize the performance but fail

3

FicGCN: Unveiling the Homomorphic Encryption Efficiency from Irregular Graph Convolutional Networks

to fully utilize the sparsity. Gazelle (Juvekar et al., 2018)
was the first to apply diagonal encoding in the optimiza-
tion of HE matrix multiplication, enhancing computational
efficiency. Peinguin (Ran et al., 2024) adopted this idea
by leveraging block-wise packing of X at the first layer,
thereby achieving a trade-off when computing AX and
XW . However, it had no utilization of the graph sparsity.
CryptoGCN (Ran et al., 2022) made full use of the sparsity
of A but it achieved suboptimal efficiency for requiring re-
dundant computations to obtain the multiple ciphertexts for
aggregation in the next layer.

Besides, recent works like LinGCN, THE-X and
HETAL (Lee et al., 2023; Peng et al., 2024; Ao & Boddeti,
2024; Jha et al., 2021; Ran et al., 2023; Chen et al., 2022)
have observed that the nonlinear layers or feature maps
are not equally important, and have proposed algorithms to
prune them. Meanwhile, prior works like FedML-HE (Jin
et al., 2023) and BatchCrypt (Zhang et al., 2020) enable
clients to strategically compromise certain node features’ se-
curity via Selective Encryption and reduce inference latency
via parameter quantization. Corresponding technologies
above are orthogonal and can be compatible with our work.

2.4. Threat Model

The threat model of this paper is similar to CryptoGCN.
The server holds the well-trained weight matrices W and
adjacency matrix A which are all plaintexts. The client
sends the encrypted data to the honest but curious server
and holds the secret keys thus preventing data leakage to the
server. After calculating on encrypted data, the server sends
the encrypted outcomes back to the client. The client can
then decrypt them and get the results.

2.5. Security Analysis

The homomorphic encryption scheme employed in this
study—CKKS derives its security from a well-established
hard problem in lattice-based cryptography: Learning With
Errors (LWE). Specifically, in the CKKS decryption form
c · sk mod Q = m + e, the noise term e, which is inten-
tionally added and accumulates throughout the computation
process, ensures that the plaintext cannot be recovered in
polynomial time without access to the secret key. Since e
is typically much smaller than the encrypted message m, it
has a negligible impact on the accuracy of the final output.
As discussed in (Cheon et al., 2017), fundamental homomor-
phic operations such as addition, multiplication, and rotation
are all designed to preserve computational security. Further-
more, according to the threat model outlined in Section 2.4,
the client does not disclose the secret key to the server or any
third party. All homomorphic operations used in FicGCN
are covered by the security analysis in (Cheon et al., 2017).
In the setup stage, we select HE parameters(Cheon et al.,

2018) to achieve 128-bit security—meaning any successful
attack would require at least 2128 basic operations.Therefore,
the above theoretical foundations and configuration ensure
the overall security of the inference process in FicGCN.

3. Method
3.1. Overview

In this work, we propose FicGCN from the following three
aspects as shown in Figure 2: 1) The latency-aware methods
for packing to efficiently utilize ciphertext slots. 2) The
novel SpIntra-CA algorithm, which utilizes graph sparsity
to reduce the aggregation overhead. 3) The Node Order
Optimizing (NOO) algorithm further enhances the efficiency
of SpIntra-CA with aggregation-friendly node arrangement.

3.2. Latency-Aware Packing

Since decryption is not possible during the entire inference
process, the initial packing strategy is crucial. The packing
scheme determines both the utilization of ciphertext slots
and the order of nodes within the ciphertext.

Our primary packing principle is designed to be
Combination-friendly since the Combination stage does
not exhibit sparsity, which thus is suitable and efficient for
SIMD computation. Let M denote the number of ciphertext
slots, N the number of nodes, F and F

′
the feature dimen-

sions before and after the layer computation, and n the
number of sampled neighbors. That is, given a feature ma-
trix X ∈ RN×F we perform the packing on a column-wise
basis as the blue ciphertexts in Figure 1(a).

However, due to the varying dimensions of A and X across
different graphs, column-based packing may not always
guarantee efficient utilization of ciphertext slots. When the
column vector is of small dimension, the packing scheme
that assigns one ciphertext per column results in a waste
of slots and an excessive number of ciphertexts, leading to
significantly high Homomorphic Operation Counts (HOCs).

To address the issue, we model the impact of t (column num-
ber in one ciphertext) on latency and compute the latency-
optimal packing parameters, as shown in Figure 2(b). We
can deduce that (The detailed derivations of the following
two cases are provided in the appendix):

1) When M > N ∗ F′
: The objective function can be ap-

proximated as

J (t;F, n) = 2 ⌈F ∗ n
t
⌉+ 20⌈ log(t)⌉

We can optimize the value of t for this function and deter-
mine the packing strategy (shown in Appendix Section B).

4

FicGCN: Unveiling the Homomorphic Encryption Efficiency from Irregular Graph Convolutional Networks

2) When M ≤ N ∗ F′
: It can be deduced that:

PMult# = Add# = ⌈F ∗ n
t
⌉ ∗ ⌈N ∗ F

′

⌈Mt ⌉
⌉

This is an approximation that is independent of t, meaning
that the total latency only depends on the number of Rot.
Therefore, the optimal solution is t = 1.

3.3. Sparse Intra-ciphertext Aggregation

In this section, we introduce the innovative Sparse Intra-
ciphertext Aggregation algorithm, which effectively exploits
the graph sparsity and improves the performance.

The existing HE+GCN aggregation method does not utilize
the sparsity of GCN and thus is efficient (Ran et al., 2024).
They construct N ciphertexts, each containing duplicate
nodes nodei, and perform aggregation using the adjacency
matrix A. However, due to the sparsity of A, this method
introduces significant redundant computation and storage.

Observing that GCN exhibits significant sparsity, aggre-
gation only performs with neighboring nodes. Thus, by
constructing n “neighboring ciphertext”, where each node
position holds its neighboring node, we can achieve parallel
aggregation across all nodes and eliminate the redundant
computation.

However, Due to the irregular connectivity in GCN, neigh-
boring nodes of each node are randomly arranged in the ci-
phertext, making it difficult to efficiently obtain the “neigh-
bor ciphertexts”. The naive method (Ru et al., 2021) as
shown in Figure 3(a), performs node-by-node extraction,
but results in an O(N) rotation complexity, where each rota-
tion is only effective for one node, leading to low efficiency.

Inspired by the ciphertext internal-sum method, which
rotates each slot total M − 1 steps (where M − 1 =
20 + 21 + ...+ 2log(M)−1), this method executes rotations
sequentially (i.e., 20, 21, 22...) and performs a reduce to
achieve summation. This method allows each rotation to be
effective for all slots, ultimately requiring only log(M) rota-
tions, significantly reducing needed rotations. The process
can be represented by the following expression:

ct← ct⊕Rot(ct, 2m) ,m = 0, 1, .., log(M)− 1

Based on this, we propose the SpIntra-CA method as shown
in Figure 3 to efficiently generate neighbor ciphertexts and
achieve efficient aggregation. First, given the ciphertext, we
calculate the rotation length required for each node based
on A, to construct the target ”neighbor ciphertext” to be ag-
gregated. Due to the irregular arrangement of sibling nodes
in GCN, the rotation length varies for each node. Second,
we perform bit decomposition of the rotation lengths for all
nodes, executing rotations for all nodes sequentially from

Table 1. Ablation Study for AOO
Model Rot PMult Add Latency(s)

Inter-CA 0 189K 206K 70.08

w/o AOO 7.04±0.78K 61±3.1K 61±3.1K 47.65±3.76

w/ AOO 5.74±0.25K 65±4.0K 65±4.0K 40.39±1.61

the lowest bit. Let the i−th rotation step be bitji ∗ 2i for
nodej , no rotation is performed (retained in the current slot)
when bitji is equal to 0. In an ideal scenario (where all
bit:i = 1), the i-th rotation would be effective for all nodes,
improving the rotation efficiency significantly and allowing
us to obtain the neighbor ciphertext in at most log(M) ro-
tations. Meanwhile, we also check whether each node has
reached its target position; if it has, it is removed from the
current ciphertext and added to the result ciphertext.

All of the removal and position-selecting operations men-
tioned above can be accomplished by multiplying the ci-
phertext with a “Mask” plaintext polynomial composed of
0 and 1. Our SpIntra-CA can be iteratively represented as
follows:

{ct} ← {ct} ⊗Mask1 ⊕Rot({ct}, 2m−1)⊗Mask2

3.3.1. REDUCING COMPUTATIONAL COMPLEXITY

As shown in Figure 3(d), SpIntra-CA experiences slot con-
flicts when multiple nodes attempt to occupy the same slot.
This results in additional ciphertexts to resolve these con-
flicts and more extra rotation overhead. Therefore, measures
must be implemented to either reduce conflicts or minimize
the shifting range of each node within the ciphertext.

Worst Case Analysis: In the worst case, each node traverses
at most log(N) slots and collides at all of them, leading
to at most log(N) extra ciphertexts and log2(N) Rots at
all. Further, considering the number of ciphertexts (sampled
neighbors), the total number of rotations is (n−1)∗log2(N).
In practice, conflicts occur less frequently than assumed.
The results in Section 4 will demonstrate that, even when
using the SpIntra-CA algorithm without reordering, the Rot
number is often much lower than the worst-case scenario.

Optimizations: To improve the efficiency of SpIntra-CA,
we have proposed the following optimizations:

• Aggregation Order Optimization (AOO): As shown
in Figure 4(a), observing the cyclic shift property of
ciphertext rotation, we have optimized the shift order
of each node to find the shortest shift distance. This can
reduce the bits of each node’s shift step of SpIntra-CA,
thereby reducing the Rot number.

• Ciphertext Processing Order Optimization
(CPOO): As shown in Figure 3(b), both the conflict

5

FicGCN: Unveiling the Homomorphic Encryption Efficiency from Irregular Graph Convolutional Networks

N0
N1
N2
N3

N3

N0

Mask & Rot(3)

Mask & Rot(1)

Initial Order

N0

N1

N2

N3

Target Order

(a) Prior Work

N0
N1
N2
N3

Rot(20) & Mask

Initial Order

(b) SpIntra-CA

N1
N2
N3
N0

Mask

Rot(2 1) & Mask N0

N1

N2

N3

Target Order

N3

N1

N2

N0
N0
N1
N2
N3

NOO

Initial Order

N0
N1

N2

N3

Rot(21) & Mask

N0
N1

N2

N3

(c) NOO

Target Order

N0
N1
N2
N3

Initial Order

N4
N5
N6
N7 N0

N1
N2
N3
N4
N5
N6
N7

Rot(20)

N0

N1

N2

N3

Target Order

N4

N5

N6

N7

001

110

100

110

011

001

110

101

N3

N6

N4

N7

N1
N2

N3

N6
N3

N6

Rot(21) & Mask Rot(22) & Mask

Rot(21) & Mask Rot(22) & Mask

N4

N7
N1

N2 N7
N1

N2

(e) Adjacency Matrix

Conflict

Mask

Mask

w/ CPOO: Rot(6)(d) CPOO

Prior Work: 8 Rots
w/o CPOO : 5 Rots
w/ CPOO : 4 Rots

Prior Work:
4 Rots SpIntra-CA:

2 Rots
w/ NOO:

1 Rots

Nx
Keep in the Original Position

Before Rotation
Nx

Retain in the Position of the
Rotated Ciphertext

Nx
Remove from the Current Ciphertext and Add

to the Result Ciphertext

Figure 3. A toy example of SpIntra-CA. (a) Aggregation in prior work node by node. (b) The process of SpIntra-CA. (c) The NOO effect.
(d) Conflicts arise when multiple nodes occupy the same slot, and removals occur when a node reaches its aggregation target position.
Also CPOO may help merge some common Rots in sparse ciphertexts

(b)The relationship between slot

utilization and the index of additional
ciphertexts in SpIntra-CA

Index of Ciphertexts

U
ti

li
z
a

ti
o

n
 o

f
s

lo
ts

(a) AOO selects
the shortest aggregation path

Optimal Order: 0, M/4, M/2
 Step Length=M/2

Suboptimal Order: M/2, 0, M/4
 Step Length=3M/4

M/4

M/2

0

Figure 4. Aggregation and ciphertext processing order problem in
SpIntra-CA

and removal in SpIntra-CA lead to more sparse
ciphertext, which decreases the efficiency of SIMD.
Observing that no conflicts occur in continuous
multiple rotations on sparse ciphertext, we propose to
merge them into one large-step rotation to reduce the

rotation counts and increase the node number per Rot.
For example, we merge Rot(2) and Rot(4) into Rot(6)
in Figure 3(d). Meanwhile there exists oppurtunity to
merge sparse ciphertexts into a denser one, which is
another part of CPOO.

• Node Order Optimization (NOO): The order of
nodes within the ciphertext is also crucial as illustrated
in Figure 3(c). This will be elaborated in detail in
Section 3.4.

3.3.2. SELECTING AGGREGATION MODE

In FicGCN, two Aggregation modes are available: SpIntra-
CA and Inter-CA. For each layer, the optimal mode is se-
lected based on complexity analysis. From Table 2, we
can deduce that the computational complexity of Inter-CA
primarily arises from multiple inter-ciphertext calculations
to obtain different node arrangements, which is mainly de-
termined by F . In contrast, SpIntra-CA involves rotating a
single ciphertext to generate others, and is mainly influenced

6

FicGCN: Unveiling the Homomorphic Encryption Efficiency from Irregular Graph Convolutional Networks

Table 2. The comparison of HOC for different Aggregation modes.
’/’ indicates that HOC for this mode cannot be theoretically ana-
lyzed.

Complexity
Operation Latency SpIntra-CA Inter-CA

PMult Low ≪ N ⌈F∗n
t
⌉

Add Low ≪ N ⌈F∗n
t
⌉

Rot High O(n ∗ log2(N)) ⌈log(t)⌉

by N .

Based on this, the scheduling principle for layer-wise Ag-
gregation mode can be derived as follows:

• First Layer: We always choose Inter-CA for the first
layer, as the multiple inter-ciphertext computations
can be eliminated by offline user encryptions from the
client, which can be ignored.

• Other Layers: For other layers, considering that Rot is
often more than 20× slower than Pmult and Add (Lee
et al., 2022), we follow the latency-aware formula (Ta-
ble 2) to select Aggregation mode. In SpIntra-CA, we
introduce a factor c ∈ [0, 1] to quantify the effect of the
optimization (like AOO) and the actual Rot number in
practice (that is often less than the worst-case scenario).
The final formula is as follows:

Agg = argmin

{
Inter-CA: 2⌈F∗n

t ⌉
SpIntra-CA: 10cn log2(N)

SpIntra-CA is preferred when F dominates the latency.

3.4. Node Order Optimization

As analyzed in Section 3.3.1, the efficiency of SpIntra-CA
is limited by the maximum rotation range and the conflict
number. The large rotation range results in a longer rotation
step, leading to more rotations; Excessive conflicts may lead
to more extra ciphertexts and rotations. From Section 3.3,
we can observe that the rotation step is closely tied to the
relative distance between the nodes to be aggregated in the
ciphertext, which aligns seamlessly with the regional charac-
teristics observed in the graph. Moreover, the arrangement
of nodes within a region plays a crucial role in determining
the frequency of conflicts.

Based on the observations above, FicGCN proposes node
order optimizations (NOO) for HE+GCN to reduce HOCs
and enhance efficiency, which includes the following three
stages: 1) BFS-based Region Partition. We sequentially
obtain all regions and find the nodes for each region with
Breadth-First Search (BFS). The only adjustment is that

Aggregation Pattern:
N0+N2, N1+N2

N0

N0

Node with
Highest Degree

in Its Region

N0

N1

N2

N3

N3

0-th Node 3-th Node

3

2

1

2

3

N0

N1

N6

N2

N3

N5

N4

N6

6-th Node

2

3

Least Conflict

Least Conflict

N0

N1

N6

N2

N7

N3

N5

N4

N7

7-th Node

N0

N1

N2

N2

N2

N1

N0

N1

N0

Rot(1) & Mask

N2

N2

N2

Rot(6) & Mask
N0

N0

N0

N0

N1

N2

N2

N2

N1

N0

N1

N0 Rot(1) & Mask

N2

N2

N2

N0

N0

N0

(a) Non-Interleave (b) Interleave

(c) Conflict-Least Intra-Region Node Arrangement

Non-Inter:
2 Rots

Inter:
1 Rots

Inter-Region Node Arrangement

Figure 5. Node order optimization (NOO). Interleaved region ar-
rangement (b) requires fewer rotations than the region-by-region
arrangement (a). Greedy node arrangement for least conflicts
within each region (c)

we enqueued sibling nodes instead of neighboring nodes
in each iteration. We also use a threshold TH to limit the
node number within a region. 2) Aggregation-efficient
inter-region node arrangement: Aggregation occurs be-
tween sibling nodes, primarily within the same region. We
propose an interleaved arrangement of nodes between re-
gions where each region can be regarded as a subring of
the ciphertext, preserving the rotation pattern as illustrated
in Figure 5(b). This inherent consistency further facilitates
parallel computation across regions. 3) Conflict-least intra-
region node arrangement. Within each region, we employ
a greedy strategy to sequentially determine node positions
by selecting the (k + 1)-th node that minimizes the total
number of conflicts with the already fixed k nodes, as shown
in Figure 5(c). Thanks to the interleave arrangement, the
search within each region can be conducted independently
without interfering with one another.

Existing work also designed reordering algorithms, which
are designed to enhance cache hit rates for plaintext comput-
ing (Geng et al., 2021; Wei et al., 2016; Arai et al., 2016).
It fails to achieve optimal performance because it is not
designed to accommodate the ring structure of CKKS ci-
phertexts and cannot effectively reduce conflicts within a
region. The NOO Algorithm is shown in Appendix.

4. Evaluation
4.1. Experiment Setup

Datasets. We conduct experiments on the four datasets
the same as the existing works (Ran et al., 2022; 2024), in-
cluding Cora, Citeseer, Corafull and NTU-cross-View. The
former three are relatively large-scale graphs, comprising
2708, 3327, and 19793 nodes with feature dimensions of

7

FicGCN: Unveiling the Homomorphic Encryption Efficiency from Irregular Graph Convolutional Networks

1433, 3703, and 8710, respectively. Notably, the Corafull
dataset exceeds the complexity of all prior inferred datasets
in HE-GCN. The last one is a small-scale dataset designed
for human action recognition, comprising 25 nodes with
3-dimensional features. However, due to its inclusion of
256 frames with a temporally dense computation pattern,
the computational latency under HE remains high.

Models. Graph Auto-Encoder (GAE) models with 2 lay-
ers and 2 non-linear activation functions(approximated by
x2) are trained on three large-scale datasets, using Adam
optimizer with a mini-batch size of 64, a momentum of 0.9,
and the learning rate of 0.01 for 200 epochs. The feature
dimensions of the 2 layers are set to 32 and 16, respectively.
We employ a number of sampled neighbors that is approxi-
mately equal to the average number of neighbors per node in
the original dataset. We also set TH = 1024 for Cora and
Citeseer; TH = 4096 for Corafull. For NTU-cross-View,
we train using the identical STGCN-3-64 model (Ran et al.,
2022) and hyper-parameters following CryptoGCN.

HE parameters & Environment. For the datasets with
large and small scales described above, we respectively
adopt the HE parameter configurations from Penguin (Ran
et al., 2024) and CryptoGCN (Ran et al., 2022). For large-
scale datasets, we set: ∆ = 230 ;M = 212 ;Q = 218. For
small-scale datasets, we set: ∆ = 233 ;M = 213 ;Q = 680.
We conduct all experiments on a machine equipped with
Intel(R) Core(TM) i7-9750H CPU using the single thread
setting to test the inference latency and use Microsoft SEAL
version 3.7.2 (SEAL)to implement the CKKS scheme.

4.2. Evaluation Results

4.2.1. COMPARE WITH SOTA SOLUTIONS

We conduct an end-to-end latency comparison analysis
with SOTA methods including Gazelle, Penguin, and Cryp-
toGCN. For a fair comparison, when using Penguin, we
perform aggregation with the plaintext adjacency matrix
A. As shown in Table 3, our FicGCN achieves speedups
of 21.6×, 34.2×, >120× over Gazelle across Cora, Cite-
seer, and Corafull, respectively. The results in Table 3 also
show that on the NTU dataset (25 points), we achieve a
1.26× speedup over the fastest design, CryptoGCN. On the
Cora (2708 points) and Citeseer (3327 points) datasets, we
achieve 2.01× and 1.78× speedups, respectively, compared
to the fastest design, Penguin. Furthermore, on the Corafull
dataset (19793 points), our method outperforms the fastest
design CryptoGCN, by a factor of 4.1×.

This comparison highlights that our method delivers
stronger performance on larger graphs. Specifically, SpIntra-
CA enables arbitrary reordering within the ciphertext, effec-
tively addressing the inefficiency that arises when M ≪ N .
In contrast, existing approaches such as Penguin face per-

Table 3. Compare with SOTA solutions. (”E” represents Inter-
CA, ”A” represents SpIntra-CA, and ”Hybrid” denotes a mixed
computation of the two methods.)

Dataset Method Aggregation Slot Utilization Latency Speed up

Cora

Gazelle - 35% 1535.27s -
Penguin Hybrid 100% 128.82s 11.9×

CryptoGCN E-E 66% 131.06s 11.7×
FicGCN+NOO E-A 100% 64.12s 21.6×

Citeseer

Gazelle - 81% 2897.25s -
Penguin Hybrid 100% 142.90s 20.3×

CryptoGCN E-E 90% 150.42s 19.3×
FicGCN+NOO E-A 100% 79.98s 36.2×

Corafull

Gazelle - 72% / -
Penguin Hybrid 100% 35565s >30×

CryptoGCN E-E 83% 31735s >30×
FicGCN+NOO E-A 100% 7733s >120×

NTU CryptoGCN E-E-E 78% 1731.08s -
FicGCN E-E-A 100% 1373.82s 1.26×

formance bottlenecks under these conditions, limiting their
overall efficiency. We outperform state-of-the-art (SOTA)
methods primarily due to two factors:(1). Our SpIntra-CA
overcomes the trade-off between sparsity and SIMD pack-
ing, significantly reducing redundant computations. While
Penguin uses efficient packing but not sparsity, and Cryp-
toGCN adopts both sparsity and SIMD but suffers low slot
utilization, our approach is more holistic. (2). We de-
vise a specialized reordering algorithm for SpIntra-CA and
CKKS’s cyclic shift, which trades minimal plaintext over-
head for a significant reduction in homomorphic latency.

4.2.2. ABLATION STUDY

Ablation study for AOO. We first conduct an ablation study
for AOO. As illustrated in Figure 4(a), we determine the op-
timal aggregation order for each node to minimize the shift
range within the ciphertext. Clearly, AOO is independent
of the dataset, thus, without loss of generality, we analyze
this only using the Cora dataset as an example. We report
the mean and standard deviation of results from 10 different
samples.

Table 1 shows that incorporating AOO results in an 18.5%
rotation reduction and achieves a speedup of 1.18×. AOO
may introduce minor side effects since multiple nodes may
occupy the same optimized initial position, which may incur
slightly more conflicts in SpIntra-CA, but still leads to the
above performance gains.

Ablation Study for CPOO. As shown in Figure 6(b),
CPOO that merging and postponing the process of sparser
ciphertexts enhances computational efficiency by 15%, prun-
ing 14%-46% Rots, which is attributed to allowing a single
rotation to satisfy the requirements of more nodes with a
relatively low conflict rate. Figure 6(a) illustrates the ra-
tio of inference latency under different ciphertext sparsity
thresholds to that without CPOO across four datasets, which
demonstrates that the optimal threshold should be selected

8

FicGCN: Unveiling the Homomorphic Encryption Efficiency from Irregular Graph Convolutional Networks

(a) (b)

(c)

Figure 6. The effectiveness of CPOO. (a) The relationship between
latency and utilization thresholds across four datasets. (b) The ratio
of Rots pruned by CPOO of 4 datasets. (c) Stage-wise ciphertext
number w/ and w/o CPOO

Table 4. Ablation Study for NOO (NOR: Number of Regions)

Dataset Model Rot PMult Add Latency(s) Accuracy
(Backbone) NOR

Cora
w/o NOO 5.74K 125K 117K 94.68 0.792

(0.815) 6w/ Rabbit 2.85K 109K 103K 80.05
w/ NOO 1.93K 97K 95K 69.28

Citeseer
w/o NOO 7.03K 151K 139K 117.87 0.692

(0.727) 8w/ Rabbit 3.60K 140K 131K 97.21
w/ NOO 2.35K 123K 120K 86.14

Corafull
w/o NOO 46.3K 20.0M 22.8M 12003 0.648

(0.695) 14w/ Rabbit 38.3K 16.5M 17.5M 10011
w/ NOO 36.7K 14.7M 16.9M 9075

NTU
w/o NOO 10.66K 233K 257K 1562.03 0.749

(0.825) 2w/ Rabbit 10.66K 233K 257K 1562.03
w/ NOO 9.97K 218K 241K 1463.80

within 0.2∼0.3. Figure 6(c) further illustrates the effective-
ness of CPOO across different datasets.

Ablation Study for NOO. NOO performs a greedy search
for the node with the fewest current conflicts in SpIntra-
CA, resulting in optimization performance that surpasses
existing cache hit rate improvement methods such as Rab-
bit (Arai et al., 2016). Table 4 presents the ablation experi-
ments of NOO on 4 datasets. Our proposed NOO reduces
Rot number by 66.4%, 66.6%, 20.7% and 6.5% compared
with direct SpIntra-CA respectively. The relatively lower
improvement in NTU-cross-view dataset is attributed to its
smaller node number (25) and simpler connectivity struc-
tures, in which cases we suggest not using NOO to save
offline time. Among the 3 optimization methods, NOO
demonstrates the most significant effect.

Table 5. Overhead analysis of Node Order Optimization (NOO) on
large-scale datasets

Dataset |V (G)| |E(G)| davg TNOO (s) THE (s) ρ

Cora 2.7K 5.4K 4.01 2.00 64.12 3.2%

Citeseer 3.3K 4.7K 2.85 5.33 79.98 6.7%

Corafull 19.8K 127K 12.82 27.91 7733 0.36%

Pokec 1.63M 30.62M 18.80 181.20 ∼ 107 ∼ 0.002%

4.3. NOO Overhead Analysis

As shown in the results of Table 3, the advantages of
FicGCN become more pronounced on large-scale graph
datasets. The datasets used in current mainstream studies
and in the evaluation of homomorphic inference in FicGCN
all contain fewer than 100K nodes. Consequently, as the
dataset size increases, the overhead of pre-processing NOO
may potentially surpass online inference latency and be-
come the primary performance bottleneck for FicGCN. To
investigate this, we selected Pokec, a large-scale dataset
with over 1 million nodes, to measure the time overhead of
NOO and compare it with the online inference latency. The
results are presented in Table 4, which includes:

• Graph Statistics: Node count (|V (G)|), edge count
(|E(G)|), and average degree (davg).

• Time Overhead: NOO preprocessing time (TNOO) and
online stage HE computation latency (THE).

• Efficiency Ratio: ρ = TNOO/THE

As shown in Table 5, NOO exhibits low time overhead on
smaller datasets. For large-scale graphs like Pokec, NOO’s
overhead remains negligible relative to FicGCN’s online
phase, ensuring NOO does not bottleneck FicGCN’s perfor-
mance.

5. Conclusion
In this paper, we explore the performance potential of spar-
sity in HE+GCN. Based on the sparsity of node connection,
we propose FicGCN with an optimal layer-wise column-
based packing method and a sparse intra-ciphertext aggre-
gation method to reduce the computation redundancy and
boost the performance. We also propose a region-based data
reordering method to further improve the aggregation effi-
ciency. The results show an up to 4.1x speedup compared
to SOTA works and demonstrate its superiority on large
graphs, promoting the practical deployment of HE GCN.

Acknowledgments
This work is partially supported by Strategic Priority Re-
search Program of the Chinese Academy of Sciences, (Grant

9

FicGCN: Unveiling the Homomorphic Encryption Efficiency from Irregular Graph Convolutional Networks

No.XDB0660300, XDB0660301, XDB0660302), the NSF
of China(under Grants U22A2028, 62222214, 62341411,
62102398, 62102399, 62302478, 62302482, 62302483,
62302480, 62302481, 62172387), CAS Project for Young
Scientists in Basic Research(YSBR-029) and Youth Innova-
tion Promotion Association CAS.

Impact Statement
Our paper enhances the computing efficiency of Homo-
morphic Encryption (HE) GCNs while ensuring data pri-
vacy through robust security guarantees of HE. With the
widespread use of GCN systems and growing privacy con-
cerns, our paper facilitates the practical application of GCNs
in security and privacy-critical scenarios. We believe our
work positively impacts society.

References
Ao, W. and Boddeti, V. N. {AutoFHE}: Automated adap-

tion of {CNNs} for efficient evaluation over {FHE}. In
33rd USENIX Security Symposium (USENIX Security 24),
pp. 2173–2190, 2024.

Arai, J., Shiokawa, H., Yamamuro, T., Onizuka, M., and
Iwamura, S. Rabbit order: Just-in-time parallel reorder-
ing for fast graph analysis. In 2016 IEEE International
Parallel and Distributed Processing Symposium (IPDPS),
pp. 22–31. IEEE, 2016.

Bongini, P., Bianchini, M., and Scarselli, F. Molecular gen-
erative graph neural networks for drug discovery. Neuro-
computing, 450:242–252, 2021.

Chen, T., Bao, H., Huang, S., Dong, L., Jiao, B., Jiang,
D., Zhou, H., Li, J., and Wei, F. The-x: Privacy-
preserving transformer inference with homomorphic en-
cryption. arXiv preprint arXiv:2206.00216, 2022.

Cheon, J. H., Kim, A., Kim, M., and Song, Y. Homomor-
phic encryption for arithmetic of approximate numbers.
In Advances in Cryptology–ASIACRYPT 2017: 23rd In-
ternational Conference on the Theory and Applications of
Cryptology and Information Security, Hong Kong, China,
December 3-7, 2017, Proceedings, Part I 23, pp. 409–437.
Springer, 2017.

Cheon, J. H., Han, K., Kim, A., Kim, M., and Song, Y.
Bootstrapping for approximate homomorphic encryption.
In Advances in Cryptology–EUROCRYPT 2018: 37th
Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Tel Aviv, Israel,
April 29-May 3, 2018 Proceedings, Part I 37, pp. 360–
384. Springer, 2018.

Choi, H., Woo, S. S., and Kim, H. Blind-touch: Homomor-
phic encryption-based distributed neural network infer-

ence for privacy-preserving fingerprint authentication. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 38, pp. 21976–21985, 2024.

Geng, T., Wu, C., Zhang, Y., Tan, C., Xie, C., You, H.,
Herbordt, M., Lin, Y., and Li, A. I-gcn: A graph convolu-
tional network accelerator with runtime locality enhance-
ment through islandization. In MICRO-54: 54th annual
IEEE/ACM international symposium on microarchitec-
ture, pp. 1051–1063, 2021.

Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K.,
Naehrig, M., and Wernsing, J. Cryptonets: Applying
neural networks to encrypted data with high throughput
and accuracy. In International conference on machine
learning, pp. 201–210. PMLR, 2016.

Halevi, S. and Shoup, V. Algorithms in helib. In Advances
in Cryptology–CRYPTO 2014: 34th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 17-21,
2014, Proceedings, Part I 34, pp. 554–571. Springer,
2014.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. Advances in neural
information processing systems, 30, 2017.

Hao, M., Li, H., Chen, H., Xing, P., Xu, G., and Zhang,
T. Iron: Private inference on transformers. Advances in
neural information processing systems, 35:15718–15731,
2022.

Jha, N. K., Ghodsi, Z., Garg, S., and Reagen, B. Deepre-
duce: Relu reduction for fast private inference. In Interna-
tional Conference on Machine Learning, pp. 4839–4849.
PMLR, 2021.

Jia, Z., Lin, S., Ying, R., You, J., Leskovec, J., and Aiken, A.
Redundancy-free computation for graph neural networks.
In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp.
997–1005, 2020.

Jin, W., Yao, Y., Han, S., Gu, J., Joe-Wong, C., Ravi,
S., Avestimehr, S., and He, C. Fedml-he: An efficient
homomorphic-encryption-based privacy-preserving fed-
erated learning system. arXiv preprint arXiv:2303.10837,
2023.

Juvekar, C., Vaikuntanathan, V., and Chandrakasan, A.
{GAZELLE}: A low latency framework for secure neural
network inference. In 27th USENIX security symposium
(USENIX security 18), pp. 1651–1669, 2018.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

10

FicGCN: Unveiling the Homomorphic Encryption Efficiency from Irregular Graph Convolutional Networks

Lee, E., Lee, J.-W., Lee, J., Kim, Y.-S., Kim, Y., No, J.-S.,
and Choi, W. Low-complexity deep convolutional neural
networks on fully homomorphic encryption using multi-
plexed parallel convolutions. In International Conference
on Machine Learning, pp. 12403–12422. PMLR, 2022.

Lee, S., Lee, G., Kim, J. W., Shin, J., and Lee, M.-K. Hetal:
efficient privacy-preserving transfer learning with homo-
morphic encryption. In International Conference on Ma-
chine Learning, pp. 19010–19035. PMLR, 2023.

Lou, Q. and Jiang, L. Hemet: A homomorphic-encryption-
friendly privacy-preserving mobile neural network archi-
tecture. In International conference on machine learning,
pp. 7102–7110. PMLR, 2021.

Matsunaga, D., Suzumura, T., and Takahashi, T. Ex-
ploring graph neural networks for stock market pre-
dictions with rolling window analysis. arXiv preprint
arXiv:1909.10660, 2019.

Peng, H., Ran, R., Luo, Y., Zhao, J., Huang, S., Thorat,
K., Geng, T., Wang, C., Xu, X., Wen, W., et al. Lingcn:
Structural linearized graph convolutional network for ho-
momorphically encrypted inference. Advances in Neural
Information Processing Systems, 36, 2024.

Ran, R., Wang, W., Gang, Q., Yin, J., Xu, N., and Wen, W.
Cryptogcn: Fast and scalable homomorphically encrypted
graph convolutional network inference. Advances in
Neural information processing systems, 35:37676–37689,
2022.

Ran, R., Luo, X., Wang, W., Liu, T., Quan, G., Xu, X., Ding,
C., and Wen, W. Spencnn: orchestrating encoding and
sparsity for fast homomorphically encrypted neural net-
work inference. In International Conference on Machine
Learning, pp. 28718–28728. PMLR, 2023.

Ran, R., Xu, N., Liu, T., Wang, W., Quan, G., and Wen, W.
Penguin: parallel-packed homomorphic encryption for
fast graph convolutional network inference. Advances in
Neural Information Processing Systems, 36, 2024.

Reagen, B., Choi, W.-S., Ko, Y., Lee, V. T., Lee, H.-H. S.,
Wei, G.-Y., and Brooks, D. Cheetah: Optimizing and
accelerating homomorphic encryption for private infer-
ence. In 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), pp. 26–39.
IEEE, 2021.

Ru, S., Zhang, B., Jie, Y., Zhang, C., Wei, L., and Gu, C.
Graph neural networks for privacy-preserving recommen-
dation with secure hardware. In 2021 international con-
ference on networking and network applications (NaNA),
pp. 395–400. IEEE, 2021.

SEAL. Microsoft SEAL (release 3.7). https://github.
com/Microsoft/SEAL, September 2021. Microsoft
Research, Redmond, WA.

Si, C., Jing, Y., Wang, W., Wang, L., and Tan, T. Skeleton-
based action recognition with spatial reasoning and tem-
poral stack learning. In Proceedings of the European
conference on computer vision (ECCV), pp. 103–118,
2018.

Srinivasan, W. Z., Akshayaram, P., and Ada, P. R. Delphi:
A cryptographic inference service for neural networks. In
Proc. 29th USENIX secur. symp, volume 3, 2019.

Wei, H., Yu, J. X., Lu, C., and Lin, X. Speedup graph
processing by graph ordering. In Proceedings of the 2016
International Conference on Management of Data, pp.
1813–1828, 2016.

Wu, H., Fang, W., Zheng, Y., Ma, J., Tan, J., Wang, Y., and
Wang, L. Ditto: Quantization-aware secure inference of
transformers upon mpc. arXiv preprint arXiv:2405.05525,
2024.

Wu, S., Sun, F., Zhang, W., Xie, X., and Cui, B. Graph
neural networks in recommender systems: a survey. ACM
Computing Surveys, 55(5):1–37, 2022.

Yan, S., Xiong, Y., and Lin, D. Spatial temporal graph
convolutional networks for skeleton-based action recogni-
tion. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Zeng, W., Li, M., Xiong, W., Tong, T., Lu, W.-j., Tan, J.,
Wang, R., and Huang, R. Mpcvit: Searching for accurate
and efficient mpc-friendly vision transformer with het-
erogeneous attention. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 5052–
5063, 2023a.

Zeng, W., Li, M., Yang, H., Lu, W.-j., Wang, R., and
Huang, R. Copriv: network/protocol co-optimization
for communication-efficient private inference. Advances
in Neural Information Processing Systems, 36:78906–
78925, 2023b.

Zhang, C., Li, S., Xia, J., Wang, W., Yan, F., and Liu,
Y. {BatchCrypt}: Efficient homomorphic encryption for
{Cross-Silo} federated learning. In 2020 USENIX annual
technical conference (USENIX ATC 20), pp. 493–506,
2020.

11

https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL

FicGCN: Unveiling the Homomorphic Encryption Efficiency from Irregular Graph Convolutional Networks

A. HE Operation Overhead Analysis
As mentioned in the main text, the basic overhead of different types of HE operations varies. Generally, L(Rot) ≈
L(CMult) > L(PMult) > L(Add) , ’L’ represents latency. The two aggregation modes primarily used in this paper
(Intra-CA and Inter-CA) rely on different fundamental operations. By analyzing the differing HOCs for each mode, it is
evident that each method has its strengths and weaknesses depending on the dimension of the feature matrix, the size of the
model, and the HE parameters configuration.

Since CKKS is a leveled homomorphic encryption (LHE) scheme, it divides the bits of each coefficient in the ciphertext
polynomial into multiple groups, with each group corresponding to a multiplication level. After performing a multiplication
on the ciphertext, a re-scaling operation is necessary to reduce the bit length of the coefficients, lowering the cost for
subsequent HE operations. The core idea behind an optimal inference framework is to prioritize the cheaper operations,
such as Add, PMult, and delay the more expensive ones. This is reflected in FicGCN’s design, where the first layer primarily
uses the Inter-CA based on PMult and Add, while the SpIntra-CA is placed in later layers.

Figure 7(a) illustrates the HE operation individual cost at different levels for ciphertexts under the HE parameter configuration
used for large graph inference in this paper. It shows that the overhead of Rot and CMult is often over 20× greater than
that of PMult and Add. Figure 7(b) breaks down the time overhead of HE operations under different methods. In inference
dominated by SpIntra-CA, the delay caused by Rot exceeds A%. Therefore, the methods proposed in this paper, such as
AOO, CPOO, and NOO, which reduce the overhead of Rot to enhance computational efficiency, have been shown to be
effective. Since under plaintext A, the computational overhead of the non-linear layer represented by CMult is negligible,
there is no need to prune the non-linear layer as done in prior work (Lee et al., 2023; Peng et al., 2024; Ao & Boddeti, 2024;
Jha et al., 2021; Ran et al., 2023).

(a)

(b)

Figure 7. (a) Statistics of single operation overhead for the four basic HE operations at different levels of ciphertext. (b)Breakdown of
time overhead for the 4 basic HE operations under different inference frameworks.

12

FicGCN: Unveiling the Homomorphic Encryption Efficiency from Irregular Graph Convolutional Networks

B. Latency-Aware Objective Function
Section 3.2 presents two macro scheduling strategies for FicGCN—packing method and layer-wise aggregation mode
decisions. The commonality of these two strategies is that they estimate the latency by evaluating the HOC under different
methods, which is then used as the objective function to derive the optimal solution and strategy for the current state. This
section provides a detailed derivation of how the two objective functions are obtained.

Table 6. Experiments Setup

Dataset Model Feature Dimension
Average Degree

(Sampled Neighbors)
HE Parameters
M P Q Security Level

Cora GCN 1433-32-16 4.01 4096 30 218 128-bitGraphSage 4.00

Citeseer GCN 3703-32-16 2.85 4096 30 218 128-bitGraphSage 3.00

Corafull GCN 8710-32-16 12.82 4096 30 218 128-bitGraphSage 13.00

NTU GCN 3-64-128-128 2.00-4.00 8192 60 680 ≥ 80-bitGraphSage 4.00

B.1. Packing Method

As shown in Figure 1(a), to minimize the dense computation overhead in the Combination step, we propose a column-based
packing strategy. Specifically, we pack the data from t columns of X into the same ciphertext polynomial in column-major
order. When t = 1, each ciphertext stores a single feature dimension for all nodes, eliminating the need for expensive
rotation operations during the Combination phase. However, since the dimensions of X vary, t = 1 may not guarantee
maximum ciphertext slot utilization, potentially resulting in more ciphertexts and additional overhead. Therefore, we must
balance ciphertext utilization with the extra rotation overhead, aiming to find the optimal value of t by using the first-layer
Inter-CA latency estimation as the objective function.

We divide the problem into two categories based on whether the ciphertext size can fully pack all the elements of the next
layer’s feature matrix, i.e. by comparing the sizes of M and N ∗ F ′

.

M > N ∗ F′
:In this case, it is possible to pack a particular column from Figure 1(a) within the same ciphertext, so the

number of PMult and Add is ⌈F∗n
t ⌉, where ⌈·⌉ denotes ceiling. Since there are multiple feature dimensions within the

ciphertext, considering the intra-ciphertext summation , this will incur an additional rotation overhead of log(t) times. (Halevi
& Shoup, 2014) Here we consider L(CMult) = L(Rot) = 20L(PMult) = 20L(Add), thus we can derive the objective
function as:

J (t;F, n) = 2 ⌈F ∗ n
t
⌉+ 20⌈ log(t)⌉

Figure 7(a) shows an example objective function, the optimal t can be searched within a cheap pre-processing overhead.
M ≤ N ∗ F′

: In this case, we are unable to fully pack a complete column from Figure 1(a) into a single ciphertext; we can
only pack several rows. Since we pack t columns from X each time, a single ciphertext will contain ⌈Mt ⌉ rows as shown in

the figure. Consider that the matrix in Figure 1(a) contains N ∗ F ′
rows, we can get ⌈N∗F

′

⌈M
t ⌉ ⌉ rows in the figure within a

single ciphertext. Therefore, the number of PMult and Add can be calculated as:

Num(PMult) = Num(Add) = ⌈F ∗ n
t
⌉ ∗ ⌈N ∗ F

′

⌈Mt ⌉
⌉

This is an approximation that is independent of t, meaning that the total latency only depends on the number of Rot.
Therefore, the optimal solution is t = 1.

13

FicGCN: Unveiling the Homomorphic Encryption Efficiency from Irregular Graph Convolutional Networks

B.2. Selecting Aggregation Mode

From Table 1, it can be seen that the dominant HE operations in Inter-CA and SpIntra-CA differ. Inter-CA primarily involves
n different orderings of repeated ciphertext-level additions and multiplications, so the time overhead can be estimated as:
2⌈F∗n

t ⌉. On the other hand, SpIntra-CA is mainly composed of a single-order ciphertext, from which a new permutation of
ciphertext is generated every log2(N) rotations. As a result, a smaller time overhead can be chosen for each layer, and the
aggregation mode for each layer can be determined before starting the inference.

Agg = argmin

{
Inter-CA: 2⌈F∗n

t ⌉
SpIntra-CA: 10cn log2(N)

At the same time, since the final output and the node order in the client’s packed ciphertext can be arbitrary, the NOO results
on the SpIntra-CA results can be propagated back to the client layer by layer to complete the optimal order packing since
there is no restriction for both the order of the input and output in FicGCN, as shown in Figure 7(b).

Packing
Inter-

Ciphertext
Aggregation

Intra-
Ciphertext
Aggregation

A
rb

it
ra

ry
 O

rd
e

r

NOO

Arbitrary Order

Order Back Propagation

Output

(a)

(b)

Client
Cloud

Figure 8. (a) An example objective function (b) The principal of node order back propagation which influences the initial packing order
from the client.

C. Supplementary Experiments
C.1. Experiments Setup

All experimental settings are mentioned in Section 4.1. Here, this information is summarized in Table 5. When sampling,
the number of neighbors we sample is approximately equal to the average degree of all nodes in the graph.

C.2. Ablation Study for Packing

We pack t columns from X into a ciphertext and use the delay estimate of the first-layer Inter-CA as the objective function to
find the optimal t value, balancing the utilization of ciphertext slots and the extra Rot overhead induced. However, whether
this approach remains effective for subsequent layers, particularly for those using SpIntra-CA, is a nontrivial question.

14

FicGCN: Unveiling the Homomorphic Encryption Efficiency from Irregular Graph Convolutional Networks

Table 7. Ablation Study for Packing
DataSet Optimized t Packing Method Ciphertext Number Inter-CA Latency SpIntra-CA Latency Overall Latency Speedup with Optimized t

Cora 2
t = 1 1433-32-16 37.95s 8.07s 46.02s

1.27×t = 2 717-16-8 20.36s 15.87s 36.23s
t = 4 359-8-4 14.88s 27.01s 41.89s

Citeseer 2
t = 1 3703-32-16 77.00s 5.98s 82.98s

1.44×t = 2 1852-16-8 40.29s 17.47s 57.76s
t = 4 926-8-4 21.69s 39.05s 60.74s

For Inter-CA, since the ciphertexts involved in the computation are repeatedly generated, the overall computational cost
is almost proportional to the number of ciphertexts. Therefore, reducing the number of ciphertexts, or in other words,
increasing the packing density, can reduce the latency. However, for SpIntra-CA, the situation is more complicated. As the
slots utilization increases, the sparsity of ciphertexts decreases significantly, resulting in a higher probability of conflicts
during computation, which actually increases the latency. Furthermore, since these conflicts are closely related to the ”Graph
Coloring Problem”, which is NPC, the exact relationship between conflict occurrences and ciphertext sparsity is hard to be
theoretically derived.

Therefore, we conduct experiments to verify the effectiveness of the proposed latency-aware packing optimization method.
Table 6 shows the latency variation of different parts of the model under different packing strategies. Each data point is the
average of 20 different random samples, and only the Cora and Citeseer datasets, with moderate dimensions, were selected
for the experiment. Furthermore, 1024 nodes were randomly sampled from each dataset for the experiments.

From the table, we can observe that for both datasets, when t is doubled, it leads to a halving of the number of ciphertexts,
along with a small increase in the Rot overhead. As a result, the Inter-CA delay approximately becomes half of the original
value. However, the delay for SpIntra-CA does not exhibit a clear pattern as ciphertexts become more densely packed.
Therefore, when considering both, the optimal computation efficiency is typically achieved at the point that minimizes the
overhead for the first layer. Thus, the proposed packing strategy not only minimizes the Inter-CA overhead in the first layer
but also ensures minimal delay even when different modes of SpIntra-CA are considered for subsequent layers.

C.3. NOO Effect

The principle behind our proposed NOO that enhances the computational performance of homomorphic inference mainly
involves two key aspects:

• GCN sibling node computation mode: By grouping nodes with computational relationships into the same region and
mapping this relationship to the ciphertext’s ordering, we ensure that nodes that need to be computed are placed closer
together. This effectively reduces the displacement distance of all nodes within the ciphertext.

• Heuristic search with a greedy strategy: By searching for the state with the fewest conflicts, the entire aggregation
process sees a significant reduction in the number of conflicts.

Algorithm 1 aligns with the 3 stages illustrated in Figure 2(a). Lines 1–11 describe the detection of strongly connected
regions using a BFS-based approach. In each iteration, the sibling nodes of the current node are enqueued, and a threshold
TH is employed to control the maximum number of nodes per region. Subsequently, line 12 interleaves the nodes of these
regions within the vector. These two steps also facilitate the partitioning of the problem into sub-problems, ensuring the
search space is partitioned from the entire graph into multiple regions and thereby achieving the divide-and-conquer strategy.
Finally, lines 13–27 employ a greedy search strategy to traverse the node within each region individually, placing each node
in a position that minimizes the total number of conflicts in the current state. Here, Conrot

j (ptrResult, n, i) indicates whether
a conflict occurs at the j − th position during the rot− th rotation when node n is placed in the i− th position under the
current node ordering. Moreover, the arrangement between these regions remains unaffected due to the SIMD rotational
characteristics on the ring, thus the process of merging these sub-problems incurs no additional overhead.

As shown in Table 7, our NOO outperforms plaintext reordering algorithms for the following reasons: 1) Most plaintext
reordering algorithms place neighboring nodes closer together, but this doesn’t directly align with the sibling computation
patterns in GCN. 2) Plaintext reordering algorithms are often designed to optimize cache hits in linear structures, while NOO
focuses on the ring structure of CKKS ciphertext. 3) Leveraging the computational features of CKKS, a divide-and-conquer

15

FicGCN: Unveiling the Homomorphic Encryption Efficiency from Irregular Graph Convolutional Networks

Table 8. Ablation Study for NOO

Dataset Model Rot PMult Add Latency(s) Accuracy
(Backbone) NOR Distribution of Ciphertext Number

Cora
w/o NOO 5.74K 125K 117K 94.68 0.792

(0.815) 6
2-8-9-9-11-10-10-8-8-6-2

w/ Rabbit 2.85K 109K 103K 80.05 3-7-8-7-6-5-4-3-1
w/ NOO 1.73K 91K 89K 64.12 2-5-5-5-4-3-2

Citeseer
w/o NOO 7.03K 151K 139K 117.87 0.692

(0.727) 8
6-12-12-12-12-11-10-10-10-9-3

w/ Rabbit 3.60K 140K 131K 97.21 3-9-9-8-7-7-7-3-2-2
w/ NOO 2.21K 118K 115K 79.98 2-7-6-4-4-3-3-2-2-1

Corafull
w/o NOO 46.3K 20.0M 22.8M 12003 0.648

(0.695) 14
9-13-14-17-17-15-14-16-16-16-16-15-12-6

w/ Rabbit 38.3K 16.5M 17.5M 10011 6-9-14-13-13-13-11-9-8-8-7-6
w/ NOO 32.1K 12.7M 14.9M 7733 4-11-11-8-10-7-7-6-5-3

NTU
w/o NOO 10.66K 233K 257K 1562.03 0.749

(0.825) 2
4-3-3-1

w/ Rabbit 10.66K 233K 257K 1562.03 4-3-3-1
w/ NOO 9.97K 214K 236K 1373.82 3-3-2-1

algorithm can naturally be designed to parallelize the processing of all partitioned regions, thereby reducing the number of
conflicts.

NOO consists of three steps: Detection, Interleave Arrangement, and Search. The effects of each step will be presented one
by one.

Table 9. Ablation Study for Packing

Dataset Naive Lat Lat w/ Detection Lat w/ Search Lat w/ Rabbit Lat w/ NOO

Cora 94.68s 76.73s 88.22s 80.05s 64.12s

Citeseer 117.87s 95.01s 108.96s 97.21s 79.98s

Corafull 12003s 10805s 11426s 10011s 7733s

NTU 1562.03 1481.13s 1413.45s 1562.03s 1373.82s

Detection & Search Effect As shown in Table 8, for medium-sized datasets like Cora and Citeseer, our Detection
outperforms graph partitioning algorithms on plaintext, as prioritizing the grouping of sibling nodes into the same region
better aligns with the computational structure of GCN. Additionally, Detection alone is more effective than Search alone,
generally reducing latency by up to 13%. This suggests that, for these datasets, the disordered connectivity in randomly
arranged ciphertexts is the primary factor limiting HE computation. However, for larger datasets like Corafull, where
connectivity is more complex, the sibling-first detection strategy results in certain connected regions being inadequately
explored, making Detection 8.0% slower than Rabbit. In such cases, Search is more effective, indicating that the key limiting
factor for computational efficiency in large graphs is the higher probability of conflicts. For small-scale datasets like NTU,
both Detection and Rabbit have little impact, with efficiency gains coming mainly from reducing conflicts.

Regardless of the dataset, the efficiency improvement from using the complete NOO is always greater than the sum of
the improvements from Detection and Search alone. This is because only when both are used together can partitioned
regions reduce the search space and enable parallel computation between regions (divide and conquer), resulting in higher
computational efficiency.

Interleave Arrangement Effect We aim to arrange the nodes belonging to different regions in the ciphertext in an alternating
pattern like ABCABCABC... as shown in Figure 2(a). However, in practice, we often encounter situations where the number
of nodes in different regions is unequal, and the total number of nodes is slightly smaller than M. Therefore, we follow
these principles for arrangement: 1) Placing the nodes of all in an interleaved manner. 2) When the nodes of a particular
region are exhausted, prioritize filling the position of that region with blank slots. 3) If blank slots are also exhausted, begin
alternately arranging the remaining regions. The final arrangement results for the four datasets are shown in Figure 8. We
use gray to represent blank slots. As can be seen, each dataset ultimately faces a situation where the nodes of certain regions
are exhausted, which breaks the efficient parallel rotation pattern established earlier. However, the proportion of nodes with
this arrangement is quite low, so we can first complete the aggregation of most nodes and then handle this small portion of
nodes at the end. This has little impact on the overall computational efficiency.

16

FicGCN: Unveiling the Homomorphic Encryption Efficiency from Irregular Graph Convolutional Networks

Citeseer
NOR=8

Corafull
NOR=4+3+3+4

Cora
NOR=6

NTU
NOR=2

Figure 9. Interleave Arrangement Effect of 4 Datasets

Algorithm 1 Node Order Optimization for SpIntra-CA

Input: Graph: G = (V,E) ; M : Slot number; TH: Maximum number of nodes in one region; Ã: Adjacency matrix after neighbor-
sampling; BFSsibling: A modified breadth-first search that enqueues the sibling nodes at each iteration.

Output: ptRes: A plaintext vector which contains an optimized order of nodes
1: R← ∅ ; Plain← [] ; Vres ← V ; m← 0
2: while V is not empty do
3: Ncur ← Node with the highest degree in Vcur

4: Numnode ← 0; Rcur ← ∅
5: BFSsibling.init(Ã,Ncur)
6: while Numnode < TH or BFSsibling.Isend() do
7: Ncur ← BFSsibling.pop()
8: Rcur ← Rcur ∪Ncur ; Numnode+ = 1
9: end while

10: R.push(Rcur) ; V ← V \Rcur

11: end while
12: Plain← InterleaveArrangement(R)
13: ptRes ← Zeroslike(Plain)
14: for r = 1 to |R| do
15: N

′
cur ← Node with the highest degree in Rr

16: ptrRes = Plainr ; ptrRes[1]← N
′
cur

17: for n ∈ Sibling(N
′
cur) and n is not visited do

18: kmin ← +∞ ; index← 0 ; L← |Plainr|
19: for i = 2 to L do
20: kn ←

∑L
j=1

∑log(L)−1
rot=0 Conrot

j (ptrRes, n, i)

21: if ptrRes is available and kn < kmin then
22: index← i ; kmin ← kn
23: end if
24: end for
25: ptrRes[index]← N

′
cur ; N

′
cur ← n

26: end for
27: end for
28: Return ptRes

17

