Curriculum Model Merging: Harmonizing Chemical LLMs for Enhanced Cross-Task Generalization

Baoyi He*

Zhejiang University 12321037@zju.edu.cn

Ying Wei†

Zhejiang University ying.wei@zju.edu.cn

Luotian Yuan*

Zhejiang University 12221240@zju.edu.cn

Fei Wu[†]

Zhejiang University wufei@zju.edu.cn

Abstract

The emergence of large language models (LLMs) has opened new opportunities for AI-driven chemical problem solving. However, existing chemical LLMs are typically tailored to specific task formats or narrow domains, limiting their capacity to integrate knowledge and generalize across tasks. Model merging offers a promising route for efficiently combining specialized LLMs into a unified model without access to original training data, which is urgently needed in the chemical domain where in-house data and privacy preservation are critical. However, effective model merging in the chemical domain poses unique challenges: (1) significant disparities among chemical LLMs due to task-specific specialization, and (2) a highly imbalanced distribution of chemical LLMs in targeted downstream tasks, where some are over-benchmarked while others remain underexplored. These challenges intensify model inconsistencies such as parameter interference and accumulated fine-tuning noise, which collectively hinder effective model merging. To this end, we propose Curriculum Model Merging (CMM), a curriculum-based framework that progressively merges expert chemical LLMs in a moderate and continual manner. CMM aims to harmonize their inconsistencies while meantime preserve their domain-specific expertise. Comprehensive experiments on two benchmark datasets show that CMM effectively consolidates task-specific expertise and outperforms the state-of-the-art methods by 29.03% in terms of overall average performance. Moreover, CMM facilitates chemical knowledge generalization across prediction and generative tasks without sacrificing robustness, exhibiting promising merging performance under both expert-abundant and expert-sparse scenarios.

1 Introduction

The emergence of large language models (LLMs) has profoundly reshaped the landscape of Chemistry [19], demonstrating remarkable effectiveness across a wide spectrum of real-world problems (e.g., property prediction [49], molecular generation [47], and retrosynthesis [15]). A prevailing strategy to adapt foundation LLMs for chemical research is *task-specific fine-tuning*, which enhances downstream performance on specialized datasets. However, this paradigm inevitably fragments chemical intelligence, as each fine-tuned model becomes confined to narrow domains or data formats, limiting holistic knowledge integration and cross-task generalization. *Multi-task learning* partially alleviates the issues by training a universal model on multiple chemical datasets. Yet, its applicability

^{*}Equal contribution.

[†]Corresponding author.

in chemistry domains remains constrained by the scarcity of publicly shareable data under in-house data privacy regulations and the high computation cost required for large-scale joint optimization [62].

Recently, model merging has emerged as a compelling alternative for integrating multiple expert models into a comprehensive base model without requiring access to the original training data or extensive retraining, an approach that has already achieved considerable success in natural language processing (NLP) [57]. However, transferring such success to the chemical domain remains highly challenging. First, there exist significant disparities among expert chemical LLMs. It is widely acknowledged that chemical tasks differ fundamentally from natural language tasks, often requiring larger shifts in representation space and greater parameter adjustments when fine-tuning generalpurpose foundation models (e.g., LLaMA [46], GPT [40]) for chemical applications. Consequently, base and expert models in the chemical domain tend to exhibit greater variance due to task-specific specializations, in stark contrast to the relatively homogeneous model landscape in NLP. Additionally, these greater fine-tuning adjustments accumulate noise and further amplify parameter inconsistencies, leading to interference and hidden conflicts among expert models that complicate the merging process. Second, the chemical domain exhibits a highly imbalanced distribution of targeted downstream tasks. Widely studied tasks such as property prediction are supported by numerous high-performing models (i.e., expert-abundant scenarios), whereas many niche or emerging tasks such as retrosynthesis are covered by only a few or no published models (i.e., expert-sparse scenarios). This imbalanced distribution introduces additional challenges when merging models: knowledge critical to expertsparse tasks may be diluted by noise or overshadowed by dominant patterns from expert-abundant models. As a result, the effectiveness of existing model merging methods remains limited in chemical domain. Merged models frequently suffer from poor knowledge generalization beyond individual model boundaries and degraded performance across diverse task types.

In this paper, we introduce Curriculum Model Merging (CMM), a framework designed to address the aforementioned challenges in merging chemical LLMs. Inspired by curriculum learning [4], we decompose the extremely complicated problem of simultaneously combining heterogeneous expert models into a progressive and continual merging process. At its core, CMM constructs a route-based merging curriculum. In the early stages, weaker expert models are merged first, which gradually enhances the base model's generalization and stability. This, in turn, prepares the base model to accommodate stronger and more specialized experts in subsequent rounds. The result is a merged model that incrementally strengthens task-specific capabilities while maintaining robustness across tasks. Our CMM method consists of two main steps. (1) Curriculum construction: CMM ranks expert models based on their capabilities across various benchmarks, establishing an ordered curriculum that navigates a continual, capability-aware merging process. (2) Iterative merging: each expert model is progressively merged into the current base model through task vector extraction and composition, after which the merged model serves as the base model for the next iteration. Recognizing that the relative importance of each expert significantly influences the ultimate performance, we introduce multiple merging strategies that vary the degree of involvement for each expert. This is achieved by jointly controlling the merging order and assigning adaptive merging weights.

The key contributions of our paper are outlined below. (1) *Practicability:* We, for the first time, integrate model merging techniques to effectively consolidate task-specific specializations in the chemical domain, overcoming data unavailability and avoiding substantial computational costs. (2) *Efficacy:* We introduce CMM, a progressive and performance-aware merging framework that addresses the significant challenges of merging heterogeneous chemical LLMs. Across two representative benchmarks, CMM exceeds the state-of-the-art merging method by 29.03%. (3) *Generality:* We evaluate CMM under both expert-abundant and expert-sparse scenarios. The results demonstrate that CMM facilitates robust chemical knowledge generalization across both predictive and generative tasks, without sacrificing performance consistency.

2 Related Work

Chemical LLMs We briefly summarize the recently published LLM studies and their specialized versions in the chemistry domain in Appendix A. Early models such as SMILES-BERT [49] and SMILES Transformer [22] have been employed to process SMILES information of molecules. Uni-Mol [64], AGBT [5] and Molformer [52] focus on modeling 3D molecules. SciGLM [61], SciLitLLM [30], KALE-LM-Chem [9], and LLAMAT [37] primarily focus on natural language processing, information extraction, and scientific reasoning capabilities. GeLLMO [11], MolecularGPT [32], and

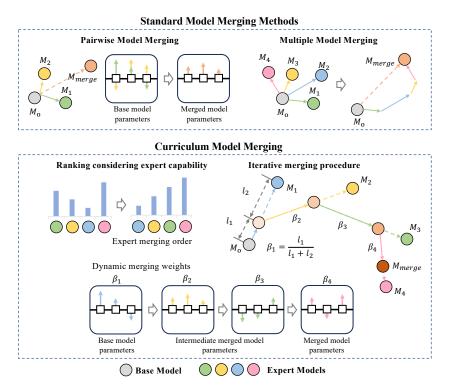


Figure 1: **Standard Model Merging Methods vs. Curriculum Model Merging** Standard Model Merging merges all expert models simultaneously, while Curriculum Model Merging first ranks the expert models and then merges them progressively.

Mol-LLaMA [27] have been fine-tuned for molecule-related tasks, including multi-property molecule optimization tasks, molecular property prediction, and understanding molecules. ChemLLM [62], ChemDFM [63], LlaSMol [59] and Molinst-molecule [15] are specialized for essential chemistry tasks, such as retrosynthesis, yield prediction, molecular property prediction, and description-guided molecule design. CrystaLLM [1] and Crystal-text-LLM [38] are specifically designed for crystal generation and stable materials generation.

Model Merging Methods Model merging methods are broadly categorized into: (1) pre-merging methods, which align models before merging, and (2) during-merging methods, which resolve conflicts during the merging process. Pre-merging methods leverage the linear mode connectivity (LMC) property [12, 14, 16] to align models prior to merging. Early approaches such as CCAMerge [23] use CCA-based neuron alignment, while MuDSC [54] jointly aligns weights and activations. C2M3 [7] optimizes global permutations layer-wise, and Deep-Align [39] introduces a learnable architecture for dynamic weight alignment. During-merging methods directly manipulate parameters to reduce interference. Model Soups [51] averages weights, while Task Arithmetic [25] and TIES [55] use task vectors with interference control. DARE [60] and DELLA [10] sparsify deltas to retain critical changes. Uncertainty-based merging [8] uses second-order Hessians to guide merging. Modular approaches such as Concrete [42], EMR-Merging [24], Twin-Merging [34], and Weight-Ensembling MoE [44] apply dynamic routing and task-specific control. PWE-MoE [43] extends this to multi-objective settings using preference vectors. Finally, Representation Surgery [58] calibrates merged models post hoc by aligning their representations with those of the original expert models.

3 Methodology

3.1 Preliminaries

Let M_o represents a pretrained model and $\{M_1, M_2, \dots, M_N\}$ represent models fine-tuned based on the pretrained model. The goal is to merge the combined strengths of these models into M_o . We

follow the task arithmetic [25] approach and merge tasks using combined task vectors τ_t , where the task vector is defined as

$$\tau_t = \theta_{\rm ft}^t - \theta_{\rm pre},\tag{1}$$

where θ_{pre} represents the weights of the pretrained model and θ_{ft}^t represents weights after fine-tuning on task t.

Task Arithmetic Merging Given N expert models fine-tuned from the same base, this method aims to merge them into a single model θ_{merge} by linearly combining their task vectors. A simple arithmetic average is used to obtain the merged task vector:

$$\tau_{\text{new}} = \sum_{t=1}^{n} \tau_t, \quad \theta_{\text{merge}} = \theta_{\text{pre}} + \lambda * \tau_{\text{new}}$$
(2)

where λ is an optional scaling term controlling the influence of the aggregated task updates, and τ_{new} denotes the sum of all task vectors.

Drop And Rescale Merging [60] This is a method to reduce interference during merging. The first step, Drop, randomly resets a portion of task vectors to zero according to a drop rate p. The second step, Rescale, multiplies the remaining values by a scaling factor of $\frac{1}{1-p}$. After applying Drop And Rescale (DARE), a large number of parameters in the fine-tuned model become identical to those in the base model. In other words, DARE updates only a small subset of parameters, retaining only a sparse set of parameter changes and thereby reducing redundancy.

3.2 Curriculum Model Merging

We evaluate the set of models $\{M_1, M_2, \ldots, M_N\}$ on a validation set. For each model, we evaluate its performance on individual tasks and normalize the scores to ensure comparability across tasks. The normalized scores are then averaged and aggregated to compute an overall performance score. Let the overall performance scores be denoted as $\{S_1, S_2, \ldots, S_N\}$. Note that we provide an ablation study in Appendix C to investigate the impact of different score computation methods as well as various sizes of the validation set on final merging effectiveness. We sort the models in ascending order of performance to obtain a ranking:

$$M_{(1)}, M_{(2)}, \dots, M_{(N)},$$
 such that $S_{(1)} \leq S_{(2)} \leq \dots \leq S_{(N)},$

where $S_{(i)}$ is the score of model $M_{(i)}$. The coefficient $\beta_k \in (0,1)$ is the scaling term used to combine the k-th task vector. Specifically, we compute:

$$\tau_{(1)} = \theta_{\text{ft}}^{(1)} - \theta_{\text{pre}}, \quad \theta_1 = \theta_{\text{pre}} + \beta_1 \cdot \tau_{(1)},$$
(3)

$$\tau_{(2)} = \theta_{\text{ft}}^{(2)} - \theta_1, \quad \theta_2 = \theta_1 + \beta_2 \cdot \tau_{(2)},$$
(4)

. . .

$$\tau_{(k)} = \theta_{\text{fi}}^{(k)} - \theta_{k-1}, \quad \theta_k = \theta_{k-1} + \beta_k \cdot \tau_{(k)},$$
(5)

where $k=1,2,\ldots,N$. $\tau_{(k)}$ represents the difference between the fine-tuned parameters of the k-th model and the current merged model, and θ_k denotes the parameters of the merged model after incorporating the k-th task vector. This recursive procedure continues until all task vectors have been merged.

Since model performance improves progressively, better-performing models should not be assigned smaller weights. There are two strategies to increase the contribution of the later models. First, the distribution of β should be either flat or increasing based on practical needs, such as constant value, linear schedule, or exponential growth. We have explored these possibilities in Section 4.4. Second, CMM is capable of dynamically adjusting the degree of involvement of each expert. Since $0 < \beta_k < 1$, this property inherently allows greater weights for the later models. The proof is provided below.

Table 1: Performance of baseline methods and the proposed approach on Chembench. For all evaluation metrics, higher values indicate better performance. We highlight the best performance as bold. Bold values denote the best results in each column.

Model	NC	Property_P	M2C	C2M	Product_P	RS	YP	TP	SP	Average
Expert models										
Llama-3-8B-Instruct	51.19	27.79	90.30	40.88	34.00	29.33	45.33	60.89	33.67	45.93
Molinst-molecule-8b	39.05	25.39	80.94	39.75	29.67	31.67	46.33	60.89	33.00	42.97
KALE-LM-Chem-1.5	61.33	43.72	90.30	53.75	72.67	53.67	45.67	47.52	45.00	57.07
Meerkat-8b-v1.0	50.19	24.26	86.62	40.88	27.33	30.33	42.33	56.93	34.00	43.65
GeLLMO-P6	28.91	29.48	59.53	24.25	24.67	25.00	41.33	29.70	24.00	31.87
SOTA merge methods										
TA	60.83	25.11	92.98	46.12	55.00	46.67	47.00	59.90	33.00	51.85
TIES	46.43	30.61	77.26	40.00	35.67	34.33	32.33	44.55	27.33	40.95
DARE_TA	31.41	25.11	49.83	23.88	25.00	25.00	41.67	29.21	23.33	30.49
SCE	40.05	43.02	77.93	36.75	29.00	28.67	45.33	30.20	29.33	40.03
AF	58.95	29.76	91.97	47.5	47.00	42.00	46.00	63.37	37.33	51.54
Merged models throug	gh CMN	1								
CMM	63.95	35.40	92.98	54.37	78.33	72.33	46.00	64.85	44.67	61.43
DARE_CMM	63.58	33.43	92.31	51.88	74.00	68.00	47.33	62.87	46.00	59.93

Substituting $\tau_{(1)}$ into θ_1 gives:

$$\theta_1 = (1 - \beta_1)\theta_{\text{pre}} + \beta_1 \theta_{\text{ft}}^{(1)} \tag{6}$$

Similarly, substituting the previous expressions into θ_2 gives:

$$\theta_2 = (1 - \beta_1)(1 - \beta_2)\theta_{\text{pre}} + \beta_1(1 - \beta_2)\theta_{\text{ft}}^{(1)} + \beta_2\theta_{\text{ft}}^{(2)}$$
(7)

$$\theta_k = \left(\prod_{i=1}^k (1 - \beta_i)\right) \theta_{\text{pre}} + \sum_{j=1}^k \left[\beta_j \left(\prod_{i=j+1}^k (1 - \beta_i)\right) \theta_{\text{ft}}^{(j)}\right]$$
(8)

During merging, since $0 < \beta_k < 1, 0 < (1 - \beta_k) < 1$, the involvement of top-ranked models that are merged earlier is dynamically reduced.

Our framework is compatible with different and incoming advanced model merging methods. We denote the original version combined with Task Arithmetic as CMM, and the one with DARE as DARE_CMM.

4 Experiments

4.1 Experimental Setup

Base & expert models We briefly summarize the recently published LLM studies in the chemistry domain in Appendix A. Among them, expert models for merging are selected considering their enhanced performance on respective specialized tasks. The performance of each model on individual chemical tasks is presented in Table 1 and Table 2. Ultimately, we adopt the universal LLaMA3-8B-Instruct [18] as the base model, GeLLMO-P6-Llama [11], Meerkat-8B-v1.0 [28], KALE-LM-Chem-1.5 [9] and Molinst-Molecule-8B [15] as expert models. Based on the method which is demonstrated in Section 3.2 and the overall performance across benchmarks of each expert models reported in Table 3, the merging order is assigned as follow: GeLLMO-P6-Llama, Meerkat-8B-v1.0, Molinst-Molecule-8B, and KALE-LM-Chem-1.5. The merging weight coefficients for each model, β , are assigned using a linear strategy that increase from 0.3 to 0.6. We draw inspiration for this coefficient range from a conclusion in task arithmetic [25]: "Scaling coefficients in the range 0.3 to 0.5 produce close to optimal results in many cases." Ablation studies and corresponding experimental results are provided in Section 4.4 to demonstrate the effectiveness of the chosen merging order and the β weighting strategy.

Baseline algorithms We compare the performance of the merged model derived from our approach against a variety of baselines, including: 1) the original base and expert models, and 2) merged

models obtained through existing high-performance model merging approaches. Task Arithmetic (TA) [25] constructs task vector by subtracting the weights of the base model from the expert models and combines together the task vectors by concise arithmetic operations. Ties-merging (TIES) [55] discards the task vectors with negligible changes and combines the remaining vectors that are aligned in sign. DARE_TA [60] considers the disparities between base and expert model parameters, dropping a subset of task vectors. SCE [48] allocates parameter matrix-level coefficients based on the magnitude of parameter changes, enabling fine-grained merging. Arcee Fusion (AF) [17] assesses the importance of each parameter based on the Kullback-Leibler (KL) divergence and dynamically optimizes the parameters accordingly. Studies have shown that across different datasets and experimental settings, TA, DARE TA, and TIES alternately achieve the best performance and are regarded as state-of-the-art methods. To ensure a fair comparison, all approaches use the same base and expert models described above. While TA, TIES, DARE_TA, and SCE support the simultaneous merging of multiple models, AF merges one expert model into the base model at a time and performs iterative merging for multiple experts. Each method receives the same ranking information derived from the validation set. More specifically, the TA, TIES, DARE_TA, and SCE methods also require assigning a weight to each expert model. The AF method requires specifying a merging order. In all cases, the weights or orders used are the same as those used by CMM. The details and results of the comparison between CMM and other machine learning methods are provided in Appendix B.

Benchmarks and evaluation metrics The performance of various models is evaluated on two representative chemical benchmarks. The first benchmark, Chembench [62], consists of 4,100 high-quality multiple-choice questions and answers spanning 9 core chemistry tasks: Name Conversion (NC), Property Prediction (Property_P), Mol2Caption (M2C), Caption2Mol (C2M), Product Prediction (**Product P**), Retrosynthesis (**RS**), Yield Prediction (**YP**), Temperature Prediction (**TP**), and Solvent Prediction (SP). The evaluation metric used for this benchmark is accuracy. The second benchmark consists of two molecular generation tasks from Mol-Instructions [15]: retrosynthesis and forward reaction prediction. To reduce computational overhead, 200 samples from each task are randomly selected as the test dataset. An ablation study in Appendix D examines the relationship between the number of evaluation samples and the resulting metrics. The results indicate that beyond 200 samples, the evaluation scores stabilize, showing only minor fluctuations without any consistent upward or downward trend. We employ Round-trip accuracy, SELFIES BLEU score, Validity rate and Exact match rate as the evaluation metrics to comprehensively evaluate the performance. SELF-IES BLEU score (SBS) quantifies the syntactic similarity between the generated SELFIES strings and the ground truth strings using the BLEU metric, which captures n-gram overlap. Validity rate (VR) is defined as the proportion of generated molecular structures that are chemically valid. Exact match rate (EMR) measures the proportion of generated molecular structures that exactly match the corresponding ground truth structures. However, given that multiple chemically plausible predictions may exist beyond the exact ground truth, retrosynthetic studies [26] have proposed a more chemically meaningful and robust evaluation metric, round-trip accuracy. Round-trip accuracy (RTA) measures the proportion of predicted reactants that, when input into a forward reaction model, regenerate the original product. It reflects the chemical validity and semantic correctness of the predicted structures. Accordingly, we consider round-trip accuracy as the most reliable metric on the second benchmark. The validation set used for ranking is composed of the ChemBench dev set and 100 samples from Mol-Instructions, both of which are entirely disjoint from the test set.

4.2 Results

Table 1 shows the prediction performance of models merged using our approach (CMM, DARE_CMM), in comparison with individual expert models and models produced by baseline merging approaches across 9 multiple-choice chemical question tasks and their overall average on ChemBench. The expert models exhibit diverse strengths across different tasks, confirming their respective specializations. For example, KALE-LM-Chem-1.5 achieves the best performance on Property_P and strong results on C2M and Product_P, while Molinst-Molecule-8B and Meerkat-8B-v1.0 perform competitively in YP and TP. In contrast, the general-purpose base model LLaMA3-8B-Instruct delivers moderate results and lacks task-specific specialization, leading to a lower average accuracy of 45.93 compared to the best-performing expert, KALE-LM-Chem-1.5, which achieves 57.07. This disparity underscores the value of leveraging expert models tailored to specific chemical domains. Our merged models, CMM and DARE_CMM, consistently outperform individual experts

Table 2: Performance of baselines and our approach on Mol-Instructions. For all columns, higher values reflect better performance.

Models	RTA	Retros	ynthesi VR	s EMR	Forwa RTA	ard Rea	ction P VR	rediction EMR	Average RTA
	KIA	зьз	V IX	ENIK	KIA	зьз	VK	ENIK	NIA
Expert models									
Llama-3-8B-Instruct	0	0	1.00	0	0.14	0.21	0.82	0	0.07
Molinst-molecule-8b	0.42	0.50	0.66	0.22	0.31	0.55	0.69	0.33	0.37
KALE-LM-Chem-1.5	0	0	1.00	0	0.14	0.21	0.82	0	0.07
Meerkat-8b-v1.0	0	0.02	0.61	0	0	0.13	0.45	0	0
GeLLMO-P6	0	0.08	0.96	0	0.16	0.14	0.93	0	0.08
SOTA merge methods									
TA	0	0.80	0.69	0.01	0.16	0.84	0.98	0.03	0.08
TIES	0.10	0.24	0.73	0	0.03	0.35	0.89	0	0.07
DARE_TA	0.36	0.85	0.98	0.12	0.29	0.91	1.00	0.21	0.33
SCE	0.01	0.06	0.54	0	0	0.22	0.49	0	0.01
AF	0.01	0.12	0.31	0	0	0.23	0.53	0	0.01
Merged models through CMM									
CMM	0.42	0.66	0.89	0.10	0.28	0.89	1.00	0.22	0.35
DARE_CMM	0.31	0.64	0.84	0.05	0.28	0.92	1.0	0.23	0.30

by effectively integrating their complementary strengths. Notably, CMM achieves the highest average accuracy of 61.43, surpassing KALE-LM-Chem-1.5 by 7.6% and the base model by 33.7%, and ranks first in 6 out of 9 tasks. DARE_CMM also achieves strong results, with an average accuracy of 59.93. These results demonstrate that CMM not only concentrates task-specific expertise but also mitigates inconsistencies, such as parameter interference and accumulated fine-tuning noise, that typically arise when combining heterogeneous Chemical LLMs. By progressively aligning expert models with the base model based on capability, CMM facilitates chemical knowledge generalization without sacrificing robustness. Compared to existing state-of-the-art model merging methods, including TA, TIES, DARE_TA, SCE, and AF, our approach delivers superior performance both in average and across individual tasks. While TA achieves a respectable average accuracies of 51.85, which is 18.5% lower than CMM, it also falls short on several tasks where our methods excel, such as Product_P, RS, and TP. Moreover, all baseline approaches struggle to resolve hidden noise and parameter conflicts, resulting in merged models that underperform even the best individual expert (KALE-LM-Chem-1.5). This indicates their limited effectiveness in preserving knowledge and managing inter-model inconsistencies. In contrast, CMM and DARE_CMM maintain consistently high performance across tasks,

highlighting their effectiveness in preserving useful knowledge while avoiding performance degradation.

Table 2 reports the performance on the Mol-Instructions benchmark, which focuses on generative chemical tasks, specifically retrosynthesis and forward reaction prediction. In contrast to ChemBench, an expert-abundant benchmark with multiple experts demonstrating superior performance, Mol-Instructions presents an **expert-sparse** scenario, where only a single expert, Molinst-Molecule-8B, shows promising results. Specifically, it achieves round-trip accuracies of 0.42 and 0.31 on retrosynthesis and forward prediction, respectively, while other expert models, including those that performed well on ChemBench, exhibit near-zero performance on round-trip accuracy. This large performance disparity highlights the unique specialization of Molinst-Molecule-8B and the uneven distribution of expertise among the expert model group. Despite this imbalance, our proposed methods, CMM and DARE CMM, successfully concen-

Table 3: The overall average performance across 9 prediction tasks from ChemBench and 2 generative tasks from Mol-Instructions.

Models	Overall average				
Expert models					
Llama-3-8B-Instruct	38.85				
Molinst-molecule-8b	41.79				
KALE-LM-Chem-1.5	47.97				
Meerkat-8b-v1.0	35.71				
GeLLMO-P6	27.53				
SOTA merge methods					
TA	43.88				
TIES	34.69				
DARE TA	30.86				
SCE _	32.84				
AF	42.26				
Merged models through	gh CMM				
CMM	56.62				
DARE_CMM	54.40				

trate the rare but critical generative capability of Molinst-Molecule-8B without being negatively impacted by the poor performance of other experts. CMM achieves a round-trip accuracy of 0.42 on retrosynthesis, matching the top-performing expert, and maintains strong validity and SELFIES BLEU scores. On forward reaction prediction, CMM attains a round-trip accuracy of 0.28, closely approaching Molinst-Molecule-8B's 0.31. Importantly, further analysis reveals that CMM correctly generates a distinct subset of samples compared to Molinst-Molecule-8B, suggesting that the merged model does not merely inherit expert knowledge in a one-to-one fashion. While some knowledge from Molinst-Molecule-8B is not retained during the merging process, CMM also appears to generalize relevant patterns beyond individual model boundaries, bridging predictive reasoning and generative modeling. This finding underscores the advantage of CMM's capability-aware merging strategy, which not only preserves task-specialized knowledge but also supports meaningful high-level expert intelligence fusion. On the contrary, baseline model merging methods struggle in this expert-sparse setting. Their round-trip accuracy on retrosynthesis rarely exceeds 0.1, and drops to near zero on forward reaction prediction. This failure stems from their inability to handle highly imbalanced conditions where most experts contribute noise rather than signal, leading to poor knowledge integration and degraded performance.

To enable a unified comparison of model performance across the two benchmarks, we normalize the round-trip accuracy scores from Mol-Instructions by rescaling them to a 0–100 range. We then combine the results from the nine predictive tasks in ChemBench and the two generative tasks in Mol-Instructions to compute an overall average score, as shown in Table 3. CMM achieves the highest overall average score of 56.62, significantly outperforming all individual expert models and state-of-the-art model merging methods. Specifically, it exceeds the best-performing expert model, KALE-LM-Chem-1.5, by 18.03%, and outperforms the best baseline merging method, TA, by 29.03%. The DARE-CMM model also performs strongly, achieving an overall average score of 54.40, ranking second among all merged models and outperforming all expert models and other baseline approaches. These results clearly demonstrate the effectiveness of our progressive, capability-aware merging strategy for integrating chemical LLMs. Notably, CMM not only concentrates task-specific expertise but also mitigates inconsistencies and achieves strong generalization across both predictive and generative tasks—under both expert-abundant and expert-sparse conditions.

4.3 Analysis

We use the Subspace Alignment Ratio (SAR) [36] to investigate how the expert models are integrated into the merged model during the merging process. The SAR is used to quantify the alignment between the subspaces of two task matrices. The formal definition and computation details of SAR are provided in Appendix F. A higher SAR value indicates a greater overlap between the subspaces, meaning that the merged model better inherits the capabilities of the expert model.

We observe that as more expert models are merged later in the process, the SAR values of those merged earlier tend to slightly decrease. Additionally, higher assigned weights are generally associated with higher SAR values. This suggests that placing better-performing expert models later in the merging order, and assigning them higher weights, leads to higher SAR values. Take a model as an example. Table 4 shows the evolution of the SAR value for Molinst-molecule-8B during the CMM process. This expert model was merged at step 3, where its SAR value increased significantly. At step 4, the SAR value slightly decreased due to the merging of KALE-LM-Chem-1.5. When we reduced the weight assigned to Molinst-molecule-8B at step 3, we observed a corresponding decrease in its SAR value.

Table 4: SAR for Molinst-molecule-8B

Metric	Step1	Step2	Step2 Step3 Step		Step3(reduced weight)
SAR	0.042	0.042	0.650	0.647	0.506

4.4 Ablation study

Influence of the number of expert models Starting from the full expert model set (GeLLMO-P6-Llama, Meerkat-8B-v1.0, Molinst-Molecule-8B, and KALE-LM-Chem-1.5), we progressively reduce the number of source models to evaluate how performance degrades across both predictive and

Table 5: Ablation study on the number of expert models used in CMM. We progressively reduce the number of merged expert models to evaluate the impact on CMM's performance across the ChemBench and Mol-Instructions benchmarks.

GeLLMO	Meerkat	Molinst-molecule	KALE-LM-Chem	Chembench Average	Mol-Instructions Average	Overall Average
√	✓	✓	✓	61.43	0.35	56.62
✓	\checkmark	\checkmark		48.47	0.13	42.02
✓	\checkmark			48.88	0	40.00
✓				49.34	0	40.37

Table 6: Ablation study on the expert model merging order. We compare the performance of CMM under different merging sequences, including reverse and random orders.

Merge Sequence	Chembench Average	Mol-Instructions Average	Overall Average
Default	61.43	0.35	56.62
Reverse	48.15	0.13	41.67
Random	52.05	0.26	47.31

generative benchmarks, results presented in Table 5. The full CMM configuration, which includes all four expert models, achieves the most superior performance on both benchmarks, with an average score of 61.43 on ChemBench and 0.35 on Mol-Instructions, resulting in the best overall average of 56.62. Removing the strongest predictive expert, KALE-LM-Chem-1.5, leads to a substantial drop in performance, ChemBench drops to 48.47 and Mol-Instructions to 0.13. Although KALE-LM-Chem-1.5 is a key contributor in boosting merging performance, the model after merging KALE-LM-Chem-1.5 achieves a significantly higher overall average score of 56.62 compared to KALE-LM-Chem's 47.97. This suggests that CMM enables a bi-directional improvement, where not only does the high-performing expert contribute significantly, but the inclusion of moderate-performing experts in the early stage also accumulate positive effect leading to the ultimate superior overall performance. As more experts are excluded, performance continues to decline, particularly in the generative domain where Mol-Instructions scores fall to zero once Molinst-Molecule is removed.

Influence of the expert model merging order To investigate the effect of merge sequence on model performance, we compared our default merge order in the main experiment with two alternative strategies: reverse order and random order. Table 6 presents an ablation study evaluating the impact of expert model merging order on the performance of CMM. The default merging sequence, determined based on model task-specific performance, achieves the best overall results, with an average score of 61.43 on ChemBench, 0.35 on Mol-Instructions, and an overall average of 56.62. In contrast, reversing the merging order results in a sharp decline in performance, particularly on ChemBench, dropping to 48.15, and overall, down to 41.67. Similarly, using a random merging order yields a moderate degradation in performance, with overall accuracy reduced to 47.31. To further understand these effects, we visualize and compare the cumulative performance trajectories under the default and reverse merging orders. As shown in Figure 2, the default order produces a steady and consistent performance gain, culminating in the highest final score after all expert models are merged. In contrast, the reverse order exhibits a diminishing return pattern: although merging the strongest expert model (KALE-LM-Chem) first provides an early boost, subsequent merging steps result in stagnant or reduced gains. This supports the hypothesis that progressively building the model's capacity using increasingly capable experts helps consolidate task-specific strengths while maintaining base model's adaptive capability for the next round.

Influence of the merging strategy and weight coefficient β Since the expert models are ordered from weakest to strongest based on their individual performance, the distribution of β is expected to be either uniform or gradually increasing. In this experiment, we evaluate three distribution strategies: constant, linear, and exponential. As shown in Table 7, the linear distribution yields the best overall performance. In the constant setting, all expert models are assigned the same β_k , which we set to 0.5—a value empirically close to the optimal according to prior research. Assigning equal weights to all expert models results in a notably lower overall average of 54.60. To further examine the effect of the coefficient range, we conducted an ablation study by varying β within different intervals. In our experiments, we found that slightly increasing the coefficient could lead to marginal performance improvements, whereas slightly decreasing it often resulted in a noticeable drop in performance.

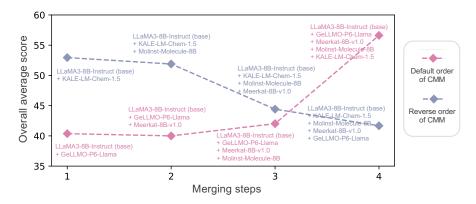


Figure 2: Performance comparison of the merged models along the trajectories of default/reverse order of CMM.

Table 7: Ablation study on the influence of the merging strategy and the coefficient range of weight β . We compare constant, linear, and exponential distributions of β , and further analyze the effect of varying the coefficient range on model performance.

β distribution	Chembench Average	Mol-Instructions Average	Overall Average
constant[0.3, 0.6]	60.51	0.28	54.60
linear[0.3, 0.6]	61.43	0.35	56.62
exponential[0.3, 0.6]	61.38	0.33	56.22
linear[0.2, 0.5]	61.03	0.24	54.21
linear[0.4, 0.7]	60.38	0.41	56.86

4.5 Scalability

To evaluate the scalability and generality of CMM, we further apply it to settings beyond the chemical domain. The results demonstrate that CMM remains effective and stable under these extended settings, indicating that the underlying merging mechanism is not limited to chemistry-specific tasks. Detailed experimental setups and results are provided in Appendix E.

5 Conclusion

In this work, we propose Curriculum Model Merging (CMM), a progressive, capability-aware framework tailored to the challenges of merging heterogeneous chemical LLMs. CMM addresses the domain-specific issues of model disparity and imbalanced task coverage by structuring the merging process as a curriculum and applying adaptive weighting to expert contributions. Evaluations on ChemBench and Mol-Instructions show that CMM consistently outperforms individual experts and state-of-the-art baselines, while generalizing well across predictive and generative tasks in both expert-abundant and expert-sparse settings. These results demonstrate CMM's effectiveness as a scalable and privacy-conscious approach for building versatile chemical language models from specialized experts.

6 Limitation

While our approach demonstrates strong empirical performance, several limitations remain. First, model merging currently requires all expert models to share the same architecture, which may limit its applicability to settings with different model architectures. Second, performance can also degrade when merging a large number of expert models. This is a known challenge observed in prior work [50]. Lastly, although initial analyses suggest why CMM achieves improved results, a deeper theoretical understanding remains future research.

Acknowledgements

We thank all the anonymous reviewers for their constructive suggestions on improving this paper. This paper is partially supported by National Natural Science Foundation of China (NSFC) grant 62441236.

References

- [1] Luis M Antunes, Keith T Butler, and Ricardo Grau-Crespo. Crystal structure generation with autoregressive large language modeling. *Nature Communications*, 15(1):10570, 2024.
- [2] Arcee.ai. Llama-3.1-supernova-lite. https://huggingface.co/arcee-ai/Llama-3.1-SuperNova-Lite, 2024.
- [3] Ashvini Kumar Jindal, Pawan Kumar Rajpoot, Ankur Parikh, Akshita Sukhlecha. Llama-3.1-storm-8b, 2024.
- [4] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In *Proceedings of the 26th Annual International Conference on Machine Learning*, ICML '09, page 41–48, New York, NY, USA, 2009. Association for Computing Machinery.
- [5] Dong Chen, Kaifu Gao, Duc Duy Nguyen, Xin Chen, Yi Jiang, Guo-Wei Wei, and Feng Pan. Algebraic graph-assisted bidirectional transformers for molecular property prediction. *Nature communications*, 12(1):3521, June 2021.
- [6] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to solve math word problems, 2021.
- [7] Donato Crisostomi, Marco Fumero, Daniele Baieri, Florian Bernard, and Emanuele Rodolà. c^2m^3 : Cycle-consistent multi-model merging, 2024.
- [8] Nico Daheim, Thomas Möllenhoff, Edoardo Maria Ponti, Iryna Gurevych, and Mohammad Emtiyaz Khan. Model merging by uncertainty-based gradient matching, 2024.
- [9] Weichen Dai, Yezeng Chen, Zijie Dai, Zhijie Huang, Yubo Liu, Yixuan Pan, Baiyang Song, Chengli Zhong, Xinhe Li, Zeyu Wang, et al. Kale-lm: Unleash the power of ai for science via knowledge and logic enhanced large model. *arXiv preprint arXiv:2409.18695*, 2024.
- [10] Pala Tej Deep, Rishabh Bhardwaj, and Soujanya Poria. Della-merging: Reducing interference in model merging through magnitude-based sampling, 2024.
- [11] Vishal Dey, Xiao Hu, and Xia Ning. GeLLM³0: Generalizing large language models for multiproperty molecule optimization, 2025.
- [12] Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred A. Hamprecht. Essentially no barriers in neural network energy landscape, 2019.
- [13] Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner. DROP: A reading comprehension benchmark requiring discrete reasoning over paragraphs. In Jill Burstein, Christy Doran, and Thamar Solorio, editors, Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 2368–2378, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics.
- [14] Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation invariance in linear mode connectivity of neural networks, 2022.
- [15] Yin Fang, Xiaozhuan Liang, Ningyu Zhang, Kangwei Liu, Rui Huang, Zhuo Chen, Xiaohui Fan, and Huajun Chen. Mol-instructions: A large-scale biomolecular instruction dataset for large language models. In *ICLR*. OpenReview.net, 2024.
- [16] Damien Ferbach, Baptiste Goujaud, Gauthier Gidel, and Aymeric Dieuleveut. Proving linear mode connectivity of neural networks via optimal transport, 2024.

- [17] Charles Goddard, Shamane Siriwardhana, Malikeh Ehghaghi, Luke Meyers, Vladimir Karpukhin, Brian Benedict, Mark McQuade, and Jacob Solawetz. Arcee's MergeKit: A toolkit for merging large language models. In Franck Dernoncourt, Daniel Preoţiuc-Pietro, and Anastasia Shimorina, editors, *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track*, pages 477–485, Miami, Florida, US, November 2024. Association for Computational Linguistics.
- [18] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, and et al. The llama 3 herd of models, 2024.
- [19] Yang Han, Ziping Wan, Lu Chen, Kai Yu, and Xin Chen. From generalist to specialist: A survey of large language models for chemistry. In Owen Rambow, Leo Wanner, Marianna Apidianaki, Hend Al-Khalifa, Barbara Di Eugenio, and Steven Schockaert, editors, *Proceedings of the 31st International Conference on Computational Linguistics*, pages 1106–1123, Abu Dhabi, UAE, January 2025. Association for Computational Linguistics.
- [20] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. Measuring massive multitask language understanding, 2021.
- [21] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *NeurIPS*, 2021.
- [22] Shion Honda, Shoi Shi, and Hiroki R. Ueda. Smiles transformer: Pre-trained molecular fingerprint for low data drug discovery. 2019.
- [23] Stefan Horoi, Albert Manuel Orozco Camacho, Eugene Belilovsky, and Guy Wolf. Harmony in diversity: Merging neural networks with canonical correlation analysis, 2024.
- [24] Chenyu Huang, Peng Ye, Tao Chen, Tong He, Xiangyu Yue, and Wanli Ouyang. Emr-merging: Tuning-free high-performance model merging, 2024.
- [25] Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. In *The Eleventh International Conference on Learning Representations*, 2023.
- [26] Yinjie Jiang, Yemin Yu, Ming Kong, Yu Mei, Luotian Yuan, Zhengxing Huang, Kun Kuang, Zhihua Wang, Huaxiu Yao, James Zou, Connor W. Coley, and Ying Wei. Artificial intelligence for retrosynthesis prediction. *Engineering*, 25:32–50, 2023.
- [27] Dongki Kim, Wonbin Lee, and Sung Ju Hwang. Mol-llama: Towards general understanding of molecules in large molecular language model, 2025.
- [28] Hyunjae Kim, Hyeon Hwang, Jiwoo Lee, Sihyeon Park, Dain Kim, Taewhoo Lee, Chanwoong Yoon, Jiwoong Sohn, Donghee Choi, and Jaewoo Kang. Small language models learn enhanced reasoning skills from medical textbooks. *arXiv preprint arXiv:2404.00376*, 2024.
- [29] Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman, Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik, Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm, Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tulu 3: Pushing frontiers in open language model post-training, 2025.
- [30] Sihang Li, Jin Huang, Jiaxi Zhuang, Yaorui Shi, Xiaochen Cai, Mingjun Xu, Xiang Wang, Linfeng Zhang, Guolin Ke, and Hengxing Cai. Scilitllm: How to adapt Ilms for scientific literature understanding, 2024.
- [31] Xianggen Liu, Yan Guo, Haoran Li, Jin Liu, Shudong Huang, Bowen Ke, and Jiancheng Lv. Drugllm: Open large language model for few-shot molecule generation, 2024.
- [32] Yuyan Liu, Sirui Ding, Sheng Zhou, Wenqi Fan, and Qiaoyu Tan. Moleculargpt: Open large language model (llm) for few-shot molecular property prediction, 2024.

- [33] Zequn Liu, Wei Zhang, Yingce Xia, Lijun Wu, Shufang Xie, Tao Qin, Ming Zhang, and Tie-Yan Liu. MolXPT: Wrapping molecules with text for generative pre-training. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors, *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*, pages 1606–1616, Toronto, Canada, July 2023. Association for Computational Linguistics.
- [34] Zhenyi Lu, Chenghao Fan, Wei Wei, Xiaoye Qu, Dangyang Chen, and Yu Cheng. Twin-merging: Dynamic integration of modular expertise in model merging, 2024.
- [35] Liuzhenghao Lv, Zongying Lin, Hao Li, Yuyang Liu, Jiaxi Cui, Calvin Yu-Chian Chen, Li Yuan, and Yonghong Tian. Prollama: A protein large language model for multi-task protein language processing. *IEEE Transactions on Artificial Intelligence*, pages 1–12, 2025.
- [36] Daniel Marczak, Simone Magistri, Sebastian Cygert, Bartłomiej Twardowski, Andrew D. Bagdanov, and Joost van de Weijer. No task left behind: Isotropic model merging with common and task-specific subspaces, 2025.
- [37] Vaibhav Mishra, Somaditya Singh, Dhruv Ahlawat, Mohd Zaki, Vaibhav Bihani, Hargun Singh Grover, Biswajit Mishra, Santiago Miret, Mausam, and N. M. Anoop Krishnan. Foundational large language models for materials research, 2025.
- [38] Andrea Madotto Andrew Gordon Wilson C. Lawrence Zitnick Nate Gruver, Anuroop Sriram and Zachary Ward Ulissi. Fine-tuned language models generate stable inorganic materials as text. In *International Conference on Learning Representations* 2024, 2024.
- [39] Aviv Navon, Aviv Shamsian, Ethan Fetaya, Gal Chechik, Nadav Dym, and Haggai Maron. Equivariant deep weight space alignment, 2024.
- [40] OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, et al. Gpt-4 technical report, 2024.
- [41] Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung, Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging bigbench tasks and whether chain-of-thought can solve them. *arXiv preprint arXiv:2210.09261*, 2022.
- [42] Anke Tang, Li Shen, Yong Luo, Liang Ding, Han Hu, Bo Du, and Dacheng Tao. Concrete subspace learning based interference elimination for multi-task model fusion, 2023.
- [43] Anke Tang, Li Shen, Yong Luo, Shiwei Liu, Han Hu, and Bo Du. Towards efficient pareto set approximation via mixture of experts based model fusion, 2024.
- [44] Anke Tang, Li Shen, Yong Luo, Nan Yin, Lefei Zhang, and Dacheng Tao. Merging multi-task models via weight-ensembling mixture of experts, 2024.
- [45] Ryan Teknium, Jeffrey Quesnelle, and Chen Guang. Hermes 3 technical report, 2024.
- [46] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language models, 2023.
- [47] Umit V. Ucak, Islambek Ashyrmamatov, Junsu Ko, and Juyong Lee. Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. *Nature Communications*, 13(1):1186, 2022.
- [48] Fanqi Wan, Longguang Zhong, Ziyi Yang, Ruijun Chen, and Xiaojun Quan. Fusechat: Knowledge fusion of chat models, 2024.
- [49] Sheng Wang, Yuzhi Guo, Yuhong Wang, Hongmao Sun, and Junzhou Huang. Smiles-bert: Large scale unsupervised pre-training for molecular property prediction. In *Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics*, BCB '19, page 429–436, New York, NY, USA, 2019. Association for Computing Machinery.

- [50] Zijing Wang, Xingle Xu, Yongkang Liu, Yiqun Zhang, Peiqin Lin, Shi Feng, Xiaocui Yang, Daling Wang, and Hinrich Schütze. Why do more experts fail? a theoretical analysis of model merging, 2025.
- [51] Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Ludwig Schmidt. Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, *Proceedings of the 39th International Conference on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*, pages 23965–23998. PMLR, 17–23 Jul 2022.
- [52] Fang Wu, Dragomir Radev, and Stan Z. Li. Molformer: Motif-based transformer on 3d heterogeneous molecular graphs. *Proceedings of the AAAI Conference on Artificial Intelligence*, 37(4):5312–5320, Jun. 2023.
- [53] Tong Xie, Yuwei Wan, Wei Huang, Zhenyu Yin, Yixuan Liu, Shaozhou Wang, Qingyuan Linghu, Chunyu Kit, Clara Grazian, Wenjie Zhang, Imran Razzak, and Bram Hoex. Darwin series: Domain specific large language models for natural science, 2023.
- [54] Zhengqi Xu, Ke Yuan, Huiqiong Wang, Yong Wang, Mingli Song, and Jie Song. Training-free pretrained model merging, 2024.
- [55] Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging: Resolving interference when merging models. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, *Advances in Neural Information Processing Systems*, volume 36, pages 7093–7115. Curran Associates, Inc., 2023.
- [56] Vikas Yadav, Steven Bethard, and Mihai Surdeanu. Quick and (not so) dirty: Unsupervised selection of justification sentences for multi-hop question answering. *arXiv* preprint *arXiv*:1911.07176, 2019.
- [57] Enneng Yang, Li Shen, Guibing Guo, Xingwei Wang, Xiaochun Cao, Jie Zhang, and Dacheng Tao. Model merging in llms, mllms, and beyond: Methods, theories, applications and opportunities, 2024.
- [58] Enneng Yang, Li Shen, Zhenyi Wang, Guibing Guo, Xiaojun Chen, Xingwei Wang, and Dacheng Tao. Representation surgery for multi-task model merging, 2024.
- [59] Botao Yu, Frazier N. Baker, Ziqi Chen, Xia Ning, and Huan Sun. LlaSMol: Advancing large language models for chemistry with a large-scale, comprehensive, high-quality instruction tuning dataset. In *First Conference on Language Modeling*, 2024.
- [60] Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario: Absorbing abilities from homologous models as a free lunch. In *Forty-first International Conference on Machine Learning*, 2024.
- [61] Dan Zhang, Ziniu Hu, Sining Zhoubian, Zhengxiao Du, Kaiyu Yang, Zihan Wang, Yisong Yue, Yuxiao Dong, and Jie Tang. Sciglm: Training scientific language models with self-reflective instruction annotation and tuning, 2024.
- [62] Di Zhang, Wei Liu, Qian Tan, Jingdan Chen, Hang Yan, Yuliang Yan, Jiatong Li, Weiran Huang, Xiangyu Yue, Dongzhan Zhou, Shufei Zhang, Mao Su, Hansen Zhong, Yuqiang Li, and Wanli Ouyang. Chemllm: A chemical large language model, 2024.
- [63] Zihan Zhao, Da Ma, Lu Chen, Liangtai Sun, Zihao Li, Yi Xia, Bo Chen, Hongshen Xu, Zichen Zhu, Su Zhu, Shuai Fan, Guodong Shen, Kai Yu, and Xin Chen. Developing chemdfm as a large language foundation model for chemistry. *Cell Reports Physical Science*, 6(4):102523, 2025.
- [64] Gengmo Zhou, Zhifeng Gao, Qiankun Ding, Hang Zheng, Hongteng Xu, Zhewei Wei, Linfeng Zhang, and Guolin Ke. Uni-mol: A universal 3d molecular representation learning framework. In *The Eleventh International Conference on Learning Representations*, 2023.

- [65] Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou, and Le Hou. Instruction-following evaluation for large language models. *arXiv preprint arXiv:2311.07911*, 2023.
- [66] Le Zhuo, Zewen Chi, Minghao Xu, Heyan Huang, Jianan Zhao, Heqi Zheng, Conghui He, Xian-Ling Mao, and Wentao Zhang. ProtLLM: An interleaved protein-language LLM with protein-as-word pre-training. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 8950–8963, Bangkok, Thailand, August 2024. Association for Computational Linguistics.

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove the checklist: **The papers not including the checklist will be desk rejected.** The checklist should follow the references and follow the (optional) supplemental material. The checklist does NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For each question in the checklist:

- You should answer [Yes], [No], or [NA].
- [NA] means either that the question is Not Applicable for that particular paper or the relevant information is Not Available.
- Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it (after eventual revisions) with the final version of your paper, and its final version will be published with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation. While "[Yes]" is generally preferable to "[No]", it is perfectly acceptable to answer "[No]" provided a proper justification is given (e.g., "error bars are not reported because it would be too computationally expensive" or "we were unable to find the license for the dataset we used"). In general, answering "[No]" or "[NA]" is not grounds for rejection. While the questions are phrased in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your best judgment and write a justification to elaborate. All supporting evidence can appear either in the main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

- Delete this instruction block, but keep the section heading "NeurIPS Paper Checklist",
- Keep the checklist subsection headings, questions/answers and guidelines below.
- Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: See abstract and section 1.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: see section 6

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: See section 3

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: see section 4

Guidelines:

• The answer NA means that the paper does not include experiments.

- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We will open code.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: see section 4

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: see section 4

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: see section 4

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.

- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The reaserch conform ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: see section 5

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.

- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: see Reference.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer:[Yes]

Justification: We well documented them.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent)
 may be required for any human subjects research. If you obtained IRB approval, you
 should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: the core method development in this research does not involve LLMs as any important, original, or non-standard components.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

A Large language models (LLMs) in the chemical domain

Table 8 presents a brief overview of recently published chemical LLMs.

Table 8: Summary of LLMs in the chemical domain

Model	Time	#Parameters	Base model	Dataset	Capability
MolXPT [33]	2023.05	350M	GPT-2	PubChem, PubMed	Mol. und.
CrystaLLM [1]	2023.07	-	GPT-2	MP, OQMD, NOMAD	Crystal gen.
DARWIN-MDP [53]	2023.08	7B	LLaMA	SciQ, FAIR	Sci.
Mol-Instructions [15]	2023.11	7B/8B	LLaMA-2/LLaMA-3	Mol-Instructions	Mol. gen.
ChemDFM [63]	2024.01	8B/13B	LLaMA-3/LLaMa	Chemical literature, textbooks	Mol. und.
SciGLM [61]	2024.01	6B	ChatGLM3	SciInstruct	Sci.
ChemLLM [62]	2024.02	7B	InternLM-2	ChemData and Multi-Corpus	Prop. pred.
LlaSMol [59]	2024.02	7B	Mistral	SMolInstruct	Prop. pred.
ProLLaMA [35]	2024.02	-	LLaMA-2	UniRef50	Prot. und.
ProtLLM [66]	2024.02	7B	LLaMA	InterPT	Prot. gen.
Meerkat [28]	2024.04	7B/8B/70B	Mistral/LLaMA-3/LLaMA-3	18 medical textbooks	Med.
DrugLLM [31]	2024.05	7B	LLaMA	ZINC, ChEMBL	Mol. und.
MolecularGPT [32]	2024.06	7B	LLaMA-2	QM9, ChEMBL	Prop. pred.
SciLitLLM [30]	2024.08	7B/14B	Qwen2	SciLitIns	Sci.
KALE-LM [9]	2024.09	8B	Llama-3.1	-	Prop. pred.
LLAMAT [37]	2024.12	7B/8B	LLaMA-2/LLaMA-3	R2CID	Mater. pred.
GeLLMO [11]	2025.02	7B/8B	Mistral-v0.3/Llama-3.1	MuMOInstruct	Mol. gen.
Mol-LLaMA [27]	2025.02	8B	Llama-3.1		

B Comparison between CMM and other machine learning methods

To demonstrate the advantage of CMM, we provide the results of comparisons between CMM and other machine learning methods. We conducted an additional experiment where we supervised fine-tuned (SFT) Llama-3-8B-Instruct on the dev set of ChemBench and compared it with our CMM model. Due to the limited training data, the SFT model performed poorly, as shown in Table 9. We also compare CMM with GPT-4 [40], a leading closed-source model, based on results reported in prior work [62]. This comparison reveals that our CMM model achieves competitive performance with GPT-4. While GPT-4 remains stronger overall performance(65.89 vs. 61.43), CMM offers a compelling trade-off by delivering strong performance with zero training cost, full reproducibility, and no reliance on proprietary APIs or data.

Table 9: Comparison between CMM and other machine learning methods

Model	Chembench Avg.
SFT	19.19
GPT-4	65.89
CMM	61.43

C Influence of different score computation methods

In the main experiment, the overall performance score for each model is computed by first normalizing its scores across all tasks and then taking the average. Here we propose an alternative method for computing the overall performance scores. For each model, we first compute the average score within each benchmark, where each benchmark consists of multiple tasks. These per-benchmark averages are then normalized to ensure comparability, and their mean is taken as the overall performance score. Under this alternative computation scheme, the ranking of expert models from weakest to strongest is as follows: GeLLMO-P6-Llama, Meerkat-8B-v1.0, KALE-LM-Chem-1.5, and Molinst-Molecule-8B. Keeping other settings unchanged, we apply the Curriculum Model Merging (CMM) procedure based on this order. For comparison, we also recompute the overall scores of the CMM obtained in the main experiment using the new scoring method. The results are summarized in Table 10. This method of computing overall scores overlooks the variation in the number of tasks across different benchmarks and therefore cannot accurately reflect the capabilities of each model. As a result, the performance of

the merged model obtained in this setting is inferior to that of the original one. Specifically, while the average score on Mol-Instructions remains similar, there is a notable drop in performance on ChemBench.

Table 10: Ablation study on different score computation methods

Model	Chembench Average	Mol-Instructions Average	Overall Average
Expert models			
Llama-3-8B-Instruct	45.93	0.07	26.47
Molinst-molecule-8b	42.97	0.37	39.99
KALE-LM-Chem-1.5	57.07	0.07	32.04
Meerkat-8b-v1.0	43.65	0	21.83
GeLLMO-P6	31.87	0.08	19.94
Merged model			
CMM	61.43	0.35	48.22
CMM_AltRank	53.02	0.38	45.51

D Relationship between the number of samples and results

Figure 3 provides more details of the impact of the number of evaluation samples on the resulting evaluation metrics. The evaluation metrics do not exhibit significant upward or downward trends beyond 200 samples. Therefore, we randomly selected 200 evaluation samples to improve computational efficiency.

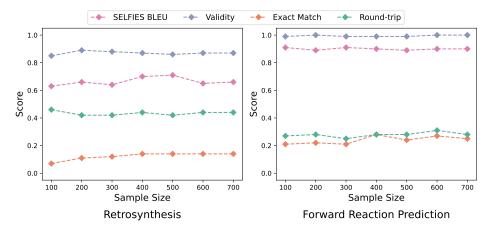


Figure 3: Relationship between the number of evaluation samples and the resulting metrics

E Scalability of CMM

E.1 General model set

CMM is generalizable and applicable beyond the chemical domain. We also applied CMM to general-purpose LLMs and still achieved the best performance. In this experiment, we adopted the universal Llama-3.1-8B-Instruct [18] as the base model, and Hermes-3-Llama-3.1-8B [45], Llama-3.1-Tulu-3-8B [29], Llama-3.1-Storm-8B [3], and Llama-3.1-SuperNova-Lite [2] as expert models, following this merging order. The performance of the models was evaluated across 7 benchmarks spanning multiple domains, including general, instruction following, mathematics, and coding: MMLU [20], IFEval [65], ARC-C [56], DROP [13], BBH [41], GSM8K [6], and Math [21]. For comparison, we also included the model generated using the Task Arithmetic (TA) method.

The model merged using CMM outperforms all expert models and the task arithmetic baseline in terms of average score across the seven benchmarks. Detailed results are presented in Table 11.

Table 11: CMM on a general model set

Model	MMLU	IFEval	ARC-C	DROP	BBH	GSM8K	Math	Avg
Expert models								
Llama-3.1-8B-Instruct	69.35	68.11	81.69	82.33	57.61	84.15	39.76	69.00
Hermes-3-Llama-3.1-8B	64.29	59.59	82.03	77.73	62.25	81.50	25.20	64.66
Llama-3.1-Tulu-3-8B	66.26	75.18	66.10	76.68	61.18	87.87	40.02	67.61
Llama-3.1-Storm-8B	68.87	72.18	81.69	79.01	56.01	82.94	35.60	68.04
Llama-3.1-SuperNova-Lite	69.29	69.90	84.07	81.84	60.10	83.40	36.58	69.31
Merge methods								
TA	67.96	67.03	82.03	80.02	69.80	81.43	41.10	69.91
CMM	69.81	70.26	81.69	83.07	61.11	84.61	40.96	70.22

E.2 Larger and more diverse model set

To evaluate the scalability of CMM, we extended our original experiment by introducing two additional tasks—reasoning and math—evaluated on DROP [13] and GSM8K [6], respectively. We also included two high-performing expert models on these tasks: Llama-3.1-SuperNova-Lite [2] and Llama-3.1-Tulu-3-8B [29]. For comparison, we also included the model generated using the Task Arithmetic (TA) method.

The performance of the six expert models and the CMM-merged model across 13 tasks is shown in Table 12. The CMM-merged model outperforms all expert models as well as the TA-merged model in terms of overall performance. This demonstrates the effectiveness of CMM when applied to larger and more diverse model sets.

When examining individual benchmarks, we observe that the CMM merged model not only inherits but also surpasses the best expert performance on Chembench, indicating strong domain adaptation capabilities. However, on the other three benchmarks—Mol-Instructions, DROP, and GSM8K—CMM does not outperform the top-performing expert models, suggesting that while CMM effectively aggregates knowledge, certain task-specific expertise may be partially diluted during the merging process. We would like to clarify that this phenomenon is not specific to CMM, but rather a common limitation across model merging methods. Prior research has shown that even state-of-the-art merging methods often experience performance saturation after merging no more than six expert models [50]. This highlights an open challenge in the field and calls for further theoretical understanding and methodological advances to improve the scalability of model merging.

Table 12: CMM on a larger and more diverse model set

Model	Chembench Avg	Mol-Instructions Avg	DROP	GSM8K	Overall Avg
Expert models					
Llama-3-8B-Instruct	45.93	0.07	18.63	79.38	40.41
GeLLMO-P6	31.87	0.08	81.91	84.53	36.10
Meerkat-8b-v1.0	43.65	0	74.3	44.81	39.38
Molinst-molecule-8b	42.97	0.37	24.15	62.62	42.12
SuperNova-8B	52.5	0	81.84	83.40	49.06
Llama-Tulu-3-8B	53.28	0	76.68	87.87	49.54
KALE-LM-Chem-1.5	57.07	0.07	56.72	67.63	50.15
Merge methods					
TA	27.35	0.15	62.50	66.19	31.14
CMM	63.80	0.19	67.84	79.15	58.40

F Subspace Alignment Ratio

Subspace Alignment Ratio(SAR) [36] is defined as:

$$SAR(\Delta_t, \Delta_M; k_M) = \frac{\|\Pi_{k_M, M} \Delta_t\|_F}{\|\Delta_t\|_F}, \tag{9}$$

where Δ_t denotes a task vector, Δ_M is the difference between the parameters of the merged model and those of the base model, and $\Pi_{k_M,M}$ is the projection matrix onto the subspace spanned by the top k_M left-singular vectors of Δ_M . The number of singular vectors used (k_M) is formulated as:

$$k_M = \min \left\{ k : \frac{\sum_{i=k+1}^r \sigma_i^2}{\sum_{i=1}^r \sigma_i^2} \le \epsilon^2 \right\}$$
 (10)

where σ_i denotes the singular values of Δ_M , and $\epsilon = 0.05$.