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Abstract

Learning meaningful behaviors in the absence of a task-specific reward function1

is a challenging problem in reinforcement learning. A desirable unsupervised2

objective is to learn a set of diverse skills that provide a thorough coverage of3

the state space while being directed, i.e., reliably reaching distinct regions of the4

environment. At test time, an agent could then leverage these skills to solve sparse5

reward problems by performing efficient exploration and finding an effective goal-6

directed policy with little-to-no additional learning. Unfortunately, it is challenging7

to learn skills with such properties, as diffusing (e.g., stochastic policies performing8

good coverage) skills are not reliable in targeting specific states, whereas directed9

(e.g., goal-based policies) skills provide limited coverage. In this paper, inspired10

by the mutual information framework, we propose a novel algorithm designed11

to maximize coverage while ensuring a constraint on the directedness of each12

skill. In particular, we design skills with a decoupled policy structure, with a first13

part trained to be directed and a second diffusing part that ensures local coverage.14

Furthermore, we leverage the directedness constraint to adaptively add or remove15

skills as well as incrementally compose them along a tree that is grown to achieve a16

thorough coverage of the environment. We illustrate how our learned skills enables17

to efficiently solve sparse-reward downstream tasks in navigation and continuous18

control environments, where it compares favorably with existing baselines.19

1 Introduction20

Deep reinforcement learning (RL) algorithms have been shown to effectively solve a wide variety of21

complex problems [e.g., 23, 6, 31, 12, 2, 28]. However, they are often designed to solve one single22

task at a time and they need to restart the learning process from scratch for any new problem, even23

when it is defined on the very same environment (e.g., navigating to different locations in the same24

apartment). Recently, unsupervised RL (URL) has been proposed as an approach to address this25

limitation. In URL, the agent first interacts with the environment without any extrinsic reward signal.26

Afterward, the agent leverages the experience accumulated during the unsupervised learning phase to27

efficiently solve a variety of downstream tasks defined on the same environment.28

In this paper, we consider the URL setting where the agent starts from an initial state s0 and it resets29

to it every time the policy terminates. We focus on sparse-reward downstream tasks, which require30

effective exploration (i.e., via a thorough coverage of the state space) to find the goal as well as31

learning a policy reliably reaching the goal (i.e., a directed policy).32

We build on the insight that mutual information (MI) effectively formalizes the dual objective of33

learning skills that both cover and navigate the environment efficiently [e.g., 11]. Specifically, given34

the state variable S and some variables Z on which the skill policies are conditioned, MI is defined as35

I(S;Z) = H(S)︸ ︷︷ ︸
coverage

− H(S|Z)︸ ︷︷ ︸
directedness

= H(Z)−H(Z|S), (1)

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.



Figure 1: Overview of UPSIDE. The black dot corresponds to the initial state s0. (A) A set of random skills
is initialized, each skill being composed of a directed part (illustrated as a black arrow) and a diffusing part
(red arrows), which induces a local coverage (colored circles). (B) The policies associated to the directed part
of each skill are then updated to maximize the discriminability of the states reached by their diffusing part
(Sect. 3.1). (C) The least discriminable skills are iteratively removed while the policies of the remaining skills are
re-optimized. This is executed until the discriminability of each skill satisfies a given constraint (see Sect. 3.2).
In this example three skills are kept. (D) One of these learned skill is then used as basis to add new skills, which
are then optimized following the same procedure. For the “red” and “purple” skills, UPSIDE is not able to find
sub-skills of sufficient quality and thus they are not expanded any further. (E) At the end of the process, UPSIDE
has created a tree of directed skills covering the state space (Sect. 3.3). These covering skills can then be used to
solve downstream tasks. Moreover, the discriminator learned together with the skills can be used to select the
skill to reach any specific goal region, where the directed parts get close to the goal, while the diffusing part
provides the local coverage to attain the goal. The complete algorithm is detailed in Sect. 3.4 and Appendix.

where I denotes the MI andH is the entropy function. The first expression, known as the forward36

form of MI, explicitly balances the two sought-after properties of coverage — captured by the entropy37

over the state spaceH(S) — and directedness, i.e., the ability to reach specific states S depending38

on Z — captured by the negative conditional entropy −H(S|Z). The second expression of (1), often39

easier to optimize and referred to as the reverse form, stipulates that the skills should be sampled as40

diversely as possible while being discriminable.41

Maximizing (1) has been shown to be a powerful approach for encouraging exploration in RL [16, 25]42

and for unsupervised skill discovery [e.g., 11, 9, 1, 30, 8]. Nonetheless, learning skills that maximize43

the MI is a challenging optimization problem. Several approximations have been proposed to simplify44

the problem at the cost of possibly deviating from the original objective of coverage and directedness45

(see Sect. 4 for a review of related work). In this paper, we propose UPSIDE (UnsuPervised Skills46

that dIrect then DiffusE) to learn skills that can be effectively used to solve goal-based downstream47

tasks. Our solution builds on the following components (see Fig. 1 for an illustration of UPSIDE):48

• Skill structure. In order to balance coverage and directedness, we design skills composed of two49

parts: 1) a directed part that is trained to reach a distinct region of the environment, and 2) a50

diffusing part that covers the states around the region attained by the first part.51

• Optimization. We further strengthen the coverage and directedness properties of the skills by52

turning the MI objective into a constrained optimization problem designed to maximize coverage53

under the constraint that each skill achieves a minimum level of discriminability. This in turn54

enables UPSIDE to adaptively add skills to improve coverage, when all the initial skills meet the55

constraint, or remove those that violate the constraint to guarantee that each skill is directed and56

reaches a distinct region of the environment.57

• Tree structure. When the agent starts from a fixed initial state, the skills’ length is a crucial58

parameter, where short skills do not allow for proper coverage, and long skills are difficult to train.59

In UPSIDE we consider short skills to make the optimization easier, while composing them along a60

tree structure that ensures an adaptive and deep coverage of the environment.61

We study how our learned skill structure enables to both perform efficient exploration and learn62

effective goal-reaching policies in a variety of navigation and continuous control environments63

(including MuJoCo’s reacher) and we compare its performance to relevant baselines.64

2 Setting65

We consider the URL setting where the agent interacts with a Markov decision process (MDP) M66

with state space S, action space A, dynamics p(s′|s, a), and no reward. The agent starts each67
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episode from a designated initial state s0 ∈ S. Upon termination of the chosen policy, the agent is68

then reset to s0. This setting is particularly challenging from an exploration point of view since the69

agent cannot rely on the initial distribution to cover the state space.70

We recall the MI-based unsupervised skill discovery approach [see e.g., 11]. Denote by Z some71

(latent) variables on which the skills of length T are conditioned. There are three optimization72

variables: (i) the support of the skills denoted by |Z| (we consider it to be discrete so |Z| is the73

number of skills), (ii) the policy π(z) associated to skill z, and (iii) the sampling rule ρ (i.e., ρ(z)74

is the probability of sampling skill z at the beginning of the episode). Let the variable ST be the75

random (final) state induced by sampling a skill z from ρ and executing the associated policy π(z)76

from s0 for an episode. We denote by pπ(z)(sT ) the distribution over (final) states induced by77

executing the policy of skill z, by p(z|sT ) the probability of z being the skill to induce state sT , and78

let p(sT ) =
∑
z∈Z ρ(z)pπ(z)(sT ). Then maximizing the MI between Z and ST can be written as79

max
|Z|, ρ, π

I(ST ;Z) = H(ST )−H(ST |Z) = −
∑
sT

p(sT ) log p(sT ) +
∑
z∈Z

ρ(z)EsT
[
log pπ(z)(sT )

]
= H(Z)−H(Z|ST ) = −

∑
z∈Z

ρ(z) log ρ(z) +
∑
z∈Z

ρ(z)EsT [log p(z|sT )] , (1)

where in the expectations sT ∼ pπ(z)(sT ). As discussed in Sect. 1, learning the optimal |Z|, ρ, and π80

is a challenging problem [see e.g., 11, 9, 8].81

3 Algorithm Structure82

UPSIDE is based on three main components: a) the skill learning corresponding to stage A and B of83

Fig. 1 and described in Sect. 3.1, b) a constrained optimization problem used to optimize the number84

of skills (stage C and Sect. 3.2) and c) a tree-building procedure (stage D and Sect. 3.3). Together,85

these components allow UPSIDE to discover skills that combine coverage and directedness.86

3.1 Skill Structure and Optimization87

As shown in e.g., [9, 30, 37], the level of stochasticity of each skill (e.g., induced via a regularization88

on the entropy over the actions) plays a key role in trading off coverage and directedness. In fact,89

while randomness promotes broader coverage, it may compromise the directedness of the skills.90

In fact, a highly stochastic skill tends to induce a distribution pπ(z)(sT ) over final states with high91

entropy (thus decreasing−H(ST |Z)), which prevents the skill to be reusable in solving sparse-reward92

downstream tasks where the objective is to reliably reach a specific goal state of the environment.93

Determining how much stochasticity to inject to adequately balance both objectives and optimize (1)94

is a difficult problem.195

We propose to design skills with a decoupled policy structure:96

• A directed part (of length T ) with low stochasticity and trained to
reach a specific region of the environment. It is responsible for
increasing the −H(S|Z) term in (1).

• A diffusing part (of length H) with high stochasticity to promote
local coverage of the states around the region reached by the directed
part. It is responsible for increasing theH(S) term in (1).

Figure 2: Directed and diffus-
ing parts of the skill.

97

Similar to prior work [e.g., 11, 9], the policy associated to the directed part of skill z is trained to max-98

imize an intrinsic reward rz(s) ≈ p(z|s),2 where p(z|s) measures the “discriminability” of the skill z99

given the state s. More formally, π(z) maximizes the cumulative reward Eπ(z)
[∑T+H

t=T+1 rz(st)
]

100

over the states traversed by the policy during the diffusing part. In practice, we also add a small101

entropy regularization H(π(·|z, st)) to the directed policy in order to ensure a minimum level of102

exploration and make the learning more robust. For the diffusing part, we rely on a simple random103

walk policy (i.e., a stochastic policy with uniform distribution over actions).104

1In RL, stochasticity is injected at “train time” to boost exploration or improve robustness, while the policy
executed at “test time” is deterministic. Here we refer to stochasticity introduced to better optimize (1).

2Although [11, 9] employ rewards in the log domain, we find that using a reward that is a non-linear
transformation into [0, 1] works better in practice, as also observed in [33, 5]. Furthermore, in practice we
replace p(z|s) by the predictions of a learned discriminator qφ(z|s) as explained in Sect. 3.4.
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Intuitively, the diffusing part defines a cluster of states that is used as a goal for the directed part.105

This allows us to “ground” the latent variable representations of the skills Z to specific regions of106

the environment (i.e., the clusters). As a result, maximizing the MI over such skills can be seen as107

learning a set of “cluster-conditioned”, and thus directed, policies.108

3.2 Skill Support and Sampling Rule109

The MI objective (1) crucially depends on the number of skills (|Z|) and the distribution ρ(z).110

Unfortunately, it is been shown [e.g., 8] that solving (1) is particularly challenging. In order to111

simplify the optimization and the associated learning problem, we modify (1) in two ways.112

First, coherently with the skill optimization detailed in Sect. 3.1, the random variable S in the113

conditional entropy is any state reached during the diffusing part of the skill and not just the terminal114

state. More formally, we denote by Sdiff the random variable and its distribution for a specific skill z115

is pπ(z)(sdiff) = 1/H
∑T+H
t=T+1 pπ(z)(st), i.e., the distribution over states obtained by averaging the116

distributions at any of the steps in the diffusing part. Similarly, p(z|sdiff) now denotes the probability117

of z being the skill to traverse sdiff during its diffusing part. As a result, training the skills to maximize118

MI naturally leads the diffusing parts to “push” the directed parts away so as to reach diverse regions119

of the environment. The combination of “global” coverage of the directed parts and “local” coverage120

of the diffusing part ensures that the whole environment is properly visited with |Z| � S skills.3121

Second, we introduce an alternative problem that simplifies the optimization while preserving the122

coverage and directedness properties of MI. This is achieved by introducing a stronger requirement123

on the discriminability. While the conditional entropy term −H(Z|S) in (1) promotes the discrim-124

inability of skills on average, we argue that a more suitable objective is to constrain each skill to125

achieve a minimum level of discriminability. First, we move from the average to the minimum over126

skills by lower bounding the conditional entropy as127

−H(Z|Sdiff) =
∑
z∈Z

ρ(z)Esdiff [log p(z|sdiff)] ≥ min
z∈Z

Esdiff [log p(z|sdiff)] , (2)

which leads to the following optimization (assuming π is fixed for convenience)128

max
|Z|=N,ρ

{
H(Z) + min

z∈[N ]
Esdiff [log p(z|sdiff)]

}
, (3)

where with an abuse of notation we use z ∈ [N ] to denote all skills in a set Z with cardinality N .129

Since (3) is a lower bound to MI, it tends to promote the same type of covering and directed skills.130

Furthermore, (2) no longer depends on the distribution over skills and the entropy term H(Z) is131

maximized by setting ρ to the uniform distribution over N skills (i.e., maxρH(Z) = log(N)), thus132

simplifying the optimization, which now only depends on N .133

While optimizing (3) promotes a cardinality N such that all skills have good discriminability, a more134

convenient formulation is to explicitly set a minimum level of discriminability for all skills through135

the following constrained optimization problem:136

max
N≥1

log(N) s.t. min
z∈[N ]

Esdiff [log p(z|sdiff)] ≥ log η. (4)

where η is a parameter that defines the discriminability threshold. A skill z is said to be η-consolidated137

if it satisfies the constraint. Crucially, let PN := minz∈[N ] Esdiff [log p(z|sdiff)], then the sequence138

(PN )N≥1 is non-increasing with P1 = 0 (i.e., the more skills the harder it is to meet the constraint).139

As a result, (4) can be optimized following a simple greedy strategy incrementally adding skills until140

the constraint is violated. The optimalN thus defines the effective number of η-consolidated skills and141

it corresponds to the largest number of skills that is guaranteed to display sufficient discriminability.142

Alternatively, we can interpret (4) as finding the largest number of clusters (i.e., the region reached143

by the directed part of a skill and covered by its associated diffusing part) with a minimum level of144

inter-cluster distance. This effect is qualitatively illustrated in Fig. 1, where the states attained by the145

directed part of the skills attain different regions that are locally covered by their diffusing parts.146

3Notice that (1) is maximized by setting |Z| = |S| (since maxY I(X,Y ) = I(X,X) = H(X)), i.e.,
where each skills is a goal-conditioned policy reaching a different state. This implies having as many policies as
states, which makes the learning particularly challenging as the complexity of the environment increases.
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Algorithm 1: UPSIDE
Initialize: Discriminability threshold η ∈ (0, 1), branching factor N0 ≥ 1, patience K
Initialize: Tree T initialized as a root node indexed by 0, queue of parent nodesW = {0}.
while W 6= ∅ do // tree expansion

1 Dequeue a node/skill w ∈ W and expand T at w by adding a set C(w) of N0 nodes/skills
2 Create random policies πz, ∀z ∈ C(w)
3 Initialize discriminator qφ with |T | classes
4 Continue = true; Saturated = false
5 while Continue do
6 for K iterations do
7 Sample a skill z from T at random
8 Extract the sequence of nodes z(1), . . . , z in T leading to z
9 Execute the composed (directed part) policy (πz(1) , . . . , πz) followed by the diffusing part

10 Add states observed during the diffusion part to state buffer Bz
11 Update discriminator qφ with SGD on Bz to predict label z
12 if z ∈ C(w) then // Update only new policies, other polices kept fixed
13 Update policy πz using SAC to optimize the discriminator reward as in Sect. 3.1.
14 Compute the skill-discriminability d(z) = q̂(B)

φ (z) = 1
|Bz |

∑
s∈Bz

qφ(z|s) for all z ∈ C(w)
15 if minz∈C(w) d(z) < η then // Node removal
16 Remove the node/skill z = argminz∈C(w) d(z) from C(w) and T
17 Set Saturate = true
18 else if not Saturated then
19 Add one new node/skill to C(w) and T
20 else
21 Set Continue = false

22 Enqueue inW the consolidated nodes C(w)

3.3 Composing Skills in a Tree Structure147

The MI optimization problem as well as our constrained variant (4) depend on the initial state s0148

and on the length of each skill. Although these quantities are usually predefined and only appear149

implicitly in the equations, they have a crucial impact on the obtained behavior. In fact, resetting after150

each skill execution unavoidably restricts the coverage to a radius of at most T +H steps around s0.151

This may suggest to set T and H to a large value. However, increasing the horizon makes the training152

of the skills more challenging, as learning π would require solving a difficult RL problem itself.153

Instead, we propose to “extend” the length of the skills through composition. Indeed, the decoupled154

skill structure and the constraint in (4) entail that the directed part of each of the η-consolidated skills155

reliably reach a specific (and distinct) region of the environment and it is thus re-usable and amenable156

to composition. We propose to chain the directed part of the skills in order to reach further and further157

parts of the state space. Specifically, we build a growing tree, where the root is the initial state s0, the158

edges represent the directed part of the skills, and the nodes represent the diffusing part of skills. As159

such, whenever a skill z is selected, the directed part of all the policies associated to its predecessor160

skills in the tree are executed first (see Fig. 1 for an illustration of the tree structure).161

As a result, the agent naturally builds a curriculum on the episode lengths, which grow as the sequence162

(iT +H)i≥1. As such, it does not require prior knowledge on an adequate horizon of the downstream163

goal-based task.4 Here this knowledge is replaced by T and H which are more environment-agnostic164

and task-agnostic quantities, as their choice rather has an impact on the size and shape of the learned165

tree (e.g., the smaller T and H the bigger the tree).166

3.4 The UPSIDE Algorithm167

We are now ready to introduce UPSIDE, which provides a specific implementation of the components168

described before (see Fig. 1 for a qualitative illustration and Algorithm 1 for the detailed pseudo-code).169

We perform standard approximations to make the constraint in (4) easier to estimate. We approximate170

the unknown posterior p(z|s) with a learned discriminator qφ(z|s) with parameters φ. We also171

4See e.g., the discussion in [26] on the “importance of properly choosing the training horizon in accordance
with the downstream-task horizon the policy will eventually face.”
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remove the logarithm from the constraint to have an estimation range of [0, 1] and thus lower172

variance2. Finally, we replace the expectation over s with an empirical estimate q̂(B)

φ (z) averaging the173

value of the discriminator evaluated on the last B states observed while executing the diffusing part174

of z. Integrating these approximations in (4) leads to175

max
N≥1,π

N s.t. min
z∈[N ]

q̂(B)

φ (z) ≥ η. (5)

As discussed in Sect. 3.2, this problem can be conveniently optimized using a greedy strategy. We176

then integrate the optimization of (5) into an adaptive tree expansion strategy: (Generating new177

skills) Given a tree structure as described in Sect. 3.3, we expand the tree at a leaf w by adding N0178

new nodes/skills following a breadth-first-search approach (lines 1, 2). Then (Skill Learning) the179

new skills are optimized by: i) sampling random skills in the tree to update the discriminator (lines180

7-11), and ii) by updating the policies to optimize the discriminability reward (Sect. 3.1) computed181

using the discriminator (lines 13). To speed-up convergence, we only update the policies that have be182

added to the tree structure, keeping all the previous policies fixed (line 12). Note that in the update of183

the discriminator we leverage the states observed in previous phases of the algorithm by maintaining184

a (small) replay buffer of states for each skill. (Node Consolidation) After a patience period (line 6),185

if all skills are η-consolidated, we tentatively add more skills to the leaf w (line 18). On the other186

hand, if any skill does not meet the discriminability threshold, we remove it and consolidate the187

remaining skills into the tree (lines 16, 17) and we repeat the process.188

Model selection. A core aspect of any RL algorithm is model selection, i.e., finding the best189

configuration of hyperparameters. In URL with no prior knowledge of the downstream task(s), it190

is non-trivial to devise an adequate criterion for model selection and this aspect is rarely addressed,191

despite being crucial in practice. For instance, while the coverage of the state space may be a192

good proxy for the performance of a URL algorithm [see e.g., 8], it may be difficult to measure in193

continuous problems. Interestingly, our optimization problem directly provides a single, task-agnostic194

and environment-agnostic criterion for model selection, which is the number N of η-consolidated195

skills discovered by the agent. Indeed in all of our experiments we simply select the model (i.e., set196

of hyperparameters) that maximizes N . This is a significant advantage w.r.t. existing methods, such197

as VIC and DIAYN, for which no principled approach to model selection is provided.198

4 Related work199

Unsupervised Reinforcement Learning methods can be broadly decomposed according to the way200

they summarize the experience accumulated during the unsupervised phase into reusable knowledge201

to solve downstream tasks. This includes both off-policy model-free [e.g., 27] and model-based202

[e.g., 29] methods that seek to populate a representative replay buffer and build accurate value or203

model estimates, that are used to solve a given downstream task in a zero- or few-shot manner.204

The accumulated experience during train time can also be compressed into a low-dimensional205

representation for value functions as well as policies and to improve exploration [e.g., 36]. An206

alternative line of work focuses on the discovery of a set of skills in an unsupervised manner. Our207

approach falls in this category, on which we now focus our related work review.208

Skill discovery based on MI maximization was first proposed in VIC [11], where only the final209

states of each trajectory are considered in the reverse form of (1) and where both the skills and210

their sampling rules are simultaneously learned (with a fixed support |Z|, i.e., a fixed number of211

skills). DIAYN [9] fixes the sampling rule to be uniform, and weighs the skills with an action-entropy212

coefficient (i.e., it additionally minimizes the MI between actions and skills given the state), so as213

to push the skills away from each other and enhance coverage. DADS [30] learns skills that are not214

only diverse but also predictable by learned dynamics models, by using a generative model over215

observations (rather than over skills) and optimizing a forward form of MI, namely I(s′; z|s) between216

the next state s′ and current skill z (with continuous latent) conditioned on the current state s. EDL [8]217

shows that existing skill discovery approaches can provide insufficient coverage, and instead proposes218

to rely on a fixed distribution over states p(s) which is either provided by an oracle or learned. In219

SMM [19], the MI formalism is used to learn a policy for which the state marginal distribution matches220

a given target state distribution (e.g., uniform), which can be seen as a more scalable way of tackling221

the problem of maximum entropy over the state space [15], and as a way to encourage skills to go222

through unknown state regions. Other MI-based skill discovery methods include [10, 14, 24, 5, 34],223

as well as [35, 20] which investigate skill discovery in non-episodic settings.224
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UPSIDE DIAYN SMM

Figure 3: UPSIDE, DIAYN-curriculum and SMM-10 skills learned in a bottleneck maze (Top) and a
U-maze (Bottom). For both DIAYN and SMM we report the stochastic execution of the learned skills and
for UPSIDE we report the deterministic directed parts (that are composed) followed by the (stochastic)
diffusing part, which is the same protocol used to evaluate coverage.

Our approach shares a similar motivation to prior MI-based works of targeting skills that are both225

directed and state-covering. In particular, the decoupled structure introduced in Sect. 3.1 can be seen226

as a more suitable way to achieve the objective of improving the coverage of VIC as done in DIAYN227

and SMM, without compromising the directedness of the skills.228

While most skill discovery approaches consider a fixed number of skills, a curriculum with increasing229

number of skills is studied in [1, 3]. Our discriminability constraint is what enables skills to be230

composed along a tree structure, which allows increases or decreases the support of available skills231

depending on the region of the state space.232

Recently, [37] proposed a hierarchical RL method that discovers abstract and task-agnostic skills233

while jointly learning a higher-level policy which is trained to maximize environment reward. Our234

approach builds on a similar promise of composing skills instead of resetting to s0 after each execution,235

yet we articulate the composition differently, by exploiting the direct-then-diffuse structure to ground236

learned skills to the state space instead of being abstract.237

In addition, approaches such as DISCERN [33] and Skew-Fit [27] learn a goal-conditioned policy in238

an unsupervised way with an MI objective. As explained in [8, Sect. 5], this can be interpreted as a239

skill discovery approach with latent Z = S, i.e., where each goal state can define a different skill.240

Conditioning on either goal states or abstract latent skills forms two extremes of the spectrum of241

unsupervised RL. We target an intermediate approach, seeking to benefit from the groundedness of242

the latent skill Z and the states S (and thus amenability to composition) of goal-conditioned RL, and243

from the reduced search space and sampling ease of skill-based RL.244

An alternative approach to skill discovery builds on “spectral” properties of the dynamics of the245

environment. This includes eigenoptions [21, 22] and covering options [17, 18], as well as the246

algorithm of [4] that builds a discrete graph representation which learns and composes spectral skills.247

5 Experiments248

In this section, we investigate the following questions: i) Can the adaptive tree structure of UPSIDE in-249

crementally cover an unknown environment while preserving directedness of the skills? ii) Following250

the unsupervised phase, how can UPSIDE be leveraged to solve goal-based downstream tasks?251

We report results on: a) Navigation problems in continuous mazes, where actions represent the desired252

shift in x and y coordinates; b) A difficult instance of CartPole, where the cart starts with zero speed253

and the pole is oriented downside; c) The Reacher [32] problem using the MuJoCo implementation254

in Gym [7]. In all environments, the per-dimension action space is in [−1;+1].255
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Figure 4: Normalized coverage in U-maze and bottleneck.

We compare to different baselines. DIAYN-K, where K is a fixed number of skills, is the original256

algorithm proposed in [9]. DIAYN-Curriculum is a variant where the number of skills is automatically257

tuned following the same procedure as in UPSIDE ensuring a good discriminability. We also compare258

to SMM [19], which is similar to DIAYN, but it includes an exploration bonus encouraging the policies259

to visit rarely encountered states. In our implementation, the exploration bonus is obtained by260

maintaining a multinomial distribution over “buckets of states” obtained by discretization, resulting261

in an computation-efficient and stable implementation that is more stable than the original VAE-based262

method. UPSIDE and all baselines are implemented with Soft-Actor Critic (SAC) [13].263

Unsupervised Phase. We run all methods until convergence. We then do model selection according264

to the criterion of either the final number of skills for UPSIDE and DIAYN-curriculum and the final265

average discriminability for DIAYN-K and SMM. To compute the coverage, we perform rollouts by266

first sampling a skill uniformly at random and executing its associated policy until termination. We267

discretize states into buckets (50 interval per dimension for mazes and 10 for control environments)268

and report the proportion of buckets reached by each method as a function of the total number of269

steps executed in the environment over multiple rollouts. Since only a small portion of the discretized270

states can be reached, we normalize the coverage such that the best method obtains 1.271

We consider two topologies of mazes with size (height and width) 50 such that exploration is non-272

trivial (i.e., a random policy is only able to cover a small part of the state space): a U-shaped maze273

and a Bottleneck maze (which is a harder version of the one in [8, Fig. 1] which is only of size 10274

for the same action space). In Fig. 3 we show that UPSIDE succeeds in covering the near-entirety275

of the state space by creating a tree of directed skills. Moreover, UPSIDE created directed skills276

with a low entropy, while the two baselines tend to create skills that are more stochastic. This is277

particularly evident for SMM, due to the state-entropy exploration bonus, that while it encourages278

broader coverage makes skills less directed.279

In Fig. 4 we report the coverage on the Bottleneck maze and U-Maze. For UPSIDE, executing a280

skill corresponds to executing the directed part of all the “parent” skills in the tree and concluding281

with the diffusion part of the skill. SMM achieves better coverage than DIAYN thanks to the increased282

level of stochasticity (diffusion) of its skills. UPSIDE outperforms both by reaching regions of the283

environment that are not be achieved by other methods. Here, we plot UPSIDE with T = 10 and284

H = 10, but we found UPSIDE to be robust to these parameters as shown in the supplementary.285

Results are similar in the CartPole problem (see Fig. 5) where UPSIDE (with T = 20 and H = 20)286

obtains better coverage than baselines. On the other hand, in Reacher (see Fig. 5), DIAYN-50287

outperforms UPSIDE in terms of coverage. This can be explained by the fact that, in this environment,288

highly stochastic skills provide a good coverage. Nonetheless, this comes at the cost of very low289

discriminability (rightmost plot), which suggests DIAYN-50 skills have poor directedness. On the290

other hand, UPSIDE (and DIAYN-curriculum) achieves much larger discriminability by removing291

redundant skills and favoring more directed policies.292

Downstream Tasks. Following the unsupervised phase, UPSIDE has learned a tree of skills. We293

now investigate how these skills are used to tackle a downstream task. In that setting, we propose to294

use skill-based approaches (i.e UPSIDE, DIAYN and SMM) in the following way: a) (exploration) first295

we sample rollouts over the different skills. b) We then select the best skill based on the maximum296

cumulative reward collected and c) we fine-tune this skill to maximize the reward. We report results297

on mazes (additional results are provided in the supplementary). We consider a sparse positive reward298
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Figure 5: Normalized coverage in Cartpole (Left) and Reacher (Middle). (Right) Average discrim-
inability of the skills during training in Reacher.

when reaching a particular defined goal.5 We consider goals at different distances from the initial299

state s0, the further, the harder. Fig. 6 shows the learning curves obtained when fine-tuning the best300

skill for the different models and compare to a classical SAC algorithm where a single policy is301

learned from scratch. DIAYN/SMM means we use the best state-covering policies between DIAYN and302

SMM. For the “close” goal setting, both UPSIDE and DIAYN/SMM are able to learn to reach this goal303

efficiently while SAC solves the task only for some of the training runs. Note that we do not show304

DIAYN performance since it is lower than the SMM one. For the “far” goal setting, only UPSIDE learns305

to reach this goal. Obtained trajectories are illustrated in Fig. 6.306
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“medium” distance goals. (Right): Learned policies after
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UPSIDE
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SAC

6 Conclusion307

We introduced UPSIDE, a novel algorithm for unsupervised skill discovery designed to trade off308

between coverage and directedness and develop a tree of skills that can be used to both perform309

efficient exploration of the environment and learn effective goal-directed policies. Natural venues for310

future investigation are: 1) The diffusing part of each skill could be explicitly trained to maximize311

local coverage; 2) UPSIDE assumes a good representation of the state is provided as input, it would312

be interesting to pair UPSIDE with effective representation learning techniques to tackle problems313

with high-dimensional input (e.g., image-based RL); 3) While UPSIDE is grounded on the solid314

principle of MI maximization, a more thorough theoretical investigation is needed to explicitly link315

the optimization problem and its approximations to the downstream performance.316

5Notice that if the goal was known, the learned discriminator could be directly used to identify the most
promising skill to fine-tune.
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