
Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Joint Similarity Item Exploration and Overlapped User Guidance
for Multi-Modal Cross-Domain Recommendation

Anonymous Author(s)

ABSTRACT
Cross-Domain Recommendation (CDR) has been widely investi-
gated for solving long-standing data sparsity problem via knowl-
edge sharing across domains. In this paper, we focus on the Multi-
Modal Cross-Domain Recommendation (MMCDR) problem where
different items have multi-modal information while few users are
overlapped across domains. MMCDR is particularly challenging
in two aspects: fully exploiting diverse multi-modal information
within each domain and leveraging useful knowledge transfer
across domains. However, previous methods fail to cluster items
with similar characteristics while filtering out inherit noises within
different modalities, hurdling the model performance. What is
worse, conventional CDR models primarily rely on overlapped
users for domain adaptation, making them ill-equipped to handle
scenarios where the majority of users are non-overlapped. To fill
this gap, we propose Joint Similarity Item Exploration and Over-
lapped User Guidance (SIEOUG) for solving the MMCDR problem.
SIEOUG first proposes similarity item exploration module, which
not only obtains pair-wise and group-wise item-item graph knowl-
edge, but also reduces irrelevant noise for multi-modal modeling.
Then SIEOUG proposes user-item collaborative filtering module
to aggregate user/item embeddings with the attention mechanism
for collaborative filtering. Finally SIEOUG proposes overlapped
user guidance module with optimal user matching for knowledge
sharing across domains. Our empirical study on Amazon dataset
with several different tasks demonstrates that SIEOUG significantly
outperforms the state-of-the-art models under the MMCDR setting.

CCS CONCEPTS
• Information systems→ Recommender systems.
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1 INTRODUCTION
Recommender systems become more and more attractive with the
big data explosion in recent years [22, 38, 48]. Users may partici-
pate in multiple domains, e.g., picking fashion clothes in Ebay and
buying sport outlets in Amazon platforms. Meanwhile items on
different domains also inherit useful diverse multi-modal visual
or text information. However, users may have limited rating in-
teractions across different domains, leading to data sparsity issues
in each domain. Thus how to enhance model performance across
domains by leveraging multi-modal information with knowledge
sharing still needs more investigation.

In this paper, we focus on Multi-Modal Cross-Domain Recom-
mendation (MMCDR) problem as shown in Fig.1. That is, users
among different domains are partially overlapped with sparse user-
item rating interactions. Meanwhile items on different domains are
heterogeneous and they also contain multi-modal information in-
cluding text and image descriptions. Item multi-modal information
is rather valuable since it is extra information reflecting the users
tastes beyond rating interactions. For instance, when we discover
the user who prefers luxury clothes via multi-modal item informa-
tion, he/she may also have great interests in fashion sport outlets as
shown in Fig.1. There are two main challenges for solving MMCDR:
(1) CH1: How to better exploit and utilize diverse multi-modal item
information within each domain? (2) CH2: How to leverage useful
knowledge among these partially overlapped users to alleviate data
sparsity problem across domains?

However, previous methods cannot better solve MMCDR prob-
lem well. On the one hand, previous multi-modal recommendation
models [17, 68] mainly focus on exploring item similarity informa-
tion from a perspective of pair-wise item-item similarity. However,
different modalities may inherit noises [68] that prevents previous
approaches from constructingmore precise and discriminative item-
item similarity graph. Moreover, conventional approaches always
neglect group-wise item information (e.g., a item cluster contain-
ing items with similar attributes), which is critical for enhancing
efficiency on message passing. Although latest multi-modal recom-
mendation model LGMRec [15] employed hypergraph to exploit
group-wise item information, the adopted Gumbel-Softmax mecha-
nism is sensitive to the temperature and may fail to effectively clus-
ter similar items.[20, 23, 47]. Hence it will inevitably incur coarse
and meaningless hyperedges among group-wise item hypergraphs,
leading to the limited model potentials. Therefore traditional multi-
modal recommendation models cannot solve CH1 well. On the
other hand, previous cross-domain recommendationmodels [21, 33]
fully rely on the overlapped users for knowledge sharing across
domains. These approaches may not achieve satisfactory results
especially when only relatively few users are overlapped [8, 35, 51].
Meanwhile some latest models (e.g.,MOTKD [63]) could involve
optimal transport techniques with Wasserstein distance [9, 50] for
domain adaptation. Nonetheless, these approaches fail to consider
the useful prior knowledge in domain adaptation, leading to coarse
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Figure 1: The problem definition of MMCDR.
and inaccurate matching solutions [16, 37]. Therefore these strate-
gies could result in negative transfer phenomenon [61, 70] and
thus they cannot solve CH2 well. In conclusion, previous recom-
mendation models cannot provide satisfactory results on tackling
MMCDR problem.

To address the aforementioned issues, in this paper, we propose
Joint Similarity Item Exploration and Overlapped User Guidance
model (SIEOUG), a multi-modal cross-domain recommendation
model for solving MMCDR problem. SIEOUG includes three main
modules, i.e., similarity item exploration module, user-item collabo-
rative filtering module and overlapped user guidance module. In the
similarity item exploration module, we aim to leverage pair-wise
item similarity graph with proposed robust item similarity graph fu-
sion to reduce inherit noise and achieve more reliable results. More-
over, we propose sparse item similarity hypergraph exploration
in the item similarity exploration module to construct a group-
wise item similarity hypergraph which enhances the efficiency of
messaging passing by clustering items based on their characteris-
tics via Gromov-Wasserstein metric. The user-item collaborative
filtering module is designed to integrate graph and hypergraph
information to address CH1 and achieve user/item embeddings
within each domain. In the overlapped user guidance module, we
propose guidance-based optimal user matching algorithm to iden-
tify similar user pairs from a global perspective for solving CH2.
By incorporating these three modules, SIEOUG can better exploit
and utilize multi-modal item information, meanwhile SIEOUG can
also fully transfer knowledge across domains sufficiently. We sum-
marize our main contributions as follows: (1) We propose a novel
framework, i.e., SIEOUG, for solving MMCDR problem, which con-
tains similarity item exploration module, user-item collaborative
filtering module, and overlapped user guidance module. (2) To our
best knowledge, this is the first attempt in the literature to jointly
explore pair-wise and group-wise item similarity via proposed ro-
bust item similarity graph aggregation and sparse item similarity
hypergraph exploration. Moreover, it the first attempt to involve
overlapped user guidance into knowledge transfer across domains.
(3) Extensive empirical experiments on multiple tasks in Amazon
datasets demonstrate the proposed SIEOUG significantly improves
the state-of-the-art models under the MMCDR setting.

2 RELATEDWORK
Multi-Modal Recommendation.Multi-Modal recommendation
is set to involve multi-modal information (e.g., the item image and

text descriptions) for user-item modelling [34, 40, 49, 73, 77]. Con-
ventional work [17, 56, 69] directly fused the visual/style contents
with their ID embeddings with Bayesian personalized ranking [46]
for collaborative filtering. Nowadays, with the fast development
of graph neural network [18], more researchers started to utilize
the message passing mechanism among knowledge aggregation
across different modalities [53, 55, 56]. For instance, LATTICE
[68] first constructs an pair-wise item-item relation graph within
each modality and then aggregates them to form a global item-
item graph. Recently some work [75] also adopt contrastive learn-
ing strategy [52] with attention mechanism to further boost the
model performance. Latest work LGM3Rec [15] has even adopted
Gumbel-Softmax with hypergraph relationships to enhance the
model’s performance by capturing group-wise high-order semantic
information. However, current multi-modal recommendation mod-
els fail to extract or cluster item with similar characteristics in the
group-wise perspectives, which is vital for user-item modelling.
Cross-Domain Recommendation. Cross Domain Recommenda-
tion (CDR) models are set to tackle the data sparsity problem by
leveraging useful knowledge across domains [5, 11, 27, 30, 31, 72].
Traditional CDR models mainly rely on the overlapped users to
realize the knowledge transfer [6, 29, 62, 67]. For instance, CoNet
[21] and ACDN [33] adopted the cross-connection unit with at-
tention mechanism in the deep neural network for snitching the
message from different domains. However these approaches cannot
handle the general case when few users are overlapped [51, 65, 76].
Recently some work [66, 71] start to investigate that scenario with
domain adaptation strategies including adversarial training [13] or
distribution co-clustering [24]. Meanwhile, only a few papers focus
on addressing the multi-modal cross-domain recommendation prob-
lem, as multi-modal information amplifies domain discrepancies,
making the task even more challenging. Latest, MOTKD [63] is
the first to attempt solving the MMCDR problem using an optimal
transport approach [9, 10, 14, 26, 32]. Nonetheless, the above meth-
ods typically separate domain adaptation for overlapped and non-
overlapped users, neglecting the matching guidance provided by
the overlapped users. Therefore, they may lead to negative transfer,
resulting in suboptimal solutions that hinder model performance.

3 MODELING FOR SIEOUG
In this section, we will introduce the details of our proposed method
SIEOUG for solving MMCDR problem. We assume there are two
domains, i.e., a source domainS and a target domainT . There exists
𝑁 S𝑼 , 𝑁 T𝑼 users and 𝑁 S𝑽 , 𝑁 T𝑽 items in source and target domains

respectively. 𝑹S ∈ R𝑁
S
𝑼 ×𝑁

S
𝑽 and 𝑹T ∈ R𝑁

T
𝑼 ×𝑁

T
𝑽 denote the user-

item ratingmatrix in source and target domains respectively. Source
and target domain inherits the origin user-item interaction graph

𝑶S and 𝑶T which are given as 𝑶S =

[
0 𝑹S

(𝑹S)⊤ 0

]
and 𝑶T =[

0 𝑹T

(𝑹T )⊤ 0

]
respectively. Meanwhile items in different domains

have multi-modal visual and text features. We adopt the CLIP model
[45] to generate corresponding multi-modal visual and text features
as 𝒙S,visual, 𝒙T,visual and 𝒙S,text, 𝒙T,text respectively. Not all users
are overlapped across domains and we adopt K𝑢 ∈ (0, 1) as the
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Figure 2: The model framework of proposed SIEOUG for solving MMCDR problem.
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Figure 3: The illustrations on message passing on item-item
similarity graph and hypergraph. Obviously, hypergraph can
aggregate more useful information during the procedure.

overlapped user ratio to measure how many users are concurrence
among different domains following [24].

The framework of SIEOUG is shown in Fig.2. SIEOUG mainly
has three modules, i.e., similarity item exploration module, user-
item collaborative filtering module and overlapped user guidance
module. Similarity item exploration module is set to exploit multi-
modal information with vision and text features for different items
within each domain. User-item collaborative filtering module aims
to model user and item preferences based on user-item ratings.
Overlapped user guidance module is set to transfer and aggregate
useful knowledge across different domains. Combining similarity
item exploration module and overlapped user guidance module,
SIEOUG can better explore both intra-domain multi-modal infor-
mation and inter-domain user sharing information.

3.1 Similarity Item Exploration Module
To start with, we first introduce similarity item exploration mod-
ule in SIEOUG. Similarity item exploration module includes two
main steps, i.e., pair-wise item similarity graph construction and
group-wise item similarity hypergraph construction. Pair-wise item
similarity graph construction aims to denoise pair-wise item rela-
tionship among diverse multi-modal information. Group-wise item
similarity hypergraph construction aims to cluster items based on
their characteristics to enhance the efficiency on message passing.
By combining item similarity graph and hypergraph construction,
the intra-domain model can fully explore item characteristics for
enhancing the performance.

Pair-Wise Item Similarity Graph Construction. Following pre-
vious multi-modal work [68, 74], we should calculate the item pair-
wise similarity 𝑆𝑑,𝑚

𝑖 𝑗
among different modality in the first step of

robust item similarity graph construction, i.e., for each modality𝑚:

𝑆
𝑑,𝑚
𝑖 𝑗

= exp

(𝒙𝑑,𝑚
𝑖
)⊤𝒙𝑑,𝑚

𝑗

∥𝒙𝑑,𝑚
𝑖
∥2∥𝒙𝑑,𝑚𝑗 ∥2

 = 𝒮(𝒙𝑑,𝑚
𝑖

, 𝒙𝑑,𝑚
𝑗
), (1)

where𝑑 = {S,T } indicates the domain index and𝑚 = {visual, text}
denotes the visual and text features. 𝒙𝑑,𝑚 denotes the𝑚 modality
of features in domain 𝑑 and 𝒮(·) denotes the similarity calcula-
tion. Then we adopt top-𝑧 sparsification method to obtain sparse
similarity results via filtering out irrelevant item-item relationships:

𝑆
𝑑,𝑚
𝑖 𝑗

=

{
1, 𝑆

𝑑,𝑚
𝑖 𝑗
∈ top𝑧

(
𝑆
𝑑,𝑚
𝑖∗

)
0, otherwise.

(2)

We can obtain different sparse similarity results 𝑺̂𝑑,𝑚 according to
different modalities in domain 𝑑 . Since different modalities may
inherit complex and heterogeneous information [74], we should
aggregate them to figure out general pair-wise item similarity𝑨𝑑 ∈
R𝑁×𝑁 . To fulfill this task, we propose Robust Item Similarity Graph
Fusion (RISGF) method to find 𝑨𝑑 which can be shown as:

min
𝑨𝑑 ,𝚫𝑑,𝑚

𝑄𝑑 =
1
𝑀

𝑀∑︁
𝑚=1

(
1
2




(𝑨𝑑 + 𝚫𝑑,𝑚)
− 𝑺̂𝑑,𝑚




2
2
+ 𝜇




𝚫𝑑,𝑚



1

)
𝑠 .𝑡 . 𝐴𝑑𝑖 𝑗 ∈ [0, 1],

(3)
where 𝚫

𝑑,𝑚 ∈ R𝑁×𝑁 denotes modality-specific information in
each domain and 𝜇 denotes the balanced hyper parameter. Ideally,
pair-wise item similarity within each modality 𝑺̂

𝑑,𝑚 can be viewed
as the combination of general pair-wise item similarity 𝑨𝑑 with
modality-specific information 𝚫

𝑑,𝑚 . Thus RISGF can exploit more
relevant pair-wise item similarity while filtering out irrelevant bias
or noise in 𝑺̂

𝑑,𝑚 . Inspired by previous works [3, 58], we adopt L1-
norm on 𝑺̂

𝑑,𝑚 to make the result of 𝑨𝑑 more robust.
Optimization. We provide the optimization details on RISGF as
below. Firstly, we fix 𝑨𝑑 and update modality-specific information
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𝚫
𝑑,𝑚 via proximal gradient descent [43] accordingly:

Δ𝑑,𝑚
𝑖 𝑗

= 𝒯𝜇 (𝑆𝑑,𝑚𝑖 𝑗 −𝐴
𝑑
𝑖 𝑗 ) =


𝑆
𝑑,𝑚
𝑖 𝑗
−𝐴𝑑

𝑖 𝑗
− 𝜇, 𝑆

𝑑,𝑚
𝑖 𝑗
≥ 𝐴𝑑

𝑖 𝑗
+ 𝜇

𝑆
𝑑,𝑚
𝑖 𝑗
−𝐴𝑑

𝑖 𝑗
+ 𝜇, 𝑆

𝑑,𝑚
𝑖 𝑗
≤ 𝐴𝑑

𝑖 𝑗
− 𝜇

0, otherwise,
(4)

where 𝒯𝜇 (·) denotes the proximal projection operator. Then we
can fix 𝚫

𝑑,𝑚 and update 𝑨𝑑 as below:

𝑨𝑑 =

[
1
𝑀

𝑀∑︁
𝑚=1

(
𝑆
𝑑,𝑚
𝑖 𝑗
− 𝚫𝑑,𝑚

)]
∗
, (5)

where [𝑦]∗ = max(min(𝑦, 1), 0) denotes the projected operation.
We can adopt Eq.(4) and Eq.(5) iteratively to solve RISGA for ob-
taining the optimal solution on 𝑨𝑑 and 𝚫

𝑑,𝑚 . At that time, the
general pair-wise item similarity 𝑨𝑑 can effectively incorporate
multi-modal information with enhanced robustness for modelling.
Group-Wise Item Similarity Hypergraph Construction. Al-
though pair-wise item similarity graph construction has provided
item similarity matrix𝑨𝑑 , it still mainly relies on pair-wise informa-
tion with low efficiency for messaging passing [64]. Therefore, it is
essential to further explore group-wise item similarity relationship.
That is, we should figure out the items with similar characteristics
to construct the corresponding hypergraph 𝜸𝑑 via the group-wise
item clustering. Hence we propose Sparsity Item Similarity Hyper-
graph Exploration (SISHE) method to find 𝜸𝑑 accordingly:

min
𝜸𝑑

𝑄𝑑 = −
〈
𝑨𝑑𝜸𝑑 𝑰𝐾 ,𝜸

𝑑
〉
+ 𝜂
2
| |𝜸𝑑 | |22

𝑠 .𝑡 .

𝑁∑︁
𝑖=1

𝛾𝑑𝑖 𝑗 =
𝑁

𝐾
,

𝐾∑︁
𝑗=1

𝛾𝑑𝑖 𝑗 = 1, 𝛾𝑑𝑖 𝑗 ≥ 0,
(6)

where 𝜂 denotes the hyper parameter. 𝑰𝐾 ∈ R𝐾×𝐾 denotes the
identity matrix and 𝐾 denotes the number of clusters. 𝜸𝑑 ∈ R𝑁×𝐾
is the clustering matrix for constructing group-wise item similarity
hypergraph. SISHE aims to balance cluster items based on the pair-
wise item similarity graph 𝑨𝑑 via optimizing Eq.(6).

Optimization. To start with, we first initialize (𝛾𝑑 ) (0)
𝑖 𝑗

= 1
𝐾
. Then

we regard (−𝑨𝑑 (𝜸𝑑 ) (𝑙 ) 𝑰𝐾 ) = Y (𝑙 ) as the constant during the 𝑙-th
iteration. We can provide the Lagrange multipliers of Eq.(6) at the
𝑙-th iteration as follows:

min
(𝜸𝑑 ) (𝑙+1)

(𝐽𝑑 ) (𝑙+1) =
〈
Y (𝑙 ) , (𝜸𝑑 ) (𝑙+1)

〉
+ 𝜂
2
| | (𝜸𝑑 ) (𝑙+1) | |22

−
𝐾∑︁
𝑗=1

𝑔 𝑗

(
𝑁∑︁
𝑖=1

𝛾𝑑𝑖 𝑗 −
𝑁

𝐾

)
−

𝑁∑︁
𝑖=1

𝑓𝑖
©­«
𝐾∑︁
𝑗=1

𝛾𝑑𝑖 𝑗 − 1
ª®¬ ,
(7)

where 𝒇 and 𝒈 denote the Lagrange multipliers. By taking the
differentiation w.r.t. on (𝜸𝑑 ) (𝑙+1)

𝑖 𝑗
and set it as 0, we can obtain the

following equations:

(𝜸𝑑 ) (𝑙+1)
𝑖 𝑗

=


𝑓𝑖 + 𝑔 𝑗 − Y (𝑙 )𝑖 𝑗

𝜂

+ , (8)

where [𝑒]+ = max(0, 𝑒). Specifically, we first fix 𝒈 and update 𝒇 via
solving the equation 𝜙 (𝑓𝑖 ) =

∑𝐾
𝑗=1 [𝑓𝑖 − (Y

(𝑙 )
𝑖 𝑗
− 𝑔 𝑗 )]+ = 𝜂. That is,

we sort (Y (𝑙 )
𝑖 𝑗
−𝑔 𝑗 ) in ascending order and define it as the reordered

vector G (𝑙 ) , i.e, G (𝑙 )𝑜 ≤ G (𝑙 )
𝑜+1∀𝑜 . Therefore, the result of 𝒇 can be

shown as:

𝑓𝑖 =


G (𝑙 )𝑜 +

𝜂−𝜙 (G (𝑙 )𝑜 )
𝜙 (G (𝑙 )

𝑜+1 )−𝜙 (G
(𝑙 )
𝑜 )
(G (𝑙 )
𝑜+1 − G

(𝑙 )
𝑜 ), 𝜙 (G (𝑙 )𝑜 ) ≤ 𝜂 < 𝜙 (G (𝑙 )

𝑜+1 )

1
𝐾

(
𝜂 +

𝐾∑
𝑗=1
G (𝑙 )
𝑗

)
, 𝜂 ≥ 𝜙 (G (𝑙 )

𝐾
) .

(9)
Likewise, we then fix 𝒇 and update 𝒈 via solving the equation
𝜓 (𝑔 𝑗 ) =

∑𝑁
𝑖=1 [𝑔 𝑗 − (Y

(𝑙 )
𝑖 𝑗
− 𝑓𝑖 )]+ = 𝜂 𝑁𝐾 . That is, we sort (Y (𝑙 )

𝑖 𝑗
− 𝑓𝑖 )

in ascending order and define the reordered vector as F (𝑙 ) . Hence
the result of 𝒈 can be shown as:

𝑔 𝑗 =


F (𝑙 )𝑜 + 𝜂 𝑁

𝐾
−𝜓 (F (𝑙 )𝑜 )

𝜓 (F (𝑙 )
𝑜+1 )−𝜓 (F

(𝑙 )
𝑜 )
(F (𝑙 )
𝑜+1 − F

(𝑙 )
𝑜 ), 𝜓 (F (𝑙 )𝑜 ) ≤ 𝜂 𝑁𝐾 < 𝜓 (F (𝑙 )

𝑜+1 )

1
𝑁

(
𝜂 𝑁
𝐾
+
𝑁∑
𝑖=1
F (𝑙 )
𝑗

)
, 𝜂 𝑁

𝐾
≥ 𝜓 (F (𝑙 )

𝐾
) .

(10)
After several inner iterations via Eq.(9) and Eq.(10), we can obtain
the optimal solutions on 𝒇 and 𝒈 for (𝜸𝑑 ) (𝑙+1) . Then we should
update the term (−𝑨𝑑 (𝜸𝑑 ) (𝑙+1) 𝑰𝐾 ) = Y (𝑙+1) for the outer itera-
tion to solve (𝜸𝑑 ) (𝑙+2) . Finally we can reach the optimal coupling
matrix 𝜸𝑑 in each domain 𝑑 . The pseudo algorithm for SISHE is
provided in Appendix A. Indeed, 𝜸𝑑 denotes the clustering results
of items and thus 𝜸𝑑 can be regarded as the item-item hypergraph
and each hyperedge represents the items with similar characteris-
tics. Moreover, SISHE with Gromov-Wasserstein metric [39, 44, 60]
can avoid coarse and inaccurate relationships comparing when
compared to prior methods [12, 59] that mainly rely on the Gumbel-
Softmax mechanism [20, 47, 57]. In summary, the group-wise item
hypergraph can aggregate more information compared to the pair-
wise item similarity graph through the message passing procedure,
as illustrated in Fig.3(a)-(b). Therefore adopting group-wise item
hypergraph can further enhance the model performance.

3.2 User-Item Collaborative Filtering Module
After we obtain user-item interaction graph 𝑶𝑑 , item-item simi-
larity graph 𝑨𝑑 and item-item clustering hypergraph 𝜸𝑑 in each
domain, we should combine these useful information for user-item
modelling. Therefore, we propose user-item collaborative filtering
module to fully exploit user and item embeddings for the recommen-
dation. Specifically, we set the user/item initialize ID embeddings
as 𝒖 (0)

𝑑
and 𝒗 (0)

𝑑
via the learnable lookup table in domain 𝑑 with di-

mensionD respectively. Firstly, we adopt the graph neural network
on user-item interaction graph 𝑶𝑑 at the 𝑙-th layer as follows:

𝒆 (𝑙+1)
𝑑

= (𝑫𝑑𝑂 )
− 1

2𝑶𝑑 (𝑫𝑑𝑂 )
− 1

2 𝒆 (𝑙 )
𝑑
, (11)

where 𝒆 (𝑙 )
𝑑

= 𝒖 (𝑙 )
𝑑
∥ 𝒗 (𝑙 )
𝑑

and ∥ denotes the concatenate operation.
𝑫𝑑
𝑂
= diag(𝑶𝑑1) denotes degree matrix of 𝑶𝑑 . The user/item rat-

ing preference embeddings after ℓ-layered graph neural network
is given as 𝒖𝑑 = 1

ℓ+1
∑ℓ
𝑙=0 𝒖

(ℓ )
𝑑

and 𝒗𝑑 = 1
ℓ+1

∑ℓ
𝑙=0 𝒗

(ℓ )
𝑑

respec-
tively. Meanwhile we should further utilize multi-modal informa-
tion among intra-domain items. That is we conduct the graph con-
volution according to item-item similarity graph 𝑨𝑑 as:

𝒗̂ (𝑙+1)
𝑑

= (𝑫𝑑𝑆 )
− 1

2𝑨𝑑 (𝑫𝑑𝑆 )
− 1

2 𝒗̂ (𝑙 )
𝑑
, (12)

where 𝒗̂ (0)
𝑑

= 𝒗 (0)
𝑑

and 𝑫𝑑
𝑆
= diag(𝑨𝑑1) denotes degree matrix of

𝑨𝑑 . Likewise, we can obtain the item similarity-based embedding
2024-10-15 09:24. Page 4 of 1–11.
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Figure 4: Illustrations on overlapped user guidance. When
we involve prior overlapped users as the guidance, we can
avoid mismatches between users with different preferences.
via 𝒗̂𝑑 = 1

ℓ+1
∑ℓ
𝑙=0 𝒗̂

(ℓ )
𝑑

. Moreover, we conduct the hypergraph based
on 𝜸𝑑 to aggregate group-wise information as follows:

𝒗̃ (𝑙+1)
𝑑

= HyperGraph(𝜸𝑑 , 𝒗̃ (𝑙 )
𝑑
,𝑾 (𝑙 )

𝑑
)

= (𝑫𝑑𝑉 )
− 1

2 (𝜸𝑑 ) (𝑫𝑑𝐸 )
− 1

2 (𝜸𝑑 )⊤ (𝑫𝑑𝑉 )
− 1

2 𝒗̃ (𝑙 )
𝑑

𝑾 (𝑙 )
𝑑
,

(13)

where 𝒗̃ (0)
𝑑

= 𝒗 (0)
𝑑

and 𝑫𝑑
𝑉
∈ R𝑁×𝑁 and 𝑫𝑑

𝐸
∈ R𝐾×𝐾 are vertex

degrees and hyperedges degrees of items to cluster hypergraphs.
𝑾 (𝑙 )
𝑑
∈ R𝑁×D denotes the learnable weights at the 𝑙-th layer

in hypergraph. We can obtain the item cluster-based embedding
via 𝒗̃𝑑 = 1

ℓ+1
∑ℓ
𝑙=0 𝒗̃

(ℓ )
𝑑

. Therefore we can achieve user and item
embedding U𝑑 and V𝑑 by joining multi-modal information as:

U𝑑 = 𝒖𝑑 , V𝑑 = 𝛼𝑑𝒗𝑑 + 𝛼𝑑 𝒗̃𝑑 + 𝛼𝑑 𝒗̂𝑑 , (14)

where 𝛼𝑑 , 𝛼𝑑 and 𝛼𝑑 denotes the normalized adaptive weights as
𝛼𝑑 + 𝛼𝑑 + 𝛼𝑑 = 1. Using 𝛼𝑑 as an example, it can be calculated as:

𝛼𝑑 =
exp(𝑾𝑑

𝑢𝒖
𝑑 +𝑾𝑑

𝑣𝒗
𝑑 )∑

𝜒∈{𝒗,˜𝒗,̂𝒗} exp(𝑾𝑑
𝑢𝒖𝑑 +𝑾𝑑

𝜒 𝝌𝑑 )
, (15)

where𝑾𝑑
𝑢 ,𝑾𝑑

𝑣 ,𝑾𝑑
𝑣̂
and𝑾𝑑

𝑣̃
denote the learnable weights. After

that, we can adopt the commonly-used contrastive collaborative
filtering loss for modelling intra-domain user-item ratings:

min𝐿𝑑R = − log(𝒮(U𝑑
𝑖 ,V

𝑑
𝑗 )) + log

©­­«
∑︁

V𝑑
𝑘
∈N(U𝑑

𝑖 )
𝒮(U𝑑

𝑖 ,V
𝑑
𝑘
)
ª®®¬ .
(16)

That is, we aim to can pull the positive items close and push the neg-
ative items away for a certain user according to his/her preference
in each domain 𝑑 via the loss function 𝐿𝑑R .

3.3 Overlapped User Guidance Module
Although combining similarity item exploration module and user-
item collaborative filteringmodule can enhance intra-domainmodel
performance, it still cannot share and transfer useful knowledge
across different domains with limited overlapped users. Hence
we further propose overlapped user guidance module to utilize
inter-domain information for tackling data sparsity problem in
each domain. Previous CDR methods [21, 33] mainly focus on the
knowledge sharing via limited overlapped users and neglecting the
majority part of non-overlapped users. Thus these conventional ap-
proaches cannot better resolve the issue of knowledge transfer well.

Therefore, SIEOUG should leverage knowledge transfer among all
users by utilizing overlapping users as the useful guidance from a
global optimal perspective. Specifically, we first propose Guidance-
based Optimal User Matching (GOUM) method among the whole
source and target users during the training procedure:

min
𝝅≥0

𝐽agn = ⟨𝝅 , 𝑪 ⊙ 𝑴⟩ = ⟨𝝅 , Q⟩ 𝑠 .𝑡 .

𝑁∑︁
𝑗=1

𝜋𝑖 𝑗 = 1,
𝑁∑︁
𝑖=1

𝜋𝑖 𝑗 = 1,

(17)
where 𝐶𝑖 𝑗 = | |US𝑖 − UT

𝑗
| |22 denotes the embedding distance be-

tween the source and target users and 𝝅 ∈ R𝑁×𝑁 denotes the
user-user matching matrix.𝑴 ∈ R𝑁×𝑁 denotes the masked matrix
which can be calculated asM𝑖 𝑗 = 1 − 𝛿 (𝑢S

𝑖
, 𝑢T
𝑗
) where 𝛿 (𝑢S

𝑖
, 𝑢T
𝑗
)

denotes whether 𝑢S
𝑖
and 𝑢T

𝑗
are overlapped users. Specifically, if

𝑢S
𝑖

and 𝑢T
𝑗

are overlapped users, 𝛿 (𝑢S
𝑖
, 𝑢T
𝑗
) = 1 and otherwise

𝛿 (𝑢S
𝑖
, 𝑢T
𝑗
) = 0. 𝑴 can guarantee that the overlapped users should

get matched which conforms to our anticipation and it can further
provides useful prior information as the guidance signal in solving
GOUM. As we show an example in Fig.4(a) where we will obtain
mismatch user matching with different preferences when we do not
consider any prior knowledge (e.g., overlapped users) as guidance.
When we consider the overlapped user as guidance via the masked
matrix during the matching procedure with the red line segments,
we can achieve clear results as shown in Fig.4(b).
Optimization. To start with, we first figure out the Lagrange mul-
tipliers of GOUM as below:

max
𝝎,𝜿 ,𝒔

min
𝝅

𝐽̂agn = ⟨𝝅 , Q⟩ − ⟨𝝎, 𝝅1𝑁 − 1𝑁 ⟩

− ⟨𝜿 , 𝝅⊤1𝑁 − 1𝑁 ⟩ − ⟨𝝅 , 𝒔⟩,
(18)

where 𝝎, 𝜿 and 𝒔 denote the Lagrange multipliers. Meanwhile 𝒔
satisfies 𝑠𝑖 𝑗 ≥ 0 and 𝑠𝑖 𝑗𝜋𝑖 𝑗 = 0 according to the KKT conditions.
Therefore, it is obvious to achieve the dual form of GOUM:
max
𝝎,𝜿
J = ⟨𝝎, 𝒂⟩ + ⟨𝜿 , 𝒃⟩ 𝑠 .𝑡 . 𝜔𝑖 + 𝜅 𝑗 + 𝑠𝑖 𝑗 = Q𝑖 𝑗 , 𝑠𝑖 𝑗 ≥ 0, (19)

where we can observe that 𝜔𝑖 + 𝜅 𝑗 ≤ Q𝑖 𝑗 . That is, we can adopt
𝑐-transform to obtain 𝜅 𝑗 = inf𝑘∈[𝑁 ] (Q𝑘 𝑗 − 𝜔𝑘 ). Although we
should only need to optimize variable𝝎 in Eq.(19), the optimization
problem is non-smooth. Hence we should adopt the smoothness
approximation [41] on 𝜿 to facilitate the following procedure:

inf
𝑘∈[𝑁 ]

(
Q𝑘 𝑗 − 𝜔𝑘

)
= − lim

𝜖→0

[
𝜖 log

[
𝑁∑︁
𝑖=1

exp
(
𝜔𝑖 − Q𝑖 𝑗

𝜖

)] ]
. (20)

At that time, the optimization in Eq.(19) can be rewritten with the
following approximate but smoothness expression:

min
̂𝝎
JKP =

𝑁∑︁
𝑗=1

{
𝜖 log

[
𝑁∑︁
𝑖=1

exp
(
𝜔𝑖 − Q𝑖 𝑗

𝜖

)]}
−

𝑁∑︁
𝑖=1

𝜔𝑖

= −
𝑁∑︁
𝑗=1

𝜅̂ 𝑗 −
𝑁∑︁
𝑖=1

𝜔𝑖 ,

(21)

where 𝜿 and 𝝎 denotes the approximation on 𝜿 and 𝝎 respectively.
When 𝜖 → 0, 𝜿 and 𝝎 will be relatively close to the true value
of 𝜿 and 𝝎 [1]. We can adopt FISTA algorithm [2] to optimize
Eq.(21) efficiently for achieving the optimal solution on 𝜿 , 𝝎 and
𝑠̂𝑖 𝑗 = Q𝑖 𝑗 −𝜔𝑖 − 𝜅̂ 𝑗 . Note that ideally when 𝑠̂𝑖 𝑗 = 0, it indicates that
𝜋𝑖 𝑗 = 1 according to the KKT theorem. In practice, we select the

2024-10-15 09:24. Page 5 of 1–11.
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smallest value of 𝑠̂𝑖∗ for the 𝑖-th row as the actual matching results:

𝜋𝑖 𝑗 =

{1, argmin
𝑗

[
Q𝑖 𝑗 − 𝜔𝑖 − 𝜅̂ 𝑗

]
,

0, otherwise.
(22)

The pseudo algorithm for GOUM is provided in Appendix B. After
we obtain the user-user matching matrix 𝝅∗, we can determine
the most relevant users across domains among the whole set of
users. That is for the source user US , the most relevant target
users is given as 𝝅UT . Likewise, for the target user UT , the most
relevant source users is given as 𝝅⊤US . Therefore, we further
propose guidance user contrastive loss across domains:

min𝐿C = −
𝑁∑︁
𝑖=1

log(𝒮(U
S
𝑖 , [𝝅UT ]𝑖 ) ) + log(

∑︁
UT
𝑘
∈H(US

𝑖
)

𝒮(US𝑖 ,U
T
𝑘
) )


−

𝑁∑︁
𝑗=1

log(𝒮(U
T
𝑗 , [𝝅

⊤
U
S ] 𝑗 ) ) + log(

∑︁
US
𝑘
∈H(UT

𝑗
)

𝒮(UT𝑗 ,U
S
𝑘
) )

 ,
(23)

whereH(US
𝑖
) = UT \ [𝝅UT ]𝑖 andH(UT𝑗 ) = US \ [𝝅⊤US] 𝑗

denote irrelevant users which act as the negative samples. The guid-
ance contrastive loss can enforce users with similar characteristics
across domains to move closer in the embedding space. Thus the
inter-domain knowledge can enhance the model training.

3.4 Putting Together
The total loos of SIEOUG can be obtained by the contrastive collab-
orative filtering loss and guidance user contrastive loss on source
and target domains. That is, the loss of SIEOUG is given as:

min𝐿 = 𝐿SR + 𝐿
T
R + 𝜆𝐿C, (24)

where 𝜆 denotes the balanced hyper parameters. By doing this,
SIEOUG can not only model items with diverse modalities, but
also aggregate useful knowledge among the guidance of overlapped
users across domains. Note that we pre-calculate the pair-wise item-
item similarity graph 𝑨𝑑 via RISGF beforehand and freeze them
during the training stage to reduce the computation burden.

4 EMPIRICAL STUDY
In this section, we conduct experiments on several real-world
datasets to answer the following questions: (1) RQ1: How does
the proposed model SIEOUG perform compared with the state-of-
the-art recommendation methods? (2) RQ2: How do the similarity
item exploration and overlapped user guidance contribute to perfor-
mance improvement? (3) RQ3: Can proposed method be extended
to collaborate with other recommendation models? (4) RQ4: How
does the performance of SIEOUG vary with different values of the
hyper-parameters?

4.1 Datasets and Tasks
We conduct extensive experiments on commonly used real-world
Amazon datasets. The Amazon dataset [42] has five domains, i.e.,
Clothing Shoes and Jewelry (Clothes), Sports and Outdoors (Sports),
Tools and Home Improvement (Home), Grocery and Gourmet Food
(Food), and Home and Kitchen (Kitchen). Each datasets includes
user-item rating interactions, item text descriptions and item image

information. Specifically, we conduct three different tasks on MM-
CDR, e.g., (Task 1) Clothes↔ Sports, (Task 2) Clothes↔ Home,
(Task 3) Food↔ Kitchen. For each dataset, we binarize the ratings
higher or equal to 4 as 1 and the rest as 0 following [24]. Then we
filter the users and items with less than 10 interactions. The detailed
datasets statistics after prepossessing are shown in Appendix.C.

4.2 Experiment Settings
We randomly divide the user-item rating data into training, vali-
dation, and test sets with a ratio of 8:1:1 following [74]. We also
adjust the overlapped user ratio K𝑢 in {10%, 50%, 90%} to verify
the effectiveness our model following [24, 25]. When K𝑢 is larger
(e.g., K𝑢 = 90%), the problem is much easier due to the ample guid-
ance provided by the overlapping users. In contrast, when K𝑢 is
smaller (e.g., K𝑢 = 10%), the problem becomes significantly more
challenging. We set batch size 𝑁 = 256 for training in both source
and target domains. We set 𝑧 = 5 for the top-𝑧 sparsification in
the pair-wise item similarity graph construction. We set 𝜇 = 0.1
and 𝜂 = 0.1 for RISGF and SISHE respectively. Meanwhile we set
the number of item clusters as 𝐾 = 15 for constructing the item
hypergraph. The number of layers for both graph and hypergraph
convolution networks are set to 3. The latent dimension of user and
item embeddings are given as 𝐷 = 128. We set 𝜖 = 0.01 for GOUM
in the overlapped user guidance module. Finally we set 𝜆 = 0.6 for
the loss function in SIEOUG. For all the experiments, we perform
five random experiments and report the average results. We choose
Adam [28] as optimizer, and adopt HR@𝑘 and NDCG@𝑘 [54] as
the ranking evaluation metrics with 𝑘 = 10.
Baseline. We compare our proposed SIEOUG with the following
state-of-the-art models. (1) NeuMF [19] first utilizes deep neu-
ral networks for collaborative filtering in the single domain. (2)
LightGCN [18] first adopts graph convolution network to further
enhance intra-domain model performance. (3) LATTICE [68] first
exploits the similarity graph among multi-modal item informa-
tion for user-item modeling. (4) FREEDOM [74] further aggregates
multi-modal information with denoising mechanism. (5) LGM3Rec
[15] utilizes local and global graph learningmethods for multimodal
recommendation. (6) DisenCDR [4] adopts variational disentangle
mechanism for cross domain recommendation among overlapped
users. (7) ETL [7] utilizes dual autoencoder framework with equiv-
alent transformation component across domains. (8) VDEA [24]
exploits domain-invariant user preferences with co-clusteringmeth-
ods across domains. (9)DURation [35] adopts distribution variance
and correlation alignment to obtain unified representations. (10)
CL-DTCDR [36] adopt dual-target contrastive learning method
for cross domain recommendation. (11) MOTKD [63] is the state-
of-the-art model which adopting optimal transport for multi-modal
cross domain recommendation.

4.3 Recommendation Performance
Results and discussion. The comparison results on different
datasets are shown in Table.1. From that we can observe: (1) Single
domain multi-modal recommendation models (e.g., LATTICE and
FREEDOM) can enhance the model performance against conven-
tional recommendation models (e.g., LightGCN). However, these
single-domain models cannot leverage useful knowledge across

2024-10-15 09:24. Page 6 of 1–11.
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Table 1: Experimental results on Amazon datasets.

Clothes & Sports
Clothes (K𝑢 = 10%) Sports (K𝑢 = 10%) Clothes (K𝑢 = 50%) Sports (K𝑢 = 50%) Clothes (K𝑢 = 90%) Sports (K𝑢 = 90%)
HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

NeuMF 0.0383 0.0131 0.0490 0.0275 0.0564 0.0202 0.0779 0.0265 0.0870 0.0316 0.1112 0.0488
LightGCN 0.0429 0.0205 0.0573 0.0316 0.0682 0.0264 0.0851 0.0396 0.0968 0.0403 0.1184 0.0573
LATTICE 0.0558 0.0297 0.0626 0.0364 0.0753 0.0341 0.0930 0.0471 0.1003 0.0489 0.1256 0.0668
FREEDOM 0.0636 0.0354 0.0725 0.0404 0.0779 0.0374 0.0954 0.0527 0.1031 0.0542 0.1283 0.0707
LGM3Rec 0.0645 0.0363 0.0739 0.0421 0.0806 0.0417 0.0992 0.0543 0.1054 0.0568 0.1307 0.0723
DisenCDR 0.0565 0.0252 0.0667 0.0341 0.0780 0.0389 0.0968 0.0526 0.1097 0.0592 0.1361 0.0740

ETL 0.0594 0.0286 0.0701 0.0378 0.0812 0.0405 0.1013 0.0540 0.1066 0.0564 0.1347 0.0751
VDEA 0.0653 0.0351 0.0724 0.0402 0.0846 0.0432 0.1039 0.0575 0.1102 0.0587 0.1368 0.0743

DURation 0.0641 0.0338 0.0742 0.0439 0.0875 0.0423 0.1057 0.0601 0.1124 0.0610 0.1395 0.0762
CL-DTCDR 0.0679 0.0368 0.0755 0.0472 0.0903 0.0441 0.1084 0.0612 0.1136 0.0621 0.1408 0.0775
MOTKD 0.0705 0.0375 0.0781 0.0493 0.0939 0.0452 0.1114 0.0623 0.1167 0.0640 0.1432 0.0806

SIEOUG-O 0.0684 0.0390 0.0769 0.0467 0.0892 0.0437 0.1061 0.0578 0.1115 0.0603 0.1364 0.0776
SIEOUG-M 0.0722 0.0403 0.0805 0.0517 0.0961 0.0498 0.1174 0.0650 0.1250 0.0676 0.1535 0.0884
SIEOUG-G 0.0740 0.0409 0.0826 0.0531 0.0972 0.0503 0.1185 0.0661 0.1254 0.0667 0.1528 0.0875
SIEOUG 0.0808 0.0437 0.0873 0.0595 0.1034 0.0543 0.1276 0.0716 0.1292 0.0692 0.1551 0.0899

Clothes & Home
Clothes (K𝑢 = 10%) Home (K𝑢 = 10%) Clothes (K𝑢 = 50%) Home (K𝑢 = 50%) Clothes (K𝑢 = 90%) Home (K𝑢 = 90%)
HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

NeuMF 0.0498 0.0181 0.0234 0.0113 0.0755 0.0269 0.0517 0.0173 0.1084 0.0536 0.0702 0.0245
LightGCN 0.0635 0.0267 0.0392 0.0178 0.0843 0.0381 0.0664 0.0254 0.1196 0.0605 0.0827 0.0363
LATTICE 0.0747 0.0354 0.0511 0.0259 0.0970 0.0463 0.0739 0.0325 0.1304 0.0682 0.0916 0.0421
FREEDOM 0.0810 0.0404 0.0578 0.0312 0.1062 0.0557 0.0796 0.0369 0.1353 0.0739 0.0943 0.0488
LGM3Rec 0.0843 0.0429 0.0602 0.0336 0.1091 0.0586 0.0835 0.0404 0.1372 0.0768 0.0961 0.0510
DisenCDR 0.0825 0.0407 0.0584 0.0306 0.1094 0.0581 0.0843 0.0412 0.1390 0.0781 0.0987 0.0515

ETL 0.0851 0.0426 0.0597 0.0324 0.1125 0.0590 0.0863 0.0435 0.1406 0.0795 0.0998 0.0519
VDEA 0.0886 0.0450 0.0617 0.0345 0.1138 0.0603 0.0872 0.0446 0.1417 0.0810 0.1003 0.0524

DURation 0.0906 0.0472 0.0630 0.0369 0.1158 0.0626 0.0891 0.0454 0.1425 0.0817 0.1021 0.0532
CL-DTCDR 0.0924 0.0493 0.0636 0.0381 0.1175 0.0642 0.0914 0.0475 0.1442 0.0831 0.1053 0.0547
MOTKD 0.0935 0.0506 0.0664 0.0389 0.1192 0.0651 0.0923 0.0487 0.1464 0.0842 0.1078 0.0559

SIEOUG-O 0.0902 0.0486 0.0641 0.0375 0.1169 0.0637 0.0898 0.0468 0.1423 0.0814 0.1050 0.0538
SIEOUG-M 0.0949 0.0521 0.0675 0.0413 0.1231 0.0682 0.0958 0.0502 0.1507 0.0874 0.1126 0.0594
SIEOUG-G 0.0958 0.0530 0.0692 0.0427 0.1244 0.0689 0.0971 0.0508 0.1511 0.0865 0.1117 0.0586
SIEOUG 0.1031 0.0595 0.0763 0.0476 0.1296 0.0724 0.1007 0.0530 0.1555 0.0889 0.1158 0.0612

Food & Kitchen
Food (K𝑢 = 10%) Kitchen (K𝑢 = 10%) Food (K𝑢 = 50%) Kitchen (K𝑢 = 50%) Food (K𝑢 = 90%) Kitchen (K𝑢 = 90%)

HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10
NeuMF 0.0533 0.0119 0.0174 0.0102 0.1263 0.0381 0.0496 0.0215 0.1437 0.0658 0.0602 0.0331

LightGCN 0.0770 0.0221 0.0253 0.0184 0.1451 0.0469 0.0512 0.0293 0.1505 0.0716 0.0767 0.0446
LATTICE 0.0994 0.0338 0.0391 0.0243 0.1366 0.0556 0.0585 0.0304 0.1575 0.0772 0.0827 0.0508
FREEDOM 0.1045 0.0442 0.0456 0.0301 0.1396 0.0578 0.0640 0.0383 0.1617 0.0864 0.0859 0.0532
LGM3Rec 0.1078 0.0475 0.0471 0.0345 0.1421 0.0609 0.0673 0.0426 0.1644 0.0892 0.0887 0.0556
DisenCDR 0.0982 0.0384 0.0393 0.0294 0.1375 0.0601 0.0656 0.0410 0.1686 0.0907 0.0915 0.0563

ETL 0.1019 0.0403 0.0422 0.0317 0.1404 0.0618 0.0679 0.0423 0.1709 0.0924 0.0923 0.0574
VDEA 0.1026 0.0435 0.0504 0.0330 0.1419 0.0627 0.0705 0.0445 0.1712 0.0931 0.0928 0.0589

DURation 0.1071 0.0494 0.0525 0.0363 0.1437 0.0646 0.0723 0.0468 0.1730 0.0939 0.0942 0.0585
CL-DTCDR 0.1115 0.0537 0.0566 0.0384 0.1454 0.0679 0.0728 0.0481 0.1738 0.0945 0.0964 0.0593
MOTKD 0.1164 0.0596 0.0603 0.0417 0.1482 0.0685 0.0749 0.0506 0.1753 0.0968 0.0989 0.0617

SIEOUG-O 0.1141 0.0565 0.0588 0.0392 0.1463 0.0668 0.0701 0.0474 0.1707 0.0936 0.0941 0.0573
SIEOUG-M 0.1183 0.0602 0.0627 0.0425 0.1556 0.0754 0.0774 0.0539 0.1781 0.1012 0.1005 0.0641
SIEOUG-G 0.1202 0.0611 0.0649 0.0437 0.1570 0.0776 0.0788 0.0545 0.1774 0.0998 0.1001 0.0636
SIEOUG 0.1279 0.0663 0.0726 0.0498 0.1625 0.0833 0.0854 0.0586 0.1813 0.1031 0.1033 0.0659

different domains and thus limits the model potentials. (2) Conven-
tional cross-domain recommendation models (e.g., DisenCDR) can
provide better results than most of single-domain recommendation
models (e.g., LightGCN) indicates the importance of leveraging
useful knowledge across domains. However, these methods did
not incorporate multi-modal information, resulting in less expres-
sive item embeddings. (3) Some latest multi-modal cross-domain
recommendation models (e.g., MOTKD) achieve much better re-
sults against other baselines. Nonetheless,MOTKD did not fully
consider the guidance among these overlapped users for domain
adaptation via optimal transport, and thus it may lead to ambiguous
matching solutions and deteriorate the model performance. (4) Our
proposed SIEOUG reaches state-of-the-art performance demon-
strates the efficacy of similarity item exploration and overlapped
user guidance. Moreover, SIEOUG can boost model performance
even in cases where only relatively few users are overlapped (e.g.,
K𝑢 = 10%) among different three tasks which is rather challenging.

Furthermore, we collect HR@10 and NDCG@10 of the runner-up
modelMOTKD and our proposed SIEOUG for Amazon Clothes
and Amazon Sports with K𝑢 = 90% as shown in Fig.6. We can
observe that SIEOUG reaches much better performance during the
whole training epoch, showing the stability of SIEOUG.

4.4 Analysis (for RQ2 and RQ4)
Ablation. To study how does each module of SIEOUG contribute
on the final performance, we compare SIEOUGwith its several vari-
ants, including SIEOUG-O, SIEOUG-M, and SIEOUG-G. SIEOUG-
O does not involve overlapped user guidance module which means
it functions as a single-domain recommendation model with 𝜆 = 0.
SIEOUG-M simply adopts the user contrastive loss among over-
lapped users. SIEOUG-G replaces GOUM with conventional fused
Gromov-Wasserstein optimal transport without guidance among
source and target users. The comparison results are shown in Ta-
ble.1. From it, we can observe that: (1) SIEOUG-O outperforms
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Figure 5: The experimental results on method extension.

Figure 6: HR@10 and NDCG@10 of MOTKD and SIEOUG for
Amazon Clothes and Amazon Sports with K𝑢 = 90%.

(a) The model performance on tuning 𝝀 (b) The model performance on tuning 𝝐

Figure 7: The experimental results on hyper parameters.

other single-domain recommendation models (e.g., FREEDOM)
indicates our proposed similarity item exploration module can bet-
ter exploit multi-modal information for solving CH1 within each
domains. (2) By comparing the performance results of SIEOUG
and SIEOUG-O, it shows that the results of SIEOUG-O are inferior
to that of SIEOUG since it fails to transfer useful knowledge across
domains via the overlapped users. (3) SIEOUG-M and SIEOUG-G
achieve much better performance than SIEOUG-O and other CDR
baselines (e.g.,MOTKD). However, SIEOUG-M is limited by the
number of overlapped users especially when K𝑢 is much smaller.
Meanwhile SIEOUG-G fails to consider the guidance among the
overlapped users and thus it could lead to negative transfer. (4)
SIEOUG achieves the better performance than SIEOUG-M, show-
ing the proposed overlapped user guidance module can sufficiently
share useful knowledge across domains for tackling CH2.
Method Extension.We further analyse the general extension of
our proposed GOUM algorithm with guidance user contrastive
loss in SIEOUG. Specifically, we aim to integrate GOUM into the
single-domainmulti-modal recommendationmodelsLATTICE and
LGM3Rec, resulting in LATTICE+GOUM and LGM3Rec+GOUM.
Then we conduct the experiments on Amazon Food↔ Amazon
Kitchen and Amazon Clothes ↔ Amazon Home and report the

results in Fig.5(a)-(b). From this, we can observe that both LAT-
TICE+GOUM and LGM3Rec+GOUM outperform the original mod-
els, indicating that the proposed method has strong generalization
capabilities. Moreover, we analyse the extension of our proposed
Similarity Item Exploration Module (SIEM) with item-item graph
and hypergraph on DURation andMOTKD to construct DURa-
tion+SIEM and MOTKD+SIEM. The results are shown in Fig.5(c)-
(d) and bothDURation+SIEM andMOTKD+SIEM boost the model
performance, showing SIEM can be also applied to other models.
Effect of hyper-parameters.We finally study the effects of hyper-
parameters on model performance in Amazon Clothes↔ Amazon
Sport with user overlapped ratio K𝑢 = 10%. Specifically, we vary
𝜆 in range of {0.2, 0.4, 0.5, 0.6, 0.8, 1.0} and report the results of
HR@10 and NDCG@10 in Fig.7(a). We can observe that when 𝜆
is smaller (e.g., 𝜆 = 0.2), the guidance user contrastive loss is less
effective for knowledge transfer. Meanwhile when 𝜆 is larger (e.g.,
𝜆 = 1), it may negatively impact the contrastive collaborative filter-
ing loss in each domain, leading to deteriorated results. Therefore
we set 𝜆 = 0.6 empirically. Moreover, we conduct the experiments
on varying 𝜖 in range of {0.001, 0.01, 0.1, 1, 10, 100} on GOUM and
report the results of HR@10 and NDCG@10 in Fig.7(b). We can
conclude that the model can obtain better performance when 𝜖 is
smaller which aligns with the limitation results in Eq.(20). How-
ever, when 𝜖 increases, the approximate calculations may result in
inaccurate matching solutions, compromising the overall accuracy.
Therefore we set 𝜖 = 0.1 empirically for SIEOUG.
5 CONCLUSION
In this paper, we Joint Similarity Item Exploration and Overlapped
User Guidance model (SIEOUG) for solving the Multi-Modal Cross-
Domain Recommendation (MMCDR) problem, which includes the
similarity item exploration module, user-item collaborative filtering
module, and the overlapped user guidance module. Similarity item
exploration module constructs item-item graph and hypergraph via
proposed RISGF and SISHE algorithm from pair-wise and group-
wise perspectives. User-item collaborative filtering module further
aggregates multi-modal information for user-item modeling within
each domain. Overlapped user guidance module realizes the knowl-
edge transfer among the source and target users via GOUMwith op-
timal matching accordingly. By incorporating these three modules,
SIEOUG can not only fully exploit and utilize multi-modal item
information, but also sharing useful knowledge to tackle data spar-
sity problem. We also conduct extensive experiments on Amazon
datasets to demonstrate the superior performance of our proposed
SIEOUG on several tasks under different overlapped user ratio.
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Appendix

A SPARSITY ITEM SIMILARITY
HYPERGRAPH EXPLORATION

The algorithm of Sparsity Item Similarity Hypergraph Exploration
(SISHE) is provided in Alg.1.

Algorithm 1 The procedure scheme of Sparsity Item Similarity
Hypergraph Exploration.

1: Input: 𝑨𝑑 : pair-wise item similarity graph in domain 𝑑 ; 𝐾 :
Number of clusters for constructing group-wise item hyper-
graph.

2: Initialize the clustering matrix as (𝛾𝑑 ) (0)
𝑖 𝑗

= 1
𝐾
.

3: for 𝑙 = 0 to 𝑇 − 1 do
4: Calculate the matrix (−𝑨𝑑 (𝜸𝑑 ) (𝑙 ) 𝑰𝐾 ) = Y (𝑙 ) .
5: Update the value of Lagrange multiplier 𝒇 via:

𝑓𝑖 =


G (𝑙 )𝑜 +

𝜂−𝜙 (G (𝑙 )𝑜 )
𝜙 (G (𝑙 )

𝑜+1 )−𝜙 (G
(𝑙 )
𝑜 )
(G (𝑙 )
𝑜+1 − G

(𝑙 )
𝑜 ), 𝜙 (G (𝑙 )𝑜 ) ≤ 𝜂 < 𝜙 (G (𝑙 )

𝑜+1 )

1
𝐾

(
𝜂 +

𝐾∑
𝑗=1
G (𝑙 )
𝑗

)
, 𝜂 ≥ 𝜙 (G (𝑙 )

𝐾
)

6: Update the value of Lagrange multiplier 𝒈 via:

𝑔 𝑗 =


F (𝑙 )𝑜 + 𝜂 𝑁

𝐾
−𝜓 (F (𝑙 )𝑜 )

𝜓 (F (𝑙 )
𝑜+1 )−𝜓 (F

(𝑙 )
𝑜 )
(F (𝑙 )
𝑜+1 − F

(𝑙 )
𝑜 ), 𝜓 (F (𝑙 )𝑜 ) ≤ 𝜂 𝑁𝐾 < 𝜓 (F (𝑙 )

𝑜+1 )

1
𝑁

(
𝜂 𝑁
𝐾
+
𝑁∑
𝑖=1
F (𝑙 )
𝑗

)
, 𝜂 𝑁

𝐾
≥ 𝜓 (F (𝑙 )

𝐾
)

7: Update the clustering matrix via:

(𝜸𝑑 ) (𝑙+1)
𝑖 𝑗

=


𝑓𝑖 + 𝑔 𝑗 − Y (𝑙 )𝑖 𝑗

𝜂

+
8: end for
9: Return: The clustering matrix 𝜸𝑑 .

B GUIDANCE-BASED OPTIMAL USER
MATCHING

The algorithm of Guidance-based Optimal User Matching (GOUM)
is provided in Alg.2.

Table 2: Statistics on Douban and Amazon datasets.
Datasets Users Items Ratings Sparsity

Task 1 Amazon Clothes 9,202 10,652 83,130 99.92%
Amazon Sports 10,219 84,013 99.91%

Task 2 Amazon Clothes 6,548 7,266 55,789 99.88%
Amazon Home 8,418 71,171 99.87%

Task 3 Amazon Food 9,815 9,949 135,634 99.86%
Amazon Kitchen 14,680 154,152 99.89%

C EMPIRICAL STUDY
Datasets and Tasks.We conduct extensive experiments on com-
monly used real-worldAmazon datasets. TheAmazon dataset [42]
has five domains, i.e., Clothing Shoes and Jewelry (Clothes), Sports
and Outdoors (Sports), Tools and Home Improvement (Home), Gro-
cery and Gourmet Food (Food), and Home and Kitchen (Kitchen).
For each dataset, we binarize the ratings higher or equal to 4 as 1
and the rest as 0 following [24]. Then we filter the users and items

Algorithm 2 The procedure scheme of Guidance-based Optimal
User Matching.
1: Input: 𝜖: The hyper parameter; C: The cost matrix; M: The

guidance mask matrix.
2: Adding the mask into the cost matrix via C𝑖 𝑗 ⊙M𝑖 𝑗 = Q𝑖 𝑗 .
3: Adopting FISTA(JKP) to optimize the optimization problem:

min
̂𝝎
JKP =

𝑁∑︁
𝑗=1

{
𝜖 log

[
𝑁∑︁
𝑖=1

exp
(
𝜔𝑖 − Q𝑖 𝑗

𝜖

)]}
−

𝑁∑︁
𝑖=1

𝜔𝑖

4: Obtain the optimal solution on 𝝎 and 𝜿 via:

𝜿 𝑗 = −𝜖 log
[
𝑁∑︁
𝑖=1

exp
(
𝜔𝑖 − Q𝑖 𝑗

𝜖

)]
5: Obtain the user-user matching results:

𝜋𝑖 𝑗 =


1, argmin

𝑗

[
Q𝑖 𝑗 − 𝜔𝑖 − 𝜅 𝑗

]
0, otherwise

6: Function: FISTA(JKP):
7: Initialize 𝜃0 = 1, 𝑡 ′ = 0, and 𝝎 (0) = (0, 0, · · · , 0).
8: repeat
9: Calculate the gradient of (JKP) as:

G(𝜔 (𝑡 )
𝑖
) = 𝜕JKP

𝜕𝜔
(𝑡 )
𝑖

=

𝑁∑︁
𝑗=1

[
exp( (𝜔 (𝑡 )

𝑖
− Q𝑖 𝑗 )/𝜖 )∑𝑀

𝑘=1 exp( (𝜔
(𝑡 )
𝑘
− Q𝑘 𝑗 )/𝜖 )

]
− 1

10: Update ˜𝝎 (𝑡 ) = ̂𝝎 (𝑡 ) − 𝛽𝑠G(̂𝝎 (𝑡 ) ) where 𝛽𝑠 denotes the step
size that learned from the Armijo line search method.

11: Update 𝜃𝑡 ′+1 = 1
2 (1 +

√︃
1 + 4𝜃2

𝑡 ′ )

12: Update ̂𝝎 (𝑡 ) ← ̂𝝎 (𝑡 ) + 𝜃𝑡 ′−1
𝜃𝑡 ′+1
(𝝎 (𝑡 ) − ̂𝝎 (𝑡 ) ).

13: Update 𝑡 ′ = 𝑡 ′ + 1.
14: until Converge.
15: Return: The user-user matching matrix 𝝅 .

Figure 8: The experimental results on number of clusters 𝐾 .

with less than 10 interactions. The detailed datasets statistics after
prepossessing are shown in Table 2.
Effect of hyper-parameters. We also vary the number of cluster
𝐾 in range of 𝐾 ∈ {5, 10, 15, 20, 30} in Amazon Clothes and Home
with K𝑢 = 50% and report the results (HR and NDCG) in Fig.8. We
observe that as the number of clusters increases, performance im-
proves significantly. However, when the number of clusters reaches
a certain value as 𝐾 = 15, its growth effect slows down. Meanwhile,
a large number of clusters can also lead to increased computational
burdens. Therefore we set 𝐾 = 15 empirically.
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