
Under review as a conference paper at ICLR 2024

BINNING AS A PRETEXT TASK:
IMPROVING SELF-SUPERVISED LEARNING IN
TABULAR DOMAINS

Anonymous authors
Paper under double-blind review

ABSTRACT

The ability of deep networks to learn superior representations hinges on leverag-
ing the proper inductive biases, considering the inherent properties of datasets. In
tabular domains, it is critical to effectively handle heterogeneous features (both
categorical and numerical) in a unified manner and to grasp irregular functions
like piecewise constant functions. To address the challenges in the self-supervised
learning framework, we propose a novel pretext task based on the classical bin-
ning method. The idea is straightforward: reconstructing the bin indices (either
orders or classes) rather than the original values. This pretext task provides the en-
coder with an inductive bias to capture the irregular dependencies, mapping from
continuous inputs to discretized bins, and mitigates the feature heterogeneity by
setting all features to have category-type targets. Our empirical investigations as-
certain several advantages of binning: compatibility with encoder architecture and
additional modifications, standardizing all features into equal sets, grouping sim-
ilar values within a feature, and providing ordering information. Comprehensive
evaluations across diverse tabular datasets corroborate that our method consis-
tently improves tabular representation learning performance for a wide range of
downstream tasks. The codes are available in the supplementary material.

1 INTRODUCTION

Tabular datasets are ubiquitous across diverse applications from financial markets and healthcare
diagnostics to e-commerce personalization and manufacturing process automation. These datasets
are structured with rows representing individual samples and columns representing heterogeneous
features—a combination of categorical and numerical features—and they serve as the foundation
for myriad analyses. However, despite the wide applicability of tabular data, research into lever-
aging deep networks to harness the inherent properties of such datasets is still in its nascent stage.
In contrast, tree-based machine learning algorithms like XGBoost (Chen & Guestrin, 2016) and
CatBoost (Prokhorenkova et al., 2018) have consistently demonstrated prowess in discerning the
nuances of tabular domains, outperforming deep networks even those with a larger model capac-
ity and specialized modules (Arik & Pfister, 2021; Gorishniy et al., 2021; Grinsztajn et al., 2022;
Rubachev et al., 2022). The consistent edge held by tree models fuels the exploration of how their
advantageous biases can be adapted for deep networks.

Recently, the quest to boost the performance of deep networks on tabular data has gained momen-
tum. A fundamental challenge is the inherent heterogeneity of tabular datasets, encompassing both
categorical and numerical features (Popov et al., 2019; Borisov et al., 2022; Yan et al., 2023). To
mitigate the feature discrepancies in deep networks, previous studies proposed using an additional
module like a feature tokenizer (Gorishniy et al., 2021) and an abstract layer (Chen et al., 2022).
Concurrently, some research has explored ways to infuse the proven strengths of tree-based models
into deep networks. For instance, Grinsztajn et al. (2022) observed that deep networks tend to prefer
overly smooth solutions and struggle with modeling irregularities like piecewise constant functions,
in contrast to the tree-based models. To address this challenge, Gorishniy et al. (2022) introduced a
novel approach combining piecewise linear encoding during preprocessing and periodic activation
functions. Although these advancements have led to enhanced performance on several tabular data
problems, they have predominantly been explored within a supervised learning framework.

1

Under review as a conference paper at ICLR 2024

Figure 1: Binning as a pretext task. Bins are de-
termined based on the distribution of the training
dataset for each feature. The inputs are passed
into the encoder network, then the decoder net-
work predicts the bin indices which can be ordinal
when the pretext task is the regression or nominal
when the pretext task is the classification.

To expand the success of deep networks on
tabular domain to unsupervised representa-
tion learning, we propose a novel pretext task
based on the classical binning method for auto-
encoding-based self-supervised learning (SSL).
Our approach is straightforward: reconstruct-
ing bin indices rather than reconstructing the
raw values, as illustrated in Figure 1. Once nu-
merical features are discretized into bins based
on the quantiles of the training dataset, we op-
timize the encoder and decoder networks to ac-
curately predict the bin indices given original
inputs. By setting the discretized bins as tar-
gets for the pretext task, we can employ the
inductive bias of capturing the irregular func-
tions and mitigating the discrepancy between
features. The binning procedure allows group-
ing the nearby samples based on the distribu-
tion of the training dataset, so the learned repre-
sentations should be robust to the minor errors
that can yield spurious patterns. It also facili-
tates standardizing all features into equal sets,
thereby preventing any uninformative features
from dominating during SSL. Furthermore, our
approach is compatible with any other modifications, including the choice of deep architectures and
input transformation functions.

Based on the extensive experiments on 25 public datasets, we found that the binning task consistently
improves the SSL performance on diverse downstream tasks, even though we simply changed the
targets during SSL from the continuous to the discretized bins. The performance is also comparable
with the supervised counterparts, including state-of-the-art deep networks and tree-based machine
learning algorithms. Finally, we found that the binning task can be not only an effective objective
function for fully unsupervised learning but also beneficial as the pretraining strategy.

Our main contributions can be summarized as follows. First, we suggest binning as a new pretext
task for SSL in tabular domains, compatible with any modifications. Second, we conduct extensive
experiments on 25 public tabular datasets focusing on the various input transformation methods and
SSL objectives. Finally, we empirically found that the binning task not only results in better repre-
sentations but also provides good initial weights for fine-tuning in various datasets and downstream
tasks. The codes are available in the supplementary material.

2 RELATED WORKS

Tabular deep learning: In recent years, there has been a large number of deep learning research
on a tabular domain: developing new deep architectures (Popov et al., 2019; Badirli et al., 2020;
Huang et al., 2020; Wang et al., 2021; Arik & Pfister, 2021; Gorishniy et al., 2021; Ucar et al., 2021;
Chen et al., 2022; Zhu et al., 2023; Kotelnikov et al., 2023; Chen et al., 2023); or representing the
heterogeneous nature of tabular features as the graphs (Yan et al., 2023); or adopting new activation
function (Gorishniy et al., 2022). Despite these advancements, ensembles of decision trees, such
as GBDTs (Gradient Boosting Decision Trees), continue to serve as competitive baselines (Arik
& Pfister, 2021; Gorishniy et al., 2021; Grinsztajn et al., 2022; Rubachev et al., 2022). In this
paper, our goal is to suggest a new pretext task for self-supervised learning in tabular domains,
so we focus on architectures directly inspired by classic deep models, in particular MLPs and FT-
Transformers (Gorishniy et al., 2021). Additionally, we provide comparisons with several deep
learning-based approaches and tree-based machine learning algorithms.

Self-supervised learning in tabular domains: Self-supervised learning (SSL) aims to learn de-
sirable representations without making use of annotation information. Recently, contrastive learning
and auto-encoding have been two major choices in the tabular domain. Contrastive learning aims to

2

Under review as a conference paper at ICLR 2024

model the similarity between two or more augmented views from the same sample, corresponding
to the positive samples, and the dissimilarity between other samples, corresponding to the negative
samples. Bahri et al. (2021); Ucar et al. (2021) have optimized contrastive loss after defining the
positive and negative samples based on the data augmentation function, such as masking or cropping
in feature dimension. Auto-encoding aims to reconstruct the original sample given its corrupted ob-
servation (Vincent et al., 2008). Compared to contrastive learning, auto-encoders can handle a mix
of data types which can be beneficial for tasks involving heterogeneous datasets, like tabular data.
Yoon et al. (2020); Huang et al. (2020); Majmundar et al. (2022) adopted the auto-encoding methods
optimizing the reconstruction loss with or without the additional losses, such as corruption detection.
In this study, we suggest a new SSL pretext task based on the auto-encoding approach.

3 PRELIMINARIES: AUTO-ENCODING-BASED SELF-SUPERVISED LEARNING
IN TABULAR DOMAINS

Autoencoding is a classical method for learning representations with a variety of use cases. Nu-
merous methods have been suggested to generalize denoising autoencoders (Vincent et al., 2008)
in the context of SSL, which aim to learn representations by reconstructing original signals from
corrupted samples. In this section, we delve into the auto-encoding-based self-supervised learning
framework in tabular domains focusing on two factors: transformation methods to tabular inputs and
the objective functions in the auto-encoding-based SSL framework.

Input transformation: To ensure the encoder network does not simply learn an identity function,
we employ transformation functions on the input that preserve the label-related information. For
tabular datasets, only a few transformation functions have been suggested like masking (Yoon et al.,
2020; Ucar et al., 2021; Majmundar et al., 2022) as illustrated in Figure 2 because all individual
values can play a key role in determining the semantics and small changes can affect the context.
Given a sample xi ∈ Rd in dataset D where d is the number of features, i ∈ [1, N], and N is the
batch size, we randomly generate the masking vector mi with the same size of xi. Each element
of the masking vector mi is independently sampled from a Bernoulli distribution with probability
pm ∈ [0, 1]. To replace the masked values, the replacing vector x̄i should be defined. In this
study, we utilize two methods suggested in the previous studies (Yoon et al., 2020; Ucar et al., 2021;
Majmundar et al., 2022).

• Constant (Figure 2a): x̄i,k is set as the pre-determined constant value for all i. In this study, we
use the average for each feature k in the training dataset.

• Random (Figure 2b): x̄i,k is sampled from the other in-batch samples for a given feature. In
other words, to replace the k-th feature of the i-th sample in the batch, we use the k-th feature of
the i′-th sample in the same batch, and i′ is sampled from the uniform distribution U

(
1
N

)
.

Finally, the corrupted sample x̃i is formulated as x̃i = (1 − mi) ⊙ xi + mi ⊙ x̄i where 1 is all-
ones vector with the same size of xi. The transformation procedure is stochastic and it provides
randomness during training. When pm = 0, mi becomes the zero matrix, and the uncorrupted input
x̃i = xi is used for training.

(a) Replacing value = Constant (b) Replacing value = Random

Figure 2: An illustration of two methods to generate the replacing vectors for masked features.

SSL objectives: Following the convention of SSL, the encoder fe first transforms the corrupted
sample x̃i to a representation zi, then the decoder fd will be introduced to learn the informative

3

Under review as a conference paper at ICLR 2024

representation by optimizing the unsupervised loss L. We can leverage which representation should
be learned by introducing the specific pretext task. As a baseline, we consider two pretext tasks used
in Yoon et al. (2020); Huang et al. (2020); Majmundar et al. (2022).

• Reconstructing the original values: One common approach is to reconstruct uncorrupted samples
from their corrupted counterparts (Vincent et al., 2008). In this setup, the encoder attempts to
impute the masked features by leveraging the correlations present in the non-masked features.
The learned representations will involve the semantic-level information that is invariant to cor-
ruption. To this end, the decoder network is defined as f recon

d : Z → X̂ , and the corresponding
loss is formulated as LValueRecon := 1

N

∑N
i=1 ||xi − f recon

d (zi)||22.
• Detecting the masked features: An auxiliary task that can facilitate the pretext task of recon-

struction is predicting which features have been masked during the corruption process of the
input sample (Yoon et al., 2020). In this setup, the encoder attempts to leverage the inconsis-
tency between feature values to identify the masked features, resulting in learned representations
that capture abnormal patterns for a given input. Specifically, the method employs a binary
cross-entropy loss, which can be formulated as LMaskXent := − 1

N

∑N
i=1 mi log f

mask
d (zi) + (1 −

mi) log (1 − fmask
d (zi)) where the decoder network is defined as fmask

d : Z → M̂ .

We can optimize several loss functions simultaneously if we train several decoders that utilize z as
the inputs. For example, Yoon et al. (2020) utilized the weighted sum of LValueRecon and LMaskXent.

4 METHODS: BINNING AS A PRETEXT TASK FOR TABULAR SSL

Binning is a classical data preprocessing technique that quantizes a given numerical feature xj ∈
R|D| into T discrete intervals, known as bins Bj

t = [bjt−1, b
j
t) where t ∈ [1, T] and bjt ∈ R is

the bin boundaries. Binning is effective in transforming continuous features into discrete ones,
mitigating minor errors in datasets like noise and outliers, and making the data distribution more
manageable (Dougherty et al., 1995; Han et al., 2022).

In this study, we implement binning to establish targets for auto-encoding-based SSL. We anticipate
the representations will be robust to the minor input variation in the same bins. Also, the deep
networks can capture the irregularities akin to the decision-making process of tree-based models,
which assign discrete leaves to each continuous sample because the pretext task corresponds to
mapping continuous inputs to discretized bins. Additionally, the binning approach helps mitigate
feature heterogeneity by treating the targets for all features as the same category type during SSL.

Figure 3: An example of binning (Dataset: Wine Quality (Cortez et al., 2009)). In the example, we
set T as 10. For each feature, we implement the binning to include the same number of observations
based on the training dataset. Finally, we use the binning indices as the targets for auto-encoding-
based SSL. When we regard the bin indices as the classes without order information, the binning
indices are converted into the one-hot vectors.

4

Under review as a conference paper at ICLR 2024

The binning procedure is described in Figure 3. We first determine the number of bins T as the
design parameter. Then, we split the value range into the disjoint set of T intervals,

{
Bj

1, . . . , B
j
T

}
,

considering the number of observations in the training dataset Dtrain for each j-th feature xj . Specif-
ically, the bin boundaries bjt are determined according to the quantiles of t

T . (Alternative binning
strategies are also discussed in Supplementary D.1.) When the number of unique values for xj in
the training dataset is less than T , each distinct value is assigned its own bin. Finally, we place each
numerical feature xj

i into the bin Bj
t , and we substitute the original values with the corresponding

bin indices tji ∈ [1, T]. Thus, we use the grouped ranks (or classes) instead of the raw values. We
call the binned dataset as XBin.

The bin index of i-th sample and j-th feature, tji , can be expressed as ordinal values or nominal
classes. When we utilize the bin indices as ordinal values, we set the pretext task as reconstructing
the bin indices based on the continuous inputs, and the corresponding BinRecon loss is defined as

LBinRecon :=
1

N

N∑
i=1

∥∥ti − fBinRecon
d (zi)

∥∥2
2

where fBinRecon
d : Z → X̂Bin. (1)

When we utilize the bin indices as nominal classes, we convert the bin index tji into the one-hot
vector uj

i = [u1, u2, . . . , uT] where uv = 1 when v = tji and uv = 0 otherwise. Then, we set the
pretext task as predicting the bin indices as classes by optimizing the BinXent loss, defined as the
average of binary cross-entropy loss for each feature.

LBinXent := − 1

Nd

N∑
i=1

d∑
j=1

uj
i log f

BinXent
d (zji) + (1 − uj

i) log (1 − fBinXent
d (zji)) (2)

In this case, the predictions for each sample should be in Rd×T . As a simple implementation, we
add the 1x1 convolutional layer at the end of fBinXent

d (·) : Z → Û where U ∈ RN×d×T represents
the one-hot encoded binned dataset.

We outline the benefits of utilizing the binning task in SSL as follows. Empirical evidence on how
each item is advantageous for tabular data problems will be provided in subsequent sections.

• Compatibility with any other modifications: The binning task is agnostic to modifications such as
changes in encoder architecture, input transformation functions, and additional objectives. There-
fore, it can be utilized independently or in conjunction with other options. (Section 5.1, 5.2)

• Standardizing all features into equal sets: After binning, all features lie on the uniform distribution
with identical elements. Unlike the conventional normalization schemes, it largely simplifies the
dataset to include only T distinct values, and this ensures all features become equal sets, thereby
preventing any uninformative features from dominating during training. (Section 6.1)

• Grouping similar values in each feature: Binning clusters the nearby values in each feature and
eliminates the other information except the bin index. Deep networks can identify nearby samples
in a distribution as similar, independent of their magnitude. (Section 6.1)

• Ordering in BinRecon loss: BinRecon loss utilizes the grouped rank information only while elim-
inating the raw value information. This ensures that the encoder network learns the ordering
information, regardless of the magnitude of the values. (Section 6.1)

Overall, we implement SSL as follows. First, tabular inputs undergo a transformation that retains
their semantic information. Then, the encoder network fe takes the transformed input x̃ and pro-
duces the representation z, and the decoder network fd models the representation z to the target ŷSSL
depending on the choice of pretext task. In this study, we consider four types of pretext tasks and the
corresponding losses are ValueRecon, MaskXent, BinRecon, and BinXent. Once SSL is finished,
the learned representations z are evaluated based on linear probing.

5 EXPERIMENTS

In this section, we evaluate the effectiveness of binning as a pretext task across 25 public tabular
datasets encompassing a range of data sizes and task types. Dataset details are provided in Supple-
mentary A. For all datasets, we apply standardization for numerical features and labels for evaluating
the regression tasks.

5

Under review as a conference paper at ICLR 2024

As the encoder network fe, we mainly utilize the MLP networks without a special module. Note that
a larger or more complex network does not guarantee better performance in tabular datasets (Gorish-
niy et al., 2021; Rubachev et al., 2022; Grinsztajn et al., 2022; Gorishniy et al., 2022). To determine
the depth and width of fe, we identify the optimal configuration based on validation performance
in the supervised setup, i.e., only the encoder with a linear head is trained with the supervised loss,
ensuring the unsupervised nature of our framework. Then, the decoder fd mirrors fe in architecture.
Consequently, all cases for each dataset have been trained on the same architecture and optimization
setups. A detailed description is provided in Supplementary B. For a given network and dataset,
we also investigate the masking probability pm ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and the
number of bins T ∈ {2, 5, 10, 20, 50, 100}. Then, we found the optimal configuration based on
validation performance on each downstream task. After SSL, we evaluate the representations based
on linear probing 10 times with different random seeds, and an average is reported. We evaluate
the representation quality based on accuracy for classification tasks and RMSE for regression tasks.
The full results with standard deviation are also available in Supplementary C. All experiments are
conducted on a single NVIDIA GeForce RTX 3090.

5.1 COMPARING SSL MODELS

We first compare a series of auto-encoding-based SSL methods utilizing the same MLP networks for
each dataset. To identify the compatibility of the binning task with other transformation functions,
we include the cases optimizing BinRecon loss with masking transformation. Finally, we exper-
iment with four cases to validate our methodology; optimizing BinXent, treating bins as nominal
classes; optimizing BinRecon, treating bins as ordinal values without any augmentation; optimizing
BinRecon with masking as constant values; and optimizing BinRecon with masking as random val-
ues. The results for each type of downstream task are summarized in Table 1, and four rows at the
bottom correspond to our methods.

Binary classification: First, we compare the performance of eight datasets whose downstream
task is binary classification. For all cases, except PH dataset, binning as a pretext task shows the
best performance against the other methods. In particular, BinRecon without input transformation
performs best for three datasets, and the average rank is 2.375 among 11 SSL methods. Interest-
ingly, for HI dataset, the performance has been improved from 0.651 to 0.687(+3.6%), 0.653 to
0.672(+1.9%), and 0.661 to 0.682(+2.1%) when we simply change the target for reconstruction loss
from the raw values to bin indices. Similar patterns are often observed in other datasets. These re-
sults indicate that learning irregular functions (from continuous to discrete) is more beneficial than
learning smooth functions (from continuous to continuous) in tabular representation learning.

Multiclass classification: Next, we investigate nine datasets whose downstream task is multiclass
classification. Unlike the binary classification tasks, we observe that optimizing BinRecon loss with
masking consistently leads to additional improvements compared to the cases without masking, and
optimizing BinXent does not work well. These results indicate that the order information is impor-
tant for multiclass classification and BinRecon can effectively manipulate them. Further discussion
will be provided in Section 6. When we compare the results of MNIST and p-MNIST, the effec-
tiveness of the binning task, especially for the tabular datasets, becomes clear. Because MNIST is
a simply flattened dataset of handwritten images, the locality should exist and it is not a general
property of the tabular datasets. To make the dataset more tabular-like, we permute the values and
call them p-MNIST. We observe that most SSL methods achieve good performance for MNIST
(worst 0.793, best 0.966), while the performance degrades quite a lot for p-MNIST (worst 0.554,
best 0.934). On the other hand, we found that BinRecon consistently achieves a great performance
in both datasets (MNIST: 0.964 to 0.981, p-MNIST: 0.950 to 0.971). Thus, the binning task could
lead to learning good representations even when the inter-feature dependency is rarely quantified.

Regression: Finally, we test eight datasets whose downstream task is the regression. Since the
evaluation metric is RMSE, lower values correspond to better-performing cases. Again, the binning
task consistently improves the SSL performance, and BinRecon with masking as the random values
shows the best performance with an average rank of 1.625. Compared to other downstream tasks,
regression tasks exhibit the most significant improvements with the binning pretext task. For in-

6

Under review as a conference paper at ICLR 2024

Table 1: Linear evaluation results for various SSL methods. For each method, we also determine the
performance rankings for each dataset, and the average ranks are also provided in the last column.

(a) Binary classification (Metric: Accuracy)

Masking Replacing value SSL Objective(s) CH HI AD BM PH OS CS PO Average Rank

FALSE - ValueRecon 0.810 0.651 0.837 0.899 0.728 0.883 0.709 0.851 7.625
TRUE Const. MaskXent 0.807 0.672 0.836 0.899 0.715 0.893 0.708 0.845 7.500
TRUE Const. ValueRecon 0.810 0.653 0.839 0.900 0.734 0.884 0.718 0.849 6.000
TRUE Const. MaskXent+ValueRecon 0.817 0.669 0.835 0.900 0.724 0.877 0.706 0.837 8.000
TRUE Random MaskXent 0.814 0.681 0.843 0.901 0.710 0.883 0.706 0.853 6.000
TRUE Random ValueRecon 0.811 0.661 0.838 0.898 0.738 0.885 0.714 0.842 6.875
TRUE Random MaskXent+ValueRecon 0.804 0.647 0.826 0.899 0.715 0.879 0.713 0.861 8.375

FALSE - BinXent 0.817 0.683 0.845 0.901 0.732 0.886 0.738 0.851 3.250
FALSE - BinRecon 0.823 0.687 0.840 0.900 0.737 0.889 0.724 0.865 2.375
TRUE Const. BinRecon 0.820 0.672 0.843 0.899 0.730 0.896 0.718 0.858 3.625
TRUE Random BinRecon 0.819 0.682 0.846 0.898 0.735 0.894 0.718 0.858 3.500

(b) Multiclass classification (Metric: Accuracy)

Masking Replacing value SSL Objective(s) CO OT GE VO WQ AL HE MNIST p-MNIST Average Rank

FALSE - ValueRecon 0.769 0.776 0.527 0.619 0.568 0.931 0.353 0.965 0.928 6.333
TRUE Const. MaskXent 0.784 0.777 0.518 0.545 0.547 0.909 0.341 0.793 0.554 9.333
TRUE Const. ValueRecon 0.783 0.791 0.557 0.622 0.586 0.931 0.354 0.966 0.925 4.111
TRUE Const. MaskXent+ValueRecon 0.750 0.774 0.519 0.610 0.571 0.931 0.360 0.941 0.907 7.444
TRUE Random MaskXent 0.763 0.791 0.555 0.549 0.544 0.925 0.336 0.945 0.817 8.000
TRUE Random ValueRecon 0.761 0.782 0.538 0.625 0.573 0.930 0.357 0.956 0.934 5.556
TRUE Random MaskXent+ValueRecon 0.769 0.779 0.521 0.564 0.519 0.925 0.353 0.945 0.906 8.333

FALSE - BinXent 0.742 0.781 0.517 0.600 0.565 0.903 0.354 0.956 0.908 8.333
FALSE - BinRecon 0.784 0.783 0.544 0.625 0.592 0.935 0.357 0.964 0.950 3.556
TRUE Const. BinRecon 0.812 0.792 0.559 0.647 0.581 0.943 0.359 0.974 0.964 2.222
TRUE Random BinRecon 0.814 0.794 0.580 0.655 0.574 0.949 0.365 0.981 0.971 1.333

(c) Regression (Metric: RMSE)

Masking Replacing value SSL Objective(s) CA HO FI MI KI CPU DIA EL Average Rank

FALSE - ValueRecon 0.749 4.241 13900.720 0.784 0.163 3.876 1016.641 0.399 8.625
TRUE Const. MaskXent 0.709 4.548 13473.750 0.788 0.185 4.475 1259.744 0.396 8.875
TRUE Const. ValueRecon 0.693 4.086 13518.683 0.778 0.160 3.728 952.444 0.394 5.000
TRUE Const. MaskXent+ValueRecon 0.700 4.157 13915.875 0.775 0.174 5.644 2797.034 0.398 8.750
TRUE Random MaskXent 0.677 4.297 13826.641 0.782 0.176 3.951 1358.135 0.388 7.875
TRUE Random ValueRecon 0.713 4.127 13668.988 0.777 0.162 3.760 986.306 0.396 6.500
TRUE Random MaskXent+ValueRecon 0.701 4.136 14107.645 0.780 0.166 4.506 1917.875 0.397 8.750

FALSE - BinXent 0.690 4.116 13038.762 0.776 0.170 3.717 1207.923 0.383 4.875
FALSE - BinRecon 0.622 3.766 13453.309 0.767 0.158 3.208 897.645 0.370 2.250
TRUE Const. BinRecon 0.634 3.765 13208.133 0.773 0.158 3.156 957.801 0.371 2.375
TRUE Random BinRecon 0.619 3.703 13075.474 0.773 0.160 3.183 870.283 0.368 1.625

stance, when comparing our method with the best baselines, we observed improvements of 10.27%
for HO dataset, 8.63% for DIA dataset, and 8.57% for CA dataset.

5.2 COMPARISON WITH THE SUPERVISED COUNTERPARTS

We observed that the binning as a pretext task consistently improves the SSL performance across
the various tabular datasets and the downstream tasks. In this section, we compare our method with
the supervised counterparts, consisting of the encoder and linear head. For supervised baselines,
we employ the encoder networks with random weights (Baseline-1) or trained from scratch with a
supervised objective (Baseline-2). For our methods, encoder networks are first trained with BinXent
or BinRecon loss, and then the learned representations are evaluated through linear probing (Ours-1)
or fine-tuning (Ours-2). To investigate the effectiveness of the binning task with different encoder
architectures, we also experiment with the FT-Transformer (Gorishniy et al., 2021), a simple adap-
tation of the Transformer architecture for tabular data without additional hyperparameter tuning.

The results are provided in Table 2 and Table 8 in supplementary material. For most datasets,
we found that our methods in unsupervised setups (Ours-1) achieve comparable performance with
the supervised baselines. After fine-tuning (Ours-2), pre-trained models on the binning task fre-
quently outperform the supervised baselines. Binning-based models show the best performance for
all datasets regardless of the choice of encoder architecture, with the exception of OT with FT-
Transformer. Overall, we found that SSL based on the binning task can be an effective method to
learn both the good representations and the initial weights for fine-tuning.

7

Under review as a conference paper at ICLR 2024

Table 2: Comparison with supervised baselines. We compare the downstream task performance
under several scenarios: (1) Baseline-1, where the encoder is randomly initialized; (2) Baseline-2,
where the encoder is trained by optimizing the supervised loss; (3) Ours-1, where the encoder is
trained based on the binning task only; and (4) Ours-2, where the encoder is fine-tuned after the
pre-training on binning tasks. (Notation: ↑ corresponds to accuracy, ↓ corresponds to RMSE)

Training method CH ↑ AD ↑ PH ↑ OS ↑ CO ↑ OT ↑ GE ↑ VO ↑ HE ↑ MNIST ↑ CA ↓ HO ↓ FI ↓ EL ↓
Encoder = MLP

Baseline-1 0.796 0.820 0.683 0.873 0.729 0.766 0.467 0.547 0.311 0.896 0.854 4.700 14241.610 0.400
Baseline-2 0.836 0.849 0.724 0.895 0.968 0.810 0.659 0.694 0.378 0.983 0.513 3.146 10086.080 0.354
Ours-1 0.823 0.846 0.736 0.896 0.814 0.794 0.580 0.655 0.365 0.981 0.619 3.703 13038.762 0.368
Ours-2 0.841 0.854 0.738 0.895 0.969 0.814 0.675 0.724 0.385 0.986 0.502 3.026 9963.609 0.350

Encoder = FT-Transformer

Baseline-1 0.818 0.828 0.694 0.866 0.730 0.705 0.509 0.544 0.311 0.550 0.690 4.107 16128.694 0.394
Baseline-2 0.824 0.837 0.724 0.884 0.970 0.794 0.664 0.704 0.338 0.966 0.487 3.319 10206.127 0.350
Ours-1 0.836 0.853 0.725 0.887 0.762 0.780 0.554 0.614 0.364 0.931 0.549 3.570 14557.626 0.371
Ours-2 0.834 0.839 0.734 0.882 0.971 0.793 0.698 0.720 0.342 0.978 0.477 3.173 9936.115 0.343

Table 3: Comparison with the tree-based machine learning algorithms and the recent deep learning
methods including state-of-the-art models.

Training network and method Supervised CH ↑ HI ↑ AD ↑ CO ↑ OT ↑ GE ↑ AL ↑ HE ↑ MNIST ↑ CA ↓ HO ↓ MI ↓
Tree-based machine learning algorithms

XGBoost Yes 0.859 0.726 0.875 0.969 0.827 0.683 0.924 0.348 0.980 0.434 3.152 0.742
CatBoost Yes 0.861 0.727 0.873 0.967 0.825 0.692 0.948 0.386 0.980 0.430 3.093 0.741

Recent deep learning methods
TabNet (Arik & Pfister, 2021; Gorishniy et al., 2021) Yes - 0.719 0.850 0.957 - - 0.954 0.378 - 0.510 - 0.751
NODE (Popov et al., 2019; Gorishniy et al., 2021) Yes - 0.726 0.858 0.958 - - 0.918 0.359 - 0.464 - 0.745
GrowNet (Badirli et al., 2020; Gorishniy et al., 2021) Yes - 0.722 0.857 - - - - 0.487 - 0.751
DCN V2 (Wang et al., 2021; Gorishniy et al., 2021) Yes - 0.723 0.853 0.965 - - 0.955 0.385 - 0.484 - 0.749
PLR (MLP-Ensemble) (Gorishniy et al., 2022) Yes 0.857 0.728 0.870 0.970 0.819 0.674 - - - 0.467 3.050 0.746
PLR (FT-T-Ensemble) (Gorishniy et al., 2022) Yes 0.863 0.730 0.870 0.972 0.814 0.646 - - - 0.464 3.162 0.746
T2G-Former (Yan et al., 2023) Yes 0.863 0.734 0.860 - 0.819 0.656 - 0.391 - 0.455 3.138 -
VIME (Yoon et al., 2020) No - - - - - - - - 0.958 - - -
SubTab (Ucar et al., 2021) No - - - - - - - - 0.979 - - -

Ours (MLP) No 0.823 0.687 0.846 0.814 0.794 0.580 0.949 0.365 0.981 0.619 3.703 0.767
Ours (MLP+Finetuning) Yes 0.841 0.716 0.854 0.969 0.814 0.675 0.963 0.385 0.986 0.502 3.026 0.753
Ours (FT-T) No 0.836 0.670 0.853 0.762 0.780 0.554 0.930 0.364 0.931 0.549 3.570 0.770
Ours (FT-T+Finetuning) Yes 0.835 0.700 0.839 0.971 0.793 0.698 0.961 0.342 0.978 0.477 3.173 0.752

5.3 COMPARISON WITH THE TREE-BASED AND THE STATE-OF-THE-ART METHODS

In addition to the supervised counterparts, we also compare our methods with the state-of-the-art
deep networks and the tree-based machine learning algorithms, such as XGBoost (Chen & Guestrin,
2016) and CatBoost (Prokhorenkova et al., 2018). To minimize the ambiguity from the choice of
random seeds and hyperparameters, we directly reference the reported performances in the papers,
so the model capacity and the optimization strategies would be different.

The results are provided in Table 3. Remarkably, even without utilizing annotation information
during pretraining, our approach based on a simple MLP yields performance comparable to most
existing supervised methods. For the MNIST dataset, our method accomplishes the best perfor-
mance in the unsupervised setup. Among 12 datasets, pretraining on the binning task has achieved
the best performance for four datasets, with particularly notable improvements in multiclass classi-
fication tasks. The consistently superior performance of our method supports the wide usability of
binning as the pretext task in tabular domains.

6 DISCUSSION

6.1 ABLATION STUDY: WHAT IS THE MOST IMPORTANT FACTOR FOR BINNING?

In this section, we scrutinize the individual contributions of the components of binning, detailed in
Section 4. Specifically, we examine the roles of discerning the order of samples within each feature,
standardizing all features into equal sets, and grouping similar values. BinRecon encapsulates all
three elements while ValueRecon disregards them completely. To dissect the influence of each
factor, we systematically eliminate them one by one from the BinRecon loss as follows.

• Ordering: We shuffle the bin indices with different random seeds for each feature.
• Standardizing into equal sets: We replace the raw values with the averages for each bin, instead of

bin indices. Then, each feature includes different elements in different ranges.

8

Under review as a conference paper at ICLR 2024

• Grouping: We set T j = |Dj
train| for every feature. In this case, each unique value corresponds to

an individual bin, and only the order information remains.

Table 4: Ablation test results on individual
components of binning.

Ordering Standardizing Grouping Improved Deteriorated

Yes Yes Yes - (Baseline) - (Baseline)
No Yes Yes 1 (+4.70%) 12 (− 4.04%)
Yes No Yes 1 (+5.21%) 15 (− 6.76%)
Yes No No - 23 (−25.29%)
No No No - 18 (− 5.99%)

The results are summarized in Table 4. Because the
performance range varies depending on the datasets,
we report the dataset count and the relative perfor-
mance improvement/deterioration against the case op-
timizing BinRecon loss without input transformation
corresponding to satisfying all three factors. We do not
include the unchanged cases where the performance
change is less than 1%. Obviously, eliminating the grouping factor shows the largest performance
degradation, averaging a 25.29% decrease in 23 datasets among 25. This decline is much steeper
than the effect of eliminating all three factors, which only decreased performance by 5.99% in 18
datasets. From these observations, we infer that the grouping factor is most critical for the successful
implementation of binning.

6.2 DEPENDENCY BETWEEN THE NUMBER OF BINS AND DOWNSTREAM TASK
PERFORMANCE

2 5 10 20 50 100
Number of Bins

0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Pe

rfo
rm

an
ce

BinXent
BinRecon

Figure 4: Empirical analysis on the
dependency between the number of
bins and the downstream task per-
formance.

In this section, we investigate the relationship between the
number of bins and downstream task performance for BinX-
ent and BinRecon without input transformation. Because the
performance range is quite different between the datasets, we
normalize the performance with the best and worst cases for
each dataset. Thus, the best-performing case corresponds to
1, and the worst-performing case corresponds to 0. As shown
in Figure 4, there is no clear relationship between the num-
ber of bins and performance (Pearson correlation ρ2 = 0.01,
Kendall rank correlation τ = 0.16 for BinXent, ρ2 = 0.04,
τ = 0.27 for BinRecon), except that the number of bins
should be not too small, but larger is not always better. This
result is not surprising, as utilizing too few bins can eliminate necessary information while utilizing
too many bins can diminish the benefits of binning. However, a relatively strong dependency of
ρ2 = 0.34 and τ = 0.60 was observed in a subset of examples: regression tasks with BinRecon loss
with fewer than 100 bins. These findings point to the possibility that identifying the optimal number
of bins for specific downstream tasks or datasets can be an intriguing topic for future research.

6.3 BIN INFORMATION IS NOT USABLE UNLESS IT IS PROVIDED AS A PRETEXT TASK

So far, we found that bin information is critical for achieving superior representations across various
tabular data problems. However, even if we do not employ bin information as an explicit pretext task,
it remains accessible from the raw values. In this section, we evaluate how accurately the learned
representations can predict bin indices when we optimize ValueRecon or MaskXent during SSL. To
gauge this, we measure the relative error increase against the results of BinRecon case. As shown
in Table 9 in the supplementary material, the prediction error is steeply increased at an average of
66.3% when bin information is not provided. This underscores that while bin information can be
derived from the data, its utility is markedly compromised unless it is adopted as a pretext task.

7 CONCLUSION

In this work, we suggest a novel pretext task based on binning which can manipulate the unique
properties of tabular datasets. The binning task can effectively address the challenges in tabular
SSL, including mitigating the feature heterogeneity and learning the irregularities. Importantly,
our method focuses exclusively on modifying the objective function and is independent of specific
architectures or augmentation methods. Based on the extensive experiments, we found that the
binning task not only consistently improves the unsupervised representation learning but also is
beneficial to providing good initial weights for fine-tuning. In this study, we’ve uncovered the
potential of leveraging the inherent properties of tabular data as pretext tasks for SSL. However,
many unique characteristics remain unexplored, such as hierarchical relationships between features.
We hope our work inspires further investigations into tabular-data-specific SSL in the future.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Sercan Ö Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular learning. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 6679–6687, 2021.

Sarkhan Badirli, Xuanqing Liu, Zhengming Xing, Avradeep Bhowmik, Khoa Doan, and Sathiya S
Keerthi. Gradient boosting neural networks: Grownet. arXiv preprint arXiv:2002.07971, 2020.

Dara Bahri, Heinrich Jiang, Yi Tay, and Donald Metzler. Scarf: Self-supervised contrastive learning
using random feature corruption. arXiv preprint arXiv:2106.15147, 2021.

Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Searching for exotic particles in high-energy
physics with deep learning. Nature communications, 5(1):4308, 2014.

Jock A Blackard and Denis J Dean. Comparative accuracies of artificial neural networks and dis-
criminant analysis in predicting forest cover types from cartographic variables. Computers and
electronics in agriculture, 24(3):131–151, 1999.

Vadim Borisov, Tobias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawelczyk, and Gjergji
Kasneci. Deep neural networks and tabular data: A survey. IEEE Transactions on Neural Net-
works and Learning Systems, 2022.

Jintai Chen, Kuanlun Liao, Yao Wan, Danny Z Chen, and Jian Wu. Danets: Deep abstract networks
for tabular data classification and regression. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pp. 3930–3938, 2022.

Kuan-Yu Chen, Ping-Han Chiang, Hsin-Rung Chou, Ting-Wei Chen, and Tien-Hao Chang. Trompt:
Towards a better deep neural network for tabular data. arXiv preprint arXiv:2305.18446, 2023.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794,
2016.

Paulo Cortez, António Cerdeira, Fernando Almeida, Telmo Matos, and José Reis. Modeling wine
preferences by data mining from physicochemical properties. Decision support systems, 47(4):
547–553, 2009.

James Dougherty, Ron Kohavi, and Mehran Sahami. Supervised and unsupervised discretization of
continuous features. In Machine learning proceedings 1995, pp. 194–202. Elsevier, 1995.

Jan-Mark Geusebroek, Gertjan J Burghouts, and Arnold WM Smeulders. The amsterdam library of
object images. International Journal of Computer Vision, 61:103–112, 2005.

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
models for tabular data. Advances in Neural Information Processing Systems, 34:18932–18943,
2021.

Yury Gorishniy, Ivan Rubachev, and Artem Babenko. On embeddings for numerical features in
tabular deep learning. Advances in Neural Information Processing Systems, 35:24991–25004,
2022.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still outperform
deep learning on typical tabular data? Advances in Neural Information Processing Systems, 35:
507–520, 2022.

Isabelle Guyon, Lisheng Sun-Hosoya, Marc Boullé, Hugo Jair Escalante, Sergio Escalera, Zhengy-
ing Liu, Damir Jajetic, Bisakha Ray, Mehreen Saeed, Michèle Sebag, et al. Analysis of the automl
challenge series. Automated Machine Learning, 177, 2019.

Jiawei Han, Jian Pei, and Hanghang Tong. Data mining: concepts and techniques. Morgan kauf-
mann, 2022.

10

Under review as a conference paper at ICLR 2024

Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar Karnin. Tabtransformer: Tabular data
modeling using contextual embeddings. arXiv preprint arXiv:2012.06678, 2020.

Ron Kohavi et al. Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid. In
Kdd, volume 96, pp. 202–207, 1996.

Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. Tabddpm: Modelling
tabular data with diffusion models. In International Conference on Machine Learning, pp. 17564–
17579. PMLR, 2023.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Kushal Majmundar, Sachin Goyal, Praneeth Netrapalli, and Prateek Jain. Met: Masked encoding
for tabular data. arXiv preprint arXiv:2206.08564, 2022.

Sergio Moro, Raul Laureano, and Paulo Cortez. Using data mining for bank direct marketing: An
application of the crisp-dm methodology. 2011.

R Kelley Pace and Ronald Barry. Sparse spatial autoregressions. Statistics & Probability Letters, 33
(3):291–297, 1997.

Sergei Popov, Stanislav Morozov, and Artem Babenko. Neural oblivious decision ensembles for
deep learning on tabular data. arXiv preprint arXiv:1909.06312, 2019.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey
Gulin. Catboost: unbiased boosting with categorical features. Advances in neural information
processing systems, 31, 2018.

Tao Qin and Tie-Yan Liu. Introducing letor 4.0 datasets. arXiv preprint arXiv:1306.2597, 2013.

Ivan Rubachev, Artem Alekberov, Yury Gorishniy, and Artem Babenko. Revisiting pretraining
objectives for tabular deep learning. arXiv preprint arXiv:2207.03208, 2022.

C Okan Sakar, S Olcay Polat, Mete Katircioglu, and Yomi Kastro. Real-time prediction of online
shoppers’ purchasing intention using multilayer perceptron and lstm recurrent neural networks.
Neural Computing and Applications, 31:6893–6908, 2019.

Talip Ucar, Ehsan Hajiramezanali, and Lindsay Edwards. Subtab: Subsetting features of tabular data
for self-supervised representation learning. Advances in Neural Information Processing Systems,
34:18853–18865, 2021.

Joaquin Vanschoren, Jan N Van Rijn, Bernd Bischl, and Luis Torgo. Openml: networked science in
machine learning. ACM SIGKDD Explorations Newsletter, 15(2):49–60, 2014.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and
composing robust features with denoising autoencoders. In Proceedings of the 25th international
conference on Machine learning, pp. 1096–1103, 2008.

Ruoxi Wang, Rakesh Shivanna, Derek Cheng, Sagar Jain, Dong Lin, Lichan Hong, and Ed Chi. Dcn
v2: Improved deep & cross network and practical lessons for web-scale learning to rank systems.
In Proceedings of the web conference 2021, pp. 1785–1797, 2021.

Jiahuan Yan, Jintai Chen, Yixuan Wu, Danny Z Chen, and Jian Wu. T2g-former: Organizing tabular
features into relation graphs promotes heterogeneous feature interaction. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37, pp. 10720–10728, 2023.

Jinsung Yoon, Yao Zhang, James Jordon, and Mihaela van der Schaar. Vime: Extending the suc-
cess of self-and semi-supervised learning to tabular domain. Advances in Neural Information
Processing Systems, 33:11033–11043, 2020.

Bingzhao Zhu, Xingjian Shi, Nick Erickson, Mu Li, George Karypis, and Mahsa Shoaran. Xtab:
Cross-table pretraining for tabular transformers. arXiv preprint arXiv:2305.06090, 2023.

11

	Introduction
	Related works
	Preliminaries: Auto-encoding-based Self-supervised Learning in Tabular Domains
	Methods: Binning as a Pretext Task for Tabular SSL
	Experiments
	Comparing SSL models
	Comparison with the supervised counterparts
	Comparison with the tree-based and the state-of-the-art methods

	Discussion
	Ablation study: What is the most important factor for binning?
	Dependency between the number of bins and downstream task performance
	 Bin information is not usable unless it is provided as a pretext task

	Conclusion

