
CRISP: Complex Reasoning with Interpretable Step-based Plans

Anonymous ACL submission

Abstract

Recent advancements in large language001
models (LLMs) underscore the need for002
stronger reasoning capabilities to solve com-003
plex problems effectively. While Chain-of-004
Thought (CoT) reasoning has been a step005
forward, it remains insufficient for many006
domains. A promising alternative is ex-007
plicit high-level plan generation, but exist-008
ing approaches largely assume that LLMs009
can produce effective plans through few-010
shot prompting alone, without additional011
training. In this work, we challenge this as-012
sumption and introduce CRISP (Complex013
Reasoning with Interpretable Step-based014
Plans), a multi-domain dataset of high-level015
plans for mathematical reasoning and code016
generation. The plans in CRISP are au-017
tomatically generated and rigorously val-018
idated—both intrinsically, using an LLM019
as a judge, and extrinsically, by evaluating020
their impact on downstream task perfor-021
mance. We demonstrate that fine-tuning a022
small model on CRISP enables it to gener-023
ate higher-quality plans than much larger024
models using few-shot prompting, while sig-025
nificantly outperforming Chain-of-Thought026
reasoning. Furthermore, our out-of-domain027
evaluation reveals that fine-tuning on one028
domain improves plan generation in the029
other, highlighting the generalizability of030
learned planning capabilities.031

1 Introduction032

Large language models (LLMs) abilities ad-033

vance rapidly in logical reasoning, code genera-034

tion, and mathematical problem-solving (Plaat035

et al., 2024; Jiang et al., 2024a; Ahn et al.,036

2024). A key factor behind recent break-037

throughs is the ability of LLMs to break down038

complex tasks into manageable steps—an ap-039

proach exemplified by chain-of-thought prompt-040

ing (Wei et al., 2022a).041

While chain-of-thought reasoning has led to 042

notable performance gains, it remains prone to 043

errors such as missing intermediate steps and 044

semantic misunderstandings (Wei et al., 2022a; 045

Jiang et al., 2024b). To address these chal- 046

lenges, recent studies have explored prompting 047

strategies that explicitly break down problems 048

into subtasks (Dua et al., 2022; Zhou et al., 049

2023; Khot et al., 2023; Prasad et al., 2024; 050

Ding et al., 2024). One prominent approach 051

is self-generating a high-level plan. by the 052

LLM before executing the task. This plan-and- 053

solve approach lead to significant improvements 054

in mathematical, commonsense, and symbolic 055

reasoning, as well as code generation (Wang 056

et al., 2023a; Jiang et al., 2024b). However, 057

the self-generated plans were only partially ef- 058

fective, as they did not match the performance 059

of ground-truth planning across various down- 060

stream tasks. 061

In this work, we argue that generating high- 062

quality high-level plans is a hard challenge for 063

LLMs, as current models often struggle to pro- 064

duce accurate and effective plans across dif- 065

ferent domains. Part of this difficulty arises 066

from the scarcity of explicit planning data, as 067

people rarely externalize or document their 068

high-level reasoning in a structured way. To 069

address this gap, we introduce CRISP (Com- 070

plex Reasoning with Interpretable Step-based 071

Plans), a novel dataset designed to enhance 072

high-level planning capabilities. CRISP spans 073

two domains: mathematics and code gener- 074

ation—where solutions naturally decompose 075

into structured, high-level steps. These plans 076

were derived from annotated detailed solutions 077

of Magpie-Reasoning-V1-150K (Xu et al., 2025) 078

and validated both extrinsically, by measuring 079

their impact on the original task performance, 080

and intrinsically, using LLM-based judgment 081

to assess coherence, conciseness, clarity, and 082

1

Consi der a r egul ar oct agon. How many di f f er ent t r i angl es can be f or med i f t he
oct agon i s pl aced i nsi de a c i r c l e and we can al so use t he cent er of t he
c i r c l e as a ver t ex f or t he t r i angl es? Let ' s t hi nk st ep by st ep.

Problem Description

We have 9 poi nt s: t he 8 ver t i ces of a r egul ar oct agon and t he cent er of t he
c i r c l e. To f or m a t r i angl e, we choose any 3 poi nt s f r om t hese 9. The t ot al
number of ways t o do t hi s i s gi ven by (9 choose 3) = 9 * 8 * 7 / 3 * 2 * 1 =
84. Br eaki ng i t down, we f i r st count t he t r i angl es usi ng onl y t he oct agon
ver t i ces, whi ch i s (8 choose 3) = 8 * 7 * 6 / 3 * 2 * 1 = 56. Next , we count
t he t r i angl es t hat i ncl ude t he cent er and t wo oct agon ver t i ces, whi ch i s (8
choose 2) = 8 * 7 / 2 * 1 = 28. Addi ng bot h cases t oget her , we get 56 + 28 =
84. Thus, t he t ot al number of di f f er ent t r i angl es t hat can be f or med i s 84.

Detailed Solution

1. I dent i f y t he Poi nt s Avai l abl e ? Recogni ze t hat t he oct agon has 8 ver t i ces,
and t he cent er of t he c i r c l e can al so be used as a ver t ex, gi v i ng a t ot al of
9 poi nt s.

2. Det er mi ne Tr i angl e For mat i on Rul es ? Under st and t hat a t r i angl e can be
f or med by sel ect i ng any t hr ee poi nt s f r om t hese 9, consi der i ng cases wher e
t he cent er i s i ncl uded or not .

3. Count t he Possi bl e Tr i angl es ? Use combi nat or i al count i ng met hods t o
det er mi ne t he number of ways t o choose t hr ee poi nt s f r om t he avai l abl e set ,
account i ng separ at el y f or t r i angl es f or med onl y by oct agon ver t i ces and t hose
t hat i ncl ude t he cent er .

4. Sum t he Cases f or t he Fi nal Count ? Add up t he number of t r i angl es f r om
bot h cases t o obt ai n t he t ot al number of di st i nct t r i angl es t hat can be
f or med.

High Level Plan

LLM

Figure 1: Example from the Math domain showing a problem statement, its detailed solution, and the
generated high-level plan. The LLM was prompted to retain the high-level strategy while omitting
lower-level details. It was also provided with a few examples and guidelines tailored to the specific domain.

completeness.083

To assess CRISP’s impact, we perform a se-084

ries of experiments on four reasoning-related085

datasets: MBPP (Austin et al., 2021), Hu-086

manEval (Chen et al., 2021), GSM8K (Cobbe087

et al., 2021), and MATH (Hendrycks et al.,088

2021). Our findings indicate that while larger089

models generate plans that lead to better090

performance on the reasoning-related bench-091

marks, a small model can surpass them with092

a lightweight fine-tuning on CRISP using093

LoRA (Hu et al., 2022). Furthermore, with094

lightweight fine-tuning with LoRA (Hu et al.,095

2022) on our dataset, LLMs exhibit substantial096

improvements in plan generation, as reflected in097

both higher performance on structured reason-098

ing benchmarks such as MBPP (Austin et al.,099

2021), HumanEval (Chen et al., 2021), and100

higher quality scores assigned by LLM-based101

evaluations.102

Additionally, we assess the out-of-domain103

generalization of planning abilities and find104

that CRISP effectively transfers these capabil-105

ities across different tasks and domains. For106

example, a model fine-tuned on the Math do-107

main achieves a pass@1 score of 84.6 on the Hu-108

manEval code dataset—only 0.4 points lower109

than the same model fine-tuned on the Coding110

and Debugging domain. This strong transfer-111

ability highlights CRISP’s potential for seam-112

less integration into existing training pipelines,113

where it can enhance LLM reasoning abilities114

and improve performance across diverse down-115

stream tasks.116

The significance of this work lies in its em-117

phasis on high-level planning as a beneficial118

trainable capability that current off-the-shelf119

models do not excel in. By providing LLMs120

with explicit fine-tuning on high-level planning,121

we enhance their ability to decompose tasks 122

which in turn improves their applicability to 123

real-world scenarios requiring robust, domain- 124

agnostic reasoning. The dataset is publicly 125

available here. 126

Our contributions are threefold: 127

• We show that generating high-level plans is 128

a challenging task for LLMs, yet highly 129

beneficial. 130

• We introduce the CRISP dataset, a 131

multi-domain dataset of high-level plans 132

derived from annotated detailed solutions. 133

• We demonstrate that even a short LoRA- 134

based fine-tuning improves the quality 135

of generated plans, significantly outper- 136

forming larger models. 137

• We show that high-level planning abili- 138

ties transfer well between tasks and do- 139

mains through out-of-domain evaluation. 140

2 Related Work 141

A growing body of research investigates meth- 142

ods to enhance LLMs’ performance on tasks 143

requiring multi-step reasoning and structured 144

problem-solving. One prominent approach 145

is Chain of Thought (CoT) reasoning (Wei 146

et al., 2022b), which improves LLMs’ ability 147

to handle complex tasks by explicitly breaking 148

down reasoning into intermediate steps. This 149

method has significantly improved performance 150

on arithmetic, commonsense, and symbolic rea- 151

soning benchmarks. 152

Building on CoT, several works have in- 153

troduced further improvements, such as ex- 154

ploring multiple reasoning trajectories (Wang 155

et al., 2023b), backtracking and applying 156

2

https://huggingface.co/collections/MatVet/crisp-high-level-plans-67b1c2a02cfc42b4bc8a0271

High Level
Plan

Problem
Description

LLM as a
Judge

LLM utilizing
High Level

Plan

High Level
Plan

Solution0

Solution1

Solutionn

Is the plan
clear?

LLM as a
Judge

Is the plan
coherent?

LLM as a
Judge

Is the plan
concise?

all conditions
are met

Validated
High Level

Plan

LLM without
High Level

Plan

Solution0

Solution1

Solutionn
More correct

answers with high
level plan

LLM as a
Judge

Is the plan
complete?

Figure 2: The validation and filtering pipeline of CRISP. Each generated high-level plan undergoes binary
validation, where its clarity, coherence, conciseness, and completeness are assessed by the LLM. If all
attributes receive a positive judgment, the plan is then externally validated by comparing the solutions
generated with and without the high-level plan in the prompt, filtering out those that do not lead to
improved performance on the original task.

search algorithms (Yao et al., 2023; Hao157

et al., 2023; Besta et al., 2024; Zhou et al.,158

2024), self-evaluation (Xie et al., 2023), self-159

reflection (Shinn et al., 2023), and self-160

refinement (Madaan et al., 2023). These meth-161

ods enable models to explore multiple solution162

paths, iteratively improving their responses.163

Another line of work focuses on explicit164

task decomposition, where problems are bro-165

ken down into structured subtasks. Some166

approaches generate successive questions(Dua167

et al., 2022; Zhou et al., 2023), others decom-168

pose problems into lines of code(Chen et al.,169

2023; Yang et al., 2023; Ding et al., 2024), and170

some define explicit hierarchical subtasks (Khot171

et al., 2023). Most similar to our work are172

"Plan-and-Execute" approaches, where an LLM173

first generates a structured plan before execut-174

ing it to solve a problem (Wang et al., 2023a;175

Jiang et al., 2024b). Additionally, Prasad et al.176

(2024) proposed iteratively refining plans upon177

execution failures. However, these methods178

have largely been evaluated in single-domain179

settings, and they treat high-quality plan gener-180

ation as an emergent ability, requiring no addi-181

tional training. In contrast, our work systemat-182

ically explores plan generation across multiple183

domains, demonstrating both the challenges of184

this task and the tangible benefits of training185

LLMs to produce structured plans. However,186

these approaches are primarily benchmarked187

within a single domain and consider the task of188

generating a high-quality plan as an emergent189

capability requiring no additional training. In190

contrast, our work systematically explores plan 191

generation across multiple domains, demon- 192

strating both the challenges of this task and 193

the benefits of training LLMs to generate struc- 194

tured plans. 195

Several datasets incorporate task decom- 196

position, including those designed for web 197

agents(Liu et al., 2018; Yao et al., 2022; Deng 198

et al., 2023; Shi et al., 2017), household activ- 199

ities(Puig et al., 2018; Shridhar et al., 2021, 200

2020), games(Guss et al., 2019; Prasad et al., 201

2024), and robotics(Kannan et al., 2024; Zhang 202

et al., 2023; Li et al., 2023). These datasets 203

primarily focus on dynamic decision-making 204

in interactive environments, where planning is 205

contingent on real-time feedback and reinforce- 206

ment learning. In contrast, CRISP is designed 207

for structured, multi-domain task decomposi- 208

tion, emphasizing myopic problems—tasks that 209

can be solved through a predefined sequence 210

of steps rather than adaptive decision-making. 211

3 Dataset Collection 212

In this section we elaborate on the creation 213

of CRISP. In Section 3.1 we describe how we 214

generated the high-level plans based on care- 215

ful prompt engineering. Then, in Section 3.2 216

we describe the validation and filtering mech- 217

anisms we developed to ensure the quality of 218

the generated high-level plans based on both 219

intrinsic and extrinsic evaluations. Finally, in 220

Section 3.3, we analyze how the filtering and 221

validation affect downstream tasks and the 222

scores assigned to the plans based on LLM- 223

3

based judgment.224

3.1 High-Level Plan Generation225

Our high-level plan dataset is derived from226

Magpie-Reasoning-V1-150K (Xu et al., 2025),227

which is licensed under ‘Llama3’ and spans228

two domains: Math and Coding and Debugging.229

Magpie reasoning examples in the domains of230

math and coding and debugging illustrate how231

models can decompose complex problems into232

structured subproblems. In math, this involves233

breaking down equations or proofs into inter-234

mediate steps, while in coding and debugging,235

it includes identifying error patterns, gener-236

ating hypotheses about potential bugs, and237

testing fixes iteratively. Each instance includes238

a problem statement and a detailed solution,239

generated by Qwen2-72B-Instruct for math and240

Llama-3-70B-Instruct for coding. An example241

of such a problem statement and its correspond-242

ing detailed solution is depicted on the left side243

of Figure 1. The dataset encompasses a wide244

range of topics from mathematics and coding245

such as geometry, algebra, and integrals, differ-246

ential equations, and probability in mathemat-247

ics, as well as data structures, algorithm de-248

sign, syntax and logic error fixes, concurrency,249

and general software engineering in coding and250

debugging. In total, we extract 74,225 math-251

related samples and 66,342 coding-related sam-252

ples. Since the problems in this dataset are253

myopic—meaning they can often be solved us-254

ing a predefined sequence of steps—we believe255

that generating a high-level plan should be256

particularly beneficial.257

For each problem and its detailed solution,258

we used Mixtral-8x22B-Instruct-v0.1 to gener-259

ate a high-level plan through few-shot prompt-260

ing. We selected this model after manually261

evaluating its generated plans and finding them262

to be of higher quality than those from other263

LLMs, along with its permissive license. An ex-264

ample of an such a high-level plans is depicted265

on the right side of Figure 1. In the plan gen-266

eration prompt, we instructed the model to267

outline the high-level logical strategy while ab-268

stracting away implementation details. This269

approach ensures that information from the270

detailed solution, which the model should not271

have prior knowledge of, remains undisclosed.272

Simultaneously, it preserves a degree of flexibil-273

ity, allowing the model to determine the precise274

method for executing each step at a later stage. 275

The full generation prompt of Math is provided 276

in Appendix A.3. 277

3.2 Filtering and Validation 278

After gathering a substantial collection of high- 279

level plans, we implemented a two-step filtering 280

process to validate the plans intrinsically and 281

extrinsically, as illustrated in Figure 2. First, 282

we apply ‘LLM as a Judge’ with Llama-3.1- 283

70B-Instruct to determine whether the gener- 284

ated plans are concise, clear, coherent, and 285

complete. These four attributes are essen- 286

tial for ensuring that a plan is described effi- 287

ciently without redundancy or repetition (con- 288

cise), is easily understandable without ambigu- 289

ity or vague language (clear), follows a logical 290

sequence without missing critical transitions 291

(coherent), and includes all the essential steps 292

to fully address the problem and derive the 293

solution (complete). We believe that ensuring 294

these four attributes is crucial for generating 295

high-quality plans that are both interpretable 296

and actionable, facilitating their usefulness in 297

various downstream tasks. Each attribute is 298

assessed using a binary judgment, and any plan 299

that fails to meet one or more criteria is dis- 300

carded. In this step 7,412 math plans and 5,592 301

code plans were filtered out, accounting for ap- 302

proximately 9% of the original dataset. For 303

the full prompt used in this evaluation, refer 304

to Appendix A.4. 305

After the intrinsic validation, we assessed 306

the generated plans by testing their impact on 307

the model’s ability to successfully complete the 308

original tasks. To that end, we generated 10 309

solutions both with and without the plan us- 310

ing Llama-3.1-70B-Instruct and discarded cases 311

where the number of correct final answers was 312

higher without the plan. This step removes 313

an additional 1,089 math plans and 4,612 code 314

plans that—while clear, concise, coherent, and 315

complete—failed to produce more correct an- 316

swers than when the LLM was not provided 317

with a high-level plan. 318

After filtering, we retain 65,800 math plans 319

and 56,200 coding plans. Table 1 summarizes 320

the final dataset. 321

3.3 Dataset Analysis 322

Empirical validation shows that despite re- 323

ducing the dataset size, each filtering step 324

4

https://huggingface.co/Qwen/Qwen2-72B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct

Domain # Examples # Steps

Math 65,800 3.8
Code&Debugging 56,200 4.4

Table 1: Statistics by domain in CRISP after ap-
plying filtering. We report the total number of
generated instances, and the average number of
steps per plan.

improves quality enough to warrant the325

deletion. Specifically, it improves perfor-326

mance on external benchmarks: The intrin-327

sic filtering stage increases accuracy by 0.72328

points on GSM8K (Cobbe et al., 2021) and329

MATH (Hendrycks et al., 2021) and 0.44330

points on MBPP (Austin et al., 2021) and Hu-331

manEval (Chen et al., 2021). Similarly, the332

extrinsic filtering, which validates the impact333

on the original task, further improves accuracy334

by 0.28 points for mathematics and 0.32 points335

for coding. These improvements confirm that336

our filtering pipeline successfully distills the337

datasets into high-quality high-level plans that338

are concise, clear, coherent, and complete, as339

well as beneficial on downstream tasks.340

4 Experiments341

4.1 Plan Generator Training342

To demonstrate the practical benefits of CRISP,343

we applied LoRA parameter-efficient fine-344

tuning (Hu et al., 2022) on a small model to345

show that effective high-level plan generation346

is a learned capability; consequently, even a347

relatively small model, when efficiently fine-348

tuned on CRISP, can outperform a vanilla349

larger model on this task. Specifically, we350

used Granite-3.1-70B-Instruct model (Mishra351

et al., 2024). We trained the model for five352

epochs with a learning rate of 1e-5 on four353

A100-80GB GPUs, using hyperparameters opti-354

mized through an extensive sweep. Additional355

technical details of the training procedure are356

provided in Appendix A.1.357

4.2 Experimental Setup358

To systematically assess the impact of high-359

level plan generation on downstream tasks,360

we examine various scenarios using both a361

small model (Granite-3.1-8B-Instruct Mishra362

et al., 2024) and a large model (Llama-3.1-70B-363

Instruct). We also experimented with another364

small model, Llama-3.1-8B-Instruct, and found 365

comparable results to Granite-8B as described 366

in Appendix A.2. We conducted evaluations 367

on four well-established benchmarks: the Hu- 368

manEval benchmark (Chen et al., 2021), which 369

assesses code synthesis and problem-solving ca- 370

pabilities, MBPP (Austin et al., 2021) which 371

consists of around 1,000 crowd-sourced Python 372

programming problems, GSM8K (Cobbe et al., 373

2021)–a grade school math word problems 374

created by human problem writers, and the 375

MATH benchmark (Hendrycks et al., 2021), 376

which measures performance on complex math- 377

ematical problem-solving tasks. First, we estab- 378

lished a baseline where the plan is based on clas- 379

sic Chain-of-Thought (CoT) prompting that 380

relies solely on the problem description, which 381

could be considered as having an emergent plan. 382

Next, we incorporate high-level plans with plan- 383

and-solve approach (Wang et al., 2023a)—these 384

plans are generated by both the small and large 385

models via few-shot prompting without any ad- 386

ditional training, as well as by a fine-tuned 387

version of the small model on CRISP detailed 388

in Section 4.1. Once the plans are generated, 389

another model takes them as input, along with 390

the task description, and attempts to solve the 391

task. We refer to the plan generation model 392

as the ‘planner’ and to the subsequent model 393

as the ‘solver’. We evaluated the generated 394

plans using both the small and large models 395

as solvers in a zero-shot setting without addi- 396

tional fine-tuning. This design enables us to 397

directly compare the contribution of high-level 398

plans produced by different models on various 399

model sizes and domains. 400

4.3 Extrinsic Evaluation 401

Table 2 compares the results on different plan- 402

ners and solvers as well as the class Chain-of- 403

Thought (CoT), and provides valuable insights 404

into the impact of high-level plan generation 405

across both coding and mathematical problem- 406

solving domains. 407

Fine-tuned planning model achieves best 408

results. The plans generated by the fine- 409

tuned small model vastly outperforms the plans 410

generated by the vanilla models and CoT across 411

solvers and datasets. For example, improve- 412

ments reach up to 28% error reduction against 413

CoT in GSM8K. This demonstrates that fine- 414

5

https://huggingface.co/ibm-granite/granite-3.1-8b-instruct
https://huggingface.co/ibm-granite/granite-3.1-8b-instruct
https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct

Planner Solver MBPP HumanEval GSM8K MATH
Pass@1(Err ↓) Pass@1(Err ↓) Acc.(Err ↓) Acc.(Err ↓)

CoT (No Plan) Small 60.1 71.2 84.6 49.3
Vanilla Small Small 60.6 (1.3%↓) 71.9 (2.4%↓) 84.9 (1.9%↓) 49.6 (0.6%↓)
Vanilla Large Small 62.0 (4.98%↓) 73.1 (6.6%↓) 85.7 (7.1%↓) 53.2 (7.7%↓)
Fine-tuned Small Small 64.8 (11.8%↓) 76.4 (18.1%↓) 87.1 (16.2%↓) 60.6 (22.3%↓)

CoT (No Plan) Large 73.7 80.8 94.3 67.2
Vanilla Small Large 73.4 (1.1%↑) 80.3 (2.6%↑) 93.6 (1.2%↑) 65.8 (4.3%↑)
Vanilla Large Large 74.1 (1.5%↓) 82.2 (7.3%↓) 94.8 (8.8%↓) 70.2 (9.1%↓)
Fine-tuned Small Large 76.2 (9.5%↓) 85.3 (23.4%↓) 95.9 (28.1%↓) 73.1 (18.0%↓)

Table 2: Evaluation on code generation and math benchmarks across plan generator models and solution
generator models. ‘Err↓’ represents the relative reduction in error compared to the baseline of Chain-of-
Thought prompting (‘CoT (No Plan)’) with the same solver. ‘Small’ refers to Granite-3.1-8B-Instruct
model and ‘Large’ refers to Llama-3.1-70B-Instruct model. Notably, the fine-tuned Granite gains the
largest improvement in results across the four domains and solver models.

tuning a model for plan generation significantly415

benefits various myopic downstream tasks, such416

as code generation and mathematical problem-417

solving. It also shows that the plan genera-418

tion capabilities of vanilla models, including419

larger ones like Llama-3.1-70B-Instruct, can be420

substantially improved, resulting in enhanced421

reasoning abilities.422

Planning is better than CoT, yet the423

quality of plans matters. Plans generated424

by the vanilla models mostly outperformed425

CoT, with improvement of up to 9.1%. Yet,426

while the plans generated by the large model427

achieved significant improvements, the plan428

generated by the small model achieved only429

minor improvement and even degradation of430

up to 4.3% when using the large model as431

solver. This shows that explicitly generating432

the high-level plans before the solution is a433

better approach than CoT in myopic tasks, al-434

though the quality of the plan plays a critical435

role.436

The fine-tuned planner equally improves437

both solvers. Incorporating plans generated438

by the small fine-tuned model into the prompts439

of both small and large solvers results in an440

average error reduction of 17.1% and 19.65%,441

respectively. This indicates that both mod-442

els experience similar and significant improve-443

ments from receiving a high-quality plan before444

generating a solution.445

Both the planner and the solver impact446

performance . Improving either the plan-447

ner or the solver leads to performance gains. 448

However, the solver has a greater influence on 449

overall performance. This is evident when com- 450

paring the results of a fine-tuned small planner 451

paired with a small solver to those of a vanilla 452

small planner paired with a large solver, where 453

the latter configuration yields significantly bet- 454

ter results. 455

4.4 Intrinsic Evaluation 456

Following the extrinsic evaluation in Sec- 457

tion 4.3, we conducted a direct comparison 458

of plan quality using LLM-based judgment. 459

Specifically, we evaluated the coherence, clar- 460

ity, conciseness, and completeness of plans gen- 461

erated by fine-tuned Granite-3.1-8B-Instruct 462

(described in Section 4.1) and Llama-3.1-8B- 463

Instruct. We chose these two models as we 464

would to further explore how much the fine- 465

tuning helped compared to the best baseline 466

across datasets. 467

The results are depicted in Figure 3. Surpris- 468

ingly, although we used Llama-3.1-70B-Instruct 469

as both a judge and a competitor, which should 470

create a bias toward its own generations (Bit- 471

ton et al., 2023; Koo et al., 2023), it preferred 472

the plans generated by the small fine-tuned 473

model across all datasets in 73.3% of the cases 474

on average. Interestingly, fine-tuned Granite 475

achieved the highest scores in the two harder 476

datasets–MATH and HumanEval. This may 477

indicate that the fine-tuning especially helped 478

with plans that require more complex reason- 479

ing. The impact of our fine-tuned model’s 480

high-level plans could be speculated to stem 481

6

MBPP HumanEval GSM8K MATH
0

20

40

60

80

100

72.1% 76.7%
62.9%

81.4%

8.5%
6.4%

3.7%

5.3%
19.4% 16.9%

33.4%

13.3%

Finetuned Small Vanilla Large Both Equal

Figure 3: LLM-based judgement comparison for clarity, coherence, conciseness, and completeness between
Granite-3.1-8B-Instruct fine-tuned on CRISP and Llama-3.1-70B-Instruct, which was also the judge. Each
bar is divided into three sections representing the percentage of cases where the judge preferred the plan
generated by one of the models or found both plans to be equally good.

from longer and more robust steps compared to482

the vanilla model’s high-level plans. However,483

when analyzing the average number of steps484

in the high-level plans across the four bench-485

marks, we observe that the large vanilla model486

generates, on average, 1.3 more steps than our487

small fine-tuned model on coding benchmarks488

and 0.8 more steps on math benchmarks. This489

disproves such speculation and suggests that490

fewer, more concise, and well-structured steps491

have a greater impact on the final solution.492

4.5 Out-of-Domain Evaluation493

We hypothesize that training a model to gen-494

erate high-level plans in a specific domain—495

such as mathematics or coding—can provide496

it with transferable task decomposition capa-497

bilities that enhance performance in other do-498

mains. To investigate this, We evaluated our499

high-level plan generation models on out-of-500

distribution data by fine-tuning each model501

on one domain and testing it on the other, i.e.502

the mathematics-trained model to coding tasks503

and vice versa.504

As shown in Table 3, training on out-of-505

domain data still substantially improves. More-506

over, training improves on out-of-domain tasks507

almost as much as it does on in-domain,508

and outperforms untrained large model. The 509

mathematics-trained model, when applied to 510

coding problems in the MBPP and HumanEval 511

datasets, generated high-level plans that im- 512

proved the final solution accuracy, achieving 513

scores of 87.4 and 84.6, respectively. These 514

results outperforms the vanilla models and are 515

only marginally lower than those obtained by 516

the specialized coding high-level plan gener- 517

ation model, which scored 87.9 and 85, re- 518

spectively. Similarly, when the coding-trained 519

model was tested on mathematical problems 520

using the GSM8K and MATH benchmarks, 521

it scored 95.2 and 71.9, compared to 96.9 522

and 73.1 achieved by the mathematics-trained 523

model. These findings demonstrate that a 524

model trained on one domain can indeed con- 525

tribute effectively to problem-solving in an- 526

other. Comparing those results with the ones 527

in Table 2 shows that training on both the 528

in-domain and the out-of-domain data further 529

helps overall results. We take this to mean that 530

diversity and or more high-level plan data are 531

still valuable. 532

While not completely comparable, it seems 533

that the mathematics-trained model, i.e. 534

‘Trained Small Math’ in table 3, demonstrates 535

7

Planner MBPP HumanEval GSM8K MATH
Pass@1(Err ↓) Pass@1(Err ↓) Acc.(Err ↓) Acc.(Err ↓)

CoT 73.7 80.8 94.3 67.2
Vanilla Small 73.4 (↑1.1%) 80.3 (↑1.5%) 93.6 (↑9.1%) 65.8 (↑6.5%)
Vanilla Large 74.1 (↓3.5%) 82.2 (↓7.3%) 94.8 (↓8.8%) 70.2 (↓9.1%)
Trained Small Code 76.1 (↓15.4%) 85.0 (↓21.9%) 95.2 (↓15.8%) 71.9 (↓14.3%)
Trained Small Math 75.4 (↓11.9%) 84.6 (↓19.8%) 95.9 (↓28.1%) 73.1 (↓18.0%)

Table 3: Out-of-domain evaluation with Llama-3.1-70B-Instruct as the solution generation model. ‘Trained
Small Code/Math’ refers to Granite-3.1-8B-Instruct which was fine-tuned on one domain in CRISP. ‘Err↓’
refers to the error reduction in percentage compared to the CoT baseline.

stronger transfer performance on coding tasks536

compared to the coding-trained model’s per-537

formance on mathematical tasks. This is ev-538

ident from its error reduction, which is rela-539

tively close to that of the coding-trained model.540

Specifically, the average difference in error re-541

duction between the two was 2.8% in code542

generation benchmarks, compared to 8% in543

math benchmarks.544

This asymmetry can be attributed to the in-545

trinsic relationship between mathematical rea-546

soning and coding. Algorithmic programming547

often relies on mathematical concepts such as548

logic, recursion, combinatorics, probability, and549

number theory. Consequently, a model trained550

on mathematical problems is likely to develop551

robust reasoning, pattern recognition, and gen-552

eralization skills—attributes that are critically553

important for effective coding. In contrast,554

while a model trained on coding problems may555

acquire knowledge of syntax and common pro-556

gramming patterns, it might not cultivate the557

deeper mathematical reasoning skills that are558

essential for addressing abstract or algorithmi-559

cally complex tasks.560

In summary, our results suggest that high-561

level plan generation models possess a notable562

degree of domain generalizability, they improve563

scores substantially, and the data provided and564

its part all contribute to performance, surpass-565

ing generation from much stronger models. The566

abstract reasoning and general problem-solving567

strategies fostered by training on mathematical568

problems appear to be more readily transfer-569

able to coding tasks than the reverse. This570

observation underscores the potential benefits571

of leveraging cross-domain training to enhance572

the versatility and effectiveness of problem-573

solving models. We believe this transferability 574

also extends to other domains and topics, even 575

those that are not inherently symbolic. 576

5 Conclusions 577

In this work, we introduced CRISP, a dataset 578

for enhancing complex reasoning in large lan- 579

guage models through structured high-level 580

planning. CRISP was developed through a 581

rigorous data generation process, leveraging ex- 582

isting problem-solving datasets to extract struc- 583

tured high-level plans, followed by an extensive 584

filtering and validation pipeline. Our experi- 585

ments demonstrated that fine-tuning on CRISP 586

enables smaller models to generate higher- 587

quality plans, outperforming much larger mod- 588

els across mathematical reasoning and code 589

generation tasks. Additionally, our intrinsic 590

evaluation revealed that plans generated by 591

fine-tuned models were shorter, more concise, 592

coherent, and complete compared to those from 593

vanilla models. We also showed that high-level 594

planning capabilities transfer effectively across 595

domains, with fine-tuning in one domain im- 596

proving performance in another. This high- 597

lights the generalizability of structured plan- 598

ning as a trainable capability that enhances 599

reasoning efficiency across domains. By re- 600

leasing CRISP, we aim to encourage further re- 601

search into explicit planning mechanisms, struc- 602

tured reasoning, and their broader applications 603

in NLP. Future work may explore expanding 604

CRISP to additional domains and refining plan- 605

ning strategies to bridge the gap between hu- 606

man and machine reasoning further. 607

8

6 Limitations608

While high-level planning was shown to benefit609

highly from training data, and while we do610

release a substantial amount of data for two611

domains, it is likely that other domains would612

benefit from such datasets and would require613

further work to apply our methods (or new614

ones) to them. Moreover, as we base our data615

on data that existed in other forms and for616

other purposes, this may not be available in617

other domains.618

References619

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui620
Zhang, and Wenpeng Yin. 2024. Large language621
models for mathematical reasoning: Progresses622
and challenges. In Proceedings of the 18th Con-623
ference of the European Chapter of the Asso-624
ciation for Computational Linguistics: Student625
Research Workshop, pages 225–237, St. Julian’s,626
Malta. Association for Computational Linguis-627
tics.628

Jacob Austin, Augustus Odena, Maxwell Nye,629
Maarten Bosma, Henryk Michalewski, David Do-630
han, Ellen Jiang, Carrie Cai, Michael Terry, Quoc631
Le, et al. 2021. Program synthesis with large lan-632
guage models. arXiv preprint arXiv:2108.07732.633

Maciej Besta, Nils Blach, Ales Kubicek, Robert634
Gerstenberger, Michal Podstawski, Lukas Giani-635
nazzi, Joanna Gajda, Tomasz Lehmann, Hubert636
Niewiadomski, Piotr Nyczyk, and Torsten Hoe-637
fler. 2024. Graph of thoughts: Solving elaborate638
problems with large language models. Proceed-639
ings of the AAAI Conference on Artificial Intel-640
ligence, 38(16):17682–17690.641

Yonatan Bitton, Hritik Bansal, Jack Hessel, Rulin642
Shao, Wanrong Zhu, Anas Awadalla, Josh Gard-643
ner, Rohan Taori, and Ludwig Schmidt. 2023.644
Visit-bench: A benchmark for vision-language645
instruction following inspired by real-world use.646
arXiv preprint arXiv:2308.06595.647

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming648
Yuan, Henrique Ponde De Oliveira Pinto, Jared649
Kaplan, Harri Edwards, Yuri Burda, Nicholas650
Joseph, Greg Brockman, et al. 2021. Evaluating651
large language models trained on code. arXiv652
preprint arXiv:2107.03374.653

Wenhu Chen, Xueguang Ma, Xinyi Wang, and654
William W. Cohen. 2023. Program of thoughts655
prompting: Disentangling computation from rea-656
soning for numerical reasoning tasks. Transac-657
tions on Machine Learning Research.658

Karl Cobbe, Vineet Kosaraju, Mohammad Bavar-659
ian, Mark Chen, Heewoo Jun, Lukasz Kaiser,660

Matthias Plappert, Jerry Tworek, Jacob Hilton, 661
Reiichiro Nakano, et al. 2021. Training verifiers 662
to solve math word problems. arXiv preprint 663
arXiv:2110.14168. 664

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, 665
Samuel Stevens, Boshi Wang, Huan Sun, and 666
Yu Su. 2023. Mind2web: Towards a generalist 667
agent for the web. In Thirty-seventh Confer- 668
ence on Neural Information Processing Systems 669
Datasets and Benchmarks Track. 670

Yangruibo Ding, Jinjun Peng, Marcus J. Min, 671
Gail Kaiser, Junfeng Yang, and Baishakhi Ray. 672
2024. Semcoder: Training code language mod- 673
els with comprehensive semantics reasoning. In 674
The Thirty-eighth Annual Conference on Neural 675
Information Processing Systems. 676

Dheeru Dua, Shivanshu Gupta, Sameer Singh, and 677
Matt Gardner. 2022. Successive prompting for 678
decomposing complex questions. arXiv preprint 679
arXiv:2212.04092. 680

William H Guss, Brandon Houghton, Nicholay 681
Topin, Phillip Wang, Cayden Codel, Manuela 682
Veloso, and Ruslan Salakhutdinov. 2019. Minerl: 683
A large-scale dataset of minecraft demonstrations. 684
arXiv preprint arXiv:1907.13440. 685

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen 686
Wang, Daisy Wang, and Zhiting Hu. 2023. Rea- 687
soning with language model is planning with 688
world model. In Proceedings of the 2023 Confer- 689
ence on Empirical Methods in Natural Language 690
Processing, pages 8154–8173, Singapore. Associ- 691
ation for Computational Linguistics. 692

Dan Hendrycks, Collin Burns, Saurav Kadavath, 693
Akul Arora, Steven Basart, Eric Tang, Dawn 694
Song, and Jacob Steinhardt. 2021. Measuring 695
mathematical problem solving with the MATH 696
dataset. In Thirty-fifth Conference on Neural 697
Information Processing Systems Datasets and 698
Benchmarks Track (Round 2). 699

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan 700
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, 701
and Weizhu Chen. 2022. LoRA: Low-rank adap- 702
tation of large language models. In International 703
Conference on Learning Representations. 704

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, 705
and Sunghun Kim. 2024a. A survey on large 706
language models for code generation. Preprint, 707
arXiv:2406.00515. 708

Xue Jiang, Yihong Dong, Lecheng Wang, Zheng 709
Fang, Qiwei Shang, Ge Li, Zhi Jin, and Wenpin 710
Jiao. 2024b. Self-planning code generation with 711
large language models. ACM Transactions on 712
Software Engineering and Methodology, 33(7):1– 713
30. 714

9

https://aclanthology.org/2024.eacl-srw.17/
https://aclanthology.org/2024.eacl-srw.17/
https://aclanthology.org/2024.eacl-srw.17/
https://aclanthology.org/2024.eacl-srw.17/
https://aclanthology.org/2024.eacl-srw.17/
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=kiYqbO3wqw
https://openreview.net/forum?id=kiYqbO3wqw
https://openreview.net/forum?id=kiYqbO3wqw
https://openreview.net/forum?id=PnlCHQrM69
https://openreview.net/forum?id=PnlCHQrM69
https://openreview.net/forum?id=PnlCHQrM69
https://doi.org/10.18653/v1/2023.emnlp-main.507
https://doi.org/10.18653/v1/2023.emnlp-main.507
https://doi.org/10.18653/v1/2023.emnlp-main.507
https://doi.org/10.18653/v1/2023.emnlp-main.507
https://doi.org/10.18653/v1/2023.emnlp-main.507
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2406.00515
https://arxiv.org/abs/2406.00515
https://arxiv.org/abs/2406.00515

Shyam Sundar Kannan, Vishnunandan L. N.715
Venkatesh, and Byung-Cheol Min. 2024. Smart-716
llm: Smart multi-agent robot task planning using717
large language models. In 2024 IEEE/RSJ In-718
ternational Conference on Intelligent Robots and719
Systems (IROS), pages 12140–12147.720

Tushar Khot, Harsh Trivedi, Matthew Finlayson,721
Yao Fu, Kyle Richardson, Peter Clark, and722
Ashish Sabharwal. 2023. Decomposed prompt-723
ing: A modular approach for solving complex724
tasks. In The Eleventh International Conference725
on Learning Representations.726

Ryan Koo, Minhwa Lee, Vipul Raheja, Jong Inn727
Park, Zae Myung Kim, and Dongyeop Kang.728
2023. Benchmarking cognitive biases in large729
language models as evaluators. arXiv preprint730
arXiv:2309.17012.731

Boyi Li, Philipp Wu, Pieter Abbeel, and Jitendra732
Malik. 2023. Interactive task planning with lan-733
guage models. In 2nd Workshop on Language734
and Robot Learning: Language as Grounding.735

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat,736
and Percy Liang. 2018. Reinforcement learning737
on web interfaces using workflow-guided explo-738
ration. In International Conference on Learning739
Representations.740

Aman Madaan, Niket Tandon, Prakhar Gupta,741
Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri742
Alon, Nouha Dziri, Shrimai Prabhumoye, Yim-743
ing Yang, Shashank Gupta, Bodhisattwa Prasad744
Majumder, Katherine Hermann, Sean Welleck,745
Amir Yazdanbakhsh, and Peter Clark. 2023. Self-746
refine: Iterative refinement with self-feedback. In747
Thirty-seventh Conference on Neural Information748
Processing Systems.749

Mayank Mishra, Matt Stallone, Gaoyuan Zhang,750
Yikang Shen, Aditya Prasad, Adriana Meza751
Soria, Michele Merler, Parameswaran Selvam,752
Saptha Surendran, Shivdeep Singh, Manish Sethi,753
Xuan-Hong Dang, Pengyuan Li, Kun-Lung Wu,754
Syed Zawad, Andrew Coleman, Matthew White,755
Mark Lewis, Raju Pavuluri, Yan Koyfman, Boris756
Lublinsky, Maximilien de Bayser, Ibrahim Ab-757
delaziz, Kinjal Basu, Mayank Agarwal, Yi Zhou,758
Chris Johnson, Aanchal Goyal, Hima Patel,759
S. Yousaf Shah, Petros Zerfos, Heiko Ludwig,760
Asim Munawar, Maxwell Crouse, Pavan Kapani-761
pathi, Shweta Salaria, Bob Calio, Sophia Wen,762
Seetharami Seelam, Brian Belgodere, Carlos A.763
Fonseca, Amith Singhee, Nirmit Desai, David D.764
Cox, Ruchir Puri, and Rameswar Panda. 2024.765
Granite code models: A family of open foun-766
dation models for code intelligence. CoRR,767
abs/2405.04324.768

Aske Plaat, Annie Wong, Suzan Verberne, Joost769
Broekens, Niki van Stein, and Thomas Back.770
2024. Reasoning with large language models, a771
survey. Preprint, arXiv:2407.11511.772

Archiki Prasad, Alexander Koller, Mareike Hart- 773
mann, Peter Clark, Ashish Sabharwal, Mohit 774
Bansal, and Tushar Khot. 2024. ADaPT: As- 775
needed decomposition and planning with lan- 776
guage models. In Findings of the Association for 777
Computational Linguistics: NAACL 2024, pages 778
4226–4252, Mexico City, Mexico. Association for 779
Computational Linguistics. 780

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, 781
Tingwu Wang, Sanja Fidler, and Antonio Tor- 782
ralba. 2018. Virtualhome: Simulating household 783
activities via programs. In Proceedings of the 784
IEEE conference on computer vision and pattern 785
recognition, pages 8494–8502. 786

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan 787
Hernandez, and Percy Liang. 2017. World of 788
bits: An open-domain platform for web-based 789
agents. In Proceedings of the 34th International 790
Conference on Machine Learning, volume 70 of 791
Proceedings of Machine Learning Research, pages 792
3135–3144. PMLR. 793

Noah Shinn, Federico Cassano, Ashwin Gopinath, 794
Karthik R Narasimhan, and Shunyu Yao. 2023. 795
Reflexion: language agents with verbal reinforce- 796
ment learning. In Thirty-seventh Conference on 797
Neural Information Processing Systems. 798

Mohit Shridhar, Jesse Thomason, Daniel Gordon, 799
Yonatan Bisk, Winson Han, Roozbeh Mottaghi, 800
Luke Zettlemoyer, and Dieter Fox. 2020. Alfred: 801
A benchmark for interpreting grounded instruc- 802
tions for everyday tasks. In Proceedings of the 803
IEEE/CVF conference on computer vision and 804
pattern recognition, pages 10740–10749. 805

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre 806
Cote, Yonatan Bisk, Adam Trischler, and 807
Matthew Hausknecht. 2021. {ALFW}orld: 808
Aligning text and embodied environments for 809
interactive learning. In International Conference 810
on Learning Representations. 811

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, 812
Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim. 813
2023a. Plan-and-solve prompting: Improving 814
zero-shot chain-of-thought reasoning by large 815
language models. In Proceedings of the 61st 816
Annual Meeting of the Association for Compu- 817
tational Linguistics (Volume 1: Long Papers), 818
pages 2609–2634, Toronto, Canada. Association 819
for Computational Linguistics. 820

Xuezhi Wang, Jason Wei, Dale Schuurmans, 821
Quoc V Le, Ed H. Chi, Sharan Narang, 822
Aakanksha Chowdhery, and Denny Zhou. 2023b. 823
Self-consistency improves chain of thought rea- 824
soning in language models. In The Eleventh 825
International Conference on Learning Represen- 826
tations. 827

Jason Wei, Xuezhi Wang, Dale Schuurmans, 828
Maarten Bosma, brian ichter, Fei Xia, Ed H. 829

10

https://doi.org/10.1109/IROS58592.2024.10802322
https://doi.org/10.1109/IROS58592.2024.10802322
https://doi.org/10.1109/IROS58592.2024.10802322
https://doi.org/10.1109/IROS58592.2024.10802322
https://doi.org/10.1109/IROS58592.2024.10802322
https://openreview.net/forum?id=_nGgzQjzaRy
https://openreview.net/forum?id=_nGgzQjzaRy
https://openreview.net/forum?id=_nGgzQjzaRy
https://openreview.net/forum?id=_nGgzQjzaRy
https://openreview.net/forum?id=_nGgzQjzaRy
https://openreview.net/forum?id=jKaWvqLnXi
https://openreview.net/forum?id=jKaWvqLnXi
https://openreview.net/forum?id=jKaWvqLnXi
https://openreview.net/forum?id=ryTp3f-0-
https://openreview.net/forum?id=ryTp3f-0-
https://openreview.net/forum?id=ryTp3f-0-
https://openreview.net/forum?id=ryTp3f-0-
https://openreview.net/forum?id=ryTp3f-0-
https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=S37hOerQLB
https://doi.org/10.48550/arXiv.2405.04324
https://doi.org/10.48550/arXiv.2405.04324
https://doi.org/10.48550/arXiv.2405.04324
https://arxiv.org/abs/2407.11511
https://arxiv.org/abs/2407.11511
https://arxiv.org/abs/2407.11511
https://doi.org/10.18653/v1/2024.findings-naacl.264
https://doi.org/10.18653/v1/2024.findings-naacl.264
https://doi.org/10.18653/v1/2024.findings-naacl.264
https://doi.org/10.18653/v1/2024.findings-naacl.264
https://doi.org/10.18653/v1/2024.findings-naacl.264
https://proceedings.mlr.press/v70/shi17a.html
https://proceedings.mlr.press/v70/shi17a.html
https://proceedings.mlr.press/v70/shi17a.html
https://proceedings.mlr.press/v70/shi17a.html
https://proceedings.mlr.press/v70/shi17a.html
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=0IOX0YcCdTn
https://openreview.net/forum?id=0IOX0YcCdTn
https://openreview.net/forum?id=0IOX0YcCdTn
https://openreview.net/forum?id=0IOX0YcCdTn
https://openreview.net/forum?id=0IOX0YcCdTn
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw

Chi, Quoc V Le, and Denny Zhou. 2022a. Chain830
of thought prompting elicits reasoning in large831
language models. In Advances in Neural Infor-832
mation Processing Systems.833

Jason Wei, Xuezhi Wang, Dale Schuurmans,834
Maarten Bosma, brian ichter, Fei Xia, Ed Chi,835
Quoc V Le, and Denny Zhou. 2022b. Chain-836
of-thought prompting elicits reasoning in large837
language models. In Advances in Neural Infor-838
mation Processing Systems, volume 35, pages839
24824–24837. Curran Associates, Inc.840

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, Xu Zhao,841
Min-Yen Kan, Junxian He, and Qizhe Xie. 2023.842
Self-evaluation guided beam search for reasoning.843
In Thirty-seventh Conference on Neural Infor-844
mation Processing Systems.845

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yun-846
tian Deng, Radha Poovendran, Yejin Choi, and847
Bill Yuchen Lin. 2025. Magpie: Alignment data848
synthesis from scratch by prompting aligned849
LLMs with nothing. In The Thirteenth Interna-850
tional Conference on Learning Representations.851

John Yang, Akshara Prabhakar, Karthik R852
Narasimhan, and Shunyu Yao. 2023. Intercode:853
Standardizing and benchmarking interactive cod-854
ing with execution feedback. In Thirty-seventh855
Conference on Neural Information Processing856
Systems Datasets and Benchmarks Track.857

Shunyu Yao, Howard Chen, John Yang, and858
Karthik Narasimhan. 2022. Webshop: To-859
wards scalable real-world web interaction with860
grounded language agents. In Advances in Neu-861
ral Information Processing Systems, volume 35,862
pages 20744–20757. Curran Associates, Inc.863

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,864
Thomas L. Griffiths, Yuan Cao, and Karthik R865
Narasimhan. 2023. Tree of thoughts: Deliberate866
problem solving with large language models. In867
Thirty-seventh Conference on Neural Information868
Processing Systems.869

Jesse Zhang, Jiahui Zhang, Karl Pertsch, Ziyi Liu,870
Xiang Ren, Minsuk Chang, Shao-Hua Sun, and871
Joseph J Lim. 2023. Bootstrap your own skills:872
Learning to solve new tasks with large language873
model guidance. In 7th Annual Conference on874
Robot Learning.875

Andy Zhou, Kai Yan, Michal Shlapentokh-876
Rothman, Haohan Wang, and Yu-Xiong Wang.877
2024. Language agent tree search unifies reason-878
ing acting and planning in language models.879

Denny Zhou, Nathanael Schärli, Le Hou, Jason880
Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-881
mans, Claire Cui, Olivier Bousquet, Quoc V Le,882
and Ed H. Chi. 2023. Least-to-most prompting883
enables complex reasoning in large language mod-884
els. In The Eleventh International Conference885
on Learning Representations.886

A Appendix 887

A.1 LoRA Finetuning 888

We trained Granite-3.1-8B-Instruct 1 on 889

CRISP with LoRA for 5 epochs, with R = 32, 890

α = 16, dropout ratio of 0.05%, a learning rate 891

of 1e-5, a cosine learning rate scheduler and a 892

0.0 weight decay. 893

A.2 Results with 894

Llama-3.1-8B-instruct 895

Here are the results for another small model 896

that we experimented with: Llama-3.1- 897

8B0Instruct. We did that to make sure that the 898

results obtained with Granite-3.1-8B-Instruct 899

are indeed representative. 900

A.3 Prompt for Plan Generation in 901

CRISP 902

To generate plans for each domain in CRISP, 903

we crafted a few-shot prompt for each domain. 904

Here is the prompt we used for the generation of 905

plans in the Math domain of Magpie-reasoning- 906

V1-150K. The overall objective was to extract 907

the logical strategy needed to solve a problem 908

without relying on specific equations, function 909

names, or detailed computations. 910

911
System Message: 912
You are a helpful and concise assistant. You 913

have access to: 914
1. A **Problem Description** that explains 915

the problem at hand. 916
2. A **Detailed Solution** that fully works 917

out how to solve the problem step-by-step. 918
919

Your goal is to produce a short, high-level 920
plan describing how to solve the problem 921
logically. 922

This plan must not include any specific 923
equations, function names, or detailed 924
numerical computations. 925

It should be purely indicative and helpful, 926
outlining the logical strategy in 3-5 927
simple steps. 928

929
User Message: 930

931
Task 932
1. Read and understand the **Problem 933

Description} below. 934
2. Review the **Detailed Solution** below (do 935

not copy it). 936
3. From these, generate a concise, 3-5 step 937

high-level plan that explains the logical 938
approach needed to solve the problem. 939

1https://huggingface.co/ibm-granite/
granite-3.1-8b-instruct

11

https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://openreview.net/forum?id=Bw82hwg5Q3
https://openreview.net/forum?id=Pnk7vMbznK
https://openreview.net/forum?id=Pnk7vMbznK
https://openreview.net/forum?id=Pnk7vMbznK
https://openreview.net/forum?id=Pnk7vMbznK
https://openreview.net/forum?id=Pnk7vMbznK
https://openreview.net/forum?id=fvKaLF1ns8
https://openreview.net/forum?id=fvKaLF1ns8
https://openreview.net/forum?id=fvKaLF1ns8
https://openreview.net/forum?id=fvKaLF1ns8
https://openreview.net/forum?id=fvKaLF1ns8
https://proceedings.neurips.cc/paper_files/paper/2022/file/82ad13ec01f9fe44c01cb91814fd7b8c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/82ad13ec01f9fe44c01cb91814fd7b8c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/82ad13ec01f9fe44c01cb91814fd7b8c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/82ad13ec01f9fe44c01cb91814fd7b8c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/82ad13ec01f9fe44c01cb91814fd7b8c-Paper-Conference.pdf
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=a0mFRgadGO
https://openreview.net/forum?id=a0mFRgadGO
https://openreview.net/forum?id=a0mFRgadGO
https://openreview.net/forum?id=a0mFRgadGO
https://openreview.net/forum?id=a0mFRgadGO
https://openreview.net/forum?id=6LNTSrJjBe
https://openreview.net/forum?id=6LNTSrJjBe
https://openreview.net/forum?id=6LNTSrJjBe
https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM
https://huggingface.co/ibm-granite/granite-3.1-8b-instruct
https://huggingface.co/ibm-granite/granite-3.1-8b-instruct

Planner Model MBPP HumanEval GSM8K MATH
Pass@1(Err ↓) Pass@1(Err ↓) Acc.(Err ↓) Acc.(Err ↓)

CoT 60.6 72.4 84.3 51.5
Vanilla Llama3.1-8B 60.9 (0.8%↓) 72.6 (0.7%↓) 84.7 (2.5%↓) 51.9 (0.8%↓)
Vanilla Llama-70B 62.3 (4.3%↓) 73.5 (4.0%↓) 85.6 (8.3%↓) 52.7 (2.5%↓)
Trained Llama 64.9 (10.9%↓) 76.1 (13.4%↓) 86.3 (12.7%↓) 54.5 (6.2%↓)

Table 4: Results with Llama-3.1-8B-Instruct as a generator model with different planners, including a
fine-tuned model of the aforementioned model. Notably, the trends are similar to the trends seen with
Granite-3.1-8B-Instruct.

4. The plan should be abstract and940
conceptual-avoid quoting or revealing941
detailed equations, formulas, function942
names, or code.943

5. Focus on the reasoning steps rather than944
low-level implementation.945

946
Problem Description947
\{problem_description\}948

949
950

Detailed Solution951
{detailed_solution}952

953
954

Formatting Requirements955
1. Your final answer should be 3-5 bullet956

points (or numbered steps).957
2. Each bullet/step should be brief, logical,958

and to the point.959
3. Do not include specific equations or code960

references.961
4. Do not include extraneous commentary or962

repeat large sections from the solution.963
5. Focus on a clear, conceptual strategy that964

someone could follow to solve the problem965
at a high level.966

967
968

Example Output Structure969
1. Identify the main elements, quantities, or970

variables in the problem.971
2. Determine the key relationships or972

principles that connect these elements.973
3. Outline a general strategy for combining974

or manipulating these elements to get975
closer to a solution.976

4. Check or validate the approach by ensuring977
it aligns with the key requirements.978

5. Summarize the final reasoning step or979
expected result in broad terms.980

981
Few-Shot Examples982

983
984

Example 1985
986

Problem Description987
Consider a regular octagon. How many988

different triangles can be formed if the989
octagon is placed inside a circle and we990
can also use the center of the circle as991
a vertex for the triangles?992

993

994
Detailed Solution 995
Let's break it down step by step. 996
Step 1: Triangles with 3 vertices from the 997

octagon (choose any 3 of 8). 998
Step 2: Triangles with 2 vertices from the 999

octagon plus the center. 1000
Then sum the totals from Step 1 and Step 2. 1001

1002
1003

High-Level Plan 1004
1. Recognize the two types of triangles 1005

possible: those with only octagon 1006
vertices and those that use the center as 1007
one vertex. 1008

2. Conceptually determine how to count each 1009
type of triangle without going into 1010
specific combinations. 1011

3. Combine the counts logically to get the 1012
total number of different triangles. 1013

1014
1015

Example 2 1016
Problem Description 1017
Write a function that merges two sorted lists 1018

into a single sorted list, without using 1019
any built-in sorting functions. The time 1020
complexity should be \(O(n)\), where 1021
\(n\) is the total number of elements in 1022
both lists. 1023

1024
1025

Detailed Solution 1026
def merge_sorted_lists(list1, list2): 1027
i, j = 0, 0 1028
result = [] 1029
while i < len(list1) and j < len(list2): 1030

if list1[i] < list2[j]: 1031
result.append(list1[i]) 1032
i += 1 1033

else: 1034
result.append(list2[j]) 1035
j += 1 1036

while i < len(list1): 1037
result.append(list1[i]) 1038
i += 1 1039

while j < len(list2): 1040
result.append(list2[j]) 1041
j += 1 1042

return result 1043
1044
1045

High-Level Plan 1046

12

1. Recognize the need to keep track of where1047
we are in each list as we form the new1048
list.1049

2. Conceptually compare the front elements1050
from both lists to decide which goes next.1051

3. Continue until one list is exhausted, then1052
add any remaining elements from the other.1053

4. Return the combined list as the final1054
merged sequence.1055

1056
1057

Now, please provide your high-level plan in1058
3-5 steps.1059

A.4 LLM-based Judgement Prompt1060

We used the following prompt for judging the1061

four attributes of generated plans with LLM-1062

based judgement.1063

You are an intelligent, knowledgeable, and1064
impartial judge. Your task is to evaluate1065
whether a **High-Level Plan** effectively1066
outlines the logical steps required to1067
address a given **Problem Description**1068
and reach a **Detailed Solution**.1069

1070
You are provided with three components:1071
1. **Problem Description:**1072

{problem_description}1073
2. **High-Level Plan:** {high_level_plan}1074
3. **Detailed Solution:** {solution}1075

1076
---1077

1078
Evaluation Criteria1079
Assess whether the High-Level Plan1080

sufficiently and logically bridges the1081
Problem Description and the Detailed1082
Solution based on the following four1083
criteria:1084

1085
1. Clarity1086
- Are the steps written in a way that is easy1087

to understand?1088
- Does the plan avoid ambiguity and vague1089

language?1090
- Are complex ideas broken down into1091

comprehensible components?1092
1093

2. Conciseness1094
- Does the plan avoid unnecessary repetition1095

or overly verbose explanations?1096
- Are the steps described efficiently without1097

losing essential details?1098
- Is there any redundant or overly wordy1099

content that could be simplified?1100
1101

**3. Coherence (Logical Flow &1102
Structure)**1103

- Do the steps follow a clear and logical1104
progression from problem to solution?1105

- Are there any gaps, abrupt transitions, or1106
missing links in the reasoning?1107

- Is the structure intuitive, making it easy1108
to follow the problem-solving approach?1109

1110
4. Completeness1111

- Are all necessary steps included to fully 1112
address the problem and derive the 1113
solution? 1114

- Does the plan leave out any critical 1115
information or assume unstated knowledge? 1116

- Are there any logical leaps where a step is 1117
missing between two points? 1118

--- 1119
1120

Output Format 1121
Your evaluation must be returned **as a 1122

single JSON object** containing exactly 1123
two fields: 1124

1125
1. **`explanation`**: A detailed assessment, 1126

addressing how well the plan meets each 1127
of the four criteria above. Reference 1128
specific strengths and weaknesses. 1129

2. **`judgement`**: A string set to `"true"` 1130
if the plan **fully satisfies all four 1131
criteria**, or `"false"` otherwise. 1132

1133
--- 1134

1135
Strict Output Requirements: 1136
- **Do not** include any extra keys or fields. 1137
- **Do not** output any additional text 1138

outside the JSON structure. 1139
- The final output must strictly match the 1140

following format: 1141
1142

```json 1143
{ 1144

"explanation": "Your detailed reasoning 1145
here.", 1146

"judgement": "true or false" 1147
} 1148

A.5 Prompt for Intrinsic Evaluation 1149

We attach here the prompt we used to com- 1150

pare two plans based on clarity, conciseness, 1151

coherence, and completeness. 1152

You are an impartial and expert judge. Your 1153
task is to evaluate two plans that each 1154
aim to solve the same problem. 1155

They both rely on the same problem 1156
description and reach the same final 1157
solution, but they may differ in how they 1158

outline the logical steps to get from the 1159
problem statement to the solution. 1160

1161
### Your Goal 1162
Read the problem description, the detailed 1163

solution, and both Plan A and Plan B 1164
carefully. 1165

Then, compare and evaluate Plan A and Plan B 1166
according to four specific criteria: 1167

1168
1. **Clarity** 1169

- Are the steps written in a way that is 1170
easy to understand? 1171

- Does the plan avoid ambiguity and vague 1172
language? 1173

- Are complex ideas broken down into 1174
comprehensible components? 1175

1176
2. **Conciseness** 1177

13



- Does the plan avoid unnecessary1178
repetition or overly verbose1179
explanations?1180

- Are the steps described efficiently,1181
without omitting crucial details?1182

- Is there any redundant or overly wordy1183
content that could be simplified?1184

1185
3. **Coherence (Logical Flow & Structure)**1186

- Do the steps follow a clear and logical1187
progression from problem to solution?1188

- Are there any gaps, abrupt transitions,1189
or missing links in the reasoning?1190

- Is the structure intuitive and easy to1191
follow?1192

1193
4. **Completeness**1194

- Are all the essential steps included to1195
fully address the problem and derive1196
the solution?1197

- Does the plan omit any critical1198
information or assume unstated1199
knowledge?1200

- Are there any logical leaps or missing1201
transitions between key points?1202

1203
### Inputs1204
**Problem Description:**1205
{problem_description}1206

1207
**Detailed Solution:**1208
{solution}1209

1210
**Plan A:**1211
{planA}1212

1213
**Plan B:**1214
{planB}1215

1216
Each plan proposes a logical sequence of1217

steps to move from the problem1218
description to the final solution.1219

1220
### What to Do1221
1. Examine each plan in relation to the1222

problem and the solution.1223
2. Assess Plan A and Plan B based on the four1224

criteria: Clarity, Conciseness,1225
Coherence, and Completeness.1226

3. Decide whether Plan A is superior, Plan B1227
is superior, or they are equally good1228
overall.1229

1230
### How to Report1231
Provide your final output as a single JSON1232

object in the exact format below:1233
1234

{{1235
"explanation": "Explain your comparison1236

referencing each of the four criteria1237
as needed.1238

Describe strengths,1239
weaknesses, and the1240
reasoning leading to your1241
final verdict.",1242

"judgement": "A or B or Same"1243
}}1244

1245
- **explanation**: Briefly but1246

comprehensively summarize the comparison,1247

indicating why you believe 1248
Plan A or Plan B is better, or why they are 1249

the same. Please point to relevant 1250
details from each plan 1251

when forming your reasoning. 1252
1253

- **judgement**: Must be exactly one of: 1254
- "A" (if Plan A is judged superior 1255

overall), 1256
- "B" (if Plan B is judged superior 1257

overall), 1258
- "Same" (if they are equally good). 1259

1260
Ensure you base your judgment only on the 1261

given criteria and the content of the 1262
plans. Output **only** the JSON with 1263

no additional text, headers, or explanations. 1264

14


	Introduction
	Related Work
	Dataset Collection
	High-Level Plan Generation
	Filtering and Validation
	Dataset Analysis

	Experiments
	Plan Generator Training
	Experimental Setup
	Extrinsic Evaluation
	Intrinsic Evaluation
	Out-of-Domain Evaluation

	Conclusions
	Limitations
	Appendix
	LoRA Finetuning
	Results with Llama-3.1-8B-instruct
	Prompt for Plan Generation in CRISP
	LLM-based Judgement Prompt
	Prompt for Intrinsic Evaluation


