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ABSTRACT

Federated Learning (FL) is a new machine learning paradigm that enables training
models collaboratively across clients without sharing private data. In FL, data
is non-uniformly distributed among clients (i.e., data heterogeneity) and cannot
be balanced nor monitored like in conventional ML. Such data heterogeneity
and privacy requirements bring unique challenges for learning hyperparameter
optimization as the training dynamics change across clients even within the same
training round and they are difficult to measure due to privacy constraints. State-
of-the-art frameworks in FL focus on developing better aggregation algorithms
and policies with the aim of mitigating these challenges. However, almost all
existing FL systems adopt a “global” tuning method that uses a single set of
learning hyperparameters across all the clients, regardless of their underlying data
distributions. Our study shows that such a widely adopted global tuning method is
not suitable for FL due to its data heterogeneity-oblivious nature. We demonstrate
that the data quantity and distribution of the clients have a significant impact on the
choice of hyperparameters, making it necessary to have customized tuning for each
client. Based on these observations, we propose a first of its kind privacy preserving
and heterogeneity-aware hyperparameter optimization methodology, FedTune, that
adopts a proxy data based hyperparameter customization approach to address the
privacy and tuning cost challenges. Together with a Bayesian strengthened tuner,
the proposed customized tuning approach is effective, lightweight, and privacy
preserving. Extensive evaluation demonstrates that FedTune can achieve up to
7/4/4/6% better accuracy than the widely adopted globally tuned method for popular
FL benchmarks FEMNIST, Cifar100, Cifar10, and Fashion-MNIST respectively.

1 INTRODUCTION

In conventional distributed learning, data needs to be centrally collected and managed, which is
infeasible for scenarios where privacy and security are required. For example, new legislation such
as the General Data Protection Regulation (GDPR) (Goddard (2017)) and the Health Insurance
Portability and Accountability Act (HIPAA) (O’herrin et al. (2004)) prohibit transferring user private
data to a centralized location. Federated Learning (FL) is a new machine learning paradigm that
supports collaborative learning with data privacy preserving across data owners (a.k.a, clients)
(Konečnỳ et al. (2016); Smith et al. (2017b)). In FL, training is performed at each client and only
the trained model weights instead of data are sent from the clients to a centralized server (a.k.a
aggregator) for aggregation.

Despite of the support on privacy and security, such data decentralized training paradigm results
in data heterogeneity (Li et al. (2020); Nishio & Yonetani (2019)) as clients usually have different
amount of data (data quantity heterogeneity) and different distribution of data (data distribution
heterogeneity). Worse, due to the privacy requirement, data cannot be balanced nor monitored. Data
heterogeneity is an open problem that is known to cause severe issues on learning performance (Li
et al. (2020)). Recent works try to alleviate the data heterogeneity impact by innovating on the
aggregation algorithm and client selection policy (Li et al. (2018); Bonawitz et al. (2019); Wang et al.
(2020)). While these approaches can reduce the impact of data heterogeneity, data heterogeneity
remains a big challenge, e.g., compared to conventional learning on the same benchmark, FL can
suffer up to 15% accuracy loss (Chai et al. (2020); Yang et al. (2021); McMahan et al. (2021)).
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One important aspect of FL that is largely overlooked by existing works and sometimes considered as
mystery is the hyperparameter optimization. Existing FL systems simply apply the same approach of
conventional distributed learning for hyperparameter optimization, i.e., tuning one set of hyperparam-
eters via trial and error and applying them to all clients indistinguishably. Our study shows that such
data heterogeneity-oblivious approach may lead to severe performance drops. This is because data
heterogeneity can cause quite different learning dynamics across clients and such one-size-fits-all
solution often strikes a poor balance. As an example, if we have two clients, Client A with 64k data
samples and Client B with 64 data samples, and a global mini-batch size of 64, it would result in too
many model parameter updates (i.e., 1000) for Client A while too few updates (i.e., 1) for Client B.
Such imbalanced learning process among clients would ultimately result in poor model performance.

To demystify this complex interdependency between data heterogeneity and hyperparameters, we
conduct an in-depth study to understand the uniqueness and challenges of hyperparameter opti-
mizations in FL. From the extensive experimental results, we observe the following opportunities
and challenges: 1) Heterogeneity-aware hyperparameter optimization, i.e., adaptively customized
hyperparameters for each client, based on data heterogeneity, can significantly improve the overall
model performance compared to existing heterogeneity-oblivious approaches. 2) Hyperparameter
customization improves accuracy but imposes nontrivial hyperparameter optimization overhead.
Since FL often involves a huge number of clients, customizing hyperparameters for each individual
one would lead to tremendous cost. 3) Hyperparameter customization incurs additional technical
challenges, as data and training dynamics cannot be shared nor monitored due to privacy constraints.

Based on the above key findings, we propose FedTune, a first of its kind privacy preserving and
heterogeneity-aware hyperparameter optimization methodology. To solve the privacy preserving
challenge and reduce the tuning overhead on the client side, FedTune introduces a novel sampled
proxy-based hyperparameter customization method by tuning the hyperparameters on this dataset on
the aggregator side and only sending the populated Hyperparameter Reference Table to clients to
make hyperparameter choice decisions. This sampled proxy dataset requires no information about
client data and thus preserves client privacy. In addition, it incurs no additional overhead on the
client side. To further reduce the tuning overheads on the aggregator side, FedTune employs a tuning
approach strengthened by Bayesian Optimization, which significantly accelerates the hyperparameter
customization speed.

We prototype FedTune on a real distributed FL testbed and evaluate its effectiveness and robustness
using popular and sophisticated FL benchmarks. Extensive evaluation demonstrates the superior
performance advantage of FedTune over the widely used heterogeneity-oblivious method, with
reduced tuning overheads compared to Random Search and Grid Search. For FEMNIST of LEAF
(Caldas et al. (2018)), the most sophisticated available FL benchmark, we achieve an accuracy
improvement of up to 7%.

2 BACKGROUND AND RELATED WORK

2.1 DATA HETEROGENEITY IN FEDERATED LEARNING

FL often involves a large number of clients such as mobile or IoT devices with limited computing
capacity and unreliable communication. In each training round, only a small portion of clients is
selected to participate. Each participated client trains the latest model weights locally and only
sends the trained weights/gradients in a secured manner (Shokri & Shmatikov (2015); Bonawitz et al.
(2017)) to the central aggregator to produce the new aggregated weights. During the entire training
process, client’s data is not shared with other clients nor the aggregator, thus preserving the privacy.

Data heterogeneity is an important feature of FL as clients usually have different amounts and
distribution of data (Ghosh et al. (2019); Li et al. (2019)). Although data heterogeneity may also
exist in conventional machine learning, the extent of data heterogeneity is much more pronounced in
FL (Yang et al. (2021); Li et al. (2019)). In addition, unlike conventional machine learning, data in
FL cannot be balanced nor monitored due to the privacy requirements. As data heterogeneity has
severe impacts on learning performance, there are several lines of works that try to mitigate the data
heterogeneity impact.

The first line of works focus on designing a client selection policy for choosing devices with similar
data distribution. FAVOR (Wang et al. (2020)) is designed to reduce the bias and heterogeneity in the
system by carefully choosing a subset of clients using Reinforcement Learning. Qian et al. (2020)
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proposes a new method that mathematically and empirically sample clients to adjust the heterogeneity
level from clients’ update. TiFL (Chai et al. (2020)) employs a tiered strategy to lower the data
heterogeneity in each training round. Although these works mitigate the data heterogeneity impact,
they have two major limitations. First, these methods require to know the client data distributions,
which can violate strict privacy constraints. In addition, they may lead to biased sampling of clients
for training that may cause “fairness” issues Mohri et al. (2019).

Another line of works propose strategies to identify which parts of the model are mostly affected by
data heterogeneity, and then apply regularization methods (such as weight regularization) to mitigate
the heterogeneity data impact. One notable example is using meta-learning to find an initial shared
model that can be adapted to the heterogeneous data of clients (Fallah et al. (2020)). However, their
focus is mostly on ensuring a high test performance on the client’s individual datasets (i.e. better
personalized local models) instead of finding a generalizable model which performs well on an
unbiased dataset. Similarly, FedEX (Khodak et al. (2020)) proposes the use of neural architecture
search (NAS) and weight-sharing techniques to make the local models more personalized. Another
method is SCAFFOLD (Karimireddy et al. (2020)), where noise is applied to the local weights before
being sent over to the aggregator. However, these solutions only work under a certain bound of data
heterogeneity.

The most relevant line of works innovate on the aggregation algorithms to mitigate the data hetero-
geneity impact in FL. In Reddi et al. (2020), three algorithms are proposed based on FedAvg, namely
FedAdaGrad, FedYogi, and FedAdam. FedDF (Lin et al. (2020)) allows flexible aggregation over
heterogeneous client models by using ensemble distillation (Hinton et al. (2015)0. Pillutla et al.
(2019) uses median and variance instead of averaging in the aggregation algorithm to mitigate the
impact of highly diverse weights between clients. Yao et al. (2019) trains the global model after
aggregation on a small balanced dataset on the server-side to alleviate the biased local training. Zheng
et al. (2021); Wu et al. (2020b) use hierarchical aggregation servers which averages clients with
similar data distributions to achieve a more stable training process. While these works demonstrate
that it is possible to mitigate the data heterogeneity problem from the server side, our hyperparameter
optimization methodology is complimentary to them. We demonstrate in our evaluation that together
with our methodology, the performance can be further improved.

2.2 HYPERPARAMETER OPTIMIZATION

The performance of machine learning models are sensitive to hyperparameters. Hyperparameter
optimization (HPO) aims at tuning the hyperparameters to improve convergence speed and quality.
However, due to the wide range of hyperparameter choices and their corresponding dynamic schedules,
tuning these hyperparameters is a time and resource consuming task. To improve the efficiency of
hyperparameter optimization, various works have been proposed, including multi-armed bandits,
evolutionary algorithms, and Bayesian Optimization (BO). Hyperband (Li et al. (2017)) treats the
problem of hyperparameter tuning as a many-armed bandit, and discards the worst configurations
during different tuning stages. (Young et al. (2015)) introduces the framework MENNDL for
optimizing hyperparameters using genetic algorithms. A new BO method was introduced in Wu
et al. (2020a) by creating its acquisition function to leverage multi-fidelity feature. However, all
the existing HPO works are designed specifically for conventional machine learning. To the best
of our knowledge, there is no customized hyperparameter optimization work addressing the data
heterogeneity and privacy issues, which are the key properties of FL.

3 FEDERATED LEARNING HYPERPARAMETER OPTIMIZATION DEMYSTIFIED

In this section, we perform an empirical study on hyperparameter optimization of Federated Learning
to understand its uniqueness, opportunities, and challenges.

3.1 WHY HYPERPARAMETER OPTIMIZATION IN FEDERATED LEARNING IS SO UNIQUE?

A Different Training Procedure Conventional machine learning trains a model by iterating over the
entire training data in epochs. In each training round, all training nodes perform forward-passes on
mini-batches and send their weights/gradients to the server to perform optimization such as Stochastic
Gradient Descent (SGD). However, in FL only a small fraction of clients participate in the training
each round. The participating clients complete the full training locally and send the final model
weights to the server. The server only performs an aggregation (McMahan et al. (2017)) and the
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actual weight optimization is at the individual client level. Such a unique training procedure of FL
indicates the conventional “global” hyperparameter tuning may not be suitable for FL as there is no
“global” optimization.

Every Client Is Unique. In FL, each client is unique as it has its own private data with different data
distribution and data quantity. The unique training procedure further amplifies the data heterogeneity
impact on the learning performance. In addition, the private data of clients cannot be balanced
nor monitored, making the data heterogeneity an intrinsic property of FL. To quantify the data
heterogeneity, we look into the data distribution and data quantity respectively.

Data distribution heterogeneity means the data of different client may have different features, which
is often due to the unique behaviors of clients in generating or storing data. Take image classification
of cats and dogs as an example, cat-owners usually have more cat images than dog images on their
phones. Such data distribution heterogeneity may cause performance issues, e.g., a model trained
on cat owners may have better performance on cat images than dog images, and vice versa (Li
et al. (2019; 2018); Chai et al. (2020); Konečnỳ et al. (2016)). There are different metrics that can
be used to quantify data distribution heterogeneity. For our experiments, we use the commonly
used Heterogeneity Index (HI) (Zawad et al. (2021); Li et al. (2019)) for our setups (more details in
Section 5.1). Other distribution metrics such as Gaussian and Poisson are also used with similar results
and presented in the Appendix. Heterogeneity index, denoted as HI(c), is defined as a normalized
measurement of data distribution heterogeneity: HI(c) = 1− 1

cmax−1×(c−1), c ∈ [1, cmax], where
c controls the heterogeneity by adjusting the number of classes per client out of the total number of
classes cmax in the full dataset. HI(c) ranges from 0 to 1, where 0 represents a completely balanced
synthetic dataset and 1 means there are only data points with 1 class on the device, which is the
highest level of imbalanced data distribution possible.

Data quantity heterogeneity means that the amount of data may vary from client to client. This
is also due to user behaviors. For example, clients who text a lot have more data points to train
for a word-prediction model than clients who text very little. Such heterogeneity may also impact
performance during the training process.

Privacy Requirements. In FL, the data of a client cannot be shared with other clients nor the server.
Even the properties of client data are strictly private and cannot be revealed. This makes the already
impactful data heterogeneity even more challenging as the data heterogeneity of a client cannot be
measured or inferred. Without knowing the data heterogeneity information, conventional wisdom for
mitigating data heterogeneity impact is difficult to be adopted in FL (Li et al. (2020)).

3.2 UNDERSTANDING HYPERPARAMETER OPTIMIZATION IN FEDERATED LEARNING

In this section, we conduct an empirical study to understand the opportunities and challenges of
hyperparameter optimization in FL. For detailed experimental setup, please refer to Section 5.1.

3.2.1 HETEROGENEITY-OBLIVIOUS VS HETEROGENEITY-AWARE HYPERPARAMETER OPT.

To understand whether data heterogeneity-aware makes a big difference in FL hyperparameter opti-
mization, we compare the performance of the following two different approaches.
Heterogeneity-oblivious (H-oblivious): Like all existing FL works, we hand tune a global set of
hyperparameters and use it across all clients.
Heterogeneity-aware (H-aware): We hand tune the hyperparameters for each client to have cus-
tomized hyperparameters per client to be aware of the data heterogeneity.

In the experiment, we use FEMNIST (Caldas et al. (2018)), a popular image classification benchmark
with data heterogeneity (see Sec. 5.1 for setup details). We hand tune the local hyperparameters
learning rate, batch size, and local epochs (defined as the number of training epochs at each client)
for each client. We follow literature (Caldas et al. (2018)) to set the search range of hyperparameters
and apply grid search to identify the best hyperparameters for individual clients. The distribution of
the learning rate hyperparameters are given in Figure 1b (batch sizes are given in Appendix Table 2).

The comparison of test accuracy curves across training rounds is shown in Figure 1a. We can see
Heterogeneity-aware outperforms Heterogeneity-oblivious in accuracy most of the time during the
training process and yields a 7.4% better accuracy after both training configurations plateau. This is
because the one-size-fits-all approach of Heterogeneity-oblivious is inevitably unfavorable for some
clients no matter how judiciously the tuning is due to the data heterogeneity across clients. On the
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other hand, the customization approach of Heterogeneity-aware can tailor the hyperparameters for
each client to maximize the performance benefits. Figure 1b demonstrates the hand-tuned learning
rate distribution across clients. The distribution demonstrates that while a majority of the learning
rates are within the 0.001− 0.1 range, there are lots of clients requiring a much more diverse range
of values, making it costly to tune them individually by hand. These observations lead to the finding –
Data heterogeneity-aware hyperparameter optimization approaches have the potential to improve the
learning performance compared to data heterogeneity-oblivious approaches.

(a) (b) (c)
Figure 1: (a) Test accuracy vs. training rounds comparison. (b) The tuned learning rates and the
corresponding number of clients that use them. Derived after hand-tuning all clients. (c) Scalability
of the number of training iterations that must be run to tune hyperparameters with varying number of
clients in the system.

3.2.2 CHALLENGES OF HETEROGENEITY-AWARE HYPERPARAMETER OPTIMIZATION

Despite of the potential benefits of data heterogeneity-aware hyperparameter optimization for FL,
there are two major challenges for applying this method in practice.

Expensive tuning cost – Heterogeneity-oblivious methods only tune one set of hyperparameters
across all clients thus having low tuning costs. However, data heterogeneity-aware methods need to
perform customized tuning on each client and the cost accumulates over clients. This is especially
significant in FL due to the large number of clients. In addition, clients in FL are usually IoT or
mobile devices with limited computing capacity. Performing computing intensive hyperparameter
tuning tasks on these devices is slow and may degrade the user experience. In our experiments,
we perform 20 iterations of training per client to get an estimate of how well a particular set of
hyperparameters can perform when hand-tuning them individually. As we increase the number
of clients in the system, the number of tuning iterations increases linearly. For global tuning (i.e.
Heterogeneity-oblivious), we follow Chai et al. (2020); Qian et al. (2020) to train the full FL system
with the currently being explored hyperparameter set for 100 rounds with 10% of total number of
clients selected per round, meaning that the total number of tuning iterations when exploring is 10%
of the total clients times 100. Figure 1c shows the comparison of tuning cost measured in the number
of tuning iterations between Heterogeneity-oblivious and Heterogeneity-aware methods at different
scale, i.e., with different total number of clients. Note that the number of tuning iterations refers to
the “total” tuning iterations across all clients, so it equals to the number of clients times the number of
total rounds the client has participated in. We can see that both approaches have increased tuning
cost when the scale of FL increases. However, Heterogeneity-oblivious always has much smaller cost
compared with Heterogeneity-aware, this gap is especially large when the scale is large. This indicate
even though Heterogeneity-aware approach has better performance benefits, it does not scale well
due to the quickly increasing tuning cost. As such, we must opt for a tuning system that preferably
offloads the tuning on the server side.

Offloading tuning tasks to server is challenging – Given the expensive tuning cost and poor
scalability of Heterogeneity-aware approach, one natural question is can we minimize the tuning
cost? For example, one of the reasons why the tuning cost is significant is due to the limited
computation capacity of clients. If we can offload the tuning to the server, which is usually hosted in
the cloud or data centers with plenty of computing resources, the tuning cost concern would be much
smaller. Unfortunately, due to the privacy requirements in FL, neither the data nor the properties of
data (e.g., data heterogeneity information) of a client can be shared with the server. Without knowing
the data or its property, offloading the tuning task to the server becomes quite challenging.

Utilizing the patterns of hyperparameters is challenging – Another natural thought is whether
hyperparameters have patterns and can be estimated instead of tuned? To test this out, we run a
simple experiment where we use 6 different datasets with data quantity of 400 and 800 combined
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with HI of 0.15, 0.5, and 0.75 respectively. We set the batch size of 5 and 10 for 400 samples dataset,
and 20 and 30 for 800 samples dataset respectively. We hand tune the learning rate to achieve the
best performance. The optimal learning rate is shown in Appendix Table 2. We can see the optimal
learning rates have a clear pattern – with the increasing of heterogeneity level while other factors are
the same, the learning rate increases. Also, with more training iterations (the ratio of data set size
and batch size), the learning rate also increases. This observation is corroborated by the paper (Smith
et al. (2017a)), where they derive the relationship between the noise scale, i.e., the magnitude of the
random fluctuations in the training dynamics, and the learning hyperparameters. Specifically, they
suggest that the learning rate should increase with increased noise scale. In the federated learning
case, the higher the heterogeneity, the noisier the training process (Zhao et al. (2018); Li et al. (2019))
which is why we observe that an increase in data heterogeneity requires higher learning rates.

(a) (b) (c)
Figure 2: (a) Hand-tuned vs. estimated learning rate (LR) under different heterogeneity index.
Estimation is done via regression fitting. (b) Final test accuracy comparison between hand-tuned vs.
estimated LR under different heterogeneity index. (c) Comparison of test accuracy across training
rounds for generalized vs. overfit tuning.

Such pattern seems to be helpful in reducing the tuning overhead as we can estimate the learning rate
based on the pattern via a fitting method. Figure 2a shows the pattern of the optimal learning rates for
the system’s corresponding HI (Hand-tuned LR). We fit a quadratic regression model (Estimated LR)
and interpolate the LR values for other HI. Figure 2b shows the difference of the accuracies derived
with the interpolated learning rates against their optimal hand-tuned values. For example, here if we
estimate the learning rate at HI 0.36 via interpolation, the estimated learning rate is 0.029, very close
to the actual optimized learning rate 0.034. However, we observe from Figure 2b that the accuracy
when using the estimated learning rate is around 15% lower than the accuracy of tuned learning rate.
This study suggests it is challenging to utilize the patterns of hyperparameters for estimating optimal
hyperparameter values to reduce the tuning cost since the learning rates are very sensitive. However,
this pattern is sufficient such that it can be used by the acquisition functions in BO as a guide during
the exploration phase e.g., by avoiding exploring known bad hyperparameters.

Forgetting factor requires a new privacy preserving evaluation method of tuning – Due to the
privacy requirements, the evaluation of hyperparameter tuning also becomes a challenging problem.
In conventional machine learning, the hyperparameter tuning is evaluated using the global model
at the server side. However, in federated learning, client data is strictly private and cannot be used
for evaluating the tuned hyperparameters. In addition, due to the data heterogeneity across client
data, using client data may lead to overfitting of certain features. To preserve privacy and avoid the
overfitting problem due to data heterogeneity, we use an independent and identically distributed (IID)
dataset, i.e. synthetic dataset, that contains no client information for evaluating the hyperparameter
tuning.

Here, we obtain this dataset by sampling from the portion of FEMNIST dataset that is not used
for training. For discussions of how to get such data in practice, see Section 4.1. To verify its
effectiveness, we compare the test accuracy across training rounds using client data (named Overfit)
vs. synthetic dataset (named Generalized) for evaluation in Figure 2c. From the results, we can see
at the beginning, using client data achieves better test accuracy due to the overfitting, but using the
synthetic dataset eventually achieves better test accuracy. This is because of the forgetting factor
in FL – overfitting enforces the models to favor trained features temporally, but when models are
trained with new features overtime, the earlier trained features are easier to be forgotten, a unique
phenomenon in FL (Sun et al. (2019)).

4 FedTune: HETEROGENEITY-AWARE HYPERPARAMETER OPTIMIZATION

With the understanding and insights grained from the above study, we propose a first of its kind privacy
preserving and heterogeneity-aware hyperparameter optimization methodology, named FedTune.
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4.1 PROXY DATASET-BASED HYPERPARAMETER CUSTOMIZATION

Considering the privacy restrictions and client side cost, offloading tuning tasks to the clients is
infeasible. Therefore, we propose a proxy-based hyperparameter customization method that allows
the tuning tasks to be executed on the server without any client information nor accumulated client
information. The key rationale for our approach is similar to the spirit of transfer learning. That is
given the data heterogeneity is the main property for distinguishing clients in terms of optimized
hyperparameters, as long as we can create a set of proxy datasets with different heterogeneity
characteristics, we can tune hyperparameters on the set of proxy datasets and then “transfer” such
learned knowledge of hyperparameters on data heterogeneity to the actual clients. Specifically, we
perform controllable biased sampling on a synthetic dataset (such as Cifar10 and FashionMNIST) to
generate proxy datasets with different data heterogeneity characteristics. Each proxy dataset has two
key characterization measures: data quantity and data distribution heterogeneity (HI), as explained in
the previous section.

Note that the synthetic dataset used for sampling does not capture any information of clients and
can be even IID data. This synthetic dataset only needs to reflect some general information such
as the number of classes, key features, etc. of the application, which is usually needed anyway
when building the model. In practice, such dataset can be provided by the model developers, or
from user-shared/publicly available data (Guha et al. (2019); Yang et al. (2018)). For example, the
initial training dataset used by the model developers when designing the architecture of the model
(McMahan et al. (2021); Zhang et al. (2020). In fact, the current practice global based approach
also needs a similar dataset for tuning the global hyperparameters Bonawitz et al. (2019); Yang et al.
(2018); Guha et al. (2019). Thus we do not impose any additional assumptions on such dataset and
no client information is needed for this dataset.

Figure 3: FedTune system design. Shows the major steps involved in the tuning process.

4.2 BAYESIAN STRENGTHENED TUNER AND HYPERPARAMETER REFERENCE TABLE

To get the optimal hyperparameter sets for specific types of data heterogeneity (i.e. a certain
combination data quantity and HI), we need to search our total hyperparameter space efficiently. We
do this via Bayesian Optimization. For a certain number of data quantity and HI combinations, we
trial and then record their discovered hyperparameters in a Hyperparamter Reference Table (HRT).
The HRT is only sent one way from server to clients. On the client-side, we have a profiler that
measures the local dataset’s HI and data quantity, and these measures are only kept at this client and
never shared with server nor other clients. Therefore, our solution completely respects the privacy
requirements of FL and impose almost no additional overhead on the clients. Each client looks up
the table to choose the best matching entry according to its profiler measures. The client then uses
those hyperparameters for local training and the FL training proceeds as usual. A description of all
the steps and a complete system overview is given in Figure 3.

Bayesian Optimization (BO) is chosen as our tuning method because it has been proven to be
valuable in hyperparameter optimizations (Snoek et al. (2015); Wu et al. (2020a)). Here we leverage
BO for tuning the hyperparameters in the tailored search space. BO judiciously selects the next points
to explore based on the predefined acquisition function values obtained from previous exploration
steps. We use EI (Expected Improvement) (Vazquez & Bect (2010)) as our acquisition function as it
does not require hyperparameter tuning and it is easy for setting intuitive stop conditions. EI aims
at maximizing the expected improvement from the new explorations over the current best results
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and is defined as: EI(Hp) = (yo − µ(Hp))Φ(γ(Hp)) + σ(Hp)φ(γ(Hp)), where µ(·) and σ(·)
are predictive mean function and predictive standard deviation function, respectively; yo is the best
current value at argmin(Hp)y(Hp); γ(Hp) = yo−µ(Hp)

Hp ; Φ(·) and φ(·) are predictive cumulative
distribution function of standard normal and probability density function of standard normal.

Hyperparameter Reference Table is a two-dimensional array where the rows are the data dis-
tribution heterogeneity (i.e., HI) and the columns are the data quantity. Each cell contains the
hyperparameter sets for datasets with the corresponding combination of HI and data quantities.
The table is typically a few KBs and sent with the global model, thus the networking overhead is
negligible.

Search Space is the same for each cell. Here we set the learning rate range between 0.002, 0.8 with
0.002 increments, leading to 400 total learning rates. Batch sizes are 4, 8, 16 and local epochs are
5, 10, 15, so the total number of possible combinations of hyperparameters are 3,600 per cell.

Objective Function is a small FL simulator we run for 20 rounds with 5 clients. The dataset
heterogeneity properties of these clients are set to those of the cell which the optimizer is running on.
The FL simulator returns the final accuracy as the function output, and the BO maximizes this output.

The Tuning Process. The BO-based tuner then traverses through each of the possible combinations
of HI and data quantity, searching the full hyperparameter space to find the set that gives the highest
accuracy. The search for each cell stops when there was no increase in the FL simulator’s accuracy in
the last 5 rounds. This traversal continues until we find a hyperparameter set for each cell. Therefore,
the total search space is 3,600 times the number of cells. The decision to choose the number of cells
is important since it is one of the most important factors determining the total search space and thus
the efficiency of the tuner. We conduct a sensitivity analysis in Appendix Figure 8.

5 EVALUATION

5.1 EXPERIMENT SETUP

Federated Learning Setup. We use four popular FL datasets for evaluation: FEMNIST (Caldas
et al. (2018)), Cifar10/Cifar100 (Krizhevsky et al. (2009)), and Fashion-MNIST (Xiao et al. (2017))
(F-MNIST). Details of the model, training, and client setup are given in Appendix Table 3. The test
results presented in this paper are derived from inferring the global model on their respective test
datasets. Further details of the synthetic datasets and how their proxy dataset are sampled are given
in the Appendix (G.2).

Control and Quantify Heterogeneity. Due to the lack of production level user datasets, almost
all literature in FL (McMahan et al. (2021); Zawad et al. (2021); Sattler et al. (2019); Zhao et al.
(2018); Briggs et al. (2020)) use controlled data distribution heterogeneity. We follow these works
for our evaluation as well. The total dataset is split into smaller separate datasets which contains
a specific data distribution and quantity heterogeneity (such as HI of 0.8 and 800 datapoints) and
then assigned to a client (details are provided in Appendix G.2). This is similar to the distribution
strategies used in Zawad et al. (2021); Chai et al. (2020); Li et al. (2019). Such controlled setups are
usually for the purpose of a systematic characterization and clear analysis. It is worth noting that our
approach does not assume any specific patterns in data distribution heterogeneity and thus can be
applied to any dataset. We also conduct experiments using the Gaussian and Poisson distributions as
used by other papers (Sattler et al. (2019); Briggs et al. (2020)), as well as the default distribution
used in LEAF Caldas et al. (2018) to demonstrate that our approach is general and does not depend
on specific heterogeneity distribution. The evaluation results of different distributions are present in
the Appendix Figures 6 and 7.

Hyperparameter Optimization Methods. We compare our BO-based solution to Random Search
and Grid Search baselines since there are no dedicated hyperparameter tuning frameworks for FL.
For Random Search, we perform uniform random sampling from the full search space without
replacement and keep the hyperparameter set that gives us the highest accuracy per cell. In Grid
Search, we traverse the full space in order and only keep the best hyperparameter set. The total search
space is 86,400 possible combinations of hyperparameters, as explained in the previous sections.

Testbed. We build a FL testbed using Tensorflow for the datasets by deploying each client on a
cluster with its own exclusive Intel Xeon 2.2GHz CPU. The server (i.e. aggregator) is deployed on
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a separate node with 40 CPUs. FedTune’s Bayesian Strengthened Tuner, Random Search and Grid
Search are performed on the server. The server and the clients communicate their weights via sockets.

5.2 PERFORMANCE COMPARISON

Dataset Global
Tuning FedTune Hand-

Tuning
FEMNIST 74.14% 81.24% 81.64%

Cifar10 68.13% 72.32/% 72.66%
Cifar100 52.52% 56.21% 56.89%
F-MNIST 73.99% 79.73% 80.03%

Table 1: Accuracy over rounds comparison for
different tunings for FEMNIST

Figure 4: The test accuracy comparisons between
FedTune, Hand-Tuned, and Global Tuning.

First, we run different datasets FEMNIST, Cifar10, Cifar100, and F-MNIST separately with the FL
setting. We compare Global Tuning, FedTune, and Hand-tuning method, and present the best test
accuracy achieved in Table 1. We can find that our proposed method FedTune outperforms Global
Tuning by a large margin in all models. For example, on FEMNIST dataset, the test accuracy by
FedTune improves more than 7% than Global Tuning (Figure 4). On other datasets, FedTune still gets
better accuracy by at least 3.69% increase. On the other hand, the accuracies achieved with FedTune
come very close to the Hand-Tuning method with less than 1% margin of error. This demonstrates
that our framework can achieve a model performance on par with the best case.

5.3 HYPERPARAMETER OPTIMIZATION COST

(a) (b)
Figure 5: (a) Test accuracy of the global model achieved with hyperparameters derived at different
stages of tuning for the FEMNIST dataset. (b) Tuning iterations comparison across different datasets.

We next evaluate the efficiency of FedTune’s tuner compared to Random Search and Grid Search
(Hand-Tuning can be considered as Grid Search). In Figure 5a, we show the test accuracies achieved
by the FL system when using the hyperparameters found after searching for that particular number of
steps for the FEMNIST dataset. Each step represents the number of total hyperparameter combinations
searched. We observe that FedTune’s Bayesian Strengthened Tuner explores the space efficiently
and achieves the same accuracy as the Grid Search method (81.24%) after around 36,000 steps,
which is less than half the total search space. For Random Search, we show the mean accuracy vs.
steps and their 95% error margin after 10 runs with different seeds. We find that while some runs
initially perform better than FedTune at around 5,000 steps, eventually FedTune performs better as
its improvement is steeper. The mean number of steps taken by Random Search is around 79,000
steps, which is more than twice as that for FedTune. The number of steps taken to achieve terminal
accuracy for the other datasets for FedTune and Random Search with their error margins are given in
Figure 5b. We see here that FedTune consistently outperforms Random Search across all of them.

6 CONCLUSION

In this paper, we demystify hyperparameter optimization in FL by identifying the opportunities
and challenges via empirical experiments. Inspired by our study, we propose FedTune, a privacy
preserving and data heterogeneity-aware hyperparameter tuning methodology for FL. The core of
FedTune is a proxy dataset based hyperparameter customization approach that addresses the privacy
and tuning cost challenges. FedTune outperforms baselines by up to 7% in performance with greater
search efficiency.
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7 REPRODUCIBILITY STATEMENT

All the training hyperparameters and experimental setups are provided in the the Ex-
periment Setup section and Appendix. The code repo can be accessed through:
https://anonymous.4open.science/r/FLTUNE-EAD4/.
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G SUPPLEMENTARY MATERIALS

G.1 LEARNING RATE TREND UNDER DIFFERENT DATA HETEROGENEITY

Heterogeneity
Index

Batch Size / Number of Data Points
5/400 10/400 20/800 30/800

0.15 0.021 0.04 0.041 0.061
0.50 0.032 0.065 0.071 0.105
0.75 0.042 0.086 0.081 0.125

Table 2: Optimal learning rate under different data heterogeneity levels, batch sizes, and data sizes.

Here we demonstrate how the learning rate for the clients varies across data distribution and quantity.
We observe that with a constant number of data points and batch size, increasing heterogeneity (i.e.
HI) leads to higher optimal learning rate. Similarly, with a constant HI, increasing number of data
points and batch size leads to increasing learning rate.

G.2 TRAINING AND PROXY DATASET SETUP

Dataset Model Train/Test split Clients
Total/Per Round

Global LR
/Batch Size Training Rounds

FEMNIST 2 conv 2 dense 49,644/6,200 192/10 0.004/8 2000
Cifar100 Resnet18 50,000/10,000 50/5 0.045/16 1000
Cifar10 4 conv 2 dense 50,000/10,000 50/5 0.05/16 500

F-MNIST 2 conv 2 dense 50,000/10,000 50/5 0.002/8 500

Table 3: Training Setup.

We perform our experiments using the popular image classification datasets Cifar100, Cifar10 and
Fashion-MNIST. We also use the widely used FEMNIST dataset, which is a handwritten digit
and character image classification dataset made specifically for benchmarking Federated Learning
applications. It contains 62 classes and around 800,000 images split into 3,550 clients. We sample
from it using the seed and sample found in their official repository in github1. Since it does not have
a separate evaluation dataset, we use the same setup in Caldas et al. (2018) and derive a balanced test
dataset of size 6,200 by randomly sampling 100 datapoints per class from the unused datapoints.

The set of proxy datasets are uniformly sampled from their full training datasets. Note that this
sampled dataset is removed from the full dataset. Therefore, all proxy datasets have no overlap
with either training nor testing datasets. Proxy datasets in FEMNIST, CIFAR10, CIFAR100, and
FashionMNIST contain 5000, 5000, 5000, and 4000 samples, respectively. The remaining training
datasets (after removing the sampled proxy datasets for training) are 44664, 45000, 45000, and 46000
samples, respectively.

We control the different data distributions within each client by splitting them into groups and
subgroups. We first create 6 groups of clients by splitting them equally (e.g. in FEMNIST, 192 clients
are split into 32 clients per group), and assign each of these devices to get 100/200/400/600/800/1000
data points respectively. We further split these groups into 4 more evenly split subgroups (e.g. in
FEMNIST, 32 clients get split into 4 groups of 8). These groups are then assigned HIs of 0.2, 0.4, 0.6
and 0.8.

G.3 ROBUSTNESS TO DATA HETEROGENEITY METRICS

Apart from HI, state-of-the-art papers also use other methods of quantifying heterogeneity such as
Gaussian and Possion distribution sampling (for both quantity and distribution heterogeneity) Reddi
et al. (2020); Zawad et al. (2021). To demonstrate that FedTune works with other distribution metrics,
we compare the accuracy increase we get after applying FedTune compared to Global Tuning. We do
this across the heterogeneity types HI, Gaussian, and Poisson, and the results are presented in Figure 6.

1https://github.com/TalwalkarLab/leaf/
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Figure 6: Final test accuracy comparison between global, FedTune with transferred dataset and
FedTune on original dataset.

We observe that across all datasets, FedTune results in varying degrees of accuracy improvement for
all different types of data heterogeneity metrics. This demonstrates that our framework is robust to
different types of data distribution metrics.

G.4 COMPATIBILITY WITH OTHER HETEROGENEITY-AWARE FL OPTIMIZATION

Figure 7: Final test accuracy comparison between global and FedTune when using LEAF’s ( Caldas
et al. (2018)) default distribution (LEAF Distr.) and when used with and without FedTune.

We perform additional experiments to demonstrate FedTune is compatible with other state-of-the-art
heterogeneity-aware optimizations in FL. In Figure 7, the first set of bars show the comparison of test
accuracy at convergence between global tuning (Default) and FedTune when using LEAF’s default
distribution. We observe that using our customized hyperparameter tuning can achieve an accuracy
improvement of around 2.3%. The second set of bars show the change in accuracy when using
FedAdagrad (Reddi et al. (2020)) by itself (Default) versus adding FedTune on top of it (FedTune).
We observe that with the help of FedTune, the final accuracy is improved around 4%, confirming that
FedTune and FedAdagrad are complementary to each other and can be combined to achieve an even
better performance.

G.5 SENSITIVITY ANALYSIS OF HRT SIZE AGAINST ACCURACY

Figure 8: Sensitivity analysis of the hyperparameter search space as a function of HRT cells against
test accuracy and cost using FEMNIST.

Figure 8 shows the results of the sensitivity analysis of how the number of cells in the HRT impacts
the search space. For example, 1 cell means that only one set of hyperparameters is used to train
the full system, i.e., a global tuning set. As we increase the number of cells, there is a drastic
increase in the total search space, making it expensive to tune. Figure 8 shows how the final test
accuracy for FEMNIST changes with varying number of HRT cells for our approach. It is clear

14



Under review as a conference paper at ICLR 2022

that the benefits of increasing the number of cells after 24 diminish greatly while the search space
keeps on increasing. Thus, in our experiments, an HRT with 24 cell blocks strikes a good balance
between search cost and accuracy. Specifically, we use HIs of 0.2, 0.4, 0.6, 0.8 and data quantities of
100, 200, 400, 600, 800, 1000 in our evaluation.
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