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Abstract

World models achieve remarkable success in001
predicting future states and planning in com-002
plex environments and Large Language Mod-003
els (LLMs) serve as promising foundation to004
build general world models. However, their005
performances are usually constrained by the006
limited external knowledge to specific environ-007
ments. Existing research attempts to enhance008
LLM-based world models through prompting009
or fine-tuning approaches, which are either re-010
quiring human knowledge or computationally011
extensive. Therefore, we introduce Retrieval-012
Augmented World Models (RAWM), a novel013
framework that leverages retrieval-augmented014
generation to efficiently integrate the exter-015
nal knowledge to LLM-based world models.016
Our main contributions are threefold: (i) We017
introduce a memory system and design an018
embedding model to retrieve relevant experi-019
ences as the in-context examples to improve020
the world model’s predictive accuracy. (ii) We021
develop a reinforcement learning (RL) training022
pipeline that fine-tunes a small MLP head on023
the pre-trained embedding model using Proxi-024
mal Policy Optimization (PPO), further enhanc-025
ing prediction performance. (iii) We conduct026
extensive experiments across three diverse en-027
vironments, i.e., Game24, BlocksWorld, and028
BabyAI, demonstrating that RAWM consis-029
tently outperforms baseline models and ex-030
hibits strong generalizability. By leveraging031
the retrieval-augmented generation and the ef-032
ficient RL training pipeline, RAWM dynam-033
ically utilizes relevant historical experiences034
and equips LLMs with environment-specific ex-035
ternal knowledge without retraining, enabling036
more accurate and generalizable predictions.037

1 Introduction038

Why World Model is Important? The world039

model (Ha and Schmidhuber, 2018) emerges to040

be an important module in decision making due to041

the celebrating success of MuZero (Schrittwieser042

et al., 2020) and Dreamer (Hafner et al., 2019, 2021, 043

2025). As learned accurate simulators, world mod- 044

els encode rich representations of the complex dy- 045

namics of the environment to predict the future 046

states and the rewards. World models are critical 047

for several key capabilities, such as generalization 048

to novel tasks (Byravan et al., 2020; Robey et al., 049

2021; Young et al., 2023), efficient planning (Sekar 050

et al., 2020; Hamrick et al., 2021; Schrittwieser 051

et al., 2020), and offline learning (Schrittwieser 052

et al., 2021; Yu et al., 2020, 2021). Beyond 053

decision-making tasks, recent works such as Ge- 054

nie (Bruce et al., 2024) and Vista (Gao et al., 2024) 055

demonstrate that world models can be general- 056

purpose world simulators and users can directly 057

interact with them for playing and planning. 058

Why LLM-based World Models? The past five 059

years witness the remarkable success of large lan- 060

guage models (LLMs) in enormous text genera- 061

tion and understanding tasks (Brown et al., 2020; 062

OpenAI, 2023). LLMs serve as the world model 063

explicitly in Reasoning via Planning (RAP) (Hao 064

et al., 2023) and Reason for Future, Act for Now 065

(RAFA) (Liu et al., 2023), where the LLMs pre- 066

dict the next states based on the actions executed 067

at current states, e.g., the states of blocks in the 068

BlocksWorld (Valmeekam et al., 2023), which is 069

used to assist the planning methods. LLMs serve 070

as the world model implicitly in the widely-used 071

Tree of Thoughts (ToT) (Yao et al., 2023), as well 072

as Graph of Thoughts (GoT) (Besta et al., 2024), 073

where the LLMs need to predict the states and 074

evaluate the thoughts to help the selection of the 075

thoughts to advance the reasoning. The main advan- 076

tage of LLM-based world models is that LLMs are 077

pre-trained over internet-scale data and can capture 078

diverse patterns in different environments. More 079

discussion can be found in Appendix A.1 080

Why LLM-based World Models May Fail? How- 081

ever, the pre-trained LLMs may lack the external 082

knowledge of specific environments, which pro- 083
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Room 1 (Current Room)

Room 2 (Next Room)

WM

What can I see if I move to 
the next room?

I don’t know.

Rawm

I saw a chair in the current 
room. As both rooms are 
similar, there may be a 
chair in the next room.

Figure 1: Why retrieval is needed?

hibits them to be accurate world models. For the084

example in Figure 1, the LLM cannot provide the085

accurate predictions whether there is a chair in086

room 2 if room 2 is never been visited. To address087

this issue, we can carefully design the prompts to088

add the specific knowledge to help the LLMs in089

making predictions, e.g., the rules for objects and090

actions (Wang et al., 2024b; Gu et al., 2024b). How-091

ever, the knowledge is even usually not available092

for humans. Alternatively, we can fine-tune the093

LLMs on the specific environments (Xiang et al.,094

2023; Chae et al., 2025). However, the training of095

LLMs brings additional complexities for building096

the world models with LLMs and may also hurt the097

generalizability of LLMs across different tasks.098

Our Contributions. To tackle these challenges,099

we propose Retrieval-Augmented World Models100

(RAWM). Specifically, our contributions are three-101

fold. First, inspired by the retrieval-augmented gen-102

eration (RAG) (Lewis et al., 2020), we introduce103

the memory, which stores the pre-collected experi-104

ences from the environments, and the embedding105

model, which is used for querying relevant experi-106

ence to assist the world model to make predictions.107

Second, we introduce the reinforcement learning108

(RL) training pipeline, which adds a small MLP109

head to the pre-trained embedding model and trains110

the MLP layer with proximal policy optimization111

(PPO) (Schulman et al., 2017). Third, we collect112

the data from Game24, BlocksWorld and BabyAI,113

and extensive experiments demonstrate RAWM can114

significantly outperform the world model without115

retrieved experiences and the pre-trained embed-116

ding models and demonstrate the generalizability.117

RAWM is an efficient way for LLMs to obtain the118

environment-specific knowledge to build the better119

world models without training LLMs, and our RL120

training pipeline can further improve the prediction121

accuracy of LLM-based world models efficiently.122

2 Related Work123

World Models and LLMs. MuZero (Schrittwieser124

et al., 2020) and Dreamer (Hafner et al., 2019) are125

the two prominent examples of the world model for 126

complex decision making tasks. Trajectory trans- 127

former (Janner et al., 2021) leverages transformer 128

to model the decision making as a sequence mod- 129

eling problem. The world models trained in these 130

methods are environment specific and cannot gener- 131

alize to other environments. Recently, researchers 132

leverage LLMs to build general world models for 133

reasoning and decision making (Hao et al., 2023; 134

Wang et al., 2024b; Yang et al., 2024b; Lin et al., 135

2024). Specifically, RAP (Hao et al., 2023) and 136

RAFA (Liu et al., 2023) use LLMs to predict next 137

states explicitly and planning methods for deci- 138

sion making. While ToT (Yao et al., 2023) and 139

GoT (Besta et al., 2024) use LLMs as the world 140

model implicitly to evaluate the different thoughts. 141

Retrieval-Augmented Generation. RAG is an 142

efficient way for LLMs to incorporate the ex- 143

ternal knowledge for generation and understand- 144

ing (Lewis et al., 2020; Gao et al., 2023). Specifi- 145

cally, RAG leverages the retrieval model to query 146

the relevant experiences from the memory, which 147

are further provided to the LLMs as the in-context 148

examples. Different from simple prompting, where 149

the external knowledge is provided by human- 150

written prompts (Wang et al., 2024b), and simple 151

in-context learning, where the in-context examples 152

are randomly picked (Hao et al., 2023), RAG can 153

provide better examples for accurate predictions. 154

Compared with fine-tuning (Xiang et al., 2023), 155

RAG is a more efficient way to integrate external 156

knowledge into LLM-based world models. 157

RL for LLM. RL is a powerful method to train 158

the model with trial and error (Sutton and Barto, 159

2018). In addition to the applications of RL in 160

games and robotics (Silver et al., 2017) to optimize 161

the LLMs, such as optimizing the prompts (Deng 162

et al., 2022) and the decoding process (Wan et al., 163

2024), recent works also leverage RL to improve 164

the reasoning capabilities of LLMs, e.g., DeepSeek- 165

R1 (Guo et al., 2025). However, RL fine-tuning 166

of LLMs is usually time-consuming and computa- 167

tional extensive. In this work, instead of directly 168

fine-tuning LLMs, we leverage the RL method to 169

train the embedding efficiently to find the better ex- 170

amples to boost the prediction of the world model. 171

3 Preliminaries 172

In this section, we present the preliminaries of 173

RAWM, including the formulation of the deci- 174

sion making, the LLMs, and the world models. 175
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Markov Decision Process (MDP). A decision176

making problem is usually represented as a Markov177

decision process (MDP) (Sutton and Barto, 2018),178

which is defined by the tuple M = (S,A, T,R, γ),179

where S is the state space, A is the action space,180

T : S ×A→ S is the transition dynamics, which181

specifies the next state s′ given the current state s182

and action a, R : S × A → R is the reward func-183

tion, which specifies the agent’s reward given the184

current state s and action a, and γ is the discount185

factor. The agent’s policy is πθ : S × A → [0, 1],186

parameterized by θ, which takes the state s as the187

input and outputs the action a.188

Large Language Models (LLMs). Large Lan-189

guage models (LLMs) learn from text data using190

unsupervised/self-supervised learning. LLMs opti-191

mize the joint probabilities of variable-length sym-192

bol sequences as the product of conditional proba-193

bilities by P (x) =
∏n
i=1 P (si|s1, ..., si−1), where194

(s1, s2, ..., sn) is the variable-length sequence of195

symbols. With the billions of parameters and ex-196

tensive training data, the vast amounts of common197

knowledge encoded in LLMs lead to the remark-198

able generalization across various NLP tasks with199

simple prompting and in-context learning, and with-200

out task-specific fine-tuning (Touvron et al., 2023;201

OpenAI, 2023). Among them, RAG (Lewis et al.,202

2020) is viewed as a powerful method to incorpo-203

rate external knowledge to LLMs for generation.204

World Models. The world model Ω is introduced205

to predict the dynamics of the environment, thus206

supporting the decision making process. Specifi-207

cally, the world model is trained or prompted to208

predict the next state s′, the reward r, and the termi-209

nal function d, given the current state s and action210

a. The world model can be one or multiple neu-211

ral networks specially trained on the environments212

for the three prediction tasks (Hafner et al., 2019;213

Schrittwieser et al., 2020), which cannot general-214

ize across different environments. Recent works215

leverage LLMs to build the general world models,216

where the prompting (Xie et al., 2024), in-context217

learning (Wang et al., 2024b), and even fine-tuning218

methods (Xiang et al., 2023; Lin et al., 2024) are219

used. In this work, we primarily focus on the pre-220

diction of the next state, which is the most impor-221

tant feature, as both the reward and terminal are222

usually derived from the next state visited1.223

1Both rule-based and LLM-based rewards are considered
in RAP (Hao et al., 2023) based on the predicted next states.
We can also leverage the similarity between the next states and
task instructions to determine the rewards (Fan et al., 2022).

4 Retrieval-Augmented World Models 224

In this section, we introduce Retrieval-Augmented 225

World Models (RAWM). We will first introduce 226

the architecture of RAWM and then introduce the 227

RL training pipeline for the retrieval process. 228

4.1 Architecture 229

Figure 2: The overview of RAWM.

The architecture of RAWM is displayed in Fig- 230

ure 2. We introduce a memory Ξ, which stores the 231

pre-collected experiences, an embedding model, 232

which is used to rank and retrieve the relevant expe- 233

riences. Specifically, given the query q = (s, a) ∈ 234

Q, where Q is the query dataset, we will use the em- 235

bedding model to query topK relevant experiences 236

c = ⟨ck⟩, where ck = (sk, ak, s
′
k), k = 1, . . . ,K. 237

The retrieved experiences c will be concatenated 238

with the query q to form the input to the world 239

model Ω. We note that for the environments where 240

the states are not texts, e.g., BabyAI (Chevalier- 241

Boisvert et al., 2019a), we need to first transform 242

them into the text representation. 243

Prompt Design. For the prompt design, any in- 244

formation related to the environments will not be 245

provided to the world model, including the tasks, 246

the object and action rules. We expect that all 247

the environment knowledge is provided by the in- 248

context examples retrieved from the memory. The 249

prompt template is displayed as follows: 250

Prompt Template

System prompt:
"After being given a current state and an action, directly
give the next state after performing the action."
Content prompt:
Current state: <text of the current state>
Action: <text of the selected action>
Next state: <text of the next state> or <for prediction>

251

The system prompt provides a general descrip- 252

tion of the prediction tasks, and the content prompt 253
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includes the query and the context examples. For254

the context examples, the next state is provided,255

while for the query, the next state is predicted by256

the world model Ω. Similarly, this content template257

is also used to get the embeddings of both query258

dataset and the memory for the retrieval process.259

Trainable Embedding of Transitions. We use260

the pre-trained embedding model ϕ to encode the261

transitions into the M -dimensional vector repre-262

sentation. Specifically, for the query dataset, we263

only encode the state and the action, and for the264

memory, we encode the state, the action and the265

next state. However, the embedding model is266

trained over general corpus, which would be not267

suitable to the specific environment, so adapting268

the embedding model is needed. There are sev-269

eral methods to adapt the embedding model to the270

specific environment: i) fine-tuning all parame-271

ters in ϕ, which is not training efficient, ii) low-272

rank adaption (LoRA) (Hu et al., 2022), which273

introduces trainable low-rank decomposition ma-274

trices for each layer to reduce the parameters to be275

trained. Though the number of trained parameters276

is reduced, LoRA still requires to leverage the full277

embedding model to inference. Besides, both full-278

parameter fine-tuning and LoRA requires that the279

access of the parameters of the pre-trained embed-280

ding model and cannot be applied to close-source281

models, e.g., text-embedding-3. Therefore, in-282

spired by the linear probe (Radford et al., 2021),283

we introduce a trainable MLP module above the284

pre-trained embedding model, which is denoted285

as ψ. Therefore, the embedding process for both286

query data and the memory can be represented as:287

eq = ψ(ϕ(s, a)),∀(s, a) ∈ Q, (1)288

ec = ψ(ϕ(s, a, s′),∀(s, a, s′) ∈ Ξ. (2)289

We will introduce the RL training pipeline of ψ in290

the next section and the parameters in ϕ are frozen.291

Compared with the full parameter fine-tuning and292

the LoRA, this method only requires the pre-trained293

embedding to encode the data in the query dataset294

and the memory once, and the number of trainable295

parameters is even significantly less than LoRA.296

Retrieval-Augmented Predictions. To query the297

relevant experiences, a similarity measure, e.g., co-298

sine similarity, is used to rank the examples in the299

memory, which is denoted as sim(·). Therefore,300

c = {ck|k ∈ topK(sim(eq, ec)),∀c ∈ Ξ}, (3)301

where topK(·) is selecting the indices with the top-302

K maximum values. The K retrieved examples c303

will be formed the in-context examples and append 304

before the query for the prediction. We concate- 305

nate the in-context examples with the query in a 306

reverse order, i.e., the examples with larger sim- 307

ilarities will be the later examples, and the query 308

is the last one. We found that this reverse order 309

is important for the generalization of the embed- 310

ding model in different K values, as the reverse 311

order can ensure the last several examples be the 312

same, (e.g., for K ∈ {1, 2}, the top-1 example 313

is the same, which is the last example before the 314

query in the prompt), thus leading to a more stable 315

generalization performance of the world model. 316

Evaluation Measure. The evaluation measure is 317

important for the RL training. We follow RAP (Hao 318

et al., 2023) to design the reward: given the output 319

o from the world model, which may include a set 320

of the conditions, e.g., the predicted state of blocks, 321

and s′ is the target, we will calculate the accuracy of 322

the prediction, denoted as v(o, s′)2. Alternatively, 323

we can calculate the log likelihood of the target s′, 324

which is used in the original RAG (Lewis et al., 325

2020). However, this may require the access of the 326

logits of the LLMs and cannot be applied to the 327

closed-source models, e.g., GPT-4o. 328

4.2 Training 329

In this section, we introduce the efficient RL 330

pipeline to train the embedding models, i.e., train- 331

ing of the MLP head ψ specifically. Typically, the 332

retriever in RAG is trained with supervised learn- 333

ing (Lewis et al., 2020). However, in RAWM, the 334

world models are not trained and we cannot com- 335

pute the gradient of the embedding directly. Be- 336

sides, as the retriever needs to explore to choose the 337

examples for the better prediction with the world 338

model, RL is one of the straightforward methods 339

to optimize the embedding model. 340

One-step Decision Making. To apply RL methods 341

to optimize the embedding model, we need to build 342

the MDP Mψ for the embedding ψ3: 343

• State space Sψ : {ϕ(s, a),∀(s, a) ∈ Q} ∪ 344

{ϕ(s, a, s′), ∀(s, a, s′) ∈ Ξ}, i.e., the embed- 345

dings of all data from query dataset and the mem- 346

ory generated by the pre-trained model ϕ. 347

• Action space Aψ ∈ RM , where M ′ is the out- 348

put dimension of ψ, i.e., ψ will transform the 349

2The world model can generate multiple outputs for
stochastic transitions without affecting our RL pipeline, but
we focus on deterministic transitions for simplicity.

3Please distinguish Mψ with the one used for the environ-
ment M, where Mψ is introduced only for the training.
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embeddings by ϕ to M ′-dimensional vectors.350

• Reward r = v(Ω(q, c), s′), where Ω(q, c) is the351

output of the world model Ω with the input (q, c).352

We note that Mψ is a one-step decision making353

problem, i.e., Mψ always ends after the first time354

step, so the transition function and the discount355

factor are not necessary for the RL training.356

Design of ψ. Before diving into the RL training,357

we first discuss about the design of ψ. A simple358

setting for ψ is a randomly initialized MLP, which359

means this initialization will start with the random360

embedding for the training and ignore the embed-361

dings generated by the pre-trained model ϕ. On362

the other hand, we can initialize the MLP with an363

identify matrix, i.e., ψ = I .4 Both methods have364

their own advantages and disadvantages: for the365

random initialization, we can arbitrarily choose the366

output dimension and the activation function of ψ,367

but the training will start with a relatively worse368

performance, while for the identify initialization,369

the output dimension of ψ must be the same with ϕ,370

i.e., M ′ = M , and the training will start with the371

performance of the pre-trained embedding model.372

RL Training. RL methods rely on the trial-and-373

error process to explore the solution space for374

better policies. The primary RL method is Q-375

learning (Watkins and Dayan, 1992; Mnih et al.,376

2015), which can only be used on the prob-377

lems with discrete actions, and the policy gradi-378

ent methods are proposed for the problems with379

both discrete and continuous actions (Sutton et al.,380

1999; Mnih et al., 2016; Haarnoja et al., 2018).381

PPO (Schulman et al., 2017) is an on-policy pol-382

icy gradient method, which is a simplified, but383

more data efficient and reliable, variant of Trust384

Region Policy Optimization (TRPO) (Schulman385

et al., 2015), which leverages the “trust region” to386

bound the update of the policy to avoid training387

collapse. Compared with TRPO, PPO is more data388

efficient and with more reliable performances than389

TRPO, while only using the first-order optimiza-390

tion for computational efficiency. Specifically, PPO391

is maximizing the objective392

J(ψ) = E [min (ρψ · r,393

clip(ρψ, 1− ϵ, 1 + ϵ) · r)] , (4)394

where ρψ is the importance sampling ratio condi-395

tional on ψ, r is the reward, and ϵ is the hyperpa-396

rameter which controls the boundary of the trust397

4With a slight abuse of notations, we use ψ to represent
both the MLP and the trainable parameters.

region. We note that the advantages in the general 398

PPO implementation is replaced with the reward. 399

We only provide a short introduction of PPO in this 400

section, as we take PPO as a blackbox for optimiz- 401

ing ψ. The full training procedure is displayed in 402

Algorithm 1. Other RL methods, e.g., soft actor 403

critic (SAC) (Haarnoja et al., 2018), can also be 404

used and for more details of RL, we refer readers 405

to the book (Sutton and Barto, 2018). 406

Algorithm 1 Training of RAWM

1: Input: World model Ω, pre-trained embed-
ding model ϕ, memory M, Query dataset Q,
number of retrieval candidates K

2: Initialize the MLP ψ.
3: Computing the embeddings with ϕ, i.e.,

Qϕ = {ϕ(s, a), ∀(s, a) ∈ Q} and Mϕ =
{ϕ(s, a, s′), ∀(s, a, s′) ∈ M}.

4: for iter ∈ {1, 2, . . . } do
5: Update the memory embedding Mψ =

{ψ(ϕ(s, a, s′)),∀(s, a, s′) ∈ M}.
6: for (s, a) in Q do
7: Compute query embedding ψ(ϕ(s, a)).
8: Select top-K relevant transitions c from

M with the embedding in Mψ.
9: Generate the prediction o and compute

the reward v(o, s′).
10: end for
11: Train ψ with PPO, i.e., Eq. (4).
12: end for

5 Experiments 407

In this section, we present extensive experiments 408

to evaluate the performance of RAWM. We first in- 409

troduce the setup and then the results and analysis. 410

5.1 Setup 411

Environments. The environments considered in 412

this work include (as shown in Figure 3) 413

• Game24: a mathematical puzzle game where 414

four numbers are given (e.g., 10, 3, 6, and 4) 415

and the player can only use the basic arithmetic 416

operations, i.e., (+,−,×,÷), to obtain 24 (e.g., 417

10 × (6 ÷ 3) + 4). This puzzle is widely used 418

to benchmark the LLMs’ reasoning capabili- 419

ties (Yao et al., 2023) and the LLMs need to 420

generate a sequence of operations to obtain 24. 421

In this game, the world model needs to correctly 422

generate the remaining number when an opera- 423

tion is executed, i.e., 10, 2, 4 are the remaining 424

numbers when 6÷ 3 is executed. 425
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(a) Game24 (b) BlocksWorld (c) BabyAI

Figure 3: Environments

• BlocksWorld: a simple world of blocks where a426

set of blocks is placed on the plat and the player427

needs to perform the basic actions, i.e., pick up,428

put down, stack, and unstack, to transform429

the blocks to a target configuration (Valmeekam430

et al., 2023; Hao et al., 2023). In this game, the431

world model needs to predict the states for all432

blocks (e.g., the blue block is on top of the red433

block) after an action is executed (e.g., stack blue434

block on the red block).435

• BabyAI: a suite of partial-observable environ-436

ments based on grid world with objects where the437

agent needs to complete the tasks defined with438

language instructions (Chevalier-Boisvert et al.,439

2019a) with the actions, i.e., turn left, turn440

right, move forward and pick up. We use the441

text description of the states in (Carta et al., 2023)442

for the environments. In this environment, the443

world model needs to predict the locations of the444

objects after performing the action.445

Datasets. Given the environments, we need to col-446

lect the datasets for the memory, query and test447

datasets, respectively. We use the query dataset448

to train the embedding with RL and use the test449

dataset to validate the performance of the trained450

models. For Game24 and BlocksWorld, the num-451

ber of all possible transitions are less than 10K,452

therefore, we use the Depth-First Search (DFS) to453

enumerate all transitions to form the full datasets.454

While for BabyAI, we cannot enumerate all tran-455

sitions due to the complexity of the environments.456

Therefore, we utilize the bot provided in (Chevalier-457

Boisvert et al., 2019b) to collect the data, where we458

enumerate all valid actions to gather the transitions459

along the action sequences generated by the bot.460

After the collection, we choose the separate subsets461

to form the three datasets without any overlap-462

ping to avoid any data leakage. Specifically, we463

have three datasets, i.e., memory, query and test,464

where the memory is used for retrieval, the query465

dataset provides the validation rewards for the RL466

training and the test dataset is used for the evalu-467

ation. We provide the details of the environments468

and the protocol for data collection in Appendix C.469

Model Selection. We use the embedding model 470

Alibaba-NLP/gte-Qwen2-1.5B-instruct as the 471

pre-trained ϕ, which is the leading open-source text 472

embedding model on MTEB (Li et al., 2023). For 473

the world model, we choose the Qwen-2.5 instruct 474

model series with the model sizes as {1.5B, 3B, 475

7B} (Yang et al., 2024a)5. The AWQ quantized 476

models are chosen for efficient inference. For the 477

configuration of ψ, we consider a three layer MLP 478

with Tanh() activation function for the random ini- 479

tialization and a single layer without any activation 480

function for the identity initialization.6 Due to the 481

limited computational resources, we primarily train 482

the embedding with the 1.5B LLM and demonstrate 483

the generalizability to larger models. We provide 484

the detailed justification in Appendix E. 485

RL Training. For the efficiency, we consider sev- 486

eral implementation tricks. i) Compared with the 487

training of the MLP ψ, the inference of the world 488

model is much more time-consuming. Therefore, 489

we enlarge the number of batch sizes and for each 490

batch, we sample multiple times, which can stabi- 491

lize the training. ii) We also consider fixing the 492

embeddings in the memory, i.e., only the embed- 493

dings of the query datasets are trained, and do not 494

observe the advantages. Therefore, we update the 495

embedding of both datasets. iii) The output dimen- 496

sion of the random initialization is much smaller 497

than the output dimension of the identity initial- 498

ization, which enjoys the training stabilities with 499

larger learning rates and smaller memory usages 500

when retrieval. The hyperparameters for the RL 501

training of ψ is provided in Appendix F. 502

Methods Evaluated. The methods evaluated in 503

the experiments are: i) zero-shot: the world models 504

give the prediction without any in-context exam- 505

ples (Wang et al., 2024b), ii) random: the world 506

models give the prediction with randomly selected 507

in-context examples from M (Hao et al., 2023), iii) 508

RAWMψ,rand: RAWM with the randomly initializa- 509

tion of ψ, which differs from the previous method, 510

iv) RAWMψ,eye: RAWM with the identity initializa- 511

tion of ψ, equivalent to the pre-trained embedding 512

model ϕ, v) RAWMRL
ψ,rand: RAWM with randomly 513

initialized ψ and RL training, and vi) RAWMRL
ψ,eye: 514

RAWM with identity initialized ψ and RL training. 515

More justifications about the selection of methods 516

for evaluation are displayed in Appendix A.7. 517

5https://huggingface.co/spaces/Qwen/Qwen2.5
6We would note that RAWM can work for both close-source

and open-source embedding and world models. We choose
open-source models for efficient training and inference.
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Game24 BlocksWorld BabyAI

Model Method
K = 1 K = 2 K = 1 K = 2 K = 1 K = 2

train test train test train test train test train test train test

1.5B

zero-shot 0.5224 0.5455 0.5224 0.5455 0.3804 0.3849 0.3804 0.3849 0.3786 0.3772 0.3786 0.3772
random 0.5586 0.5664 0.5714 0.5959 0.4848 0.4822 0.4975 0.4991 0.3851 0.3856 0.3973 0.4030

RAWMψ,rand 0.5156 0.5219 0.5322 0.5534 0.5386 0.5402 0.5597 0.5589 0.3415 0.3479 0.3527 0.3484
RAWMψ,eye 0.5352 0.5474 0.5510 0.5600 0.5659 0.5697 0.5878 0.5888 0.4427 0.4446 0.4710 0.4671

3B

zero-shot 0.4888 0.4971 0.4888 0.4971 0.3644 0.3661 0.3644 0.3661 0.3303 0.3330 0.3303 0.3330
random 0.6703 0.6719 0.6984 0.7010 0.4717 0.4706 0.5089 0.5083 0.3912 0.3908 0.4073 0.4052

RAWMψ,rand 0.7041 0.7043 0.7269 0.7292 0.5729 0.5739 0.6005 0.6019 0.3855 0.3892 0.3985 0.3991
RAWMψ,eye 0.7022 0.7179 0.7313 0.7463 0.6127 0.6102 0.6440 0.6397 0.4355 0.4297 0.4646 0.4633

7B

zero-shot 0.5957 0.6121 0.5957 0.6121 0.5215 0.5207 0.5215 0.5207 0.4201 0.4254 0.4201 0.4254
random 0.8241 0.8267 0.8712 0.8667 0.5897 0.5838 0.6021 0.6072 0.4084 0.4181 0.4178 0.4221

RAWMψ,rand 0.8362 0.8375 0.8724 0.8703 0.6274 0.6240 0.6332 0.6314 0.4301 0.4322 0.4403 0.4355
RAWMψ,eye 0.8511 0.8527 0.8781 0.8734 0.6472 0.6452 0.6556 0.6541 0.4484 0.4501 0.4633 0.4693

Table 1: Performance of RAWM with the retrieval mechanism over three environments.

5.2 Evaluation518

There are three main research questions (RQs) in-519

vestigated in this section:520

• RQ1: Can the retrieval methods in RAWM im-521

prove the performance of world model?522

• RQ2: Can the RL training pipeline in RAWM523

improve the performance of the world model,524

compared with pre-trained models?525

• RQ3: Can the learned model generalize across526

different settings, e.g., different values of K?527

5.2.1 Analysis of RQ1528

To investigate the RQ1, we conduct the experi-529

ments of RAWM on the different sizes of the world530

model, i.e., 1.5B, 3B and 7B, over the three envi-531

ronments. We consider the values of K as {1, 2}.532

The experiment results are displayed in Table 1.533

From the results, we observe that the performances534

over the train and test yield the same trend, which535

avoids the over-fitting to the specific dataset.536

With more in-context examples selected, the537

performance of the world model is significantly538

improved, which is consistent with other re-539

search (Agarwal et al., 2024). Another interest-540

ing observation is that increasing the model sizes541

of LLMs does not necessarily improve the perfor-542

mance of the world models. For example, the 3B543

world model performs worse than the 1.5B world544

model in BabyAI as the LLMs do not have the545

external knowledge of specific environments.546

We also observe that given the same number547

of the in-context examples, the pre-trained model548

(i.e., RAWMψ,eye) can retrieve more relevant ex-549

amples for the world models across different sizes550

in BlocksWorld and BabyAI. While for the 1.5B551

world model of Game24, the pre-trained models 552

perform worse than the random examples. There- 553

fore, optimizing for a better embedding model can 554

potentially further improve the performance. 555

5.2.2 Analysis of RQ2 556
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Figure 4: Training curves on BlocksWorld.

We then present the results of the RL training 557

pipeline of RAWM. Due to the limitation of the 558

resource, we only conduct the training on the world 559

models with 1.5B LLMs. The results of different 560

configurations of ψ across different environments 561

are displayed in Figure 5. 562

From the results, we observe that the RL training 563

can improve upon the initialization, which indicates 564

the capability of RL to optimize the embedding 565

model through exploration. We observe that both 566

initialization can outperform the pre-trained em- 567

bedding model, i.e., RAWMψ,eye, in Game24 and 568

BlocksWorld, while the random initialization fails 569

to find a better embedding than the pre-trained one 570
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Figure 5: Performance of the RL training pipeline in RAWM over three environments.

Game24 BlocksWorld BabyAI

Method
K = 3 K = 5 K = 3 K = 5 K = 3 K = 5

train test train test train test train test train test train test

random 0.5745 0.5862 0.5669 0.5866 0.5096 0.5125 0.5261 0.5228 0.4044 0.4071 0.4220 0.4165
RAWMψ,rand 0.5431 0.5443 0.5538 0.5635 0.5702 0.5711 0.5730 0.5738 0.3522 0.3551 0.3696 0.3636
RAWMψ,eye 0.5533 0.5528 0.5660 0.5765 0.6016 0.5994 0.6178 0.6149 0.4838 0.4753 0.4816 0.4860

RAWMRL
ψ,rand (K = 1) 0.5766 0.5974 0.6002 0.6106 0.6001 0.6022 0.6199 0.6200 0.4716 0.4624 0.4745 0.4702

RAWMRL
ψ,eye (K = 1) 0.5893 0.5950 0.5976 0.6053 0.6038 0.6042 0.6222 0.6220 0.4878 0.4877 0.4982 0.4872

RAWMRL
ψ,rand (K = 2) 0.6097 0.6344 0.5901 0.5999 0.6100 0.6129 0.6198 0.6202 0.4732 0.4711 0.4738 0.4741

RAWMRL
ψ,eye (K = 2) 0.5912 0.6020 0.5981 0.6067 0.6049 0.6052 0.6215 0.6205 0.4864 0.4852 0.4976 0.4888

Table 2: Shot generalization of the 1.5B world model trained with RL.

in BabyAI. The training curves are displayed in Fig-571

ure 4. Typically, the random initialization will let572

the model train from a relatively low performance573

and we observe a drop of the performance due to574

the exploration for better embedding model (i.e.,575

Figure 4b). And for the identity initialization, the576

training is more stable with smaller learning rates577

(i.e., Figures 4c and 4d). These results indicate the578

effectiveness of our RL training pipeline.7579

Our RL training pipeline can also be used to di-580

agnose the failure of the retrieval-augmented gen-581

eration systems. If the RL pipeline cannot find a582

better embedding to improve the world model’s per-583

formance, then the user would replace the LLMs584

for the world models and the datasets.8585

5.2.3 Analysis of RQ3586

The results of shot generation are displayed in Ta-587

ble 2, where the embedding models trained with588

random and identity initializations of K ∈ {1, 2}589

are evaluated over the K ∈ {3, 5}, i.e., the gener-590

alization over shots. From the results, we observe591

that with larger values ofK, the performance of the592

world model will be further improved. The embed-593

7We note that the improvement that RL training can bring
will largely be influenced by the LLMs’ capabilities.

8Different from the factual QA (Gao et al., 2023) where
we can manually check whether the retrieved examples are
correct or not, RAWM relies on the LLM’s inherit understand-
ing capabilities for the prediction and human cannot manually
check the correctness of the retrieval. Therefore, a systematic
method, e.g., RL, is needed for diagnosing the system.

ding models trained with RL pipeline demonstrate 594

to be more capable for the generalization over shots, 595

compared with the pre-trained embedding model. 596

Game24 BlocksWorld BabyAI

Method Train Test Train Test Train Test

RAWMψ,rand 0.8724 0.8703 0.6332 0.6314 0.4403 0.4355
RAWMψ,eye 0.8781 0.8734 0.6556 0.6541 0.4633 0.4693

RAWMRL
ψ,rand 0.8799 0.8829 0.6631 0.6630 0.4518 0.4484

RAWMRL
ψ,eye 0.8852 0.8812 0.6597 0.6560 0.4700 0.4721

Table 3: Model generalization of 1.5B →7B (K = 2).
We also consider the generalization over differ- 597

ent LLMs, which is more difficult than the shot 598

generalization. Table 3 displays the results of gener- 599

alizing the RL trained embedding model from 1.5B 600

to 7B. We observe that the RL trained embedding 601

admits better generalizability than the pre-trained 602

embedding model, i.e., the RL-trained embedding 603

is environment-specific, rather than model-specific. 604

6 Conclusions 605

In this work, we introduce Retrieval-Augmented 606

World Models (RAWM), which leverages the 607

retrieval-augmented generation for efficient integra- 608

tion of external knowledge into LLM-based world 609

models. We then introduce an efficient RL training 610

pipeline to further improve the performance. Ex- 611

tensive experiments demonstrate the effectiveness 612

and the generalizability of RAWM. RAWM is an 613

efficient method to build the highly capable LLM- 614

based world models without fine-tuning LLMs. 615
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Limitations616

There are several limitations of current work.617

• Current RAWM focuses on prediction of next618

states. In future work, we will consider to build619

the full-pipeline decision making systems where620

RAWM serves as the key module for integrating621

the external knowledge of the environments au-622

tomatically and efficiently.623

• Current RAWM is based on the pre-collected ran-624

dom dataset, which may require a large number625

of data to achieve good performance. Besides,626

the quality of the datasets may significantly influ-627

ence the performance. We will consider to let the628

model to proactively collect the data and improve629

the performance automatically.630

• Current RAWM is based on LLM and the environ-631

ments are represented by texts. RAWM can be ex-632

tended to handle the multi-modal environments,633

e.g., text and image, where both embedding mod-634

els and world models will be multi-modal models.635

We will explore this direction in future work.636

We expect that RAWM can be a general framework637

to build highly capable multi-modal world model638

with automatically data collection and training, to639

finally support decision making in complex tasks.640

Ethics Statement641

We confirm that we have fully complied with the642

ACL Ethics Policy in this study. All the environ-643

ments are publicly available and have been exten-644

sively used in the research. We do not foresee any645

risks that may raised by this paper.646
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A Frequently Asked Questions (FAQs) 900

A.1 More Discussion about the Importance of 901

(LLM-based) World Models 902

Despite the remarkable successes achieved by 903

MuZero (Schrittwieser et al., 2020) and Dreamer 904

v3 (Hafner et al., 2025), world model is still not 905

a very popular concept in the current literature. 906

Therefore, we will add more discussion about the 907

importance of world models, particularly LLM- 908

based world models. 909

Applications of World Models. There are two 910

main directions of the applications of world mod- 911

els. First, world models can support the reasoning 912

and decision making, as they can predict what will 913

happen after an action is executed. Accurately pre- 914

dicting what will happen is critical for the planning 915

and decision making in high-stake scenarios, e.g., 916

financial management, and the long-term reason- 917

ing, such as math proof. Second, the world models 918

can be viewed as world simulators, like a game 919

engine, where players can choose the actions to 920

execute and the world model will generate the next 921

states (Bruce et al., 2024). This brings great poten- 922

tial for researcher to develop highly capable agents 923

within the world models. 924

LLM-based World Models. Large Language 925

Models (LLMs) serve as an ideal foundation for 926

constructing general world models due to their 927

training on internet-scale data. These models ef- 928

fectively capture diverse knowledge and patterns 929
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present in various environments. We note that930

LLM-as-a-judge (Gu et al., 2024a) can be viewed931

as a special case of LLM-based world models.932

A.2 Advantages of RAWM933

There are several advantages of RAWM, compared934

with other methods for LLM-based world models:935

• RAWM does not require the fine-tuning of LLMs,936

where the fine-tuning of LLMs is usually time937

and computation extensive. Besides, the fine-938

tuning may also hurt the capabilities of LLMs939

on other tasks. RAWM can be viewed as a plug-940

and-play framework to transform the LLMs into941

world models.942

• RAWM does not require the manually design of943

the prompts, i.e., instructions and in-context ex-944

amples, for LLMs, which is usually labor inten-945

sive to optimize the prompts. RAWM automati-946

cally retrieve the in-context examples from mem-947

ory to assist the world models for predictions.948

• RAWM introduces the efficient RL training to949

further improve the world models with retrieval-950

augmented generation. We note that with the RL951

training pipeline, RAWM can find the capability952

limit of the memory and the world model, thus953

can be used to diagnose the systems.954

A.3 Differences from Other RAG Scenarios955

We would add some discussion about the differ-956

ences between RAWM and other RAG scenarios.957

Most of the RAG scenarios leverage the exter-958

nal memory to provide the factual knowledge to959

LLMs. For example, GPT-4o’s knowledge cutoff is960

October 2023, and the model will have no knowl-961

edge after that, e.g., “who won the 2024 United962

States presidential election?” If we provide the963

news about the election, the model will definitely964

give the correct answer.965

However, for RAWM, the test states are not966

present in either the query or memory datasets.967

The system must retrieve similar states and apply968

reasoning about the query states to generate pre-969

dictions. This characteristic distinguishes RAWM970

from other RAG scenarios, presenting a more chal-971

lenging task that heavily depends on the model’s972

reasoning capabilities.973

A.4 Why Focusing on Next State Prediction?974

Next state prediction is the most important fea-975

ture for the world model (Wang et al., 2024b).976

The reward and the terminal can usually derived977

from the next state. For example, for Game24 and978

BlocksWorld, we can derive the reward to check 979

whether the remaining number is 24 and whether 980

the next state is the same as the goal state, respec- 981

tively. Therefore, we focus on next state prediction. 982

A.5 Why Not Larger LLMs? 983

We note that Qwen/Qwen2.5-1.5B-Instruct is a 984

highly capable LLM, which achieves 60.9% ac- 985

curacy on the MMLU benchmark. Therefore, we 986

choose this small LLM as the base model for the 987

RL training for the efficiency. 988

We also consider the models with sizes 3B and 989

7B for inference, which achieve 65.6% and 72.4% 990

accuracy on MMLU benchmark, respectively. 991

Due to the limited computational budget, we 992

primarily train on the 1.5B models, and test the 993

generalizability of the trained embedding models 994

on 3B and 7B models. We expect that with more 995

powerful base LLM models, RAWM can further 996

improve the performance for the RL training. 997

A.6 Influences of Datasets 998

We note that the quality of the datasets will signif- 999

icantly influence the performance of the systems, 1000

similar to the curation of the training datasets of 1001

LLMs (Wang et al., 2024a). As a preliminary at- 1002

tempt, in this work, we only consider the randomly 1003

pre-collected dataset and do not conduct any ma- 1004

nipulation and selection of the data. 1005

As discussed in the limitation section, in the 1006

future work, we will let the systems to proactively 1007

collect the data for better performance, which is in 1008

line with the RL literature (Sutton and Barto, 2018), 1009

where the data are collected during training. 1010

A.7 Selection of Baselines 1011

The selected baselines are primarily to evaluate 1012

the effectiveness of the RAG and the RL training 1013

pipelines to improve the prediction accuracy of the 1014

LLM-based world models. 1015

We also aware that full-parameter or parameter- 1016

efficient fine-tuning (PEFT), e.g., LoRA (Hu et al., 1017

2022), can also improve the performance of the 1018

LLM-based world models. However, this may re- 1019

quire fine-tuning the LLM’s parameters, as well 1020

as additional computational resources, which may 1021

also hurt the generalizability of the base LLMs. 1022

We want to argue that one of the main advantages 1023

of RAWM is integrating the external knowledge 1024

into LLMs without changing the LLMs’ parame- 1025

ters, therefore, we do not consider the fine-tuning 1026

methods as our baselines for a fair comparison. 1027
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A.8 What If RL Training Cannot Improve?1028

RL training is a powerful framework. However,1029

due to the trail-and-error process, RL training may1030

be more complicated than the supervised learning.1031

Here we provide some guidance for the training:1032

• Smaller learning rate with the identity initializa-1033

tion would be safer for the better performance1034

than pre-trained models. While random initializa-1035

tion can potentially find better embedding models1036

with longer training.1037

• We would also note that the improvement of RL1038

training may also depend on the data in the mem-1039

ory and the LLMs for the world model. There-1040

fore, if no good hyperparameters for the improve-1041

ment, please consider larger LLMs and memory.1042

A.9 Code and Dataset Availability1043

We will release all the code and datasets upon the1044

paper acceptance. The anonymous code can be1045

access at: https://anonymous.4open.science/1046

r/rawm.1047

B Related Work1048

World Models in Decision Making. World mod-1049

els are actively explored by researchers to fur-1050

ther improve the agent’s performance and the sam-1051

ple efficiency (Ha and Schmidhuber, 2018; Janner1052

et al., 2019; Hafner et al., 2019; Schrittwieser et al.,1053

2020). Dreamer (Hafner et al., 2019) is a practical1054

model-based reinforcement learning algorithm that1055

introduces the belief over states as a part of the1056

input to the model-free DRL algorithm used. Tra-1057

jectory Transformer (Janner et al., 2021) trains the1058

transformer to predict the next state and action as a1059

sequence modeling problem for continuous robot1060

control. MuZero (Schrittwieser et al., 2020) is a re-1061

markable success of model-based RL, which learns1062

the world model and conducts the planning in the1063

latent space. The world model with LLM in (Xi-1064

ang et al., 2023) is trained to gain the environment1065

knowledge, while maintaining other capabilities of1066

the LLMs. Dynalang (Lin et al., 2024) proposes the1067

multi-modal world model, which unifies videos and1068

texts for the future prediction in decision making.1069

LLMs as World Simulators. World simula-1070

tors are developed to model the dynamics of the1071

world (Bruce et al., 2024). LLMs serve as the1072

world simulators due to their generalizability across1073

tasks. Specifically, The LLMs (i.e., GPT-3.5 and1074

GPT-4) are evaluated to predict the state transitions,1075

the game progress and scores with the given ob-1076

ject, action, and score rules, where these rules are 1077

demonstrated to be crucial to the world model pre- 1078

dictions (Wang et al., 2024b). The world models 1079

with LLMs in (Xie et al., 2024) need to additionally 1080

identify the valid actions. 1081

World Models in LLMs. The concept of world 1082

model also be explored in the deliberation reason- 1083

ing of LLMs. Specifically, Reasoning via Planning 1084

(RAP) (Hao et al., 2023) leverages the planning 1085

methods (e.g., Monte Carlo Tree Search (MCTS)) 1086

with the world model with LLMs for plan gener- 1087

ation and math reasoning, where LLMs need to 1088

predict the next state and the reward to guide the 1089

search. Tree of Thought (ToT) (Yao et al., 2023) 1090

implicitly leverages the LLMs as the world model 1091

to predict the next state and the reward for the 1092

search over different thoughts. Reason for future, 1093

act for now (RAFA) (Liu et al., 2023) combine the 1094

planning and reflection with the world model for 1095

complex reasoning tasks. 1096

C Environments and Data Collection 1097

C.1 Game24 1098

Figure 6: Game24

Game24 is an interesting puzzle game, where 1099

four integer numbers in {1, 2, 3, . . . , 13} are given, 1100

the player needs to use the basic arithmetic oper- 1101

ators, i.e., +,−,× and ÷, and use each number 1102

exactly at once to form 24. This puzzle game is 1103

used in (Yao et al., 2023) and (Liu et al., 2023) to 1104

benchmark the LLM’s reasoning capabilities. 1105

The instances of Game24 used in this work 1106

can be accessed at https://github.com/ 1107

princeton-nlp/tree-of-thought-llm/blob/ 1108

master/src/tot/data/24/24.csv. The state of 1109

Game24 is the remaining numbers and the action 1110

is applying the operator between two remaining 1111

numbers. Here is an example of the transition: 1112

{ 1113
"state": (1.0, 1.0, 5.0, 8.0), 1114
"action": "1.0 + 1.0", 1115
"next_state": (2.0, 5.0, 8.0), 1116

13

https://anonymous.4open.science/r/rawm
https://anonymous.4open.science/r/rawm
https://anonymous.4open.science/r/rawm
https://github.com/princeton-nlp/tree-of-thought-llm/blob/master/src/tot/data/24/24.csv
https://github.com/princeton-nlp/tree-of-thought-llm/blob/master/src/tot/data/24/24.csv
https://github.com/princeton-nlp/tree-of-thought-llm/blob/master/src/tot/data/24/24.csv
https://github.com/princeton-nlp/tree-of-thought-llm/blob/master/src/tot/data/24/24.csv
https://github.com/princeton-nlp/tree-of-thought-llm/blob/master/src/tot/data/24/24.csv


"reward": False ,1117
}1118

We provide the python-style code to transform1119

the transitions to natural language examples in Al-1120

gorithm 2.1121

Algorithm 2 Transitions to in-context examples for
Game24

# transition is the dict with "state", "
action", "next_state" and "reward"

def transition2example_game24(
transition , is_query=False ,
is_next_state_prediction=True

):
example = ""

example += "current state: {}\n".
format(transition["state"])
example += "action: {}\n".format(
transition["action"])

if not is_query:
if is_next_state_prediction:

example += "next state: {}\n
".format(transition["next_state"])

else:
example += "reward: {}\n".

format(transition["reward"])

return example

C.2 BlocksWorld1122

Figure 7: BlocksWorld

BlocksWorld is a widely used benchmark1123

to evaluate the planning capabilities of1124

LLMs (Valmeekam et al., 2023; Hao et al.,1125

2023). All the instances of the BlocksWorld can be1126

accessed at https://github.com/karthikv792/1127

LLMs-Planning/tree/main/plan-bench/1128

instances/blocksworld. We build the envi-1129

ronment by transforming the instances to MDPs,1130

which can provide the transitions. Here is an1131

example of the transition:1132

{1133

"state": "the red block is clear , 1134
the hand is empty , the orange block 1135
is on top of the yellow block , the 1136
red block is on top of the orange 1137
block , the yellow block is on top of 1138
the blue block , and the blue block 1139

is on the table.", 1140
"action": "unstack the red block 1141
from on top of the orange block", 1142
"next_state": "the orange block is 1143
clear , the red block is in the hand , 1144
the hand is holding the red block , 1145

the orange block is on top of the 1146
yellow block , the yellow block is on 1147
top of the blue block , and the blue 1148
block is on the table.", 1149
"reward": False , 1150
"info": { 1151

"goal": "the red block is on top 1152
of the blue block , the blue block 1153

is on top of the yellow block and 1154
the yellow block is on top of the 1155
orange block" 1156
}, 1157

} 1158

We provide the python-style code to transform the 1159

transitions to natural language examples in Algo- 1160

rithm 3. 1161

Algorithm 3 Transitions to in-context examples for
BlocksWorld

# transition is the dict with "state", "
action", "next_state" and "reward"

def transition2example_bw(transition ,
is_query=False ,
is_next_state_prediction=True):
example = ""

example += "goal state: {}\n".format
(transition["info"]["goal"])
example += "current state: {}\n".
format(transition["state"])
example += "action: {}\n".format(
transition["action"])

if not is_query:
if is_next_state_prediction:

example += "next state: {}\n
".format(transition["next_state"])

else:
example += "reward: {}\n".

format(transition["reward"])

return example

C.3 BabyAI 1162

{ 1163
"mission": "go to a red box after 1164
you pick up the purple key", 1165
"state": [ 1166

"You carry a purple key", 1167
"You see a wall 2 steps left", 1168
"You see a blue ball 2 steps 1169

forward", 1170

14

https://github.com/karthikv792/LLMs-Planning/tree/main/plan-bench/instances/blocksworld
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Figure 8: BabyAI

"You see a yellow ball 1 step1171
right and 1 step forward",1172

"You see a purple ball 2 steps1173
right and 2 steps forward",1174

"You see a red box 2 steps right1175
and 1 step forward",1176
],1177
"action": "turn right",1178
"reward": 0,1179
"done": False ,1180
"next_state": [1181

"You carry a purple key",1182
"You see a purple ball 2 steps1183

left and 2 steps forward",1184
"You see a blue ball 2 steps1185

left",1186
"You see a red box 1 step left1187

and 2 steps forward",1188
"You see a yellow ball 1 step1189

left and 1 step forward",1190
"You see a green key 4 steps1191

forward",1192
"You see a green key 1 step1193

right",1194
"You see a red box 2 steps right1195

and 1 step forward",1196
"You see a yellow key 3 steps1197

right and 3 steps forward",1198
"You see a red ball 3 steps1199

right",1200
],1201

}1202

C.4 Statistics of Datasets1203

Table 4 provides the statistics of the datasets used1204

for the RL training and testing.

Memory Query Test

Game24 2882 2882 5764
BlocksWorld 2416 2416 4833

BabyAI 3124 1562 3124

Table 4: Statistics of the datasets

1205

D Prompts1206

Design of Prompts. To make the world model1207

as general as possible, we do not specifically de-1208

Algorithm 4 Transitions to in-context examples for
BabyAI

# transition is the dict with "state", "
action", "next_state" and "reward"

def transition2example_babyai(
transition , is_query=False ,
is_next_state_prediction=True

):
def state_to_string(state):

state_string = ""
for idx , sta in enumerate(state)

:
state_string += sta
if idx == len(state) - 1:

continue
else:

state_string += ", "
return state_string

example = ""

example += "mission: {}\n".format(
transition["mission"])

example += "current state: {}\n".
format(state_to_string(transition["
state"]))
example += "action: {}\n".format(
transition["action"])

if not is_query:
if is_next_state_prediction:

example += "next state: {}\n
".format(

state_to_string(
transition["next_state"])

)
else:

example += "reward: {}\n".
format(transition["reward"])

return example

sign the prompts. The system prompt of the world 1209

model is "After being given a current state 1210

and an action, directly give the next 1211

state after performing the action." We do 1212

not provide the description of the task, such as "I 1213

am playing with a set of blocks where I 1214

need to arrange the blocks into stacks.", 1215

which is game specific and it needs human to write 1216

the specific prompts. 1217

Content Prompt for LLMs. We present the tem- 1218

plate for building the full prompt, i.e., the in- 1219

context examples and the query, for the LLMs in 1220

Algorithm 6. 1221
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Algorithm 5 Prompt template

system_prompt = (
"After being given a current state and

an action , "
"directly give the next state after

performing the action."
)
message = [

{
"role": "system",
"content": system_prompt ,

},
{"role": "user", "content": prompt},

]

E Model Selection1222

E.1 World Models1223

We expect to transform the LLMs into world mod-1224

els without any manually prompt engineering or1225

fine-tuning of LLMs. Therefore, the world models1226

are the general LLMs. The most capable open-1227

source LLM models are the Qwen-2.5-instruct se-1228

ries models (Yang et al., 2024a). Due to the limited1229

resources, we only consider the models with sizes1230

in {1.5B, 3B, 7B} for inference and the 1.5B model1231

for RL training. We note that RAWM can work for1232

both open-source and close-source models.1233

For the embedding model, we choose1234

the General Text Embedding (gte) fam-1235

ily (Li et al., 2023). We choose1236

Alibaba-NLP/gte-Qwen2-1.5B-instruct1237

as the embedding model, which is the leading1238

open-source model on MTEB.1239

Emb. Model ϕ Alibaba-NLP/gte-Qwen2-1.5B-instruct

World Model Ω
Qwen/Qwen2.5-1.5B-Instruct-AWQ
Qwen/Qwen2.5-3B-Instruct-AWQ
Qwen/Qwen2.5-7B-Instruct-AWQ

Table 5: LLMs for Embedding and World Models

E.2 Architectures of MLP Head1240

Algorithm 7 presents the python implementation of1241

the two types of initialization of the MLP. Table 61242

displays the comparison of the two initializations.1243

Random Identity

Output dimension Arbitrary Same to ϕ
Initial performance Low High

Training instabilities Low High

Table 6: Comparison between two initialization

Algorithm 6 Generating prompts for LLMs

def get_query_examples_prompts(
query_transitions ,
memory_transitions=None ,
exp_name=None ,

):
query_prompts = []
for idx in range(len(
query_transitions)):

query_prompt =
transition2example(

query_transitions[idx],
is_query=True , exp_name=exp_name

)
memory_prompt = ""
if memory_transitions is not

None:
for memory_transition in

reversed(memory_transitions[idx]):
memory_prompt +=

transition2example(
memory_transition ,

exp_name=exp_name
)

query_memory_prompt =
memory_prompt + query_prompt + "next
state:"

query_prompts.append(
query_memory_prompt)

return query_prompts

F Hyperparameters of RL Training 1244

Hyperparameters. The hyperparameters of RL 1245

training are displayed in Table 7 and Table 8. 1246

Hyperparameter Value

norm_adv True
clip_coef 0.2

entropy_coef 0.2
max_grad_norm 0.2

eps 1e-5

Table 7: Fixed Hyperparameters

Guidance of Hyper-parameter Tuning. The two 1247

most important hyper-parameters for the RL train- 1248

ing is the learning rate and the update epochs. With 1249

more output dimensions, both learning rates and 1250

the update epochs should be decreased to stabi- 1251

lize the training. We recommend the learning rate 1252

1e− 4 and update epochs 10 as the starting points 1253

for hyper-parameter tuning. 1254
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Algorithm 7 MLP initializations

# base_emb_dim: dimension of the pre -
trained embedding model , i.e., 1536

# final_emb_dim: dimension of the MLP ,
36 for rand and 1536 for eye

def layer_init(layer , std=np.sqrt (2),
bias_const =0.0, with_diag=False):
if with_diag:

torch.nn.init.eye_(layer.weight)
torch.nn.init.constant_(layer.

bias , 0.0)
else:

torch.nn.init.orthogonal_(layer.
weight , std)

torch.nn.init.constant_(layer.
bias , bias_const)
return layer

mlp_eye = nn.Sequential(
layer_init(

nn.Linear(
base_emb_dim , final_emb_dim),
with_diag=True

),
)

mlp_rand = nn.Sequential(
layer_init(nn.Linear(

base_emb_dim , 64)),
nn.Tanh(),
layer_init(nn.Linear (64,

64)),
nn.Tanh(),
layer_init(nn.Linear (64,

final_emb_dim), std =0.01) ,
)

G Additional Experiment Results1255

The training curves for Game24 and BabyAI are1256

shown in Figure 9 and Figure 10 respectively.1257

Env Method Hyperparameter Value

Game24
RAWMRL

ψ,rand
learning_rate 1e-4

update_epochs 10

RAWMRL
ψ,eye

learning_rate 1e-5
update_epochs 5

BlocksWorld
RAWMRL

ψ,rand
learning_rate 1e-4

update_epochs 20

RAWMRL
ψ,eye

learning_rate 1e-5
update_epochs 10

BabyAI
RAWMRL

ψ,rand
learning_rate 3e-6

update_epochs 10

RAWMRL
ψ,eye

learning_rate 5e-5
update_epochs 10

Table 8: Modified Hyperparameters
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Figure 9: Training curves on Game24.
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Figure 10: Training curves on BabyAI.
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