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Abstract

Tactile sensing remains far less understood in neuroscience and less effective in
artificial systems compared to more mature modalities such as vision and lan-
guage. We bridge these gaps by introducing an Encoder-Attender-Decoder (EAD)
framework to systematically explore the space of task-optimized temporal neural
networks trained on realistic tactile input sequences from a customized rodent
whisker-array simulator. We identify convolutional recurrent neural networks
(ConvRNNs) as superior encoders to purely feedforward and state-space architec-
tures for tactile categorization. Crucially, these ConvRNN-encoder-based EAD
models achieve neural representations closely matching rodent somatosensory
cortex, saturating the explainable neural variability and revealing a clear linear
relationship between supervised categorization performance and neural alignment.
Furthermore, contrastive self-supervised ConvRNN-encoder-based EADs, trained
with tactile-specific augmentations, match supervised neural fits, serving as an
ethologically-relevant, label-free proxy.
For neuroscience, our findings highlight nonlinear recurrent processing as important
for general-purpose tactile representations in somatosensory cortex, providing
the first quantitative characterization of the underlying inductive biases in this
system. For embodied AI, our results emphasize the importance of recurrent EAD
architectures to handle realistic tactile inputs, along with tailored self-supervised
learning methods for achieving robust tactile perception with the same type of
sensors animals use to sense in unstructured environments.

1 Introduction

Tactile perception plays an essential role in the manipulation and interpretation of complex en-
vironments through active sensing [Lederman and Klatzky, 2009]. Animals effectively leverage
tactile sensors, such as whiskers, to precisely navigate, forage, and identify objects even in noisy
and unstructured conditions [Grant, 2025]; specifically, contact whiskers deliver critical sensory
input for navigation, foraging, and hunting in low-light environments [Ahl, 1986], while water-flow
whiskers enable seals to discriminate prey movements from general water currents in similar con-
ditions [Dehnhardt et al., 2001], and specialized insect hairs respond to wind stimuli, providing
information essential for flight stability and agility [Sterbing-D’Angelo et al., 2011].

Rodents are a common model organism for studying tactile perception in the brain due to the fine
experimental control they offer and their ability to discriminate object location, shape, and texture
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using only their whiskers [Hires et al., 2015, Cheung et al., 2019]. These whiskers, or vibrissae,
transmit rich mechanical signals to mechanoreceptors at their base, enabling nuanced environmental
understanding without direct sensory receptors along their lengths. In fact, rodent whisking behavior
is known to parallel how humans touch objects with their fingertips [Staiger and Petersen, 2021], such
as in the Lateral Motion Exploratory Procedure [Lederman and Klatzky, 2009]. Despite significant
interest in translating such biological capabilities into robots, artificial systems still struggle to
match the tactile perceptual prowess of animals, limiting their functionality in realistic, unstructured
environments [Navarro-Guerrero et al., 2023].

There are two primary reasons for this gap: one from the robotics hardware side, and the other from
the neuroscience side. On the hardware side, current bio-inspired whisker sensors for robots face
several critical limitations, including substantial hardware complexity when scaling sensor arrays
beyond approximately 18-20 whiskers, each requiring individual transducers, significantly increasing
wiring and computational demands [Pearson et al., 2011, Assaf et al., 2016]. These sensors also
struggle to accurately discriminate multiple simultaneous stimuli such as airflow, direct contact, and
inertia, unlike biological whiskers [Simon et al., 2023]. Additionally, mechanical discrepancies from
biological whiskers–such as reduced sensitivity, limited flexibility, and constrained bending angles–
impede precise tactile sensing in dynamic environments [Kent et al., 2023, Kent and Bergbreiter,
2024].

These limitations also apply to anthropomorphic robot hands, which remain in a relatively early
stage of development. For example, besides not being able to sense temperature, good mechanical
skin has remained an open challenge in haptics for approximately four decades, primarily due to
difficulties in creating artificial skins that maintain realistic deformation during object contact, with
current pneumatic approaches proving inadequate to retain shape [Shimonomura, 2019, Dahiya et al.,
2009]. While visuotactile camera-based sensors such as GelSight [Yuan et al., 2017] offer a limited
haptic solution by providing high-resolution localized surface deformations, they fundamentally
differ from human tactile sensing, which actively integrates diverse mechanoreceptor inputs over
larger surfaces and multiple contacts [Ward-Cherrier et al., 2018]. Other issues persist with magnetic
[Bhirangi et al., 2021], [Bhirangi et al., 2024a], which have low spatial resolution and is prone to
error from electromagnetic interference [Bhirangi et al., 2024b]. These hardware limitations thus
make it difficult at the moment to identify robust algorithms for tactile processing that operate on
realistic sensory inputs.

On the neuroscience side, despite extensive experimental characterization of rodent somatosensory
pathways (e.g. [Armstrong-James et al., 1992, Kerr et al., 2007]), the neural computations underlying
precise tactile perception remain poorly understood, primarily due to a scarcity of computational
models of this system. Rodent whisker sensing involves hierarchical processing, analogous to vision,
where sensory signals propagate from primary neurons in the trigeminal ganglion through parallel
thalamic pathways, eventually reaching the primary and secondary somatosensory cortices (S1 and
S2) [Bosman et al., 2011, Moore et al., 2015]. However, relatively few computational approaches
have explicitly modeled these neural transformations [Zhuang et al., 2017], and none have assessed if
any of these models accurately match neural population responses in somatosensory cortex.

To bridge these gaps, we build and systematically evaluate temporal neural networks explicitly trained
on biomechanically-realistic force and torque tactile sequences that mice receive, customized from
the first complete 3D simulation of the rat whisker array by Zweifel et al. [2021]. We identify
convolutional recurrent neural networks (ConvRNNs), particularly IntersectionRNNs, as superior in
tactile categorization and neural alignment compared to feedforward (ResNet) and attention-based
state-space models (S4 and Mamba). Leveraging supervised and contrastive self-supervised learning
adapted specifically for tactile data, we demonstrate a direct linear relationship between tactile
categorization performance and neural fit, saturating the currently explainable neural variability and
surpassing inter-animal consistency benchmarks, with contrastive self-supervised learning serving as
an equally neurally predictive, label-free proxy. Thus, we provide the first quantitative characterization
of inductive biases required for tactile algorithms to match brain processing.

2 Related Work

Task-optimized neural network models have emerged as currently the most quantitatively accurate
framework for understanding brain function. Such goal-driven modeling first successfully explained
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neural responses in primate visual areas across hierarchical stages [Yamins et al., Khaligh-Razavi
and Kriegeskorte, 2014], and subsequently, auditory [Kell* et al., 2018, Feather et al., 2019], mo-
tor [Sussillo et al., Michaels et al.], memory [Nayebi et al., 2021], and language [Schrimpf et al.,
2021] brain areas. While many of these results are in humans and non-human primates, goal-driven
modeling approaches have more recently been extended to mouse visual cortex, demonstrating
that shallow architectures trained via contrastive self-supervised learning best capture mouse visual
cortical representations [Nayebi* et al., 2023, Bakhtiari et al., 2021].

Despite these advances, goal-driven computational modeling has not yet been extensively applied to
tactile processing, even though tactile sensory systems share hierarchical and recurrent processing
features with vision [Felleman and Van Essen, 1991]. Zhuang et al. [2017] provided a foundational
goal-driven modeling approach for the rodent whisker-trigeminal system, yet their exploration was
limited to relatively simple recurrent architectures and solely supervised categorization loss functions,
and they did not compare their models to brain data. Here, we significantly broaden the architectural
exploration via Encoder-Attender-Decoder parameterization. We incorporate sophisticated Convolu-
tional RNN (“ConvRNN”) architectures previously developed by Nayebi* et al. [2018], which were
shown to match primate visual cortex dynamics. Additionally, we explore advanced temporal models
such as State Space Models (SSMs) (e.g. S4 [Gu et al., 2021] and Mamba [Gu and Dao, 2023]),
and Transformers [Haldar et al., 2024]. We also employ self-supervised loss functions validated in
mouse [Nayebi* et al., 2023, Bakhtiari et al., 2021] and primate visual cortex [Zhuang et al., 2021],
adapted to specifically deal with force and torque inputs. Finally, we provide the first direct neural
comparison to rodent somatosensory cortical responses across all 64 models.

3 Methods

All our code for whisker simulation, model training, and neural data analysis is available on GitHub:
https://github.com/neuroagents-lab/2025-tactile-whisking

High-variation tactile dataset generation with a biomechanical whisker simulator. Given
the ongoing development of tactile sensor hardware to match the flexibility of biological tactile
sensors such as fingertips and whiskers, we trained our models on synthetic data, focusing on object
categorization and self-supervised learning using a high-variation dataset like ShapeNet [Chang
et al., 2015]. This involves the simulated objects interacting with a biomechanically realistic rodent
whisker model, WHISKiT Physics [Zweifel et al., 2021], the first 3D simulation of the rodent’s
complete whisker system, to provide high-dimensional force and torque inputs. Each of the 30 33
whiskers of an average whisker array [Belli et al., 2017, 2018] is modeled as a chain of rigid conical
segments interconnected by torsional springs and actuated according to established equations of
motion [Knutsen et al., 2008].

(a) (b)

Figure 1: ShapeNet Whisking Dataset. (a) (I) With average mouse whisker array measurements
from Bresee et al. [2023], (II) objects are whisked in simulation using WHISKiT [Zweifel et al., 2021]
resulting in (III) force and torque data for sweeping 9981 ShapeNet objects of 117 categories with
various sweep augmentations. The augmentations vary the (1) speed, (2) height, (3), rotation, and (4)
distance of the objects relative to the whisker array. We constructed two datasets: a large, low-fidelity
set with more sweep augmentations, and a small, high-fidelity set with fewer augmentations (see
appendix). (b) An SVM classification on up to 4 different classes of objects (cups, microwaves,
chairs, and trains) for the 2 datasets show that the classes are distinguishable (above chance).

3

https://github.com/neuroagents-lab/2025-tactile-whisking


Since our objective is to compare models with currently available mouse somatosensory data [Rodgers,
2022], we adapted this array to the 30 whiskers of the mouse [Bresee et al., 2023], arranged as a 5× 7
array with zero padding. Furthermore, adult mice can exhibit maximal bite forces of approximately
8-10 Newtons [Freeman and Lemen, 2008, Table 1], and since facial tolerance to applied forces
would realistically be a fraction of this maximal bite force, our chosen simulation clipping range of
±1000 milli-Newtons (±1 N) remains comfortably within biologically plausible limits.

We created a whisking dataset for the shape categorization task, generated by passively brushing
objects against the whisker array. Our primary consideration here is to generate a high-variation
dataset by which to strongly constrain the representations that are learned, allowing us to more
effectively simulate evolutionary pressures, in line with the “Contravariance Principle” [Cao and
Yamins, 2024] of goal-driven modeling. On each of the 9981 different objects from ShapeNet, we
apply several combinations of sweep augmentations, including adjusting the object sweeping speed,
height, rotation, and distance relative to the whisker array (Fig. 1). These augmentations on our
passive whisker sweeps can be considered to produce data that is isomorphic to performing active
whisking in a systematic way. The 117 object categories are selected based on the work of Zhuang
et al. [2017] to ensure reasonably distinguishable classes. We constructed two datasets: one large
dataset replicating the Zhuang et al. [2017] data with 288 randomized sweep augmentations and a
physics simulation step rate of 110 Hz (High-Variation/Low-Fidelity), and another with 16 sweep
augmentations and a higher simulation step rate of 1000 Hz (Low-Variation/High-Fidelity). See the
Appendix A1 for detailed sweep augmentation procedures. Although higher temporal resolution is
available from the simulation, we extract 22 timesteps for both datasets, corresponding to the average
whisking frequency of 20 Hz in rodents [Sofroniew and Svoboda, 2015].

Encoder-Attender-Decoder (EAD) temporal model search parameterization. Tactile recognition
is performed by the somatosensory cortex, which, though less understood than vision, exhibits
hierarchical processing and long-range feedback connections [Lederman and Klatzky, 2009, Navarro-
Guerrero et al., 2023]. These basic anatomical insights motivate our exploration of hierarchical,
temporal neural network (TNN) models such as ConvRNNs shown previously to match primate
visual cortex dynamics [Nayebi* et al., 2018, Nayebi et al., 2022], SSMs [Gu et al., 2021], Trans-
formers [Haldar et al., 2024], and ResNets [He et al., 2016] as a feedforward control. We provide our
library PyTorchTNN which enables large-scale exploration of integrating multiple TNN modules that
are also combined by long-range feedback with feedforward connections.

These considerations produce a rather large search space of model architectures. Therefore, to be able
to effectively search the space of TNN models systematically, we came up with an Encoder-Attender-
Decoder (EAD) parameterization, schematized in Fig. 2a. Convolutional recurrent and state-space
layers (such as ConvRNNs and S4) are particularly effective for encoding smooth and compressible
temporal signals, given their recurrent smoothing properties and linear-time complexity. In contrast,
transformers and other attention-like architectures (e.g., Mamba) excel at processing temporally
sparse or irregularly informative inputs, as they independently weight each timestep. Given that tactile
inputs from force and torque sensors provide temporally smooth signals, encoder (E) layers closer to
these inputs naturally benefit from convolutional and recurrent mechanisms that integrate information
locally over time, effectively reducing redundancy and noise. In contrast, higher-level temporal
aggregation (A), which must selectively integrate meaningful signals across longer and potentially
irregular timescales, is better served by attention-based architectures like Transformers or Mamba,
which can dynamically weigh distinct timesteps based on their informational content. Finally, the
decoder (D) is either the classification layer for supervised learning, or similarly producing self-
supervised features for contrastive learning or autoencoding. The EAD paradigm flexibly combines
these complementary modules, enabling an effective and structured exploration of the temporal model
space for tactile processing.

Specifically, we explore the following EAD combinations (visualized in Fig. 2a): 1) Encoder:
Zhuang’s recurrent model [Zhuang et al., 2017], ResNet [He et al., 2016], S4 [Gu et al., 2021]; 2)
Attender: Transformer [Haldar et al., 2024] (e.g., GPT), Mamba [Gu and Dao, 2023], None (i.e.,
attender-free); 3) Decoder: MLP. We further investigate different variants of Zhuang’s model by
replacing the recurrent layers in the ConvRNNs with UGRNN [Collins et al., 2017], Intersection-
RNN [Collins et al., 2017], LSTM [Hochreiter and Schmidhuber, 1997], and GRU [Cho et al., 2014],
and we present the update rules for the variants in Appendix A3. In the PyTorchTNN library, each
time step in ConvRNNs corresponds to a single feedforward layer processing its input and passing it
to the next layer, in contrast to treating each entire feedforward pass from input to output as a single
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Figure 2: (a) Encoder-Attender-Decoder (EAD) architecture, with task objectives being supervised
categorization, self-supervised learning (SimCLR, SimSiam, autoencoding). The ConvRNN encoder
includes self-recurrence at each layer where we vary different RNNs.
(b) Types of data augmentations applied to SSL models. Given a temporal tactile input over time T ,
our tactile augmentation vertically, horizontally, temporally flips, and rotates the features, while
traditional image augmentation introduces Gaussian noise, color jitter, and grayscale.

integral time step, as is normally done with RNNs [Spoerer et al., 2017]. This implementation of
temporal unrolling parallels biological systems, where stimuli are sequentially processed from one
cortical layer to the next.

Model Training and Tactile Augmentations. Besides the supervised categorization objective, we
also consider self-supervised learning (SSL) losses: SimCLR [Chen et al., 2020], which learns robust
representations via distinguishing the embeddings of augmentations of one image from other images,
SimSiam [Chen and He, 2021], which maximizes the similarity between the embeddings of two
augmentations of the same image, and autoencoding (AE) [Olshausen and Field, 1996], where we
use a 3-layer deconvolution network to reconstruct an image from its sparse latent representation.

We use a train/validation/test split of 80/10/10%, and report the top-5 test accuracy. For supervised
learning, we train models for 100 epochs and test on the checkpoint saved with the highest validation
accuracy. For SSL objectives, we train for 100 epochs and save the model with the lowest validation
loss, then continue training for another 100 epochs with the checkpoint frozen and a learnable linear
layer on top of it. To stabilize training, we also consider adding layer norm [Ba et al., 2016] to the
ConvRNNs as an alternative when training was unstable. All experiments are conducted on NVIDIA
A6000 GPUs, and one set of model search experiment takes 8∼16 hours.

In addition to the various sweep augmentations used to generate the initial dataset, we apply tactile
augmentations at training time as a cheap way to generate more training data. We illustrate the tactile
input, our tactile augmentations, and traditional image augmentations for SSL in Fig. 2b. Given a
temporal tactile input over time T , the proposed augmentation either vertically flips, horizontally
flips, rotates, or reverses the input over time. Although the variable whisker lengths mean that
these operations are not completely physically accurate, our tactile augmentations still meaningfully
mimic flipping/rotating the whisker array or reversing the direction of motion. We considered
temporal masking as an additional augmentation, but found that this did not significantly improve task
performance (Appendix A5, Tab. 7). Applying traditional image augmentations like color jitter or
gray scale cause the models to fail to train, which provides evidence that the choice of augmentations
should represent operations relevant to the given modality.

Neural Data Comparison. We use the neural dataset from Rodgers [2022], which recorded neural
population activity across superficial (L2/3) to deep (L6) layers of the barrel cortex as the mice used
their whiskers to perform a simple 2-object (convex/concave) classification task. Note that this low
number of distinct stimuli is a critical limitation which we address in the Discussion section. After
filtering for valid trials, the neural data we used contains a total of 999 neural units across 11 mice.
The time window of each trial is clipped to the time of first whisker contact with the object until the
time the mouse makes its decision (about 1-2 seconds). The neural response is binned into intervals
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of approximately 45–50 ms, corresponding neatly with the 15–20 Hz whisking frequency typical of
rodents (50 ms per cycle at 20 Hz [Sofroniew and Svoboda, 2015]), and aligning specifically with our
model’s integration scheme of five sub-timesteps (~9 ms each) per timestep. This choice provides
a temporal resolution optimal for capturing detailed neural activity during whisker-object contact
periods.

We evaluate neural alignment using Representational Similarity Analysis (RSA), a parameter-free
approach that compares the pairwise dissimilarity structure of model and neural population responses
across the same set of stimuli. RSA compares the pairwise dissimilarity structure of neural responses
and model activations to a common set of stimuli, allowing direct comparison of representational
geometry without requiring additional parameter fitting [Kriegeskorte et al., 2008].

To ensure only reliable neurons are included, we compute split-half internal consistency of the
neural responses across trials and retain only neurons with a Spearman-Brown–corrected reliability
greater than 0.5. All RSA evaluations are thus conducted on this filtered subset of self-consistent
neurons, and corrected by this internal consistency. Further details about this procedure are included
in Appendix A4.

The noise-corrected RSA Pearson’s r score is also computed between one mouse to every other
mouse, and then averaged this score across all mice to obtain the mean animal score which will
serve as the baseline for model-brain evaluation, to account for inherent animal-to-animal variability
(which we denote as “a2a” in the barplots). Thus, we want our models to match the brain, at least as
well as animals do to each other.

Next, we replicated the experimental setup of the barrel cortex dataset Rodgers [2022] in silico.
Fig. 4a shows the 6 different stimuli used in the experiment, which are concave/convex objects at
three different distances (near, medium, far) from the whisker array. With 3D model reproduction of
the concave/convex objects in the experiment, active whisking is simulated under the 6 stimuli using
a real recorded whisking trajectory [Bresee et al., 2023] to generate the model input.

We then obtain the neural alignment score for models by computing the maximum, across all layers,
of the median RSA score between each layer’s representation and the neural responses, averaged
across mice. The standard error is calculated across the RSA Pearson’s r value from the model to
each mouse.

4 Results

Validation of Sensor and Dataset via SVM Decoding. We first verified the basic discriminability of
the whisker array dataset using support vector machine (SVM) classifiers on the High-Variation/Low-
Fidelity and Low-Variation/High-Fidelity datasets (Fig. 1b). Both showed strong decoding perfor-
mance, exceeding chance and remaining robust even with increased task difficulty from more object
categories. The comparable results across sampling rates confirm that the smaller Low-Var./High-Fid.
dataset retains sufficient discriminative tactile information, allowing for efficient model training
without compromising performance.

ConvRNN Encoders Outperform Feedforward and Attention-based Architectures for Tactile
Categorization. We next systematically evaluated the task performance of the EAD architectures
trained on tactile force/torque sequences. Overall, we found that across EAD architectures, the

Figure 3: Tactile Categorization Accuracy. The lighter-colored left bar represents the randomly ini-
tialized version for every model. The best-performing model is Zhuang+GPT+Supervised (rightmost
cyan bar). Models with the encoder being S4 are excluded as the training losses explode before the
first epoch is finished.
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(a)

(b)

inter-animal max1.34

Figure 4: Model Neural Evaluation. (a) We use six different stimuli (concave/convex ×
near/medium/far) replicating the conditions in the mouse neural dataset in simulation. (Real images
were taken from video recordings in neural dataset [Rodgers, 2022]). (b) Comparison of neural fit
(noise-corrected RSA Pearson’s r) across models. The mean animal-to-animal score is 0.18 and
the maximum between all pairs of animals is 1.34. The leftmost “a2a” bar represents the mean
animal-to-animal neural consistency score. The lighter-colored left bar represents the randomly
initialized version for every model.

choice of encoder (E) was quite important for tactile recognition. Specifically, ConvRNN encoders,
especially the IntersectionRNN [Collins et al., 2017], surpassed the purely feedforward ResNet18 and
SSM (S4) encoders, in supervised tactile categorization tasks (Fig. 3). Additionally, models trained
with our custom force-and-torque-specific contrastive self-supervised learning (SSL) augmentations
(Fig. 2b) outperformed untrained networks of the same architecture, and those trained with standard
image-based augmentations that involve Gaussian blur and color jittering [Chen et al., 2020] did
not train with the best architecture despite hyperparameter tuning, demonstrating the importance of
tailored tactile augmentations for enhancing task performance (Fig. 3).

Importance of Architectural Inductive Bias. We note that the raw model input (the tactile
force/torque sequences obtained from actively whisking on the 6 stimuli objects) achieves a correla-
tion of 0.46 (Fig. 4b), and untrained randomly initialized models also achieve moderately positive
correlation to the mouse neural data. Randomly initialized networks are highly non-random functions
as they are architectures selected to perform the task well when trained. Therefore, architecture
matters a lot, and this is a well-noted phenomenon in NeuroAI across brain regions [Yamins et al.,
Nayebi* et al., 2023, Schrimpf et al., 2020]. By doing this comparison, it allows us to isolate the
contributions of the architecture vs. loss function for every pair of (architecture, loss function) tuples.
The models that saturate our noise ceiling (bars on far right in Fig. 4b) are noticeably improved when
trained.

ConvRNN Encoders Saturate Explainable Neural Variance in Rodent Somatosensory Cortex.
To assess biological realism, we compared internal model representations to neural recordings from
rodent whisker somatosensory cortex. All trained EAD models outperformed raw sensor inputs
in neural alignment, underscoring the importance of nonlinear temporal processing in modeling
brain-like tactile representations (Fig. 4b). In fact, the best models saturated all of the held-out
explainable neural variance–without fitting any additional parameters–even when tested on entirely
novel objects under substantially different experimental conditions (active whisker sensing rather
than passive contact, as used in training). Remarkably, the neural predictivity exceeded the average
inter-animal neural consistency (leftmost black “a2a” bar in Fig. 4b), thereby robustly passing the
NeuroAI Turing Test on this dataset [Feather* et al., 2025]. Among these and consistent with the
categorization results, EAD models with ConvRNN encoders consistently provided better neural
fits compared to feedforward (ResNet) and SSM-based (S4) encoder architectures, underscoring
the biological plausibility of recurrence in modeling tactile processing. In fact, we saw a strong
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(a) (b) (c)

Figure 5: Comparing Task Performance and Neural Fit. (a) The task performance of SSL models
are about one order of magnitude below the performance of supervised models, yet are able to achieve
comparable neural fit. (b) For supervised models, we observe a trend of better task performance
leading to increased neural correspondence. Plotting a best fit line, we find the correlation r = 0.59.
(c) The tactile augmentations were effective in improving both the neural fit and task performance.
The models were unable to be trained with image augmentations.

linear trend between tactile supervised categorization performance and neural fit (r = 0.59, Fig. 5b
), with the model layers that best predict the tactile neural responses being closest to the decoder
layer (Fig. A2). Although the number of task-optimized parameters matters for both categorization
test set performance and neural fit generalization (Fig. A1), they are not the whole story, as the
SimCLR-trained EAD with the IntersectionRNN encoder best matches the neural data with far fewer
parameters (∼ 3.80 × 107 parameters) than its supervised counterpart with a GPT-based attender
(∼ 6.38× 107 parameters).

GPT-based Attenders Provide Modest Improvements in Task Performance and Neural Align-
ment. In addition to varying the encoder (E) layer of the EADs, we investigated different temporal
aggregation (“Attender”) schemas. We observed that GPT-based Attenders modestly outperformed
Mamba-based and no-attention controls in both supervised task categorization and neural alignment
(Fig. 5b). Although these improvements were subtle, the consistency of the result suggests that
incorporating some form of attention downstream of the ConvRNN encoder is beneficial, particularly
for our highest-performing neural models. This result suggests the prediction that attention-like
mechanisms may be implemented in somatosensory cortex through selective modulation of hierar-
chical processing pathways, such as those from primary sensory neurons in the trigeminal ganglion
through the thalamus and subsequently into primary and secondary somatosensory cortical areas (S1
and S2), which could be validated by experiments involving targeted perturbations or optogenetic
manipulation of these specific pathways during tactile discrimination tasks.

Self-Supervised SimCLR Training Matches Supervised Models and Serves as an Ethologically-
Relevant Label-Free Proxy. We compared neural alignment achieved by supervised training against
SSL methods, adapted with tactile-specific force-and-torque augmentations. This comparison is
necessary because discriminating among 117 human-recognizable shape classes is not directly
ethologically relevant for rodents. Nevertheless, ShapeNet’s extensive diversity of 3D objects
provides strong structural constraints for modeling whisker-trigeminal processing at biological scales,
constraints which smaller, mouse-relevant object sets might fail to impose. Paralleling findings
in vision [Yamins et al., Khaligh-Razavi and Kriegeskorte, 2014], where training on large-scale
object categorization leads to generalizable representations beyond specific categories, we similarly
suggest that ShapeNet’s diversity provides meaningful constraints on network structure irrespective
of exact object identity. Additionally, by demonstrating that self-supervised learning (SSL) methods
yield neural representations comparable (if not marginally better) to supervised approaches, we
directly address an open direction highlighted by Zhuang et al. [2017], who emphasized the need for
developing more ethologically relevant yet practically scalable tasks for studying tactile processing.

In fact, we found specifically that contrastive SSL loss functions consistently reached neural align-
ment scores similar to the best supervised models, confirming its utility as an ethologically-relevant
but label-free approach to tactile representation learning (Fig. 5a), and outperforming other non-
contrastive self-supervised approaches such as autoencoding. The SimCLR-optimized Intersection-
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RNN EAD achieved the best absolute neural alignment score across all models overall, and was
comparable in its neural alignment to its supervised (and more parameter-dense) variant (rightmost
green bars in Fig. 4b). This result mirrors findings in primate visual cortex [Zhuang et al., 2021],
where contrastive SSL methods equally predicted neural response patterns compared to supervised
alternatives, suggesting supervised learning serves as a proxy for this more ethologically-relevant
loss function. Interestingly, the parity between contrastive SSL and supervised models observed here
differs from mouse visual cortex, where contrastive SSL methods substantially exceeded supervised
methods in neural predictivity [Nayebi* et al., 2023]. Notably, the SSL methods, which are best
aligned with tactile neural representations overall, achieve only moderate linear probe categoriza-
tion performance (Fig. 5a), implying that somatosensory cortex representations might prioritize
broader, task-agnostic sensory encoding rather than purely specialized, categorization-driven features.
Furthermore, just as we found for downstream task performance in Fig. 3, we also observed it
was critical to have tactile-specific SSL augmentations for developing biologically accurate tactile
representations, compared to both standard image-based SimCLR augmentations and randomly
initialized architecture-fixed controls (Fig. 5c). We further provide evidence for the design of our
tactile augmentation in Appendix A5.

5 Discussion

Implications for Somatosensory Cortical Processing. We developed a novel Encoder-Attender-
Decoder (EAD) parameterization of the space of temporal neural network models (TNN) trained to
perform tactile recognition on biomechanically realistic force and torque sequences, greatly extending
and answering the open question posed by Zhuang et al. [2017] of characterizing the ethologically
relevant constraints of rodent whisker-based tactile computations. Our results establish ConvRNN
encoders, particularly the IntersectionRNN, as currently superior in tactile categorization performance
and neural representational alignment compared to feedforward (ResNet) and state-space models
(SSM), suggesting recurrent processing is more relevant overall to the rodent somatosensory sys-
tem. Furthermore, we demonstrate that contrastive self-supervised learning (SimCLR), particularly
when trained with tactile-specific augmentations, yields neural alignments comparable to supervised
methods, highlighting supervised training as a proxy for a more ethologically relevant, label-free rep-
resentation. The modest yet consistent benefits observed from GPT-based Attenders indicate potential
attention-like mechanisms operating within hierarchical tactile processing pathways, suggesting a
fruitful avenue for experimental validation.

Taken together, our findings indicate that nonlinear recurrent processing plays an essential role in
the rodent somatosensory cortex, reflecting neural encoding strategies that prioritize broad, general-
purpose tactile representations. This work provides the first quantitative characterization of the
inductive biases required for tactile algorithms to match brain processing, opening new opportunities
for deeper insights into sensory representation learning and somatosensory cortical dynamics.

Implications for Embodied AI and Robotics. Current artificial tactile sensors and models fall
short of animal-like capabilities, limiting the functional use of robots in real-world, unstructured
scenarios. Our results underscore the importance of biomechanically realistic inputs and temporally
recurrent architectures for developing tactile perception models that perceive touch similarly as
animals do. Our demonstration that tactile-specific (sequential force/torque array) SSL augmentations
significantly enhance performance underscores this point, emphasizing the necessity of tailored
training methods for robotic tactile systems. Future work in embodied robotic systems that leverage
these insights could potentially overcome existing sensor limitations, including scaling complexity,
stimulus discrimination challenges, and restricted sensing surfaces, thus achieving more robust and
nuanced environmental interactions similar to biological organisms.

Limitations and Future Directions. Our findings do not represent the final word, but rather the
beginning of an improved understanding of tactile sensory processing in both animals and machines.
Most importantly, currently available tactile neural datasets remain severely limited in stimulus
diversity with the number of object conditions tested, restricting the captured neural variability, and
could be the reason why inter-animal consistency values are lower for the statistical average between
animals than the current pointwise empirical maximum of 1.3 (Fig. 4b), indicated by the NeuroAI
Turing Test. Expanding neural datasets to include broader sets of tactile stimuli and additional
animals will thus be crucial for future work, enabling models to approach and potentially surpass this
theoretical ceiling of neural predictivity.
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In the longer term, incorporating multimodal sensory integration will be important–particularly
combining tactile inputs with other modalities, such as proprioception or vision, through biologically-
inspired fusion operations that integrate signals extensively across intermediate layers, as is observed
in the brain [Navarro-Guerrero et al., 2023], rather than relying solely on last-layer concatenation, as is
commonly done now [Yang et al., 2024]. Exploring precisely where and how these multimodal signals
are best fused, using diverse fusion operations (e.g., concatenation, attention, routing), is already
supported by our PyTorchTNN library and will yield stronger constraints on models, potentially
enabling more robust tactile-driven decision-making in genuinely unstructured scenarios as well as
animals do.

Broader Impacts. Improving robotic tactile sensing to not only match human capabilities, but also
quantitatively validating, as we explicitly do, shared processing of object properties with human
collaborators at the level of internal representations, could enhance human safety and efficiency in
environments such as healthcare, assistive technologies, and manufacturing in the future. However,
advancements in tactile-enabled robotics might also disrupt employment in sectors relying heavily on
manual labor. It will therefore be important to thoughtfully manage these technological transitions
through proactive policy-making and workforce training.
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not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: In Methods, we state the GPUs used (Nvidia A6000s) and approximate time to train per
model (8∼16 hours).
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• The answer NA means that the paper does not include experiments.
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provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
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the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We pledge that this research conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: We mention broader impacts as an explicit subsection in our Discussion section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.
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applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
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efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification: To the best of our knowledge, the paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We cite the original creators of ShapeNet dataset, WHISKiT simulator, and others in the
Methods section and respect their licenses in our use/adaptation of the data/software.
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• The answer NA means that the paper does not use existing assets.
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alongside the assets?

Answer: [Yes]

Justification: Setup and usage documentation is provided for PyTorchTNN and whisking dataset.
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• The answer NA means that the paper does not release new assets.
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missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.
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Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: No human subjects were used.

Guidelines:
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• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
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this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
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component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.
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original, or non-standard components.
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Appendix

Table of Contents

We detail the contents in the appendix below.

A1. Whisk Dataset Generation details the parameters and the modifications of the simulator
for generating our whisking dataset for training.

A2. Model Definitions present the mathematical definitions of the RNNs used in the ConvRNNs
(i.e, Zhuang’s model [Zhuang et al., 2017]) in our experiments.

A3. Model Training includes the optimizer, scheduler, and learning rate configurations for
training different models for both supervised and self-supervised learning.

A4. Neural Evaluation explains how the neural fit scores are calculated, and presents visual-
ization of model parameters vs. neural fit, per layer neural fit scores, and representational
dissimilarity matrices for neural evaluation.

A5. Additional Experiments show results on stimuli decoding based on learned representations
and self-supervised learning performance with temporal masking as the augmentation.

A1 Whisk Dataset Generation

Our whisking dataset uses the same 9981 ShapeNet objects and 117 category labels as in Zhuang
et al. [2017], but using an improved whisker model and various sweep augmentations, which are
listed in Table 1.

Sim. Freq. Speed Height Rotation Distance Size Total Sweeps

(1) 1000 Hz 30 mm/s -5, 0 mm 0, 30, 90, 120° 5, 8 mm 40 mm 316,192
(2) 110 Hz [30∼60] -3, 0, 3 [0∼359] 5 [20∼60] 2,076,048

Table 1: Sweep Augmentations used for the two whisking datasets, which we refer to as (1) Low-
Variation High-Fidelity and (2) High-Variation Low-Fidelity. Simulation Frequency refers to the
frequency corresponding to the physics timestep used in Bullet physics engine [Coumans and Bai,
2016–2021], the backend for WHISKiT simulator [Zweifel et al., 2021]. For dataset (2), the speed,
rotation, and size is each sampled from the range 26 times. The total number of sweeps equals the
number of sweep augmentation combinations × 9981 objects.

WHISKiT Simulator Modifications. We make a few enhancements to the original WHISKiT
simulator [Zweifel et al., 2021]:

• Number of whisker links (where whiskers are modeled as a chain of springs [Zhuang et al.,
2017]) are dynamically adjusted by the length of the whisker instead of a fixed number.

• Allow for loading objects with or without convex hull. In the whisk datasets, objects are
loaded with convex hull (using V-HACD [Mamou and Ghorbel, 2009]) to keep collisions
more stable. In generating the 6 simulated stimuli for model input neural evaluation, convex
hull was not used in order to preserve the concavity of the “concave” object. The object was
geometrically simple enough to not affect collision stability.

• Add camera settings for viewing in orthographic or perspective projection.
• Load multiple mice/rats at a time.

All our code for the simulation, model training, and neural data analysis is available on GitHub:
https://github.com/neuroagents-lab/2025-tactile-whisking
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A2 Model Definitions

We provide the update rules for UGRNN and IntersectionRNN in our experiments as follows. For
other RNN variants, please refer to Nayebi et al. [2022].

• xℓ
t: input at time t and layer ℓ

• sℓt: state at time t and layer ℓ

• W ℓ, U ℓ: learnable weight matrices at layer ℓ
• bℓ: bias terms at layer ℓ
• ◦: element-wise multiplication
• σ: sigmoid function
• tanh: hyperbolic tangent function
• ReLU: rectified linear unit function
• ∗: linear transformation or convolution (depending on context)

A2.1 UGRNN

cℓt = tanh
(
W ℓ

c ∗ xℓ
t + U ℓ

c ∗ sℓt−1 + bℓc
)

(1)

gℓt = σ
(
W ℓ

g ∗ xℓ
t + U ℓ

g ∗ sℓt−1 + bℓg + 1
)

(2)

sℓt = gℓt ◦ sℓt−1 +
(
1− gℓt

)
◦ cℓt (3)

hℓ
t = sℓt (4)

A2.2 IntersectionRNN

mℓ
t = tanh

(
W ℓ

m ∗ xℓ
t + U ℓ

m ∗ sℓt−1 + bℓm
)

(5)

nℓ
t = ReLU

(
W ℓ

n ∗ xℓ
t + U ℓ

n ∗ sℓt−1 + bℓn
)

(6)

pℓt = σ
(
W ℓ

p ∗ xℓ
t + U ℓ

p ∗ sℓt−1 + bℓp + 1
)

(7)

yℓt = σ
(
W ℓ

y ∗ xℓ
t + U ℓ

y ∗ sℓt−1 + bℓy + 1
)

(8)

sℓt = pℓt ◦ sℓt−1 +
(
1− pℓt

)
◦mℓ

t (9)

hℓ
t = yℓt ◦ xℓ

t +
(
1− yℓt

)
◦ nℓ

t (10)
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A3 Model Training

All of our experiments are conducted on NVIDIA A6000 GPUs. For supervised learning, we use
a batch size of 256 for all the models and train for 100 epochs. For SSL, during the pre-training
stage, we use a batch size of 256 for SimCLR and autoencoding (AE), and a batch size of 1024 for
SimSiam, following Nayebi* et al. [2023], and train for 100 epochs. During the linear probing stage,
we freeze the checkpoint saved with the lowest validation loss and add a trainable linear layer. We
further train such a model with labels for 100 epochs, with a batch size of 256, an initial learning rate
of 0.1, with the StepLR scheduler, and the SGD optimizer with momentum [Bottou, 2010].

We detail the optimizers [Bottou, 2010, Kingma and Ba, 2015, Loshchilov and Hutter, 2019, You
et al.] and schedulers, and their configurations we used in supervised learning and SSL in Table 2.

Optimizer Configuration

SGD momentum = 0.9, weight-decay = 10−4

Adam weight-decay = 10−4

AdamW weight-decay = 10−4

LARS momentum = 0.9, weight-decay = 10−4

Scheduler Configuration
StepLR step_size = 30

ConstantLR fixed learning rate
CosineLR warmup_epoch = 10

CosineAnnealing min_lr = 0.0, warmup_epoch = 10, warmup_ratio = 10−4

Table 2: Optimizers and Schedulers with default configurations of supervised learning and SSL
when training different model architectures.

For supervised learning, we present the model training configurations in Table 3, where we detail the
choices of optimizer, scheduler, learning rate, the encoder and attender of our EAD architecture, and
we omit the decoder due to space limits, as it is always a linear layer/MLP. As Zhuang+GPT is the
best performing supervised model in terms of classification accuracy, we explore different variants of
Zhuang’s encoder with attender being GPT.

Encoder Attender Optimizer Scheduler Learning Rate

ResNet None SGD StepLR 10{−1,−2,−3}

Zhuang None SGD StepLR 10{−1,−2,−3,−4}

SGD ConstantLR 10−2, 5× 10−3

Zhuang-{UGRNN, None {SGD, Adam, AdamW} StepLR 10{−1,−2,−3,−4}

IntersectionRNN, GRU, LSTM} (LayerNorm) - AdamW StepLR 10{−1,−2,−3,−4}

ResNet, Zhuang, Zhuang-{UGRNN GPT AdamW CosineLR 10−4

IntersectionRNN-LN, GRU, LSTM}, S4 {SGD, AdamW} StepLR 10{−1,−2,−3}

ResNet, Zhuang, S4 Mamba AdamW CosineLR 10−4

{SGD, AdamW} StepLR 10{−1,−2,−3}

Table 3: Model Training Configurations for Supervised Learning. We use {} to indicate different
choices of a specific component (i.e., encoder, optimizer, learning rate) in the search space. We
consider adding layer norm as a variant when searching the best configuration for Zhuang’s variants
(i.e., the second row), which is denoted as “-LN”.

For SSL, we follow Nayebi* et al. [2023] and use specific configurations of optimizer and scheduler
for different losses, which are shown in Table 4. For SimSiam, we try the CosineAnnealing scheduler
both with and without 10 epochs of warmup to search for better model performance. For AE, we use
a 3-layer deconvolution network to decode the sparse latent representation from our EAD framework
into the original tactile input, regardless of the choice of model architectures.
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Loss Optimizer Scheduler Learning Rate

SimCLR LARS CosineAnnealing 10{−1,−2,−3,−4}

SimSiam SGD CosineAnnealing (with & w/o warmup) 10{−1,−2,−3,−4}

AE SGD StepLR 10{−1,−2,−3,−4}

Table 4: Optimizer, Scheduler, and Learning Rate Configurations for SSL when training different
model architectures.

We present the model architectures explored for SSL in Table 5, where we present the encoder and
attender of our EAD architecture, as during the pre-training stage, only the encoder and attender are
used, and during the linear probing stage, the decoder is always a one-layer linear classification head.

Encoder Attender
Zhuang, Zhuang-{UGRNN, IntersectionRNN-LN, GRU, LSTM} None

ResNet, Zhuang-IntersectionRNN-LN, Zhuang, S4 GPT

ResNet, Zhuang, S4 Mamba

Table 5: Model Architecture Configurations for SSL. We use {} to indicate the different variants
of encoders. We consider adding layer norm (LN) as a variant when searching the best configuration
for Zhuang’s variants.
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A4 Neural Evaluation

We use the NeuroAI Turing Test [Feather* et al., 2025] to evaluate the neural similarity of mice
whisking to models performing tactile categorization.

RSA Correlation. Due to the low number of stimuli, we use RSA [Kriegeskorte et al., 2008] as our
correlation metric. RSA is computed over stimuli and neurons, where the average is over source
animals/subsampled source neurons, bootstrapped trials, and train/test splits. This yields a vector of
these average values, which we can take median and s.e.m. over, across animals.

For the neurons of animal A to animal B in the set of animals A we estimate the RSA correlation:〈
RSA

(
tA, tB

)〉
A∈A:(A,B)∈A×A ∼

〈
RSA

(
sA1 , s

B
2

)√
R̃SA

(
sA1 , s

A
2

)
× R̃SA

(
sB1 , s

B
2

)
〉

A∈A:(A,B)∈A×A

. (11)

Each neuron in our analysis is associated with a value for when it was a target animal (B), averaged
over subsampled source neurons and 1000 bootstrapped trials. This yields a vector of these average
values, which we can take median and standard error of the mean (s.e.m.) over, as we do with standard
explained variance metrics.

Spearman-Brown Correction. The Spearman-Brown correction can be applied to each of the terms
in the denominator individually, as they are each correlations of observations from half the trials of
the same underlying process to itself (unlike the numerator).

R̃SA (X,Y ) := C̃orr(RDM(x),RDM(y))

=
2RSA (X,Y )

1 + RSA (X,Y )
.

Inter-Animal Consistency. To estimate the inter-animal consistency, we evaluate the pooled animal
consistency for each animal. One animal is held out at a time, then compared to the pseudo-population
aggregated across units from the remaining animals. We found the mean pooled animal score was
0.175 with a s.e.m. of 0.161 and maximum score of 1.34.
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Figure A1: Model Parameters compared with categorization performance and neural fit. (a) Legends
for (b) (Encoder colors) and (c) (Loss colors). (b) Models with GPT as an attender have a higher
correlation score slightly higher than those without, but high neural fit is still achievable without
more parameters as demonstrated by the Inter+SimCLR model (high green “×”). (c) Models with
GPT as the attender has more parameters and, when trained with supervised learning, tends to have
higher top-5 categorization accuracy.
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(a) (b)

Figure A2: Neural Fit Score per Model Layers colored by encoder, attender, and decoder. No
bar means the score is NaN for that layer. (a) Inter+GPT+SupervisedLearning is the model that
scored the highest neural fit out of the supervised models. We observe that later GPT layers perform
increasingly better. (b) The last fully-connected layer of Inter+SimCLR achieved the highest r value.

(a) (b) (c) (d)

(e)

Figure A3: Representational Dissimilarity Matrices (RDM) for tactile data and neural evaluation.
(a) RDM of the 6 simulated stimuli which is used as the model input in neural evaluation. (b) The
GPT LM Head layer of Inter+GPT+SupervisedLearning is the supervised model with the highest
neural fit score. (c) The last Fully-Connected layer in Inter+SimCLR achieves the highest neural
fit score out of SSL models. (d) RDM performed on the 6 stimuli in the mice neural data. (e) A
visualization of the flattened RDMs, scaled approximately to fit (RSA correlation does not take scale
into account).
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A5 Additional Experiments

As a basic way to probe the distinguishability of the models’ learned representations of stimuli, we
performed a decoding test with results shown in Table 6. Note that Inter+SimCLR is the model with
the best neural score; Zhuang+GPT+Supervised has the best task score; Inter+GPT+Supervised has
best neural score out of supervised models; Resnet+Mamba+SimCLR has best task score out of SSL
models.

Rodgers’ task variables (convex/concave) are behavioral probes, and are not necessarily the natural
computational goals of somatosensory cortex. Our RSA analysis shows that cortical representational
geometry is best matched by tactile-optimized models, especially with self-supervised losses, indicat-
ing that the cortex builds a general substrate for tactile recognition and discrimination across diverse
objects. When reduced to a six-condition probe, this broad representational space may not project
well onto the labels, yielding poor decoding despite underlying ethologically aligned representations.

Model Shape (chance=0.5) Distance (chance=0.33)
Inter+SimCLR 0 0
Zhuang+GPT+Supervised 0.33 0.5
Inter+GPT+Supervised 0 0.5
Resnet+Mamba+SimCLR 0 0.67
Animal Neural Data 0.44 0

Table 6: Stimuli decoding. For each of the 6 stimuli, we train a logistic regression model on the 5
other stimuli and test on the 1 held-out stimulus to decode either the shape (convex/concave) or the
distance (far/medium/near). The stimuli decoding score for Animal Neural Data was obtained by
decoding per mouse, then averaging across mice.

We have also tried adding temporal masking, where we randomly mask 75% of the as a tactile
augmentation, but it did not significantly improve the task performance or neural fit score (Table 7).

Model Top-5 Cat. Accuracy Neural Fit
Inter+SimCLR 0.15 0.96
Inter+SimCLR with Temporal Masking 0.18 0.42
Resnet+Mamba+SimCLR 0.23 0.70
Resnet+Mamba+SimCLR with T. Masking 0.28 0.67

Table 7: Temporal Masking. Results from retraining two models with temporal masking as an
additional tactile augmentation. Top-5 categorization task performance improved slightly (~5%), but
neural fit scores decreased.
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