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Abstract

The emergence of large language models (LLMs) has opened new opportunities
for AI-driven chemical problem solving. However, existing chemical LLMs are
typically tailored to specific task formats or narrow domains, limiting their capacity
to integrate knowledge and generalize across tasks. Model merging offers a promis-
ing route for efficiently combining specialized LLMs into a unified model without
access to original training data, which is urgently needed in the chemical domain
where in-house data and privacy preservation are critical. However, effective model
merging in the chemical domain poses unique challenges: (1) significant dispar-
ities among chemical LLMs due to task-specific specialization, and (2) a highly
imbalanced distribution of chemical LLMs in targeted downstream tasks, where
some are over-benchmarked while others remain underexplored. These challenges
intensify model inconsistencies such as parameter interference and accumulated
fine-tuning noise, which collectively hinder effective model merging. To this end,
we propose Curriculum Model Merging (CMM), a curriculum-based framework
that progressively merges expert chemical LLMs in a moderate and continual man-
ner. CMM aims to harmonize their inconsistencies while meantime preserve their
domain-specific expertise. Comprehensive experiments on two benchmark datasets
show that CMM effectively consolidates task-specific expertise and outperforms
the state-of-the-art methods by 29.03% in terms of overall average performance.
Moreover, CMM facilitates chemical knowledge generalization across prediction
and generative tasks without sacrificing robustness, exhibiting promising merging
performance under both expert-abundant and expert-sparse scenarios.

1 Introduction

The emergence of large language models (LLMs) has profoundly reshaped the landscape of Chem-
istry [19], demonstrating remarkable effectiveness across a wide spectrum of real-world problems
(e.g., property prediction [49], molecular generation [47], and retrosynthesis [15]). A prevailing
strategy to adapt foundation LLMs for chemical research is task-specific fine-tuning, which enhances
downstream performance on specialized datasets. However, this paradigm inevitably fragments
chemical intelligence, as each fine-tuned model becomes confined to narrow domains or data formats,
limiting holistic knowledge integration and cross-task generalization. Multi-task learning partially
alleviates the issues by training a universal model on multiple chemical datasets. Yet, its applicability
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in chemistry domains remains constrained by the scarcity of publicly shareable data under in-house
data privacy regulations and the high computation cost required for large-scale joint optimization [62].

Recently, model merging has emerged as a compelling alternative for integrating multiple expert
models into a comprehensive base model without requiring access to the original training data or
extensive retraining, an approach that has already achieved considerable success in natural language
processing (NLP) [57]. However, transferring such success to the chemical domain remains highly
challenging. First, there exist significant disparities among expert chemical LLMs. It is widely
acknowledged that chemical tasks differ fundamentally from natural language tasks, often requiring
larger shifts in representation space and greater parameter adjustments when fine-tuning general-
purpose foundation models (e.g., LLaMA [46], GPT [40]) for chemical applications. Consequently,
base and expert models in the chemical domain tend to exhibit greater variance due to task-specific
specializations, in stark contrast to the relatively homogeneous model landscape in NLP. Additionally,
these greater fine-tuning adjustments accumulate noise and further amplify parameter inconsistencies,
leading to interference and hidden conflicts among expert models that complicate the merging process.
Second, the chemical domain exhibits a highly imbalanced distribution of targeted downstream tasks.
Widely studied tasks such as property prediction are supported by numerous high-performing models
(i.e., expert-abundant scenarios), whereas many niche or emerging tasks such as retrosynthesis are
covered by only a few or no published models (i.e., expert-sparse scenarios). This imbalanced
distribution introduces additional challenges when merging models: knowledge critical to expert-
sparse tasks may be diluted by noise or overshadowed by dominant patterns from expert-abundant
models. As a result, the effectiveness of existing model merging methods remains limited in chemical
domain. Merged models frequently suffer from poor knowledge generalization beyond individual
model boundaries and degraded performance across diverse task types.

In this paper, we introduce Curriculum Model Merging (CMM), a framework designed to address
the aforementioned challenges in merging chemical LLMs. Inspired by curriculum learning [4], we
decompose the extremely complicated problem of simultaneously combining heterogeneous expert
models into a progressive and continual merging process. At its core, CMM constructs a route-based
merging curriculum. In the early stages, weaker expert models are merged first, which gradually
enhances the base model’s generalization and stability. This, in turn, prepares the base model to
accommodate stronger and more specialized experts in subsequent rounds. The result is a merged
model that incrementally strengthens task-specific capabilities while maintaining robustness across
tasks. Our CMM method consists of two main steps. (1) Curriculum construction: CMM ranks expert
models based on their capabilities across various benchmarks, establishing an ordered curriculum that
navigates a continual, capability-aware merging process. (2) Iterative merging: each expert model is
progressively merged into the current base model through task vector extraction and composition,
after which the merged model serves as the base model for the next iteration. Recognizing that the
relative importance of each expert significantly influences the ultimate performance, we introduce
multiple merging strategies that vary the degree of involvement for each expert. This is achieved by
jointly controlling the merging order and assigning adaptive merging weights.

The key contributions of our paper are outlined below. (1) Practicability: We, for the first time,
integrate model merging techniques to effectively consolidate task-specific specializations in the
chemical domain, overcoming data unavailability and avoiding substantial computational costs. (2) Ef-
ficacy: We introduce CMM, a progressive and performance-aware merging framework that addresses
the significant challenges of merging heterogeneous chemical LLMs. Across two representative
benchmarks, CMM exceeds the state-of-the-art merging method by 29.03%. (3) Generality: We
evaluate CMM under both expert-abundant and expert-sparse scenarios. The results demonstrate that
CMM facilitates robust chemical knowledge generalization across both predictive and generative
tasks, without sacrificing performance consistency.

2 Related Work

Chemical LLMs We briefly summarize the recently published LLM studies and their special-
ized versions in the chemistry domain in Appendix A. Early models such as SMILES-BERT [49]
and SMILES Transformer [22] have been employed to process SMILES information of molecules.
Uni-Mol [64], AGBT [5] and Molformer [52] focus on modeling 3D molecules. SciGLM [61], SciL-
itLLM [30], KALE-LM-Chem [9], and LLAMAT [37] primarily focus on natural language processing,
information extraction, and scientific reasoning capabilities. GeLLMO [11], MolecularGPT [32], and
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Figure 1: Standard Model Merging Methods vs. Curriculum Model Merging Standard Model
Merging merges all expert models simultaneously, while Curriculum Model Merging first ranks the
expert models and then merges them progressively.

Mol-LLaMA [27] have been fine-tuned for molecule-related tasks, including multi-property molecule
optimization tasks, molecular property prediction, and understanding molecules. ChemLLM [62],
ChemDFM [63], LlaSMol [59] and Molinst-molecule [15] are specialized for essential chemistry
tasks, such as retrosynthesis, yield prediction, molecular property prediction, and description-guided
molecule design. CrystaLLM [1] and Crystal-text-LLM [38] are specifically designed for crystal
generation and stable materials generation.

Model Merging Methods Model merging methods are broadly categorized into: (1) pre-merging
methods, which align models before merging, and (2) during-merging methods, which resolve con-
flicts during the merging process. Pre-merging methods leverage the linear mode connectivity (LMC)
property [12, 14, 16] to align models prior to merging. Early approaches such as CCAMerge [23] use
CCA-based neuron alignment, while MuDSC [54] jointly aligns weights and activations. C2M3 [7]
optimizes global permutations layer-wise, and Deep-Align [39] introduces a learnable architecture
for dynamic weight alignment. During-merging methods directly manipulate parameters to reduce
interference. Model Soups [51] averages weights, while Task Arithmetic [25] and TIES [55] use
task vectors with interference control. DARE [60] and DELLA [10] sparsify deltas to retain critical
changes. Uncertainty-based merging [8] uses second-order Hessians to guide merging. Modular
approaches such as Concrete [42], EMR-Merging [24], Twin-Merging [34], and Weight-Ensembling
MoE [44] apply dynamic routing and task-specific control. PWE-MoE [43] extends this to multi-
objective settings using preference vectors. Finally, Representation Surgery [58] calibrates merged
models post hoc by aligning their representations with those of the original expert models.

3 Methodology

3.1 Preliminaries

Let Mo represents a pretrained model and {M1,M2, . . . ,MN} represent models fine-tuned based
on the pretrained model. The goal is to merge the combined strengths of these models into Mo. We

3



follow the task arithmetic [25] approach and merge tasks using combined task vectors τt, where the
task vector is defined as

τt = θtft − θpre, (1)

where θpre represents the weights of the pretrained model and θtft represents weights after fine-tuning
on task t.

Task Arithmetic Merging Given N expert models fine-tuned from the same base, this method
aims to merge them into a single model θmerge by linearly combining their task vectors. A simple
arithmetic average is used to obtain the merged task vector:

τnew =

n∑
t=1

τt, θmerge = θpre + λ ∗ τnew (2)

where λ is an optional scaling term controlling the influence of the aggregated task updates, and τnew
denotes the sum of all task vectors.

Drop And Rescale Merging [60] This is a method to reduce interference during merging. The first
step, Drop, randomly resets a portion of task vectors to zero according to a drop rate p. The second
step, Rescale, multiplies the remaining values by a scaling factor of 1

1−p . After applying Drop And
Rescale (DARE), a large number of parameters in the fine-tuned model become identical to those in
the base model. In other words, DARE updates only a small subset of parameters, retaining only a
sparse set of parameter changes and thereby reducing redundancy.

3.2 Curriculum Model Merging

We evaluate the set of models {M1,M2, . . . ,MN} on a validation set. For each model, we evaluate
its performance on individual tasks and normalize the scores to ensure comparability across tasks.
The normalized scores are then averaged and aggregated to compute an overall performance score.
Let the overall performance scores be denoted as {S1, S2, . . . , SN}. Note that we provide an ablation
study in Appendix C to investigate the impact of different score computation methods as well as
various sizes of the validation set on final merging effectiveness. We sort the models in ascending
order of performance to obtain a ranking:

M(1),M(2), . . . ,M(N), such that S(1) ≤ S(2) ≤ . . . ≤ S(N),

where S(i) is the score of model M(i). The coefficient βk ∈ (0, 1) is the scaling term used to combine
the k-th task vector. Specifically, we compute:

τ(1) = θ
(1)
ft − θpre, θ1 = θpre + β1 · τ(1), (3)

τ(2) = θ
(2)
ft − θ1, θ2 = θ1 + β2 · τ(2), (4)

. . .

τ(k) = θ
(k)
ft − θk−1, θk = θk−1 + βk · τ(k), (5)

where k = 1, 2, . . . , N . τ(k) represents the difference between the fine-tuned parameters of the k-th
model and the current merged model, and θk denotes the parameters of the merged model after
incorporating the k-th task vector. This recursive procedure continues until all task vectors have been
merged.

Since model performance improves progressively, better-performing models should not be assigned
smaller weights. There are two strategies to increase the contribution of the later models. First,
the distribution of β should be either flat or increasing based on practical needs, such as constant
value, linear schedule, or exponential growth. We have explored these possibilities in Section 4.4.
Second, CMM is capable of dynamically adjusting the degree of involvement of each expert. Since
0 < βk < 1, this property inherently allows greater weights for the later models. The proof is
provided below.

4



Table 1: Performance of baseline methods and the proposed approach on Chembench. For all
evaluation metrics, higher values indicate better performance. We highlight the best performance as
bold. Bold values denote the best results in each column.

Model NC Property_P M2C C2M Product_P RS YP TP SP Average
Expert models
Llama-3-8B-Instruct 51.19 27.79 90.30 40.88 34.00 29.33 45.33 60.89 33.67 45.93
Molinst-molecule-8b 39.05 25.39 80.94 39.75 29.67 31.67 46.33 60.89 33.00 42.97
KALE-LM-Chem-1.5 61.33 43.72 90.30 53.75 72.67 53.67 45.67 47.52 45.00 57.07
Meerkat-8b-v1.0 50.19 24.26 86.62 40.88 27.33 30.33 42.33 56.93 34.00 43.65
GeLLMO-P6 28.91 29.48 59.53 24.25 24.67 25.00 41.33 29.70 24.00 31.87

SOTA merge methods
TA 60.83 25.11 92.98 46.12 55.00 46.67 47.00 59.90 33.00 51.85
TIES 46.43 30.61 77.26 40.00 35.67 34.33 32.33 44.55 27.33 40.95
DARE_TA 31.41 25.11 49.83 23.88 25.00 25.00 41.67 29.21 23.33 30.49
SCE 40.05 43.02 77.93 36.75 29.00 28.67 45.33 30.20 29.33 40.03
AF 58.95 29.76 91.97 47.5 47.00 42.00 46.00 63.37 37.33 51.54

Merged models through CMM
CMM 63.95 35.40 92.98 54.37 78.33 72.33 46.00 64.85 44.67 61.43
DARE_CMM 63.58 33.43 92.31 51.88 74.00 68.00 47.33 62.87 46.00 59.93

Substituting τ(1) into θ1 gives:
θ1 = (1− β1)θpre + β1θ

(1)
ft (6)

Similarly, substituting the previous expressions into θ2 gives:

θ2 = (1− β1)(1− β2)θpre + β1(1− β2)θ
(1)
ft + β2θ

(2)
ft (7)

. . .

θk =

(
k∏

i=1

(1− βi)

)
θpre +

k∑
j=1

βj

 k∏
i=j+1

(1− βi)

 θ
(j)
ft

 (8)

During merging, since 0 < βk < 1, 0 < (1− βk) < 1, the involvement of top-ranked models that
are merged earlier is dynamically reduced.

Our framework is compatible with different and incoming advanced model merging methods. We
denote the original version combined with Task Arithmetic as CMM, and the one with DARE as
DARE_CMM.

4 Experiments

4.1 Experimental Setup

Base & expert models We briefly summarize the recently published LLM studies in the chemistry
domain in Appendix A. Among them, expert models for merging are selected considering their
enhanced performance on respective specialized tasks. The performance of each model on individual
chemical tasks is presented in Table 1 and Table 2. Ultimately, we adopt the universal LLaMA3-
8B-Instruct [18] as the base model, GeLLMO-P6-Llama [11], Meerkat-8B-v1.0 [28], KALE-LM-
Chem-1.5 [9] and Molinst-Molecule-8B [15] as expert models. Based on the method which is
demonstrated in Section 3.2 and the overall performance across benchmarks of each expert models
reported in Table 3, the merging order is assigned as follow: GeLLMO-P6-Llama, Meerkat-8B-v1.0,
Molinst-Molecule-8B, and KALE-LM-Chem-1.5. The merging weight coefficients for each model,
β, are assigned using a linear strategy that increase from 0.3 to 0.6. We draw inspiration for this
coefficient range from a conclusion in task arithmetic [25]: “Scaling coefficients in the range 0.3 to
0.5 produce close to optimal results in many cases.” Ablation studies and corresponding experimental
results are provided in Section 4.4 to demonstrate the effectiveness of the chosen merging order and
the β weighting strategy.

Baseline algorithms We compare the performance of the merged model derived from our approach
against a variety of baselines, including: 1) the original base and expert models, and 2) merged
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models obtained through existing high-performance model merging approaches. Task Arithmetic
(TA) [25] constructs task vector by subtracting the weights of the base model from the expert models
and combines together the task vectors by concise arithmetic operations. Ties-merging (TIES) [55]
discards the task vectors with negligible changes and combines the remaining vectors that are
aligned in sign. DARE_TA [60] considers the disparities between base and expert model parameters,
dropping a subset of task vectors. SCE [48] allocates parameter matrix-level coefficients based
on the magnitude of parameter changes, enabling fine-grained merging. Arcee Fusion (AF) [17]
assesses the importance of each parameter based on the Kullback–Leibler (KL) divergence and
dynamically optimizes the parameters accordingly. Studies have shown that across different datasets
and experimental settings, TA, DARE_TA, and TIES alternately achieve the best performance
and are regarded as state-of-the-art methods. To ensure a fair comparison, all approaches use the
same base and expert models described above. While TA, TIES, DARE_TA, and SCE support the
simultaneous merging of multiple models, AF merges one expert model into the base model at a
time and performs iterative merging for multiple experts. Each method receives the same ranking
information derived from the validation set. More specifically, the TA, TIES, DARE_TA, and SCE
methods also require assigning a weight to each expert model. The AF method requires specifying
a merging order. In all cases, the weights or orders used are the same as those used by CMM. The
details and results of the comparison between CMM and other machine learning methods are provided
in Appendix B.

Benchmarks and evaluation metrics The performance of various models is evaluated on two repre-
sentative chemical benchmarks. The first benchmark, Chembench [62], consists of 4,100 high-quality
multiple-choice questions and answers spanning 9 core chemistry tasks: Name Conversion (NC),
Property Prediction (Property_P), Mol2Caption (M2C), Caption2Mol (C2M), Product Prediction
(Product_P), Retrosynthesis (RS), Yield Prediction (YP), Temperature Prediction (TP), and Solvent
Prediction (SP). The evaluation metric used for this benchmark is accuracy. The second benchmark
consists of two molecular generation tasks from Mol-Instructions [15]: retrosynthesis and forward
reaction prediction. To reduce computational overhead, 200 samples from each task are randomly
selected as the test dataset. An ablation study in Appendix D examines the relationship between
the number of evaluation samples and the resulting metrics. The results indicate that beyond 200
samples, the evaluation scores stabilize, showing only minor fluctuations without any consistent
upward or downward trend. We employ Round-trip accuracy, SELFIES BLEU score, Validity rate
and Exact match rate as the evaluation metrics to comprehensively evaluate the performance. SELF-
IES BLEU score (SBS) quantifies the syntactic similarity between the generated SELFIES strings
and the ground truth strings using the BLEU metric, which captures n-gram overlap. Validity rate
(VR) is defined as the proportion of generated molecular structures that are chemically valid. Exact
match rate (EMR) measures the proportion of generated molecular structures that exactly match the
corresponding ground truth structures. However, given that multiple chemically plausible predictions
may exist beyond the exact ground truth, retrosynthetic studies [26] have proposed a more chemically
meaningful and robust evaluation metric, round-trip accuracy. Round-trip accuracy (RTA) measures
the proportion of predicted reactants that, when input into a forward reaction model, regenerate the
original product. It reflects the chemical validity and semantic correctness of the predicted structures.
Accordingly, we consider round-trip accuracy as the most reliable metric on the second benchmark.
The validation set used for ranking is composed of the ChemBench dev set and 100 samples from
Mol-Instructions, both of which are entirely disjoint from the test set.

4.2 Results

Table 1 shows the prediction performance of models merged using our approach (CMM,
DARE_CMM), in comparison with individual expert models and models produced by baseline
merging approaches across 9 multiple-choice chemical question tasks and their overall average on
ChemBench. The expert models exhibit diverse strengths across different tasks, confirming their
respective specializations. For example, KALE-LM-Chem-1.5 achieves the best performance on Prop-
erty_P and strong results on C2M and Product_P, while Molinst-Molecule-8B and Meerkat-8B-v1.0
perform competitively in YP and TP. In contrast, the general-purpose base model LLaMA3-8B-
Instruct delivers moderate results and lacks task-specific specialization, leading to a lower average
accuracy of 45.93 compared to the best-performing expert, KALE-LM-Chem-1.5, which achieves
57.07. This disparity underscores the value of leveraging expert models tailored to specific chemical
domains. Our merged models, CMM and DARE_CMM, consistently outperform individual experts
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Table 2: Performance of baselines and our approach on Mol-Instructions. For all columns, higher
values reflect better performance.

Models Retrosynthesis Forward Reaction Prediction Average
RTA SBS VR EMR RTA SBS VR EMR RTA

Expert models
Llama-3-8B-Instruct 0 0 1.00 0 0.14 0.21 0.82 0 0.07
Molinst-molecule-8b 0.42 0.50 0.66 0.22 0.31 0.55 0.69 0.33 0.37
KALE-LM-Chem-1.5 0 0 1.00 0 0.14 0.21 0.82 0 0.07
Meerkat-8b-v1.0 0 0.02 0.61 0 0 0.13 0.45 0 0
GeLLMO-P6 0 0.08 0.96 0 0.16 0.14 0.93 0 0.08

SOTA merge methods
TA 0 0.80 0.69 0.01 0.16 0.84 0.98 0.03 0.08
TIES 0.10 0.24 0.73 0 0.03 0.35 0.89 0 0.07
DARE_TA 0.36 0.85 0.98 0.12 0.29 0.91 1.00 0.21 0.33
SCE 0.01 0.06 0.54 0 0 0.22 0.49 0 0.01
AF 0.01 0.12 0.31 0 0 0.23 0.53 0 0.01

Merged models through CMM
CMM 0.42 0.66 0.89 0.10 0.28 0.89 1.00 0.22 0.35
DARE_CMM 0.31 0.64 0.84 0.05 0.28 0.92 1.0 0.23 0.30

by effectively integrating their complementary strengths. Notably, CMM achieves the highest average
accuracy of 61.43, surpassing KALE-LM-Chem-1.5 by 7.6% and the base model by 33.7%, and ranks
first in 6 out of 9 tasks. DARE_CMM also achieves strong results, with an average accuracy of 59.93.
These results demonstrate that CMM not only concentrates task-specific expertise but also mitigates
inconsistencies, such as parameter interference and accumulated fine-tuning noise, that typically
arise when combining heterogeneous Chemical LLMs. By progressively aligning expert models with
the base model based on capability, CMM facilitates chemical knowledge generalization without
sacrificing robustness. Compared to existing state-of-the-art model merging methods, including TA,
TIES, DARE_TA, SCE, and AF, our approach delivers superior performance both in average and
across individual tasks. While TA achieves a respectable average accuracies of 51.85, which is 18.5%
lower than CMM, it also falls short on several tasks where our methods excel, such as Product_P, RS,
and TP. Moreover, all baseline approaches struggle to resolve hidden noise and parameter conflicts,
resulting in merged models that underperform even the best individual expert (KALE-LM-Chem-1.5).
This indicates their limited effectiveness in preserving knowledge and managing inter-model incon-
sistencies. In contrast, CMM and DARE_CMM maintain consistently high performance across tasks,

Table 3: The overall average performance across 9
prediction tasks from ChemBench and 2 generative
tasks from Mol-Instructions.

Models Overall average
Expert models
Llama-3-8B-Instruct 38.85
Molinst-molecule-8b 41.79
KALE-LM-Chem-1.5 47.97
Meerkat-8b-v1.0 35.71
GeLLMO-P6 27.53

SOTA merge methods
TA 43.88
TIES 34.69
DARE_TA 30.86
SCE 32.84
AF 42.26

Merged models through CMM
CMM 56.62
DARE_CMM 54.40

highlighting their effectiveness in preserving
useful knowledge while avoiding performance
degradation.

Table 2 reports the performance on the Mol-
Instructions benchmark, which focuses on gen-
erative chemical tasks, specifically retrosynthe-
sis and forward reaction prediction. In contrast
to ChemBench, an expert-abundant bench-
mark with multiple experts demonstrating su-
perior performance, Mol-Instructions presents
an expert-sparse scenario, where only a single
expert, Molinst-Molecule-8B, shows promising
results. Specifically, it achieves round-trip ac-
curacies of 0.42 and 0.31 on retrosynthesis and
forward prediction, respectively, while other ex-
pert models, including those that performed well
on ChemBench, exhibit near-zero performance
on round-trip accuracy. This large performance
disparity highlights the unique specialization of
Molinst-Molecule-8B and the uneven distribu-
tion of expertise among the expert model group.
Despite this imbalance, our proposed methods,
CMM and DARE_CMM, successfully concen-
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trate the rare but critical generative capability of Molinst-Molecule-8B without being negatively
impacted by the poor performance of other experts. CMM achieves a round-trip accuracy of 0.42
on retrosynthesis, matching the top-performing expert, and maintains strong validity and SELFIES
BLEU scores. On forward reaction prediction, CMM attains a round-trip accuracy of 0.28, closely
approaching Molinst-Molecule-8B’s 0.31. Importantly, further analysis reveals that CMM correctly
generates a distinct subset of samples compared to Molinst-Molecule-8B, suggesting that the merged
model does not merely inherit expert knowledge in a one-to-one fashion. While some knowledge from
Molinst-Molecule-8B is not retained during the merging process, CMM also appears to generalize
relevant patterns beyond individual model boundaries, bridging predictive reasoning and generative
modeling. This finding underscores the advantage of CMM’s capability-aware merging strategy,
which not only preserves task-specialized knowledge but also supports meaningful high-level expert
intelligence fusion. On the contrary, baseline model merging methods struggle in this expert-sparse
setting. Their round-trip accuracy on retrosynthesis rarely exceeds 0.1, and drops to near zero on
forward reaction prediction. This failure stems from their inability to handle highly imbalanced con-
ditions where most experts contribute noise rather than signal, leading to poor knowledge integration
and degraded performance.

To enable a unified comparison of model performance across the two benchmarks, we normalize
the round-trip accuracy scores from Mol-Instructions by rescaling them to a 0–100 range. We then
combine the results from the nine predictive tasks in ChemBench and the two generative tasks in
Mol-Instructions to compute an overall average score, as shown in Table 3. CMM achieves the
highest overall average score of 56.62, significantly outperforming all individual expert models
and state-of-the-art model merging methods. Specifically, it exceeds the best-performing expert
model, KALE-LM-Chem-1.5, by 18.03%, and outperforms the best baseline merging method, TA, by
29.03%. The DARE-CMM model also performs strongly, achieving an overall average score of 54.40,
ranking second among all merged models and outperforming all expert models and other baseline
approaches. These results clearly demonstrate the effectiveness of our progressive, capability-aware
merging strategy for integrating chemical LLMs. Notably, CMM not only concentrates task-specific
expertise but also mitigates inconsistencies and achieves strong generalization across both predictive
and generative tasks—under both expert-abundant and expert-sparse conditions.

4.3 Analysis

We use the Subspace Alignment Ratio (SAR) [36] to investigate how the expert models are integrated
into the merged model during the merging process. The SAR is used to quantify the alignment
between the subspaces of two task matrices. The formal definition and computation details of SAR
are provided in Appendix F. A higher SAR value indicates a greater overlap between the subspaces,
meaning that the merged model better inherits the capabilities of the expert model.

We observe that as more expert models are merged later in the process, the SAR values of those merged
earlier tend to slightly decrease. Additionally, higher assigned weights are generally associated with
higher SAR values. This suggests that placing better-performing expert models later in the merging
order, and assigning them higher weights, leads to higher SAR values. Take a model as an example.
Table 4 shows the evolution of the SAR value for Molinst-molecule-8B during the CMM process.
This expert model was merged at step 3, where its SAR value increased significantly. At step 4, the
SAR value slightly decreased due to the merging of KALE-LM-Chem-1.5. When we reduced the
weight assigned to Molinst-molecule-8B at step 3, we observed a corresponding decrease in its SAR
value.

Table 4: SAR for Molinst-molecule-8B

Metric Step1 Step2 Step3 Step4 Step3(reduced weight)
SAR 0.042 0.042 0.650 0.647 0.506

4.4 Ablation study

Influence of the number of expert models Starting from the full expert model set (GeLLMO-
P6-Llama, Meerkat-8B-v1.0, Molinst-Molecule-8B, and KALE-LM-Chem-1.5), we progressively
reduce the number of source models to evaluate how performance degrades across both predictive and
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Table 5: Ablation study on the number of expert models used in CMM. We progressively reduce
the number of merged expert models to evaluate the impact on CMM’s performance across the
ChemBench and Mol-Instructions benchmarks.

GeLLMO Meerkat Molinst-molecule KALE-LM-Chem Chembench Mol-Instructions Overall
Average Average Average

✓ ✓ ✓ ✓ 61.43 0.35 56.62
✓ ✓ ✓ 48.47 0.13 42.02
✓ ✓ 48.88 0 40.00
✓ 49.34 0 40.37

Table 6: Ablation study on the expert model merging order. We compare the performance of CMM
under different merging sequences, including reverse and random orders.

Merge Sequence Chembench Mol-Instructions Overall
Average Average Average

Default 61.43 0.35 56.62
Reverse 48.15 0.13 41.67
Random 52.05 0.26 47.31

generative benchmarks, results presented in Table 5. The full CMM configuration, which includes all
four expert models, achieves the most superior performance on both benchmarks, with an average
score of 61.43 on ChemBench and 0.35 on Mol-Instructions, resulting in the best overall average
of 56.62. Removing the strongest predictive expert, KALE-LM-Chem-1.5, leads to a substantial
drop in performance, ChemBench drops to 48.47 and Mol-Instructions to 0.13. Although KALE-
LM-Chem-1.5 is a key contributor in boosting merging performance, the model after merging
KALE-LM-Chem-1.5 achieves a siginificantly higher overall average score of 56.62 compared to
KALE-LM-Chem’s 47.97. This suggests that CMM enables a bi-directional improvement, where
not only does the high-performing expert contribute significantly, but the inclusion of moderate-
performing experts in the early stage also accumulate positive effect leading to the ultimate superior
overall performance. As more experts are excluded, performance continues to decline, particularly in
the generative domain where Mol-Instructions scores fall to zero once Molinst-Molecule is removed.

Influence of the expert model merging order To investigate the effect of merge sequence on model
performance, we compared our default merge order in the main experiment with two alternative
strategies: reverse order and random order. Table 6 presents an ablation study evaluating the impact of
expert model merging order on the performance of CMM. The default merging sequence, determined
based on model task-specific performance, achieves the best overall results, with an average score
of 61.43 on ChemBench, 0.35 on Mol-Instructions, and an overall average of 56.62. In contrast,
reversing the merging order results in a sharp decline in performance, particularly on ChemBench,
dropping to 48.15, and overall, down to 41.67. Similarly, using a random merging order yields a
moderate degradation in performance, with overall accuracy reduced to 47.31. To further understand
these effects, we visualize and compare the cumulative performance trajectories under the default
and reverse merging orders. As shown in Figure 2, the default order produces a steady and consistent
performance gain, culminating in the highest final score after all expert models are merged. In
contrast, the reverse order exhibits a diminishing return pattern: although merging the strongest expert
model (KALE-LM-Chem) first provides an early boost, subsequent merging steps result in stagnant
or reduced gains. This supports the hypothesis that progressively building the model’s capacity using
increasingly capable experts helps consolidate task-specific strengths while maintaining base model’s
adaptive capability for the next round.

Influence of the merging strategy and weight coefficient β Since the expert models are ordered
from weakest to strongest based on their individual performance, the distribution of β is expected to
be either uniform or gradually increasing. In this experiment, we evaluate three distribution strategies:
constant, linear, and exponential. As shown in Table 7, the linear distribution yields the best overall
performance. In the constant setting, all expert models are assigned the same βk, which we set to
0.5—a value empirically close to the optimal according to prior research. Assigning equal weights to
all expert models results in a notably lower overall average of 54.60. To further examine the effect of
the coefficient range, we conducted an ablation study by varying β within different intervals. In our
experiments, we found that slightly increasing the coefficient could lead to marginal performance
improvements, whereas slightly decreasing it often resulted in a noticeable drop in performance.
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Figure 2: Performance comparison of the merged models along the trajectories of default/reverse
order of CMM.

Table 7: Ablation study on the influence of the merging strategy and the coefficient range of weight
β. We compare constant, linear, and exponential distributions of β, and further analyze the effect of
varying the coefficient range on model performance.

β distribution Chembench Mol-Instructions Overall
Average Average Average

constant[0.3, 0.6] 60.51 0.28 54.60
linear[0.3, 0.6] 61.43 0.35 56.62

exponential[0.3, 0.6] 61.38 0.33 56.22
linear[0.2, 0.5] 61.03 0.24 54.21
linear[0.4, 0.7] 60.38 0.41 56.86

4.5 Scalability

To evaluate the scalability and generality of CMM, we further apply it to settings beyond the chemical
domain. The results demonstrate that CMM remains effective and stable under these extended
settings, indicating that the underlying merging mechanism is not limited to chemistry-specific tasks.
Detailed experimental setups and results are provided in Appendix E.

5 Conclusion

In this work, we propose Curriculum Model Merging (CMM), a progressive, capability-aware
framework tailored to the challenges of merging heterogeneous chemical LLMs. CMM addresses the
domain-specific issues of model disparity and imbalanced task coverage by structuring the merging
process as a curriculum and applying adaptive weighting to expert contributions. Evaluations on
ChemBench and Mol-Instructions show that CMM consistently outperforms individual experts and
state-of-the-art baselines, while generalizing well across predictive and generative tasks in both
expert-abundant and expert-sparse settings. These results demonstrate CMM’s effectiveness as a
scalable and privacy-conscious approach for building versatile chemical language models from
specialized experts.

6 Limitation

While our approach demonstrates strong empirical performance, several limitations remain. First,
model merging currently requires all expert models to share the same architecture, which may limit
its applicability to settings with different model architectures. Second, performance can also degrade
when merging a large number of expert models. This is a known challenge observed in prior work [50].
Lastly, although initial analyses suggest why CMM achieves improved results, a deeper theoretical
understanding remains future research.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: See abstract and section 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: see section 6
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: See section 3

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: see section 4

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will open code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: see section 4

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:[Yes]

Justification: see section 4

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: see section 4

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The reaserch conform ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: see section 5
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: see Reference.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:[Yes]

Justification: We well documented them.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: the core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Large language models (LLMs) in the chemical domain

Table 8 presents a brief overview of recently published chemical LLMs.

Table 8: Summary of LLMs in the chemical domain

Model Time #Parameters Base model Dataset Capability
MolXPT [33] 2023.05 350M GPT-2 PubChem, PubMed Mol. und.
CrystaLLM [1] 2023.07 - GPT-2 MP, OQMD, NOMAD Crystal gen.
DARWIN-MDP [53] 2023.08 7B LLaMA SciQ, FAIR Sci.
Mol-Instructions [15] 2023.11 7B/8B LLaMA-2/LLaMA-3 Mol-Instructions Mol. gen.
ChemDFM [63] 2024.01 8B/13B LLaMA-3/LLaMa Chemical literature, textbooks Mol. und.
SciGLM [61] 2024.01 6B ChatGLM3 SciInstruct Sci.
ChemLLM [62] 2024.02 7B InternLM-2 ChemData and Multi-Corpus Prop. pred.
LlaSMol [59] 2024.02 7B Mistral SMolInstruct Prop. pred.
ProLLaMA [35] 2024.02 - LLaMA-2 UniRef50 Prot. und.
ProtLLM [66] 2024.02 7B LLaMA InterPT Prot. gen.
Meerkat [28] 2024.04 7B/8B/70B Mistral/LLaMA-3/LLaMA-3 18 medical textbooks Med.
DrugLLM [31] 2024.05 7B LLaMA ZINC, ChEMBL Mol. und.
MolecularGPT [32] 2024.06 7B LLaMA-2 QM9, ChEMBL Prop. pred.
SciLitLLM [30] 2024.08 7B/14B Qwen2 SciLitIns Sci.
KALE-LM [9] 2024.09 8B Llama-3.1 - Prop. pred.
LLAMAT [37] 2024.12 7B/8B LLaMA-2/LLaMA-3 R2CID Mater. pred.
GeLLMO [11] 2025.02 7B/8B Mistral-v0.3/Llama-3.1 MuMOInstruct Mol. gen.
Mol-LLaMA [27] 2025.02 8B Llama-3.1 Mol-LLaMA-Instruct Mol. und.

B Comparison between CMM and other machine learning methods

To demonstrate the advantage of CMM, we provide the results of comparisons between CMM and
other machine learning methods. We conducted an additional experiment where we supervised
fine-tuned (SFT) Llama-3-8B-Instruct on the dev set of ChemBench and compared it with our CMM
model. Due to the limited training data, the SFT model performed poorly, as shown in Table 9. We
also compare CMM with GPT-4 [40], a leading closed-source model, based on results reported in
prior work [62]. This comparison reveals that our CMM model achieves competitive performance
with GPT-4. While GPT-4 remains stronger overall performance(65.89 vs. 61.43), CMM offers a
compelling trade-off by delivering strong performance with zero training cost, full reproducibility,
and no reliance on proprietary APIs or data.

Table 9: Comparison between CMM and other machine learning methods

Model Chembench Avg.
SFT 19.19

GPT-4 65.89
CMM 61.43

C Influence of different score computation methods

In the main experiment, the overall performance score for each model is computed by first normalizing
its scores across all tasks and then taking the average. Here we propose an alternative method for
computing the overall performance scores. For each model, we first compute the average score within
each benchmark, where each benchmark consists of multiple tasks. These per-benchmark averages
are then normalized to ensure comparability, and their mean is taken as the overall performance score.
Under this alternative computation scheme, the ranking of expert models from weakest to strongest is
as follows: GeLLMO-P6-Llama, Meerkat-8B-v1.0, KALE-LM-Chem-1.5, and Molinst-Molecule-8B.
Keeping other settings unchanged, we apply the Curriculum Model Merging (CMM) procedure based
on this order. For comparison, we also recompute the overall scores of the CMM obtained in the main
experiment using the new scoring method. The results are summarized in Table 10. This method of
computing overall scores overlooks the variation in the number of tasks across different benchmarks
and therefore cannot accurately reflect the capabilities of each model. As a result, the performance of
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the merged model obtained in this setting is inferior to that of the original one. Specifically, while
the average score on Mol-Instructions remains similar, there is a notable drop in performance on
ChemBench.

Table 10: Ablation study on different score computation methods

Model Chembench Mol-Instructions Overall
Average Average Average

Expert models
Llama-3-8B-Instruct 45.93 0.07 26.47
Molinst-molecule-8b 42.97 0.37 39.99
KALE-LM-Chem-1.5 57.07 0.07 32.04
Meerkat-8b-v1.0 43.65 0 21.83
GeLLMO-P6 31.87 0.08 19.94

Merged model
CMM 61.43 0.35 48.22
CMM_AltRank 53.02 0.38 45.51

D Relationship between the number of samples and results

Figure 3 provides more details of the impact of the number of evaluation samples on the resulting eval-
uation metrics. The evaluation metrics do not exhibit significant upward or downward trends beyond
200 samples. Therefore, we randomly selected 200 evaluation samples to improve computational
efficiency.
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Figure 3: Relationship between the number of evaluation samples and the resulting metrics

E Scalability of CMM

E.1 General model set

CMM is generalizable and applicable beyond the chemical domain. We also applied CMM to general-
purpose LLMs and still achieved the best performance. In this experiment, we adopted the universal
Llama-3.1-8B-Instruct [18] as the base model, and Hermes-3-Llama-3.1-8B [45], Llama-3.1-Tulu-3-
8B [29], Llama-3.1-Storm-8B [3], and Llama-3.1-SuperNova-Lite [2] as expert models, following
this merging order. The performance of the models was evaluated across 7 benchmarks spanning
multiple domains, including general, instruction following, mathematics, and coding: MMLU [20],
IFEval [65], ARC-C [56], DROP [13], BBH [41], GSM8K [6], and Math [21]. For comparison, we
also included the model generated using the Task Arithmetic (TA) method.
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The model merged using CMM outperforms all expert models and the task arithmetic baseline in
terms of average score across the seven benchmarks. Detailed results are presented in Table 11.

Table 11: CMM on a general model set

Model MMLU IFEval ARC-C DROP BBH GSM8K Math Avg
Expert models
Llama-3.1-8B-Instruct 69.35 68.11 81.69 82.33 57.61 84.15 39.76 69.00
Hermes-3-Llama-3.1-8B 64.29 59.59 82.03 77.73 62.25 81.50 25.20 64.66
Llama-3.1-Tulu-3-8B 66.26 75.18 66.10 76.68 61.18 87.87 40.02 67.61
Llama-3.1-Storm-8B 68.87 72.18 81.69 79.01 56.01 82.94 35.60 68.04
Llama-3.1-SuperNova-Lite 69.29 69.90 84.07 81.84 60.10 83.40 36.58 69.31

Merge methods
TA 67.96 67.03 82.03 80.02 69.80 81.43 41.10 69.91
CMM 69.81 70.26 81.69 83.07 61.11 84.61 40.96 70.22

E.2 Larger and more diverse model set

To evaluate the scalability of CMM, we extended our original experiment by introducing two
additional tasks—reasoning and math—evaluated on DROP [13] and GSM8K [6], respectively. We
also included two high-performing expert models on these tasks: Llama-3.1-SuperNova-Lite [2] and
Llama-3.1-Tulu-3-8B [29]. For comparison, we also included the model generated using the Task
Arithmetic (TA) method.

The performance of the six expert models and the CMM-merged model across 13 tasks is shown in
Table 12. The CMM-merged model outperforms all expert models as well as the TA-merged model
in terms of overall performance. This demonstrates the effectiveness of CMM when applied to larger
and more diverse model sets.

When examining individual benchmarks, we observe that the CMM merged model not only inherits
but also surpasses the best expert performance on Chembench, indicating strong domain adaptation ca-
pabilities. However, on the other three benchmarks—Mol-Instructions, DROP, and GSM8K—CMM
does not outperform the top-performing expert models, suggesting that while CMM effectively
aggregates knowledge, certain task-specific expertise may be partially diluted during the merging
process. We would like to clarify that this phenomenon is not specific to CMM, but rather a common
limitation across model merging methods. Prior research has shown that even state-of-the-art merging
methods often experience performance saturation after merging no more than six expert models [50].
This highlights an open challenge in the field and calls for further theoretical understanding and
methodological advances to improve the scalability of model merging.

Table 12: CMM on a larger and more diverse model set

Model Chembench Avg Mol-Instructions Avg DROP GSM8K Overall Avg
Expert models
Llama-3-8B-Instruct 45.93 0.07 18.63 79.38 40.41
GeLLMO-P6 31.87 0.08 81.91 84.53 36.10
Meerkat-8b-v1.0 43.65 0 74.3 44.81 39.38
Molinst-molecule-8b 42.97 0.37 24.15 62.62 42.12
SuperNova-8B 52.5 0 81.84 83.40 49.06
Llama-Tulu-3-8B 53.28 0 76.68 87.87 49.54
KALE-LM-Chem-1.5 57.07 0.07 56.72 67.63 50.15

Merge methods
TA 27.35 0.15 62.50 66.19 31.14
CMM 63.80 0.19 67.84 79.15 58.40
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F Subspace Alignment Ratio

Subspace Alignment Ratio(SAR) [36] is defined as:

SAR(∆t,∆M ; kM ) =
∥ΠkM ,M∆t∥F

∥∆t∥F
, (9)

where ∆t denotes a task vector, ∆M is the difference between the parameters of the merged model
and those of the base model, and ΠkM ,M is the projection matrix onto the subspace spanned by the
top kM left-singular vectors of ∆M . The number of singular vectors used (kM ) is formulated as:

kM = min

{
k :

∑r
i=k+1 σ

2
i∑r

i=1 σ
2
i

≤ ϵ2

}
(10)

where σi denotes the singular values of ∆M , and ϵ = 0.05.
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