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Abstract

This paper studies consensus conditions for leaderless and leader-follower matrix-1

weighted consensus networks under the presence of constant time-delays. Several2

delayed consensus algorithms for networks of single- and double-integrators using3

only the relative positions are considered. Conditions for the networks to asymp-4

totically converge to a consensus or clustering configuration are derived based on5

direct eigenvalue evaluation or the Lyapunov-Krasovkii theorem. Furthermore,6

an application of these algorithms in bearing-based network localization is also7

considered. The theoretical results are supported by numerical simulations.8

1 Introduction9

Recently, matrix-weighted consensus, a multi-dimensional extension of the well-known scalar-10

weighted consensus algorithm [20], has received a considerable amount of research attention. A11

matrix-weighted consensus system models diffusion dynamics in a multi-layer system with intra-12

and cross-layer interactions between multiple subsystems (or agents). Several applications of matrix-13

weighted consensus systems include multi-dimensional opinion dynamics models in [1, 33], bearing-14

based formation control [7,37], distributed localization of wireless sensor networks [3,4], and network15

synchronization [31].16

A matrix-weighted consensus network can be described by a graph with both positive definite and17

positive semidefinite matrix weights. Associated with the graph, a corresponding Laplacian matrix,18

whose the kernel (aka the nullspace) may contain further subspaces in addition to the consensus19

space [2,12,31], can be defined. Necessary and sufficient conditions for a matrix-weighted consensus20

network to asymptotically achieve consensus or clustering were given in [29, 30]. Discrete-time and21

randomized matrix-weighted consensus were studied in [14, 16, 28]. The authors in [22] investigated22

the continuous-time consensus protocol with switching matrix-weighted graphs. A consensus is23

asymptotically achieved if the weighted integral network over some fixed time period always contains24

a positive spanning tree, or equivalently, the kernel of the Laplacian matrix of the integrated network25

contains only the consensus space [22]. The works [15, 16] examined the consensus problems26

over matrix-weighted networks for double-integrator agents. Controllability of the matrix-weighted27

consensus network was discussed in [21]. Recent studies on bipartite and multi-partite matrix-28

weighted consensus have been proposed in [10, 17, 32].29

It practice, time delays are unavoidable if agents communicate their state variables via a wireless30

network, especially when the agents are separated by significant distances. When restricted to linear31

systems, time delay yields phase lags and alters both the transient and steady-state responses of32

the system. If the magnitude of the time delay is sufficiently large, the whole system could be33

destabilized. For this reason, it is essential to examine the stability conditions of matrix-weighted34

consensus networks under different assumptions on the time delays. It is noteworthy that even35

with delayed linear differential equations, the exact analysis via characteristic equations will lead to36
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transcendental equations, of which solutions are often complicated [5, 23]. An alternative approach37

for analysing the stability of time-delayed systems is based on Lyapunov-Krasovskii or Lyapunov-38

Razumikhin theorems [11, 13]. In the literature, a sufficient condition for reaching a consensus in39

a scalar consensus network with a uniform time delay was given in [20]. Lyapunov-Razumikhin40

type functional was used for finding sufficient conditions for consensus networks with heterogeneous41

edge delays and switching interaction topology in [27]. The authors in [25] studied the consensus42

problem with uniform delay communication and provided consensus conditions by considering43

some Lyapunov–Razumikhin functionals. The author in [24] considered a consensus problem with44

heterogeneous communication time delays and introduced a delayed weighted Laplacian for the45

analysis. The consensus of double-integrator agents with time delay was studied in [34] based on46

an approximated characteristic equation under the assumption that the delays are sufficiently small.47

An exact analytic method for a second-order delayed scalar-consensus protocol was proposed in [6].48

Stabilization control laws for double- and chain of integrators using delays were proposed in [19],49

and in the consensus problem over a scalar-weighted graph [26].50

In this paper, we derive stability conditions of several delayed matrix-weighted consensus models51

having either a leaderless or a leader-follower topology. A leader-follower network contains several52

leader agents acting as stationary references during the dynamic process. First, we consider a53

matrix-weighted consensus network where all the edges have the same constant time delay. For this54

network, a necessary and sufficient stability condition related to the magnitude of the time delay55

and the maximum eigenvalue of the matrix-weighted Laplacian is established. Second, we study the56

matrix-weighted consensus with multiple heterogeneous constant time delays. A stability condition57

is given in terms of the feasibility of a linear matrix inequality (LMI). Third, we consider a matrix-58

weighted consensus network of double integrators, and show that the network can asymptotically59

reach the kernel of the matrix-weighted Laplacian by using only the delayed relative positions. As60

it is assumed that the kernel of the matrix-weighted Laplacian is not restricted to the consensus61

space, the applicability of the considered models is beyond a consensus problem. In particular, an62

application of the theoretical results in bearing-based network localization [36] is also discussed.63

The rest of the paper is organized as follows. In Section 2, the theoretical background is provided64

and three delayed matrix-weighted consensus models studied in this paper are presented. Sections65

3–5 give stability conditions and detailed analysis of each consensus model. An application in66

bearing-based network localization is discussed in Section 6, and simulation results are provided in67

Appendix A.5 to support the analysis. Lastly, Section 7 concludes the paper.68

Notations: In this paper, R, R+, Rd, Rm×n respectively denote the sets of real numbers, positive real69

numbers, d-dimensional vectors with real entries and m× n matrix with real entries. Let 0d and Θd70

respectively denote the zero vector of dimension d and the zero matrix of dimension d× d. For a real71

m×n matrix A, we use A⊤, rank(A), det(A), ker(A), and im(A) to denote the transposition, rank,72

determinant, kernel space and image space of A, respectively. If A is symmetric positive definite73

(positive semidefinite), we write A > 0 (resp., A ≥ 0). Given a vector x ∈ Rd, the Euclidean norm74

of x is denoted by ∥x∥ =
√∑d

i=1x
2
i .75

2 Preliminaries76

2.1 Matrix-weighted networks77

Consider an undirected, matrix-weighted graph G = (V, E ,A) with the vertex set V = {1, . . . , n},78

the edge set E ⊆ V × V of m = |E| edges, and the set of nonnegative definite matrix weights79

A = {Aij ∈ Rd×d}i,j∈V with Aij = A⊤
ij ≥ 0,∀i, j and d ≥ 2. Each edge (i, j) ∈ E captures the80

interactions between two agents i and j, and the existence of (i, j) implies the existence of (j, i)81

since the graph is undirected. If (i, j) ∈ E , then Aij ̸= 0; and if (i, j) /∈ E or i = j, then Aij = Θd.82

The neighbor set of a vertex i ∈ V is denoted as Ni = {j ∈ V| (i, j) ∈ E}. Then, the degree matrix83

of a vertex i is defined as Di =
∑

j∈Ni
Aij .84

Now, we can define matrix-weighted- adjacency and degree matrices A = [Aij ] ∈ Rdn×dn and85

D = blkdiag(D1, . . . ,Dn) ∈ Rdn×dn. A matrix weighted Laplacian L = [Lij ] ∈ Rdn×dn has86
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Figure 1: A matrix-weighted graph of four vertices and four edges and its matrix-weighted Laplacian.
Each red edge corresponds to a positive definite matrix weight and each black edge corresponds to a
positive semi-definite matrix weight.

block entries87

Lij =

{
−Aij , if i ̸= j,∑n

j=1 Aij , if i = j.
(1)

Note that L is symmetric, positive semi-definite, and ker(L) ⊇ im(1n ⊗ Id). A matrix-weighted88

graph and its corresponding matrix-weighted Laplacian is depicted in Fig. 1 as an example.89

We order the edges in E such that E = {e1, . . . , em}, and adopt the notation Aij ≡ Ak,∀ek =90

(i, j, k = 1, . . . ,m). For each edge (i, j), we specify a vertex to be the starting vertex and the other91

vertex as the end vertex. The incidence matrix H = [hki] ∈ Rm×n is defined as follows92

hki =


−1, if i is the starting vertex of ek,
+1, if i is the end vertex of ek,
0, otherwise.

(2)

Then, L = H̄⊤blkdiag(Ak)H̄, where H̄ = H⊗ Id, and ‘⊗’ denotes the Kronecker product.93

Suppose that the matrix-weighted Laplacian L has l ≥ d eigenvalues 0 with l linearly independent94

eigenvectors v1, . . . ,vl. This assumption allows the possibilities of achieving a consensus or and95

clustering when the following consensus algorithm is performed on a matrix-weighted network of96

single integrators97

ẋi(t) =
∑
j∈Ni

Aij(xj(t)− xi(t)), i = 1, . . . , n. (3)

where xi ∈ Rd is the state vector of agent i ∈ V . Let x = [x⊤
1 , . . . ,x

⊤
n ]

⊤ ∈ Rdn, the matrix-98

weighted consensus algorithm (3) can be rewritten in matrix form as99

ẋ(t) = −Lx(t), (4)

and it has been shown that x(t) → x̄ = 1
n

∑n
i=1 xi(0) ∈ ker(L), as t → +∞ [18, 29]. Throughout100

the paper, the shorthand xij(t) = xj(t)− xi(t) will be used.101

From the assumption that zero is a semi-simple eigenvalue of multiplicity l ≥ d, and L is symmetric,102

positive semi-definite, there exists an orthonormal matrix P = [p1, . . . ,pdn] = [R,Q] ∈ Rdn×dn103

such that R = [p1, . . . ,pl] ∈ Rdn×l, Q = [pl+1, . . . ,pdn] ∈ Rdn×(dn−l),104

p⊤
i pj =

{
1 if i = j,
0 if i ̸= j.

and ∥pi∥ = 1,∀i, j = 1, . . . , dn so that the matrix-weighted Laplacian is diagonalizable as P⊤LP =105

Λ, where Λ =

[
Θl 0l×(dn−l)

0(dn−l)×l Λ̄

]
= diag(λ1, . . . , λdn) (and Λ̄ = diag(λl+1, . . . , λdn), re-106

spectively) the diagonal matrix containing all eigenvalues (all positive eigenvalues) of L. Note that107

R ⊇ im(1n ⊗ Id) since the kernel of a matrix-weighted Laplacian always contains the consensus108

space. Also, Q⊤R = 0(dn−l)×l, Q
⊤Q = Idn−l.109

Consider a partition of the vertex set into two disjoint subsets Va and Vb such that Va ∪ Vb = V ,110

Va ∩ Vb = ∅, |Va| = na, |Vb| = nb, na + nb = n. The agents associated with the vertices in111
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Va and Vb are referred to as leaders and followers, respectively. By labeling the vertices such that112

Va = {1, . . . , na}, Vb = {na + 1, . . . , n}, the matrix-weighted Laplacian is partitioned as113

L =

[
La L⊤

ab
Lab Lb

]
, (5)

where La = L⊤
a ∈ Rdna×dna , L⊤

ab ∈ Rdna×dnb , and Lb = L⊤
b ∈ Rdnb×dnb . Let L′ denote the114

matrix-weighted Laplacian corresponding to the subgraph induced by the vertices in Vb and edges in115

G. If na = 0, we have a leaderless network while for na ≥ 1, we have a leader-follower network. We116

prove the following lemma on the matrix-weighted Laplacian (5).117

Lemma 2.1. Let rank(L) = dn − l, rank(L′) = dnb − l, na ≥ 1 and l ≥ d + 1. If ∀ξ ∈ ker(L′),118

[0⊤
dna

, ξ⊤]⊤ /∈ ker(L), then the matrix Lb is symmetric positive definite.119

Proof. Let B = blkdiag(Lab(1na ⊗ Id)) = blkdiag(B1, . . . ,Bnb
) ∈ Rdnb×dnb , we have Lb =120

L′ − B. Suppose that Lb is not positive definite, then there exists ξ = [ξ⊤1 , . . . , ξ
⊤
nb
]⊤ ∈ Rdnb121

such that ξ⊤Lbξ = ξ⊤(L′ −B)ξ = 0dnb
. From the assumption on L′, it follows that ξ ∈ ker(L′).122

Furthermore, ξ⊤Bξ =
∑nb

k=1 ξ
⊤
k Bkξk = 0. Since each matrix weight in Bk =

∑na

j=1[Lab]kj is123

negative semidefinite, it follows that ξk ∈ ker([Lab]kj), ∀j = 1, . . . , na, or equivalently L⊤
abξ =124

0dna
. Then, we have L

[
0dna

ξ

]
=

[
L⊤
abξ
Lbξ

]
= 0dn, which shows that [0⊤

dna
, ξ⊤]⊤ ∈ ker(L). This125

contradiction implies that Lb must be positive definite.126

2.2 Problem formulation127

This paper aims to give some conditions for stability and/or reaching a consensus when time delays128

are present in (4) and its expanded versions. Particularly, the following matrix-weighted consensus129

models with time delays will be studied.130

Model 1 Matrix-weighted consensus of single-integrators with a uniform constant time-delay τ > 0:131

ẋi(t) =
∑
j∈Ni

Aijxij(t− τ), (6)

∀i ∈ Vb, and ẋi(t) = 0d, ∀i ∈ Va.132

Model 2 Matrix-weighted consensus of single-integrators with heterogeneous constant time-delays133

ẋi(t) =

n∑
j=1

xij(t− τij), (7)

where i ∈ Vb, τij ≥ 0 is the time-delay associated with an edge (i, j) ∈ E , and ẋi(t) = 0d, ∀i ∈ Va.134

Model 3 Matrix-weighted consensus of double-integrators with two constant time-delays:135

ẋ1
i (t) = x2

i (t), (8a)

ẋ2
i (t) = −

∑
j∈Ni

Aij(x
1
i (t− τ1)− x1

j (t− τ1))− α
∑
j∈Ni

Aij(x
1
i (t− τ2)− x1

j (t− τ2)), (8b)

where xk
i = [xk

1i, . . . , x
k
di]

⊤ ∈ Rd, i ∈ Vb, and ẋk
i (t) = 0d, ∀i ∈ Va, k = 1, 2. Here, xi =136

[(x1
i )

⊤, (x2
i )

⊤]⊤ and x1
1, x2

i are referred to as the position and the velocity of agent i, and α > 0 is a137

control gain.138

For each model, the initial condition is given as x(θ) = x(0),∀θ ∈ [−τk, 0].139

3 Matrix-weighted consensus of single-integrators with a uniform time-delay140

In this section, we give condition on the time-delay to ensure the model (6) to asymptotically achieve141

a consensus for leaderless and leader-follower matrix-weighted networks.142
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3.1 Leaderless network143

The following theorem provides necessary and sufficient consensus condition for a leaderless matrix-144

weighted consensus network.145

Theorem 3.1. Consider a leaderless n-agent network with Va = ∅, and rank(L) = dn− l, l ≥ d.146

Under the consensus algorithm (6), x(t) asymptotically converges to x∗ = RR⊤x(0) ∈ ker(L) if147

and only if τ < π
2λdn

, where λdn is the largest eigenvalue of L.148

Proof. The proof of this theorem is given in Appendix A.2.149

Remark 3.2. Observe that if rank(L) = dn − d and the stability condition τ < π
2λdn

holds, then150

l = d,
∑d

p=1 pkp
⊤
k = 1

n (1n1
⊤
n ⊗ Id) and the system asymptotically achieves a consensus. A151

similar consensus condition was given in [20] for scalar-weighted consensus networks but the proof152

is different from that of Theorem 3.1.153

3.2 Leader-follower network154

Next, we consider the leader-follower network under the consensus law (6). Let xa = [x⊤
1 , . . . ,x

⊤
na
]⊤155

and xb = [x⊤
na+1, . . . ,x

⊤
n ]

⊤ respectively denote the stacked vectors of the leader and the follower156

agents. The behaviors of the network is given in the following theorem.157

Theorem 3.3. Consider a leader-follower n-agent network with na ≥ 1, rank(L) = dn− l, l ≥ d,158

and Lb is positive definite. Under the consensus algorithm (6), xb asymptotically converges to159

x∗
b = L−1

b Labxa if and only if τ < π
2λbmax

, where λbmax is the largest eigenvalue of Lb.160

Proof. We can write the n-agent network in matrix form as follows161 [
ẋa(t)
ẋb(t)

]
= −

[
Θdna 0dna×dnb

Lab Lb

] [
xa(t− τ)
xb(t− τ)

]
. (9)

As xa(t) = xa(0), ∀t ≥ −τ , we consider the variable transformation δb(t) = xb(t) + L−1
b Labxa,162

and derive the equation163

δ̇b(t) = −Lbδb(t− τ). (10)

The proof that the delayed system (10) is asymptotically stable if and only if τ < π
2λbmax

is similar to164

the proof of Thm. 3.1 and will be omitted.165

Remark 3.4. It is remarked that if a consensus algorithm is performed in a leader-follower scalar-166

weighted graph with non-collocated leaders, the followers will asymptotically converge to fixed167

points inside the convex hull of the leaders’ position. In contrast, as shown in Thm. 3.3, for a168

matrix-weighted consensus, the convergence points of follower agents may lie outside the convex hull169

of the leaders’ positions. This property finds application in the bearing-based network localization170

problem discussed in Section 6.171

4 Matrix-weighted consensus of single integrators with heterogeneous delays172

In this section, we study the matrix-weighted consensus algorithms with heterogeneous time delays173

(7). We first study the problem for a leaderless matrix-weighted network and then consider the174

problem for a leader-follower network.175

4.1 Leaderless network176

Due to symmetry, we have τij = τji,∀(i, j) ∈ E . We can rewrite the dynamics (7) in the matrix form177

as follows:178

ẋ(t) = −
r∑

k=1

Lkx(t− τk), (11)
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where r ≤ |E|, τk = τij if ek = (i, j), for k = 1, . . . , r, and Lk = [Lkij ] ∈ Rdn×dn is a matrix179

whose d× d blocks are defined by180

Lkij =

 −Aij , j ̸= i, τk = τij ,
Θd, j ̸= i, τk ̸= τij ,

−
∑n

j=1,j ̸=i Lkij , j = i.

It is observed that Lk is a part of the Laplacian matrix corresponding to an update with time delay181

τk, and L =
∑r

k=1 Lk. As in the previous section, R⊤Lk = 0l×nd, for k = 1, . . . , r. It follows that182

x∗ = RR⊤x(t) is time-invariant.183

Moreover, we have Lk = PΛkP
⊤, where Λk =

[
Θl 0l×(dn−l)

0(dn−l)×l Λ̄k

]
and Λ̄k = Q⊤LkQ ∈184

R(dn−l)×(dn−l). Define δ(t) = Q⊤x(t) ∈ Rdn−l, then the equation (11) can be rewritten in the185

following form [13]:186

δ̇(t) = −
r∑

k=1

Q⊤Lkx(t− τk) = −
r∑

k=1

Λ̄kδ(t− τk)

= −Λ̄δ(t) +

r∑
k=1

Λ̄k(δ(t)− δ(t− τk))

= −Λ̄δ(t) +

r∑
k=1

Λ̄k

∫ t

t−τk

δ̇(s)ds. (12)

The stability of the system (12) is stated in the following theorem, whose proof can be found in187

Appendix A.3.188

Theorem 4.1. Consider the leaderless matrix-weighted consensus network with time delays (12),189

where rank(L) = dn− l, na = 0 and l ≥ d. Suppose that the time delays τk are sufficient small such190

that the LMI (13) holds, where τ =
∑r

i=1 τi.
1 Then, the origin is a globally uniformly asymptotically191

equilibrium of (12) and x(t) → x∗ ∈ ker(L) as t → +∞.192

M =


−2Λ̄ Λ̄1 Λ̄2 . . . Λ̄r

∗ −τ−1
1 Idn−l Θdn−l . . . Θdn−l

∗ ∗
. . .

. . .
...

∗ ∗ ∗ −τ−1
r−1Idn−l Θdn−l

∗ ∗ ∗ ∗ −τ−1
r Idn−l

+ τ


−Λ̄
Λ̄1

...
Λ̄r−1

Λ̄r




−Λ̄
Λ̄1

...
Λ̄r−1

Λ̄r


⊤

< 0. (13)

4.2 Leader-follower network193

Next, we consider the leader-follower network under the consensus algorithm (7). Similar to194

the previous section, we can define δb(t) = xb(t) + L−1
b Labxa, where Lab =

∑r
k=1 Labk and195

Lb =
∑r

k=1 Lbbk. That is, each matrix Lk contributes a part to the matrices Lab and Lb. Then,196

δ̇b(t) = −
r∑

k=1

Lbkxb(t− τ)−
r∑

k=1

Labkxa = −
r∑

k=1

Lbkδb(t− τ)

= −Lbδb(t) +

r∑
k=1

Lbk

∫ t

t−τk

δ̇b(s)ds. (14)

We can now state a theorem on the delayed-system (14), whose proof is similar to the proof of197

Theorem 4.1 and will be omitted.198

Theorem 4.2. Suppose that the n-agent network has a leader follower structure, na ≥ 1, rank(L) =199

dn − l, l ≥ d, and Lb is positive definite. If the time delays τk are chosen such that the LMI200

(15) holds and τ =
∑r

i=1 τi, then δb = 0dnb
is globally unniformly asymptotically stable, and201

x(t) → L−1
b Labxa as t → +∞.202

1In each LMI, the asterisk ‘*’ indicates that the matrix is symmetric, so it is no need to specify the block
matrices below the diagonal.
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N =


−2Lb Lb1 Lb2 . . . Lbr

∗ −τ−1
1 Idnb Θdnb . . . Θdnb

∗ ∗
. . .

. . .
...

∗ ∗ ∗ −τ−1
r−1Idnb Θdnb

∗ ∗ ∗ ∗ −τ−1
r Idnb

+ τ


−Lb

Lb1

...
Lbr−1

Lbr




−Lb

Lb1

...
Lbr−1

Lbr


⊤

< 0, (15)

5 Matrix-weighted consensus of double-integrators without relative velocity203

measurements using two time delays204

5.1 Leaderless network205

Consider a leaderless matrix-weighted network. We express the network (8) in the matrix form as206

follows207

ẋ(t) =

[
ẋ1(t)
ẋ2(t)

]
=

[
Θdn Idn
Θdn Θdn

] [
x1(t)
x2(t)

]
+

[
Θdn Θdn

−L αL

] [
x1(t− τ1)
x1(t− τ2)

]
First, observe that (1⊤

n ⊗ Id)ẋ
2(t) = −(1⊤

n ⊗ Id)Lx
1(t − τ1) + α(1⊤

n ⊗ Id)Lx
1(t − τ2) = 0dn.208

Hence, (1⊤
n ⊗ Id)x

2(t) = (1⊤
n ⊗ Id)x

2(0) = 0dn. This property will be used in proving the main209

theorem of this subsection.210

Second, since x1(t− τ1) = x1(t)−
∫ t

t−τ1

x2(s)ds︸ ︷︷ ︸
:=r1(t)

and,211

x1(t− τ2) = x1(t)− τ2x
2(t) +

(
τ2x

2(t)− (x1(t)− x1(t− τ2))
)

= x1(t)− τ2x
2(t) +

(
τ2x

2(t)−
∫ t

t−τ2

x2(s)ds

)
︸ ︷︷ ︸

:=r2(t)

,

we can rewrite the system as212

ẋ(t) =

[
Θdn Idn

−(1− α)L −ατ2L

]
x(t) +

[
0dn

−L(r1(t)− αr2(t))

]
.

Let z1 = Q⊤x1, z2 = Q⊤x2, and z = [(z1)⊤, (z2)⊤]⊤. The differential equation governing the213

z-system is214

ż =

[
Θdn−l Idn−l

−(1− k)Λ̄ −ατ2Λ̄

]
z+

[
0dn−l

−Λ̄Q⊤(r1(t)− αr2(t))

]
= F(τ2)z+

[
0dn−l

Λ̄
∫ t

t−τ1
z2(s)ds

]
+

[
0dn−l

αΛ̄
(
τ2z

2(t)−
∫ t

t−τ2
z2(s)ds

)]
.

The eigenvalues of F(τ2) ∈ R2(dn−l)×2(dn−l) satisfy the characteristic equation215

det(s2Idn−l + ατ2Λ̄s+ (1− α)Λ̄) = 0 ⇐⇒
dn∏

i=dn−l+1

(s2 + ατ2λis+ (1− α)λi) = 0,

where λi > 0, i = l + 1, . . . , dn, are the positive eigenvalues of the matrix-weighted Laplacian216

matrix L. Thus, for α < 1 and τ2 > 0, F(τ2) is Hurwitz, and we can find a symmetric positive217

definite matrix Π ∈ R2(dn−l)×2(dn−l) satisfying the Lyapunov equation218

ΠF(τ2) + F(τ2)
⊤Π = −τI2(dn−l), (16)

where τ = τ2 − τ1.219

Finally, we can state the following theorem whose proof can be found in Appendix A.4.220
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(a) (G1,x) (b) (G1,y) (c) (G2, z) (d) (G3,x
′) (e) (G3,y

′) (f) (G4, z
′)

Figure 2: Consider three networks (a), (b), (c) in the two-dimensional space. Two networks (G1,x)

and (G1,y) have xi−xj

∥xi−xj∥ =
yi−yj

∥yi−yj∥ ,∀(i, j) ∈ E but are not related by a combination of translations
and scaling. Their corresponding matrix-weighted Laplacian has rank(L) = 4 < 2n− 3. In contrast,
the network (G2, z) (having one more edge (1, 3) satisfies rank(L) = 5 = 2n− 3; Three networks
(d), (e), (f) are considered in the three dimensional space, the matrix-weighted Laplacian of networks
(G3,x

′) and (G3,y
′) has rank(L) = 19 < 3n− 4, while network (G4, z

′) (have an additional edge
(1, 8)) has rank(L) = 20 = 3n− 4.

Theorem 5.1. Consider the leaderless delayed second-order consensus model (8), where rank(L) =221

dn − l, na = 0, α < 1, x2
i (0) = 0d,∀i = 1, . . . , n, and τ1 > 0. Suppose that there exist positive222

definite matrices W ∈ R(dn−l)×(dn−l), Z ∈ R(dn−l)×(dn−l) and Π ∈ R2(dn−l)×2(dn−l) such that223

the matrix224

Ξ(τ2) =


X Y Y τ2

2F(τ2)
⊤ [

Θdn−l Λ̄
]⊤

W
∗ −Z Θdn−l −τ2

2 Λ̄
2W

∗ ∗ −π2

4
W −kτ2

2 Λ̄
2W

∗ ∗ ∗ −W

 (17)

is negative definite, where225

X = ΠF(τ2) + F(τ2)
⊤Π+

[
Θdn−l Θdn−l

Θdn−l τ21 Λ̄ZΛ̄

]
, Y = Π

[
Θdn−l

Λ̄

]
. (18)

Then, x1(t) → ker(L), x2(t) → 0dn as t → +∞.226

Remark 5.2. The condition α < 1 is only sufficient for our analysis, which is based on (16) to227

held. Indeed, for certain choices of τ1 and τ2, α = 1 may still make the system achieve asymptotic228

consensus.229

5.2 Leader-follower network230

We now consider the consensus algorithm (8) when the matrix-weighted graph has a leader-follower231

structure. The leaders’ positions are time-invariant, thus x1
a(t) = x1

a(0) := x1
a, x2

a(t) = 0dna
, ∀t ≥232

−τ . The equations governs followers’ dynamics are given as follows233

ẋ1
b(t) = x2

b(t), (19a)

ẋ2
b(t) = −Lbx

1
b(t− τ1)− Labx

1
a + αLbx

1
b(t− τ2) + αLabx

1
a. (19b)

Using the variable transformation δ1b (t) = x1
b(t) + L−1

b Labx
1 and δ2b (t) = x2

b(t), we have the234

equations with the transformed variables235

δ̇1b (t) = δ2b (t), (20a)

δ̇2b (t) = −Lbδ
1
b (t− τ1) + αLbδ

1
b (t− τ2). (20b)

Defining E(τ2) =

[
Θdnb

Idnb

−(1− α)Lb −ατ2Ldnb

]
, then E(τ2) is Hurwitz for α < 1 and τ2 > 0. Thus,236

there exists a symmetric positive definite matrix Πb satisfying the following equation237

ΠbE(τ2) +E(τ2)
⊤Πb = −τI2dnb

, (21)

where τ = τ2 − τ1. Similar to the proof of Theorem 5.1, the following theorem can be proved.238
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Theorem 5.3. Consider the delayed second-order consensus model (8) in a leader-follower network239

with rank(L) = dn− l, na ≥ 1, Lb > 0, α < 1 and τ1 > 0. Suppose that there exist positive definite240

matrices Wb ∈ R(dn−l)×(dnb), Zb ∈ Rdnb×dnb , and Πb ∈ R2dnb×2dnb such that the matrix241

Ξb(τ2) =


Xb Yb Yb τ2

2E(τ2)
⊤ [

Θdnb Lb

]⊤
Wb

∗ −Zb Θdnb −τ2
2L

2
bWb

∗ ∗ −π2

4
Wb −kτ2

2L
2
bWb

∗ ∗ ∗ −Wb


is negative definite, where242

Xb = ΠbE(τ2) +E(τ2)
⊤Πb +

[
Θdnb

Θdnb

Θdnb
τ21LbZbLb

]
, Yb = Πb

[
Θdnb

Lb

]
.

Then, x1
b(t) → −L−1

b Labxa, and x2
b(t) → 0dnb

.243

6 Bearing-based network localization under time delays244

We consider a wireless sensor network of n nodes in the d ≥ 2 dimensional space. Consider a global245

coordinate system gΣ, and let the position of the i-th sensor in the network referred in gΣ be denoted246

as xi ∈ Rd.247

The network is characterized by (G,x), where G is the interaction graph and x = [x⊤
1 , . . . ,x

⊤
n ]

⊤ ∈248

Rdn, the stacked vector of the global positions of n nodes, is referred to as a realization. Each node249

(or agent), located at xi ∈ Rd, can measure the bearing vector gij =
xj−xi

∥xj−xi∥ , which contains the250

directional information from node i to a neighboring node j ∈ Ni. The global position xi is unknown251

to each agent i, so it needs to update an estimate x̂i(t) ∈ Rd of xi and exchange this information252

with its neighbors. The process of determining the positions of the network’s nodes is called network253

localization. We assume that the information about the origin of the global coordinate system is254

unavailable to each agent and each agent maintains a local coordinate systems iΣ, whose axes are255

aligned with gΣ. This assumption is feasible since we can firstly conduct an orientation alignment256

algorithm before performing the network localization process.257

For each bearing vector gij , there is a corresponding symmetric positive semidefinite matrix Pgij =258

Id − gijg
⊤
ij ∈ Rd×d satisfying ker(Pgij ) = im(gij) and Pgij = P⊤

gij
= P2

gij
. Observe that Pgij is259

an orthogonal projection onto ker(gij). The bearing-based network localization algorithm [35, 36]260

˙̂xi(t) = −
∑
j∈Ni

Pgij
(x̂i(t)− x̂j(t)), i = 1, . . . , n, (22)

can be considered as a matrix-weighted consensus algorithm (3). The network localization algorithm261

(22) induces the bearing Laplacian L with the ij-th off-diagonal block matrix −Pgij
. It has been262

shown that the necessary and sufficient condition for the network under the update law (22) to be263

determined up to a translation and a scaling is rank(L) = dn − d − 1 [37]. Thus, the bearing264

Laplacian corresponds to l = d+ 1, and all theoretical results in Sections 3–5 are applicable for the265

bearing-based network localization problem with time delays.266

7 Conclusions267

In this paper, three leaderless and leader-follower matrix-weighted consensus models with constant268

time-delays were studied. The stability of the considered models was analysed and several conditions269

for the system to asymptotically converge to a point in the kernel of the matrix-weighted Laplacian270

were provided. An application in bearing-based network localization with time-delays was also given.271

Since the current work only focuses on constant time delay, for further studies, it will be interesting272

to consider time-varying time-delays or adaptive algorithms for stabilizing the matrix-weighted273

consensus network with time-delays.274
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A Appendix / supplemental material359

A.1 Time-delay systems and the Lyapunov-Krasovskii theorem360

Consider the functional differential equation361

ẋ(t) = f(t,xt), t ≥ t0, (23a)
xt0(θ) = φ(θ), ∀θ ∈ [−τ, 0], (23b)

where x(t) ∈ Rn, and the notation xt = x(t + θ), ∀θ ∈ [−τ, 0] is adopted. The function f :362

R× Cn,τ → Rn is continuous in both arguments and is locally Lipschitz in the second argument.2363

Furthermore, it is assumed that f(t,0n) = 0n, ∀t ∈ R so that x ≡ 0n is a solution of the system.364

2Cn,τ = C[−τ, 0] denotes the Banach space of absolutely continuous vector functions φ : [−τ, 0] →
Rn with φ̇ ∈ L2(−τ, 0) (the space of square-integrable functions) equipped with the norm ∥φ∥C =

maxθ∈[−τ,0] ∥φ(θ)∥+
(∫ 0

−τ
∥φ̇(s)∥2ds

) 1
2 .
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Lemma A.1 (Lyapunov-Krasovskii Theorem). [8] Suppose that f maps R× (bounded sets of Cn,τ )365

into bounded sets of Rn, and there exist functions u, v, w : R+ → R+ which are continuous,366

nondecreasing functions, u(s) > 0, v(s) > 0, w(s) > 0, ∀s > 0, u(0) = v(0) = 0. If there exists a367

continuous function V : R× Cn × L2(−h, 0) → R+, such that368

(i) u(∥x∥) ≤ V (t,xt, ẋt) ≤ v(∥xt∥C),369

(ii) V̇ (t,xt, ẋt) ≤ −w(∥x∥),370

then, the solution x(t) ≡ 0n is uniformly asymptotically stable. If in addition,371

(iii) lims→+∞ u(s) = +∞,372

then the solution x(t) ≡ 0n is globally uniformly asymptotically stable.373

The following lemmas are useful for analysing the stability of time-delay systems. A short introduc-374

tion to time-delay systems and the Lyapunov-Krasovskii method are given in Appendix A.1 for quick375

reference, while we refer the reader to [8] for a tutorial on the topic.376

Lemma A.2 (Jensen’s inequality). Denote377

G =

∫ b

a

f(s)x(s)ds,

where a ≤ b, f : [a, b] → [0,∞), x(s) ∈ Rn. Then, for any positive definite matrix K ∈ Rn×n,378

there holds379

G⊤KG ≤
∫ b

a

f(θ)dθ

∫ b

a

f(s)x⊤(s)Kx(s)ds.

Lemma A.3 (Wirtinger’s Inequality). Let z(t) : (a, b) → Rn be absolutely continuous with ż ∈380

L2(a, b) and z(a) = 0n or z(b) = 0n. Then, for any positive definite matrix W ∈ Rn×n, there381

holds382 ∫ b

a

z(ξ)⊤Wz(ξ)dξ ≤ 4(b− a)2

π2

∫ b

a

ż(ξ)⊤Wż(ξ)dξ.

A.2 Proof of Theorem 3.1383

We rewrite the consensus system (6) in the following matrix form384

ẋ(t) = −Lx(t− τ). (24)

Consider the variable transformation δ(t) = Q⊤x(t). By expressing L = PΛP⊤, we have385

δ̇(t) = −Λ̄δ(t− τ). (25)

As R⊤ẋ(t) = 0l, R⊤x(t), which shows that R⊤x(t) = R⊤x(0) =
∑l

i=1 p
⊤
i x(0) is time invariant.386

The n-agent system (25) asymptotically converges to a point in ker(L) if and only if δ(t) → 0dn−l,387

as t → +∞, or all roots of the characteristic equation388

det(sIdn + Λ̄e−τs) = 0 (26)

must have negative real parts. Equation (26) is equivalent to s+ λke
−τs = 0,∀k = l + 1, . . . , dn.389

Let s = σ + ȷω, where σ, ω ∈ R, we have390

σ + ȷω + λke
−τ(σ+ȷω) = σ + ȷω + λke

−τσ(cos(ωτ)− ȷ sin(ωτ))

= σ + λke
−τσ cos(ωτ) + ȷ(ω − λke

−τσ sin(ωτ)).

Thus, the roots of (26) satisfy σ = −λke
−τσ cos(ωτ), ω = λke

−τσ sin(ωτ).391

(Necessity) If σ < 0, ∀ω, it follows that cos(ωτ) = cos(λkωe
−τστ sin(τω)) > 0, ∀ω. This implies392

that |λkτe
−τσ sin(τω)| ≤ λkτe

−τσ < π
2 ,∀k = l + 1, . . . , dn, or τ < πeτσ

2λdn
≤ π

2λdn
.393
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(Sufficiency) if τ < π
2λdn

, because σ2 + ω2 = λ2
ke

−2τσ, it follows that |ω| ≤ λke
−τσ, and394

τ |ω| ≤ πe−τσ

2 . If σ ≥ 0, then e−τσ ≤ 1. It follows that cos(τω) ≥ cos(π2 ) ≥ 0, and σ =395

−λke
−τσ cos(π2 ) ≤ 0. This contradiction implies that σ < 0.396

Therefore, we conclude that σ < 0 if and only if τ < π
2λdn

.397

Next, let the condition τ < π
2λdn

be satisfied, and x(t) = Φ(t),∀t ∈ [−τ, 0], and Φ(t) = x(0), the398

Laplace transform of (25) gives399

sX(s)− x(0) = −e−sτLX(s)− L

∫ 0

−τ

x(ξ)e−s(ξ+τ)dξ

X(s) = −(sIdn + e−sτL)−1

(
x(0) + L

∫ 0

−τ

x(ξ)e−s(ξ+τ)dξ

)
Using the final value theorem [9], we have400

lim
t→+∞

x(t) = lim
s→0

s(sIdn + e−sτL)−1

(
x(0)− L

∫ 0

−τ

x(ξ)e−s(ξ+τ)dξ

)
= lim

s→0
Pdiag

(
s

s+ λke−sτ

)
P⊤

(
x(0) + L

∫ 0

−τ

x(ξ)dξ

)
= RR⊤

(
x(0) + L

∫ 0

−τ

x(ξ)dξ

)
= RR⊤x(0), (27)

which completes the proof.401

A.3 Proof of Theorem 4.1402

Consider the functional V (t, δ(t), δ̇t) = V1(δ(t)) + V2(δ̇t), where V1 = δ(t)⊤δ(t) and V2 =403 ∑r
k=1

∫ τk
0

ds
∫ t

t−s
δ̇(h)⊤δ̇(h)dh. The derivatives of V1 and V2 along a trajectory of (12) are given404

by405

V̇1 =2δ(t)⊤

(
−Λ̄δ(t) +

r∑
k=1

Λ̄k

∫ t

t−τk

δ̇(s)ds

)

=− 2δ(t)⊤Λ̄δ(t) + 2δ(t)⊤
r∑

k=1

Λ̄k

∫ t

t−τk

δ̇(s)ds, (28)

and406

V̇2 = τ δ̇⊤(t)δ̇(t)−
r∑

k=1

∫ t

t−τk

δ̇⊤(s)δ̇(s)ds

≤ τ δ̇⊤(t)δ̇(t)−
r∑

k=1

τ−1
k

(∫ t

t−τk

δ̇(s)ds

)⊤(∫ t

t−τk

δ̇(s)ds

)
(29)

where τ =
∑r

i=1 τi, and in (29) we have used the Jensen’s inequality in Lemma A.2. Define the407

(r + 1)(dn− l) vector408

y(t) ≜

[
δ⊤(t),

∫ t

t−τ1

δ̇⊤(s)ds, . . . ,

∫ t

t−τr

δ̇⊤(s)ds

]⊤
,

from Eqs. (28) and (29), one gets409

V̇ (δ(t), δ̇t) ≤ (y(t))⊤My(t), (30)
where M is given in (13). From the assumption that M < 0, there exists γ > 0 such that410

V̇ (δ(t), δ̇t) ≤ −γ∥δ(t)∥2. (31)
or the origin is a globally uniformly asymptotically stable equilibrium of the system (12) (Appendix411

A.1). Thus, x(t) → x∗ ∈ ker(L), as t → +∞.412

The matrix M is a summation of two matrices, the first one is positive definite when τk are small,413

and the second one can be made arbitrarily small by choosing τk small. This implies that the LMI414

(13) is feasible if τk, k = 1, . . . , r, are sufficiently small.415
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A.4 Proof of Theorem 5.1416

Consider the following functionals417

V1(z(t)) = z⊤Πz,

V2(zt) = τ1

∫ t

t−τ1

(s− t+ τ1)(z
2(s))⊤Λ̄ZΛ̄z2(s)ds,

V3(żt) = α2τ32

∫ t

t−τ2

(s− t+ τ2)(ż
2(s))⊤Λ̄WΛ̄ż2(s)ds,

where Z, W ∈ R(dn−l)×(dn−l) are positive definite matrices. Denoting β1(t) =
∫ t

t−τ1
z2(s)ds, and418

β2(t) = τ2z
2(t)− (z1(t)− z1(t− τ2)), and taking the time derivatives of Vj , j = 1, 2, 3, we have419

V̇1 = z⊤Π

(
F(τ2)z+

[
Θdn−l

Λ̄

]
β1(t) +

[
Θdn−l

kΛ̄

]
β2(t)

)
(32a)

V̇2 = τ21 (z
2(t))⊤Ẑz2(t)− τ1

∫ t

t−τ1

(z2(s))⊤Ẑz2(s)ds, Ẑ = Λ̄ZΛ̄ (32b)

V̇3 = α2τ42 (ż
2(t))⊤Ŵż2(t)− α2τ32

∫ t

t−τ2

(ż2(s))⊤Ŵż2(s)ds, Ŵ = Λ̄WΛ̄. (32c)

Based on Jensen’s inequality, the second term in V̇2 can be evaluated as follows420

τ1

∫ t

t−τ1

(z2(s))⊤Ẑz2(s)ds =

∫ t

t−τ1

dθ

∫ t

t−τ1

(z2(s))⊤Ẑz2(s)ds

≥
(∫ t

t−τ1

(z2(s))⊤ds

)
Ẑ

(∫ t

t−τ1

z2(s)ds

)
= (β1(t))⊤Ẑβ1(t). (33)

Thus,421

V̇2 ≤ τ21 (z
2(t))⊤Ẑz2(t)− (β1(t))

⊤Ẑβ1(t). (34)

Next, based on Wirtinger’s and Jensen’s inequalities, we have422

4τ22
π2

∫ t

t−τ2

(ż2(s))⊤Ŵż2(s)ds ≥
∫ t

t−τ2

(z2(t)− z2(s))⊤Ŵ(z2(t)− z2(s))ds

≥ 1

τ2

(∫ t

t−τ2

(z2(t)− z2(s))ds

)⊤

Ŵ

(∫ t

t−τ2

(z2(t)− z2(s))ds

)
=

1

τ2

(
τ2z

2(t)−
∫ t

t−τ2

z2(s)ds

)⊤

Ŵ

(
τ2z

2(t)−
∫ t

t−τ2

z2(s)ds

)
=

1

τ2
(β2(t))⊤Ŵβ2(t). (35)

Thus, V̇3 ≤ τ42 (ż
2(t))⊤Ŵż2(t) − π2

4 (β2(t))⊤Ŵβ2(t). Choosing the Lyapunov functional423

V (z(t), żt) = V1(z(t)) + V2(zt) + V3(żt), and let η = [z(t)⊤, (Λ̄β1(t))⊤, (Λ̄β2(t))⊤]⊤, we424

can compute425

V̇ ≤ η(t)⊤

X Y Y
∗ −Z Θdn−l

∗ ∗ −π2

4 W


︸ ︷︷ ︸

:=Ξ1(τ2)

η(t) + τ42 (ż
2(t))⊤Λ̄WΛ̄ż2(t), (36)

where X, Y are defined as in (18). Since426

Λ̄ż2(t) =
[
Θdn−l Λ̄

]
F(τ2)z(t)− Λ̄2β1(t)− αΛ̄2β2(t)

=
[[
Θdn−l Λ̄

]
F(τ2) −Λ̄2 −αΛ̄2

]
η, (37)
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we have the following equation (ż2(t))⊤Λ̄WΛ̄ż2(t) =427

η⊤

F(τ2)
⊤
[
Θdn−l Θdn−l

Θdn−l Λ̄WΛ̄

]
F(τ2) −F(τ2)

⊤
[
Θdn−l

Λ̄WΛ̄2

]
−αF(τ2)

⊤
[
Θdn−l

Λ̄WΛ̄2

]
∗ Λ̄2WΛ̄2 αΛ̄2WΛ̄2

∗ ∗ α2Λ̄2WΛ̄2


︸ ︷︷ ︸

:=Ξ2(τ2)

η (38)

Thus, if the LMI Ξ1+ τ42Ξ2 < 0 is feasible, the z-system is globally uniformly asymptotically stable.428

By Schur’s complement, this condition is equivalent to429

Ξ(τ2) < 0. (39)

Thus, V̇ (zt, żt) ≤ −c∥z∥2 for some c > 0, or equivalently, z = 0 is globally uniformly asymp-430

totically stable (Appendix A.1) and xk(t) →ker(L), k = 1, 2, if the LMI (39) is satisfied. Since431

x2
i (0) = 0d, ∀i = 1, . . . , n, due to the observation at the beginning of the Subsection 5.1, we432

conclude that x2
i (t) → 0d, ∀i = 1, . . . , n.433

Finally, we consider the feasibility of the LMI (39). As F(τ2) is affinely dependent on τ2, let Π be a434

solution of the Lyapunov equation (16), then Π does not have any term that is affine dependent on τ2,435

i.e., Π = O(1). Let τ1 be selected such that τ1 = O(τ22 ),436

F(τ2)
⊤Π+ΠF(τ2) = −τI2dn−2l +O(τ22 ).

Choose R = τ−1
1 Idn, W = τ−2

2 Idn, by Schur complement, the LMI Ξ(τ2) < 0 gives the approxi-437

mated evaluation438

ΠF(τ2) + F(τ2)
⊤Π+O(τ2) < 0

which is satisfied for small positive τ2.439

A.5 Simulation results440

A.5.1 Matrix-weighted consensus models with time delays441

In this subsection, we consider a matrix-weighted network of 10 agents in R3 with the interaction442

graph as depicted in Fig. 4(a). The edge weights are selected so that rank(L) = 3n− 3 = 27. We443

will below simulate the network of 10 agents under different assumptions of the time-delays.

(a)

x

y

z

(b)

Figure 3: (a) The topological graph G of the 10-agent matrix-weighted consensus network; (b) the
graph G and the true positions xi of 10-sensor network in Subsection 6.2.

444

The network has a uniform time-delay: We consider the consensus network with a uniform445

constant delay. The maximum eigenvalue of the matrix-weighted Laplacian is calculated to be446

10.9235, and thus, the upper bound of the delay is τmax ≈ 0.1438 (seconds). For τ = 0.1 < τmax,447

Fig. 4(b) shows that the n-agent system asymptotically consents on a common vector. However, for448

τ = 0.25 > τmax, simulation result in Fig. 4(c) shows that the consensus system becomes unstable.449

The network has heterogeneous time delays: Next, let the matrix-weighted network has450

heterogeneous edge time delays as given in Table 1. In Simulation 1, the time delays are τ1 = 0.05,451

τ2 = 0.10, τ3 = 0.15. The system asymptotically achieves a consensus. As shown in Figs. 5(a),452

heterogeneous delays cause significant fluctuations on the process of reaching an agreement.453
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(a) τ = 0.1s (b) τ = 0.25s

Figure 4: The simulations results with (a) τ1 = 0.1 and (b) τ2 = 0.25 are given.

(a) (b)

Figure 5: The simulation results of the matrix-weighted consensus model (7) with multiple delays.
The system asymptotically achieves consensus for τ1 = 0.05, τ2 = 0.1 and τ3 = 0.15 but being
unstable for τ1 = 0.05, τ2 = 0.1 and τ3 = 0.2.

Table 1: Simulation parameters of the matrix-weighted consensus model (7).
e1, . . . , e3 e4, . . . , e9 e10, . . . , e15

Simulation 1 τ1 = 0.05 τ2 = 0.10 τ3 = 0.15
Simulation 2 τ1 = 0.05 τ2 = 0.10 τ3 = 0.20

For Simulation 2, the time delays are changed to τ1 = 0.05, τ2 = 0.10, τ3 = 0.20. In this case, the454

system becomes unstable as shown in Fig. 5(c).455

Consensus of double integrators without velocity measurements: We consider the same matrix456

weighted graphs and conduct simulations for different values of the time delays τ1, τ2 and the control457

gain k to demonstrate the continuous dependencies of the MWC algorithm (8) with regard to the458

design parameters.459

We first fix the time delays τ1 = 0.05, τ2 = 0.25 and vary the control gain k from 1.1 to 0.2. It can460

be seen that if k = 1.1 (exceeding 1) and k = 0.2 (being too small so that the LMI does not hold),461

the system becomes unstable (see Figs. 6(a)– (f)). For k = 0.3, 0.5, 0.85, 1, the agents462

asymptotically achieve a consensus. It can be observed from Figs. 6(b)–6(e) that when k is smaller,463

the interaction between agents becomes weaker and thus, more fluctuations are exhibited during the464

process of reaching a consensus.465

Second, we fix k = 0.85, τ1 = 0.05 (sec), and vary τ2. Simulation results corresponding to466

τ2 = 0.25, 0.6, and 0.66 are shown in Figs. 6(c), (g), (h), respectively. Clearly, after τ2 exceeds the467

limit (about 0.658 (sec)), the network becomes unstable.468

Third, we fix k = 0.85, τ2 = 0.25 (sec), and vary τ1. Simulation results are depicted in Figs. 6 (a),469

(c), (j)–(l), corresponding to τ1 = 0, 0.05, 0.1, 0.2, 0.22, respectively. As τ1 gradually reaches to470

τ2, the network tends to be less stable, and when τ2 = 0.22 (sec), the network becomes unstable.471

Thus, simulation results are consistent with the analysis.472

A.5.2 Bearing-based network localization with time delays473

Below, we give simulations of the bearing-based network localization laws with time delays to474

reinforce our analysis. Specifically, in all simulations in this subsection, a 10-agent network will be475
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6: The simulation results of the matrix-weighted consensus model (8) with different values of
τ1, τ2 and k.

considered. The graph G and the true position of the nodes are given as follows. It can be checked476

that the bearing Laplacian satisfies rank(L) = 26.477

Bearing-based network localization with uniform constant time delays: Consider the478

bearing-based network localization (6) with a constant time delay. The simulation results are479

depicted in Figs. 7(a)–(b) for τ = 0.1, and Figs. 7(c)–(d). For τ = 0.1, the estimate x̂ asymptotically480

converges to an x∗, which differs from the correct position x by a translation and a scaling. For481

τ = 0.2, after 20 seconds of simulation, it can be observed that x̂ tends to grow unbounded482

(instability).483

Bearing-based network localization with heterogeneous time-delays: Next, we simulate the484

network localization algorithm (7) with parameters given in Table 2. For τ3 = 0.2 (sec), it is485

observed from Figures 8(a)–(b) that x̂ converges to a configuration x∗, and the sum of squared486

bearing errors
∑

(i,j)∈E ∥gij − g∗
ij∥2 asymptotically converges to zero. Thus, x∗ is a configuration487
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(a) (b) (c) (d)

Figure 7: The simulation results (trajectories of x̂i and bearing error) of the network localization
update law (6) with τ = 0.1 (sec) ((a)–(b)), and τ = 0.2 (sec) ((c)–(d)).

satisfying all the sensed bearing vectors. As τ3 changes from 0.2 (sec) to 0.3 (sec), the network488

becomes unstable, as shown in Figs. 8(c)–(d).

Table 2: Simulation parameters of the network localization algorithm (7).
e1, . . . , e3 e4, . . . , e9 e10, . . . , e15

Simulation 1 τ1 = 0.1 τ2 = 0.2 τ3 = 0.30
Simulation 2 τ1 = 0.1 τ2 = 0.2 τ3 = 0.35

(a) (b) (c) (d)

Figure 8: The simulation results (trajectories of x̂i and bearing error) of the network localization
update law (8) with (a) & (b) τ1 = 0.1, τ2 = 0.2, τ3 = 0.3 (sec) and (c) & (d) τ1 = 0.1, τ2 = 0.2,
τ3 = 0.35 (sec).

489

Bearing-based network localization of double-integrators with two constant time delays:490

Finally, we conduct simulations of the network localization algorithms for double-integrator agents491

with two time-delays. The results are depicted as in Fig. 9. We can observe that

(a) (b) (c) (d)

Figure 9: The simulation results (trajectories of x̂i and bearing error) of the network localization
update law (7) with (a) & (b) τ1 = 0.05, τ2 = 0.25, τ3 = 0.7 (sec) and (c) & (d) τ1 = 0.05, τ2 =
0.87, τ3 = 0.7 (sec).

492
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