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ABSTRACT

Although deep neural networks are typically computationally ex-
pensive to use, technological advances in both the design of hard-
ware platforms and of neural network architectures, have made it
possible to use powerful models on edge devices. To enable wide-
spread adoption of edge based machine learning, we introduce a set
of open-source tools that make it easy to deploy, update and moni-
tor machine learning models on a wide variety of edge devices. Our
tools bring the concept of containerization to the TinyML world. We
propose to package ML and application logic as containers called
Runes to deploy onto edge devices. The containerization allows
us to target a fragmented Internet-of-Things (IoT) ecosystem by
providing a common platform for Runes to run across devices.
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1 INTRODUCTION

In the past decade, deep neural networks (DNNs) have become the
state-of-the-art technique for many applications in domains like
computer vision, audio processing, robotics and natural language
processing [20]. A disadvantage of these models is that they are
typically computationally expensive to use. A Resnet50 network
for example, a common model for image classification, requires
around 100Mb to store its parameters and 4 GFLOPs to process a
single 224x224 RGB input image [17]. The most common approach
is to use high end Graphical Processing Units (GPUs) to train and
evaluate the models in a cloud-based system. The alternative of
deploying neural network models on edge devices is often more
attractive since this can result in a lower latency and increased
robustness as no network connection to the cloud is required. In
addition this is also more privacy friendly compared to cloud based
deployments as no privacy sensitive data ever leaves the local de-
vice.

Deep neural networks benefit from large amounts of rich input
data. This makes them especially useful to process the giant volume
of data which has been generated by billions of Internet of Things
(IoT) devices. The number of these devices is estimated to grow
to 22 billion by 2025 [9]. Uploading all this data to the cloud for
analysis would require significant bandwidth resources. Instead, a
more decentralized approach based on edge deployments is much
more scalable. A major challenge is however posed by the diversity
of hardware platforms used in an IoT ecosystem. All these devices
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Figure 1: Runes package ML models and additional code into
a container that can be deployed on various hardware plat-
forms using Hammer.

have different sensors, different computational resources and dif-
ferent costs associated with network connectivity. It is therefore
not easy to dynamically deploy models to devices. In this paper, we
introduce a software framework that will make it possible to easily
package, distribute and monitor TinyML applications on heteroge-
neous IoT platforms.

Containerization of applications in the cloud has provided reli-
ability, scalability and security as it allows us to dynamically place
software components on different hardware devices. We aim to
bring these concepts to the TinyML world. We propose to package
ML and application logic as containers called Runes to deploy onto
edge devices. The containerization allows us to target a fragmented
Internet-of-Things (IoT) ecosystem by providing a common plat-
form for Runes to run on different devices. We provide a declarative
configuration for developers to build model pipelines that can be
deployed across multiple classes of devices. Security is provided
by creating abstracted interfaces to hardware capabilities which
facilitates simulation, testing and continuous integration.
Currently, edge applications need to be compiled and built di-
rectly against the device software/hardware. Containerization de-
couples the Rune bytecode from the hardware, device capabilities,
sensors, and processing architectures. With Rune, the model is built
once for a device and can then run on compatible devices, reduc-
ing development time and making the application more portable
while reducing the overall development time across devices. Rune
also supports provisioning which guarantees that only the required
bytecode operations and sensor access is made available. Runes
have low-level APIs that can be programmed against a variety of
languages (C/C++, Go, Rust, etc), making it easy for developers to



bring their machine learning models into production. Similar to
the Docker registry, Runes can be made available in a community
registry. These Runes can then be reused or extended by adding
additional processing components.

In addition to the Rune containerization, we also release a tool
call Hammer. Hammer is used to deploy Runes over the air via
Bluetooth Low Energy (BLE), a serial connection, WiFi or other
connectivity protocols. Hammer can be used to ship complex ap-
plications confidently by eliminating developer computers as the
source of origin. Targeting multiple devices will become simple
using configurations instead of code.

The remainder of this paper is organized as follows. In section
2 we give an overview of the related work in optimizing neural
networks for edge deployments and the software tools that are
available to do so. We also give a very brief overview of container-
ization and Docker as these formed the inspiration for Rune. In
section 3 we introduce our different tools and give more details
about the design choices. We benchmark the overhead of the con-
tainerization layer in section 4. Finally, we conclude and give some
pointers for further research and development in section 5.

2 RELATED WORK

In this section we give an overview of some interesting technologies
that can make neural networks more efficient to use on resource
constrained edge devices. We also discuss existing software plat-
forms that target edge devices and provide some background on
containerization and virtualization.

2.1 Efficient neural network architectures

There is a lot of active research into making deep neural networks
more efficient to use on smartphones and other edge devices. A first
family of approaches reduces the model size by pruning weights of
the network. Various strategies have been proposed that select the
weights to remove based on the sensitivity of the final objective
function to that weight [21] or on the magnitude of the weight [16].
It is also possible to include additional constraints in the pruning al-
gorithm such as the energy consumption of the different layers [25].

It is well known that full precision floating point numbers are
not needed for neural network weights and activations. Instead
16 bit [11] or even 8 bit numbers [23] are usually sufficient. By
quantizing the weights and activations, we can replace the floating
point arithmetic with integer operations that are more efficient
in hardware [15]. Other works further reduce the precision of the
weights to 4 bits [10] or even all the way down to one bit [19]. In
this case, most of the operations are replaced with logical opera-
tions that are very efficient in hardware [19].

Other approaches replace the expensive convolutional layers with
depthwise separable convolutions [18] that split a convolutional
kernel into two separate kernels that do two convolutions: the
depthwise convolution and the pointwise convolution. This reduces
the amount of computations and still results in a high accuracy.
Other works further reduce the computational cost by replacing the
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first convolution with a cheap channel shuffle operation. Instead
of manually designing efficient architectures, it is also possible to
perform an automated architecture search for architectures that
result in a good computational cost-accuracy trade-off [26].

2.2 Software frameworks for neural network
deployment on edge devices

Various software platforms are being actively developed to enable
neural network execution at the edge. Tensorflow Lite is a set of
tools to help developers run TensorFlow models on mobile, em-
bedded, and IoT devices. It enables on-device machine learning
inference with low latency and a small binary size [13]. To target
even more constrained devices such as microcontrollers. Tensorflow
lite micro is designed to run machine learning models on devices
with only few kilobytes of memory. The core runtime just fits in 16
KB on an Arm Cortex M3 and can run many basic models. Similar to
Tensorflow Lite, Apple’s CoreML framework [3] allows developers
to embed a neural network in a mobile app. In addition to running
inference, Core ML also makes it possible to train or fine-tune mod-
els on the user’s device. Core ML optimizes on-device performance
by leveraging the CPU, GPU, and Neural Engine while minimizing
its memory footprint and power consumption. The Neural Engine
is a specialised chip in Apple devices that can evaluate neural net-
works in a more energy-efficient manner than using the main CPU
or the GPU. Recently, a beta version of Pytorch mobile has been
released [7]. Pytorch mobile allows developers to take a trained
pytorch model, quantize it to 8 bit integer representations and save
it in an optimized format to use in an Android or IOS app. An espe-
cially interesting software framework in this space is Apache TVM
[12]. TVM can take models trained in different frameworks such
as Tensorflow or Pytorch, compile them into minimum deployable
modules and run them efficiently on different hardware backends
such as CPUs, GPUs, microcontrollers or even FPGAs.

There are a few software tools available that can aid in deploying
neural networks in a production environment. TensorFlow Serv-
ing [8] is a flexible, high-performance serving system for machine
learning models. It takes a trained Tensorflow model, deploys it on
a server and provides a REST api to access the functionality of the
model. Similarily, MLFlow [5] can deploy models trained in differ-
ent frameworks to Apache Spark, Azure ML and AWS SageMaker.
Another interesting option is the NVIDIA Triton Inference Server
[6], an open source inference serving platform that can deploy
trained Al models from any framework on any GPU- or CPU-based
infrastructure.

There are also a few solutions that can be used to automate edge
deployments. DIANNE [14] is a modular framework that can dy-
namically distribute (parts of) deep learning models over multiple
edge and cloud devices. Another option is the IBM Edge Application
Manager (IEAM) [4] that provides a Model Management System
(MMS) that can asynchronously update machine learning models
running on Edge nodes. Currently however, it does not support
deploying models on devices such as microcontrollers. Similarly,
Microsoft provides the Azure IoT Edge [2], a fully managed service
built on Azure IoT Hub. It can deploy ML workloads on Internet of
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Things (IoT) edge devices. It also uses a container-based approach.
Amazon also has a solution, called AWS IoT Greengrass [1]. This
makes it easy to perform machine learning inference locally on
devices, using models that are created, trained, and optimized in the
cloud. It can target common devices such as Intel Atom, NVIDIA
Jetson, and Raspberry Pi but like most of the previous platforms, it
is not suitable for extremely constrained devices such as microcon-
trollers. The tools that we present in this paper can be used for the
same use cases but we also target devices with very few resources
such as Arduino microcontrollers.

2.3 Containerization and virtualization

In the last few years, containerization and microservices-based ar-
chitecture design have become one of the most popular approaches
for cloud based application development. Containerization involves
encapsulating software code and its dependencies in a container
so that it can easily be deployed on any infrastructure. Containers
are a special approach to virtualization. Containers allow you to
run an application isolated from its host operating system, without
having to spin up an entire virtual machine (VM) for each appli-
cation. By breaking up software into minimal components called
“microservices” that can each be deployed in a container, a large
software system can be split up into multiple components which
makes it easier scalable, testable and reduces the complexity of
development and integration. Compared to a VM, a container is
“lightweight” as it shares the machine’s operating system kernel
and does not require the overhead of launching a full operating
system for each application. Containerization is especially attrac-
tive as it allows applications to be “written once and run anywhere”

Docker [22] is the most well known example of a containeriza-
tion framework. To create a new Docker container, the developer
first writes a Dockerfile that lists all the steps needed to build an
image. Dockerfiles typically refer to a parent Dockerfiles. A Docker
image inheriting from another Docker image is capable of all func-
tionality of the parent and can add its own components. Docker
images can be shared on Docker Hub allowing other developers to
reuse or extend existing images. Runes follow the same approach
as Docker images. They allow a developer to package ML models
and the additional code. The resulting images can then be deployed
to different devices or can be shared on a model hub, enabling other
developers to reuse or extend them.

3 DEPLOYING MODELS ON EDGE DEVICES

As machine learning techniques mature and their usefulness
for different fields becomes apparent, there is an increasing need
for tooling that supports developers to use the models in produc-
tion. This is sometimes named “MLOps” after “DevOps”. “MLOps”
techniques aim to automate the process of (re)training a model,
validating it and deploying the model for inference. Currently, the
models are typically deployed to a cloud infrastructure and access
is provided through a REST api. As mentioned in the introduction,
deploying models on edge devices is often an attractive solution
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Figure 2: The edge device runs RunicOs that boots Rune con-
tainers and provides APIs to access sensors and memory. Lib-
Saga is used to monitor the state of the Rune.

since it reduces the latency, does not require a high bandwidth net-
work connection and is privacy friendlier. In addition to the limited
computational resources on these devices, a major bottleneck for
widespread adoption is the IoT platform fragmentation. The lack of
interoperability and of common technical standards makes it diffi-
cult to develop applications that work consistently between differ-
ent inconsistent technology ecosystems. To solve this, we introduce
Rune and Hammer. The next sections explain both tools in more
detail. Both tools are developed in the Rust programming language
and can be found at our Github page: https://github.com/hotg-ai.

3.1 Rune

Just like Docker images package software together with its depen-
dencies, we propose to package ML and application logic into a
container called Rune. Runes can then easily be deployed onto dif-
ferent edge devices. By providing a common platform for Runes to
run, we can target the fragmented IoT platforms, making it easier
for developers to deploy their models on real world devices.

Figure 2 shows the interaction between the different components
needed to run a Rune. The device runs RunicOs. A minimal operat-
ing system that can boot a Rune and exposes hardware capabilities
with a common access layer. Rune containers are booted using the
Rune container bootloader which is initiated by the RunicOS. Runi-
cOS is a collection of APIs that provide access to sensors, commu-
nication stacks, and memory or filesystems. The tiny virtualization
API enables encapsulation and execution of user space bytecode in
Rune. Finally, LibSaga is the library that provides communication
and monitoring of Rune health. In future versions, LibSaga will
also allow debugging and benchmarking of the models, making it
possible for the developer to monitor the throughput and system
load of the Rune.

The operating systems is also responsible for guaranteeing that
only the required bytecode operations and sensor access is made
available to the Rune. As IoT devices equipped with cameras, mi-
crophones and other sensors are deployed in potentially privacy
sensitive environments such as people’s homes or offices, we have
to make sure that a Rune developed by a third party only has access
to the resources needed for a certain task. The RunicOS enforces
these limitations using a permissions system, following the Princi-
ple of least privilege, which states that the running software should
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Listing 1: Example Rune file

FROM runicos/base

CAPABILITY AUDIO audio --hz 16000 --samples 150 --sample-size 1500
PROC_BLOCK runicos/ fft fft
MODEL ./ example. tflite model --input [150,1] --output 1

RUN audio fft model
OUT serial

only have access to the minimal amount of resources needed to
do its job. A model deployed for speech recognition for example
should have no access to a camera attached to the device.

As the IoT ecosystem is characterized by a huge variety in available
devices, there is no guarantee that a certain Rune can run on all pos-
sible devices. Different devices might have different computational
resources or different sensors. The RunicOS is also responsible for
checking these requirements prior to launching the Rune. If a sen-
sor is available and the Rune has permission to use it, the RunicOs
provides an abstract API to access the sensor. The same Rune can
then easily be deployed on different devices, with different variants
of a similar sensor.

Similar to a Dockerfile, a Rune is configured with a Runefile, an
example is shown in listing 1. The Runefile always starts with a
FROM instruction which defines the base layer on which the con-
tainer is built. When processed, the FROM instruction verifies that
RunicOS is present and ready for loading of a Rune and that its
dependencies are satisfied. Runes are composable, developers may
extend prebuilt containers by referring to these containers with the
“FROM” instruction.

On line 2, we configure what sensors are required for this Rune to
work. In this case, we require a microphone input which is labelled
as “audio” for reference further in the Runefile. We can optionally
pass additional arguments such as the sampleRate. Line 3 defines
a processing block “fft”. Processing blocks are arbitrary C++, Rust
or webassembly modules that can be used to preprocess sensor
outputs for models. In this case, we use a default block “runicos/fft”
which calculates the discrete Fourier transform of the input se-
quence, converting the audio signal to the frequency domain. The
neural network model is defined on line 4. In this case it is provided
as a Tensorflow lite model. In future versions of Rune, support will
be added for other frameworks such as CoreML or Pytorch. Line
5 then combines all blocks, it defines where the input data should
come from and what processing blocks need to be executed before
the model is evaluated. Finally, the output of the model is writen to
a serial connection (line 6).

Once the developer has defined the RuneFile, the Rune Container
can be built

$ rune build <Runefile >

Behind the scenes, the “rune” command generates a Rust project
based on the RuneFile. The RuneFile is translated into Rust source
code containing two important functions: “_manifest()” and “_call()”.
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These functions are used to initialize a Rune. The first step (manifest
step or manifest stage) is to verify the requirements of the Rune. The
“_manifest()” function returns a manifest struct as shown in listing
4. This is used by the RunicOS to ensure that the hardware has the
right capabilities and memory space to run the model described.
Once the Rune has been successfully initialized, the “_call()” API
can be used to run the Rune. The reason to have a two-step process
is to ensure that the device will not fail when the “_call()” API is
executed, as the process has already determined that dependencies
required to run the TinyContainer are present, by processing the
manifest.

Listing 4: The Manifest struct describes the requirements of
the model

struct Manifest{

capabilities; Vec<CapabilityRequest >,
OUTPUT,
models: vec<Model>

out:

This generated Rust project includes the source code for all the
building blocks of the container such as the code to access the
sensors, a compiled version of the model and all the code for the
processing blocks. This project is then compiled into a WebAssem-
bly module that can be launched on the edge device. WebAssembly
(Wasm) is a binary instruction format for a stack-based virtual ma-
chine. It is an open standard that defines a portable binary-code
format for executable programs. Originally, the purpose of We-
bAssembly was to enable high-performance applications on web
pages. Web applications can use Wasm alongside HTML, CSS, and
JavaScript native in a browser. Developers can compile C++ (or any
other LLVM-supported language such as D or Rust) source code into
a binary file which runs in the same sandbox as regular JavaScript
code. Since WebAssembly’s runtime environments are low level
virtual stack machines, they are not limited to web applications and
can also be embedded into host applications or can be launched in
standalone runtime environments. A very interesting application is
to use Webassembly to deploy applications on IoT and edge devices
[24] where the sandboxing functionality of Webassembly can offer
high security while still having a very high performance.

Once the Webassembly module is generated, the Rune can be de-
ployed on an edge device, either manually or using Hammer as
described in the next section.
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Listing 2: Hammer can list the devices that are available as targets for deployment

$ hmr targets ls

Target Type Name
/dev/tty .usbmodem14301 WIFI Portenta H7
2b99c594 -c904 -4133 WIFI Portenta H7

Available

True
True

Listing 3: Hammer can deploy a Rune to a target device

$ hmr targets cast -t 2b99c¢594-¢904-4133 ./ microspeech.rune

Deploying ./ microspeech.rune to target 2b99c¢594-c904 -4133

Verifying provider: 100%

Provider with fqdn=arduino :mbed found
Uploading rune: 100%

Verifying rune: 100%

Capability : WIFI OK: 100%

3.2 Hammer

Hammer is the tool that will help deploy Rune image on one or more
devices, either wirelessly or over the wire. It helps operate, deploy
and test Rune based apps on devices as well as monitor the health of
Rune based apps. Hammer abstracts away the different communica-
tion protocols (BLE, WiFi, Serial, ...) needed to communicated with
the devices. Listing 2 shows devices that are available for deploying
Runes as a result of the “hmr target Is” command. For each device,
a location of the device is listed under the “Target” heading. The
type of communication protocol used to communicate with the
device is listed under the “Type” heading. A name of the device as
provided by the manufacturer is listed under the “Name” header
and availability of the device is listed under the “Availabilty” header.

Once the target device has been identified, a Rune can be deployed
to that device with the “hmr targets cast” command as shown in
listing 3.

4 EXPERIMENTS

As explained in the previous sections, Rune allows us to create
“write once, run anywhere” containers that package machine learn-
ing models and the additional required code in a WebAssembly
package. This is then launched on the device as a container where
the RunicOS provides APIs to access sensors or other functional-
ity. The RunicOS abstracts away the device specific functionality,
making it possible to run the same Rune on a different device. The
price we pay for this flexibility is the overhead involved in the
containerization. In this section, we benchmark this overhead on
an Arduino Portenta H7 device.

We run the same code, once directly compiled for the device,
once as a Rune with Rust serialization, once as a Rune with Proto-
Buf serialization, and measure the total time needed for running
a simple model that estimates the sine function. We calculate the
overhead for 1000 to 1 million calls to the model.

The results are summarized in Figure 3. The Figure shows the
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Figure 3: Benchmarking results. The same code implement-
ing a sine model was run for 1000 to 1 million iterations,
once directly compiled for the device, once as a Rune with
Rust serialization and once as a Rune with ProtoBuf format.
The % overhead in running time (equation 1) was recorded
for each experiment.

overhead in CPU time, in percentage terms, due to using a Rune
container to run the model:

overhead = (tRune — tnative) /tnative o))

The measured overhead varies from 28% to 45%, and is around 40%
at 100k to 1 million iterations. The variation at the lower num-
ber of iterations can be explained by statistical variation in the
computation times.

Using protobuf in the experiments introduced a slight increase
in computation time. We expect our data sharing layer to be the
most likely culprit to the overhead, and expect future improvements
from optimizing our protocol with ProtoBuf format.




5 CONCLUSION AND FUTURE WORK

In this paper, we introduced Rune and Hammer, two tools that
will make it easier for developers to deploy their machine learning
models on a variety of hardware devices. Even though both tools
can be used to deploy the models on cloud infrastructure, their
main goal is to enable deployment on edge devices with limited
computational resources. With Rune, we defined a containerization
based approach that packages ML models and the required addi-
tional code into a small WebAssembly package that can be deployed
to different devices. The containerization allows us to run the same
Rune on different devices, without requiring any additional config-
uration. Runes are configured by Runefiles, similar to Dockerfiles.
This makes it easy to reuse or extend existing Runes for new tasks.
We also introduced Hammer which can push Runes to a variety of
devices, over a wired or wireless connection.

We believe the Rune and Hammer tools can be crucial building
blocks to enable widespread adoption of on-device machine learn-
ing. In future work, we will keep improving both tools by adding
support for more devices, sensors and machine learning frame-
works. We will also build a Kubernetes-like system that uses Rune
and Hammer to automatically deploy, scale and manage large ma-
chine learning deployments on heterogeneous IoT hardware. This
will allow multiple devices to be in a redundant state for service
continuation. The workload resilience can come from multiple cores
of a single device (vertical scaling) as well as from multiple devices
in a meshed setting (horizontal scaling).

All tools will be released as open source software on our github
page!. We aim to build a strong community supported ecosystem
and are actively looking for contributors.
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