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Abstract

Semi-supervised learning aims to leverage a large amount of unlabeled data for
performance boosting. Existing works primarily focus on image classification.
In this paper, we delve into semi-supervised learning for object detection, where
labeled data are more labor-intensive to collect. Current methods are easily dis-
tracted by noisy regions generated by pseudo labels. To combat the noisy labeling,
we propose noise-resistant semi-supervised learning by quantifying the region
uncertainty. We first investigate the adverse effects brought by different forms of
noise associated with pseudo labels. Then we propose to quantify the uncertainty
of regions by identifying the noise-resistant properties of regions over different
strengths. By importing the region uncertainty quantification and promoting multi-
peak probability distribution output, we introduce uncertainty into training and
further achieve noise-resistant learning. Experiments on both PASCAL VOC and
MS COCO demonstrate the extraordinary performance of our method.

1 Introduction

Deep neural networks (DNNs) have developed significantly in the computer vision area [15, 18].
Despite this, DNNs highly rely on the fully-supervised learning with a large amount of human-
annotated data, which consumes a tremendous amount of time to annotate. In comparison, unlabeled
images are much easier to access. Semi-supervised learning [4] is thus studied to address this problem.
By involving large-scale unlabeled images in training, semi-supervised learning becomes more valued
[16, 26, 40, 28] on benchmark datasets.

However, most of the existing semi-supervised learning methods focus on image classification. Object
detection, where complete annotations include category-aware tags and location-aware bounding
boxes, requires much more efforts to construct large-scale fully-annotated datasets. In this work, we
aim at semi-supervised learning for object detection [35]: an object detector is trained on a dataset
where only a small fraction of images are fully-labeled and the rest of them are unlabeled. In this
setting, easily obtained unlabeled data are utilized to improve the performance of fully-supervised
object detection. Most of the current semi-supervised learning methods in object detection are based
on pseudo labeling [19, 36]. A fully-supervised model is firstly pre-trained on completely labeled
images then performs inference on unlabeled data to generate pseudo labels. These unlabeled images
associated with pseudo labels are further combined with labeled data to learn the semi-supervised
model. This pseudo labeling scheme has been widely adopted in semi-supervised object detection
[31]. However, the performance is still limited since the noise inherently exists in pseudo labels, i.e.,
pseudo labeling based semi-supervised learning methods severely suffer from the inherent noise.
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Figure 1: The working framework of our proposed method. To combat noise associated with
pseudo labels, we quantify uncertainty for different regions first. By further constructing uncertainty-
aware soft target and promoting multi-peak probability distribution, we introduce uncertainty into
training and achieve noise-resistant learning.

To promote semi-supervised learning, it is natural to ask: what kinds of adverse effects are caused by
the noisy pseudo labels in detection? A common way of object detection is to firstly generate several
candidate region proposals then extract object-centric feature representations. Because of the noisy
pseudo labels, region proposals are likely to be assigned with incorrect labels. Based on the error
analysis, we discover that three kinds of errors (i.e., the missed GT error, the classification error, and
the assignment error) can be attributed to noisy pseudo labeling. Another question arises: how to
combat noise inherent with pseudo labels and facilitate semi-supervised learning? To answer this,
we estimate the noise by quantifying the uncertainty of noise-polluted region proposals. In particular,
we measure the region uncertainty from the perspective of incorrect or imprecise predictions, then
involve this uncertainty for noise-resistant semi-supervised learning.

In this paper, we propose a region uncertainty quantification based semi-supervised learning method
for object detection. Specifically, we first present a detailed investigation into the effects of noisy
pseudo labels. We observe that different types of region proposals behave with different sensitivity in
the face of noisy labels. By associating the varied sensitivity with noisy pseudo labels, we present a
quantitative metric to measure the uncertainty degrees of regions and construct an uncertainty-aware
soft target as the learning objective. In addition, we remove the competitive effect among classes to
allow multi-peak probabilistic confidence and avoid over-confident predictions for uncertain regions.
By quantifying and embracing the region uncertainty, we obtain a novel semi-supervised learning
approach for object detection with high noise resistance and superior performance.

Our main contributions can be summarized as follows:

• We investigate the negative effects of noisy pseudo labels. A novel region uncertainty quantification
metric is proposed from the perspective of the sensitivity to noisy pseudo labeling.

• We propose a noise-resistant semi-supervised learning approach by formulating an uncertainty-
aware soft target as the learning objective, which prevents the performance from deterioration
caused by noisy pseudo labeling.

• By removing the competition among classes and allowing multi-peak probability distributions, we
further alleviate the overfitting to noisy pseudo labels.

Our method achieves the state-of-the-art results on the PASCAL VOC and MS COCO dataset,
exceeding supervised baseline methods by 6.2% and 4.2% respectively.

2 Related Work

Semi-supervised learning. To reduce the difficulty of obtaining large-scale labeled data, semi-
supervised learning is presented by adopting unlabeled images into training. Until recently, current
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Figure 2: Illustration of different types of noise within pseudo labels (a) and their effects on
different types of region proposals (b). Noisy pseudo labels mainly cause the missed GT error, the
classification error and the assignment error to hurt the model’s performance. These effects behave
differently on regions according to their different IoUs with pseudo labels.

semi-supervised methods are mainly about consistency regularization [16, 26, 40, 28], which usu-
ally performs data augmentation or perturbation first then constrains their output to be consistent;
self-training [44, 4, 30], which usually adopts the co-training mechanism of teacher and student
models; label propagation [48, 2] that helps improve the quality of pseudo labels and so on. These
methods usually target at classification or semantic segmentation. Object detection, however, is by
nature different. Large numbers of region proposals within a single image and the existence of the
background category make these methods hard to transfer well to object detection.

Semi-supervised object detection. Object detection, one of the most important tasks in computer
vision, has developed rapidly in recent years [9, 8, 33, 32, 23]. But the large annotation cost restricts
the scale of current detection datasets, further limits the performance of detection models. Currently,
a part of semi-supervised object detection methods are based on pseudo labels [31, 24, 43, 39, 47].
But they usually fail to consider noise within pseudo labels thus are easy to overfit noisy labels. Some
methods also adopt the idea of data augmentation and consistency regularization [12, 13, 37]. But
they usually need to adopt extensive forms of data augmentation for consistency regularization and
increase the training budget. We mainly focus on the usage of pseudo labels. Compared with these
methods, we target a noise-robust semi-supervised learning approach when using pseudo labels.

Uncertainty-based pseudo-labeling. Considering that standard deep learning methods do not
possess the ability to model its uncertainty, a series of methods [7, 25, 17] have been proposed.
They usually aim at estimating how uncertain a model is about its predictions. Since uncertainty
estimation is strongly related to the quality of pseudo labels, some methods [27, 34, 46] have adopted
it for pseudo label based semi-supervised learning. Recent works [14, 42] also try to improve the
calibration of the network in object detection. However, these works usually focus on measuring the
uncertainty of the pseudo label itself. Object detection, in comparison, is different, as pseudo labels
do not supervise the learning process directly. Instead, assigned labels for different regions are the
learning targets. Therefore, we focus on uncertainty quantification for regions in object detection.

3 Region Uncertainty Quantification

In this section, we present the quantification metric for estimating the uncertainty of region proposals.
Specifically, we investigate different forms of noise in pseudo labels and observe that different types
of proposals possess different noise resistance. Base on this fact, we quantify the uncertainty of
regions based on their sensitivity to noisy pseudo labeling.

3.1 Noisy Labeling Effects in Semi-supervised Object Detection

Most existing methods for semi-supervised object detection are through pseudo labels. For an
unlabeled image, its pseudo labels are usually extracted by a detection model pre-trained on fully-
labeled images. To improve the quality of pseudo labels, we perform data distillation [31] on
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unlabeled images. Specifically, different data transformations are applied to the unlabeled images for
test augmentation. Detection results from images under different transformations are then averaged
to form the final pseudo labels G = {bbn, cn, sn}Nn=1, where bbn denotes the bounding box, cn is its
category label, and sn is the corresponding probability score from the classification branch.

For an unlabeled image, after the region proposal network (RPN) [33], a series of region proposals
are generated. A certain number of region proposals are then randomly sampled, which forms a set
of region proposals {ri} for the later classification and regression. For a region proposal ri, its label
is assigned according to its overlaps with pseudo labels. We consider the maximum value among it:
Ii = maxg∈G IoU(ri, g). If Ii is larger than a pre-defined lower bound threshold ∆b, it is regarded
as a positive proposal, and the corresponding label {bbi, ci, si} from the pseudo label set G will be
assigned. Otherwise, it is regarded as a negative one. Its category ci will be assigned as background,
while the bounding box bbi and the probability score si are absent.

In the semi-supervised object detection setting, noise inherently exists in pseudo labels. The assigned
category ci is thus likely to be incorrect. The origin of incorrect assigned labels is mainly three-fold:

1. Missed GT error. The proposal ri contains an object, but the corresponding annotation is missed
in pseudo labels G, like the red dashed toaster bounding box in Fig. 2a. ri fails to match with
any annotations thus is assigned with the background category.

2. Classification error. The categories of pseudo labels may be incorrect, like the blue ’bottle’
bounding box in Fig. 2a, which should be a cup. Consequently, although the proposal ri is able to
be assigned with the correct object, its category ci is incorrect.

3. Assignment error. Some pseudo labels are inaccurately localized, like the oversized oven in Fig.
2a, so Ii is erroneous. For the proposal ri, inaccurate bounding box labels in G make it easily be
assigned to another object or the background category, resulting in the incorrectly assigned ci.

These three types of errors have different effects on different types of region proposals. According to
their definitions, the classification error only happens on positive proposals, while the missed GT
error only occurs on negative ones. The missed GT error only matters when the specific negative
region is close enough to a miss-annotated object. However, since the number of negative regions
is quite large, the noisy negative bounding box is a little improbable to be randomly sampled. As a
result, in the region proposal set {ri}, it is much less likely for a negative proposal to be affected by
the missed GT error, compared to positive proposals under the classification error. We thus conclude
that negative proposals suffer from less noise than positive ones.

The assignment error affects region proposals whose I is close to ∆b most severely. For these
proposals, even a slight localization error of pseudo labels may change the value of I, then disturb
the comparison of I and ∆b. The assignment error thus occurs and leads to the wrong category label.
Therefore, we hold that proposals whose I is close to ∆b are exposed to more noise.

We conduct a baseline semi-supervised object detection experiment on the COCO dataset [22], extract
all region proposals on unlabeled images, and record whether their assigned labels are correct. The
relation between the accuracy of their assigned labels and I is plotted in Fig. 2b. We observe that the
accuracy of negative proposals is universally larger than that of positive ones, and proposals whose I
are close to ∆b (0.5) are more noisy. This result confirms our analysis above.

3.2 Uncertainty Quantification

According to the above section, as the assigned category ci for the proposal ri may be incorrect, the
region proposals are kind of noisy. However, since the image is unlabeled, we do not know whether
the proposal is noisy or not. This causes region proposals to be uncertain. Current models lack
strategies to estimate the uncertainty degrees of regions, not to mention avoiding noisy ones. In this
section, we present a quantification metric for the uncertainty of region proposals.

The uncertainty of a region proposal ri is closely related to whether its assigned category ci is
correct. If the category ci is likely to be incorrect, the proposal ri is also uncertain for the model.
The definition of uncertainty quantification, therefore, should be consistent with the likelihood that
the corresponding region proposal is noisy. According to section 3.1, negative proposals are less
likely to be noisy than positive ones. Also, since background samples are significantly more, it is
universally acknowledged that foreground samples occupy a more important position in training
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[21, 3]. Therefore, we only quantify the uncertainty for positive proposals, and assume that negative
proposals are all accurate and certain. Positive proposals are likely to be noisy because of the
classification error and the assignment error. We thus need to take both errors into consideration for
the uncertainty quantification.

For the proposal ri and its assigned pseudo label {bbi, ci, si}, the classification error derives from the
incorrect ci. si, the classification probability score, can well reflect its self-confidence, thus can be
used for measuring the classification error. Through test time augmentation, a simple but effective
strategy for assessing the uncertainty of the classification results, si contains more information thus
is more accurate for evaluating the classification error.

The assignment error is closely related to the overlaps between the proposal and all pseudo labels -
the distance between Ii and the threshold ∆b. So we adopt Ii to measure this. Since our uncertainty
quantification only aims at positive samples, only region proposals whose Ii is larger than ∆b is
considered. Plus, the assignment error is prominent for proposals with a close-to-∆b Ii. We thus
set an upper bound threshold ∆f and only consider proposals with Ii in the range from ∆b to ∆f .
In this range, we normalize the Ii to 0 ∼ 1 with a sigmoid mapping function, with Ini denoting the
normalized Ii. We think Ini is a reasonable metric for estimating the assignment error:

Ini =

{
1/(1 + exp(−C · Iri )) if ∆b < Ii < ∆f

1 otherwise
(1)

Figure 3: Ini , the normalized maximum overlap,
w.r.t. Ii, the maimum overlap, under different C.
∆b is 0.5 and ∆f is 0.7.

where Iri is the linear normalization of Ii from
∆b ∼ ∆f to −1 ∼ 1. This ensures the symmetry
of Ini . C is a pre-defined hyper-parameter. Ini
for proposals whose Ii is not in the range from
∆b to ∆f is set to 1 manually, since we assume
that the assignment error has little effect on them.
From Fig. 3, we can see that only if C is not too
small, Ini is approximately continuous for positive
proposals. For proposals whose Ii is quite close to
∆b, its value is quite small, since these proposals
are much more likely to be affected by the assign-
ment error. Then, Ini increases as Ii increases,
until Ii is close to ∆f . At this time, Ini is close
to 1 and the assignment error can be neglected.
As we can see, Ini is in the range 0 ∼ 1 and is
negatively correlated to the assignment error, thus
can be used for estimating the assignment error.

Based on the above analysis, si and Ini can be utilized for assessing the classification error and the
assignment error separately. A region is certain only when both the classification error and assignment
error are small. We thus multiply them to consider both errors. Then, we propose our uncertainty
quantification ui for the proposal ri, as follows:

ui =

{
1− si · Ini if Ii > ∆b

0 otherwise
(2)

For a positive proposal, its uncertainty metric ui is relevant to its si and Ini . If both of them are close
to 1, the possibility that it is prone to the classification error and the assignment error is small. This
means that its assigned category ci is relatively accurate and it is somewhat certain. So its ui is close
to 0, according to Equ. 2, vice versa. For negative proposals, as we presume that they are less likely
to be noisy, they are certain to the model. So their uncertainty quantification is set to 0 manually.

4 Noise-Resistant Semi-supervised Learning

When region proposals are uncertain, current detection models lack means of handling uncertainty.
They cannot discriminate uncertain regions or alleviate uncertainty during training, which makes
it easy to overfit noise. In this section, we propose to introduce uncertainty into semi-supervised
learning, so that it better adapts to uncertain regions. Finally we obtain noise-resistant learning.
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4.1 Constructing Uncertainty-aware Soft Target

In object detection, for the proposal ri, after assigned with the label {bbi, ci, si}, classification and
regression are conducted on this single proposal. Generally, softmax function is used to convert
the output logits into the probability distribution pi = [pik], where pik denotes the probability
prediction of the proposal ri for the k-th category. Cross entropy loss is then utilized for classification:
Lcls = CE(yi,pi). yi = [yik] is the one-hot category label for ri, where yici = 1 and others are 0.
When pi = yi, the cross entropy is minimized. At this time, the probability distribution pi is also
one-hot and its certainty is maximized.

In fully-supervised object detection, ci is always the actual ground truth category of ri, denoted with
cgti , so this is of no problem. But in the semi-supervised setting, assigned labels may be incorrect
and ci 6= cgti may occur. When ci 6= cgti , the network still tries to maximize pici so that pi can
approach yi. The only outcome is that the cross entropy between pi and the actual one-hot label of
ri is enlarged, which increases the actual loss. As a result, the optimized pi approximates yi, the
distribution of pseudo labels. The model thus overfits to noise, which degrades its performance.

The above phenomenon occurs because when region proposals are uncertain, the model still tries to
optimize itself towards a certain objective. This disparity causes the model hard to accommodate
the uncertain regions. Since the assigned label {bbi, ci, si} for ri is uncertain, just adopting the hard
label yi is unreasonable. To address this issue, we utilize our proposed uncertainty metric ui, and
construct a soft target label for the proposal ri, denoted with ŷi = [ŷik]:

ŷik =

{
(1− ui(β))yik if k 6= bg (background)

1−
∑
k 6=bg ŷik otherwise

(3)

where

ui(β) =

{
1− (si · Ini )β if Ii > ∆b

0 otherwise
β = (t/T )q (4)

For foreground categories, the soft target is calculated by multiplying its certainty quantification
1− ui and hard label yik. The soft target of the background category is then obtained by restricting
the summation of ŷi to 1. For a positive proposal ri, if it is relatively certain and its assigned label ci
is trustworthy, its ui is close to 0, and ŷi is close to yi. Since it is certain, the hard label yi is of no
problem. If the label ci for ri is very likely to be incorrect, its uncertainty quantification ui is high,
close to 1. Then the soft label ŷi approaches the hard label of negative proposals. In this way, the
network regards ri as a background category. Since negative samples are noise-resilient, they are
less likely to be interfered with by these uncertain samples. With this action, positive proposals with
higher quality are involved in classification. Noisy and uncertain regions do not participate in the
training of positive samples, thus mitigate the noise overfitting problem.

β in Equ. 3 and Equ. 4 is a dynamic exponent, where t denotes the current number of iteration and
T is the total number of iterations. q is a pre-defined parameter to make β increase in a polynomial
manner. The introduction of β is to make the soft target ŷi dynamically change with the semi-
supervised training process. For deep learning networks under noisy labels, they will usually learn
from clean and easy samples at the beginning, and overfit to noisy labels later [1, 45, 10]. In the
beginning, β is close to 0 thus ui(β) is close to 0 too. At this time, ŷi is basically the same as yi and
the training is just like previous methods, which guarantees enough amount of positive data for the
initial training. Later, β starts to increase thus ui(β) also increases. ŷi begins to change and provides
high-quality samples when the model is gradually easy to overfit to noise. With this schedule, the
soft target ŷi can better adapt to the training.

Finally, the soft target label participates in the learning. For the classification branch, we utilize the
KL divergence. For the regression branch, we choose the commonly used L1 loss, and re-weight it
with the dynamic uncertainty quantification metric 1− ui(β):

Lcls = KL(ŷi||pi), Lreg = (1− ui(β))L1 (5)

4.2 Promoting Cross-category Uncertainty

The above section aims to solve the problem by avoiding the hard label yi. However, besides the
hard label yi, the probability distribution pi is also problematic. pi is usually obtained with the
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Table 1: Experimental Results on PASCAL VOC 2007 test for different methods. FS is the
supervised model. We re-implement DD and CSD method based on the Faster RCNN.

Method Labeled Unlabeled AP50:95 AP50 AP75

FS VOC07 - 43.1 76.9 43.1
DD [31] VOC07 VOC12 45.2 77.8 47.1

CSD [12] VOC07 VOC12 45.0 77.5 46.7
STAC [37] VOC07 VOC12 44.6 77.5 -

ours VOC07 VOC12 49.3 80.6 53.0
FS VOC0712 - 52.9 83.9 57.6
DD VOC07 VOC12 + coco-20cls 46.6 79.0 49.0

CSD VOC07 VOC12 + coco-20cls 45.5 77.4 47.8
STAC VOC07 VOC12 + coco-20cls 46.0 79.1 -
ours VOC07 VOC12 + coco-20cls 50.2 81.4 54.2

softmax function, which restricts the summation of pi to 1. This generates a single-peak distribution
pi, where pici reaches its highest value. The entropy of such probability distribution is usually small,
as the strong lateral inhibition effect of softmax represses the cross-category uncertainty of pi. When
region proposals are uncertain, this kind of probability distribution is also inappropriate. If ci 6= cgti ,
enlarging pici means a smaller picgti , finally resulting in overfitting to incorrect categories.

To avoid the lateral inhibition effect of softmax, we adopt sigmoid for outputting the probability
distribution pi. With sigmoid function, the cross-category uncertainty is thus promoted and the
multi-peak distribution pi is allowed. In this way, raising pici does not necessarily mean suppressing
picgti

when ci 6= cgti . The probability distribution pi turns more uncertain since its entropy is enlarged
under sigmoid, which better adapts to the uncertain region proposals. We finally choose to use focal
loss [21] to promote the cross-category uncertainty, which adopts sigmoid for probability output.

Based on focal loss, we further introduce our constructed soft target ŷi into semi-supervised learning.
Following [41], we propose to use the soft-target focal loss with ŷi as the soft target. In this way,
uncertainty is introduced into both the target and the probability distribution, making the learning
more noise-resistant.

5 Experiment

5.1 Experimental Setting

Dataset. We mainly conduct our proposed method on PASCAL VOC [6] and MS COCO [22]. For
simple notation, we refer to a subset containing 35k images from COCO 2014 validation set as
coco-35, the training set with 80k images as coco-80, and their union set as coco-115. The 120k
images from COCO 2017 unlabeled set are denoted with coco-120. We also select images from
COCO trainval consisting of only 20 categories as PASCAL VOC, and denote these 19,592 images
as coco-20cls. We mainly adopt four settings: 1) VOC07 trainval (5,011 images) as labeled set and
VOC12 trainval (11,540 images) as unlabeled set; 2) VOC07 trainval as labeled set, VOC12 trainval
and coco-20cls as unlabeled set; 3) coco-35 as labeled set and coco-80 as labeled set; 4) coco-115 as
labeled set and coco-120 as unlabeled set. Besides, we also follow previous methods for experiments
with a gradually increasing percentage of labeled examples.

Implementation Details. We conduct our experiment using Pytorch [29] and MMDetection [5].
Unless otherwise specified, we use Faster RCNN [33] with ResNet50 [11] and FPN [20]. The
standard 1x schedule is adopted. The generation of pseudo labels and their filtration are basically the
same as that in [31]. For hyper-parameters, we set ∆b to 0.5. ∆f is set to 0.7 first, and changes to 0.8
after the first decay of learning rate. C is set to 15 and q is set to 0.1.

5.2 Comparison with Existing Methods

PASCAL VOC. We perform the comparative study with Faster RCNN on the VOC dataset. The
results are presented in Tab. 1. The fully-supervised detection model trained on VOC07 trainval
obtains a 43.1% AP and 76.9% AP50. When using the raw pseudo labels without consideration
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Table 2: Experimental Results on COCO minival for different methods. FS is the supervised
model. We re-implement DD method based on the Faster RCNN. † denotes adopting strong data
augmentation in training.

Method Labeled Unlabeled AP50:95 AP50 AP75

FS coco-35 - 31.3 52.0 33.0
DD [31] coco-35 coco-80 33.1 53.3 35.4

ours coco-35 coco-80 35.5 54.5 38.7
FS coco-115 - 37.4 58.1 40.4
DD coco-115 coco-120 37.9 60.1 40.8

PL [38] coco-115 coco-120 38.4 59.7 41.7
CSD [12] coco-115 coco-120 38.9 - -

STAC † [37] coco-115 coco-120 39.2 - -
Ubteacher † [24] coco-115 coco-120 41.3 - -

Humble teacher † [39] coco-115 coco-120 42.4 - -
Instant-teaching † [47] coco-115 coco-120 40.2 - -

ours (1x) coco-115 coco-120 40.6 59.7 44.4
ours (3x) coco-115 coco-120 41.7 61.0 45.9

ours † (3x) coco-115 coco-120 43.2 62.0 47.5

Table 3: Experimental Results on COCO minival with a gradually increasing percentage of
labeled examples. All methods except CSD adopt strong data augmentation in training.

Method 1% COCO 2% COCO 5% COCO 10% COCO
CSD [12] 10.51 ± 0.06 13.93 ± 0.12 18.63 ± 0.07 22.46 ± 0.08
STAC [37] 13.97 ± 0.35 18.25 ± 0.25 24.38 ± 0.12 28.64 ± 0.21

Ubteacher [24] 17.84 ± 0.12 21.98 ± 0.07 26.30 ± 0.22 29.64 ± 0.10
Humble teacher [39] 16.96 ± 0.38 21.72 ± 0.24 27.70 ± 0.15 31.61 ± 0.28
Instant-teaching [47] 18.05 ± 0.15 22.45 ± 0.15 26.75 ± 0.05 30.40 ± 0.05

ours 18.41 ± 0.10 24.00 ± 0.15 28.96 ± 0.29 32.43 ± 0.20

of noise, the method (i.e. DD) obtains a 45.2% AP and 77.8% AP50. Our method, in comparison,
achieves a 49.3% AP and 80.6% AP50. The final AP outperforms the baseline method by more
than 4% and also performs significantly better than other methods. This large margin strongly
demonstrates the effectiveness of our method. Compared to other methods, performance metrics
from AP50 to AP75 show consistent improvement, which proves that our method better adapts to
uncertain region proposals in semi-supervised learning and achieves a more noise-resistant training.

Further, we augment the unlabeled dataset by adding images from coco-20cls. With more data
available, the performance is further improved to 50.2% AP and 81.4% AP50. This illustrates the
usefulness of our proposed method on datasets of different distribution, which is usually an inevitable
problem when utilizing large-scale datasets. Also, this proves the potential of semi-supervised object
detection to break through the upper bound of fully-supervised object detection.

MS COCO. We also evaluate our method on the COCO dataset, a more challenging dataset, and
the results are listed in Tab. 2. In the coco-35/80 setting, compared to the baseline method DD,
our method achieves a 2.4% AP improvement, which is prominent for the COCO dataset. In the
coco-115/120 setting, where a larger-scale dataset is adopted, we observe that previous methods
obtain higher accuracy compared to that on PASCAL VOC, which indicates that more available data
is beneficial to semi-supervised learning. And we notice that our approach also achieves better results.
Even with a 1x schedule, our method still outperforms many current methods, which usually adopt a
3x schedule and more training time. We further adopt 3x schedule and the same data augmentation
strategy as that in [24, 39, 47]. Our method achieves a better result, a 43.2% AP, 0.8% more than the
state-of-the-art, which further indicates the superiority of our method.

To further demonstrate the effectiveness of our method, we follow the same setting as that in previous
methods [37, 24, 39, 47] with different degrees of supervision using the COCO dataset. For a fair
comparison, we adopt the same data augmentation strategy. The results are listed in Tab. 3. For
unbiased teacher [24] which uses larger batch size and longer training schedules, we retrain it under
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Table 4: Ablation Study on VOC07 test. CCU:
cross-category uncertainty, UST: uncertainty-
aware soft target.

Setting CCU UST AP50:95 AP50 AP75

fully 43.1 76.9 43.1
X 42.5 77.2 41.6

semi

45.2 77.8 47.1
X 46.2 79.4 47.9

X 48.2 78.3 52.2
X X 49.3 80.6 53.0

Table 5: Ablation Study on COCO. CCU:
cross-category uncertainty, UST: uncertainty-
aware soft target.

Setting CCU UST AP50:95 AP50 AP75

fully 31.3 52.0 33.0
X 31.2 52.5 32.9

semi

33.1 53.3 35.4
X 34.3 55.3 36.4

X 33.7 51.1 37.0
X X 35.5 54.5 38.7

the common training schedules with the released official implementation. It is noteworthy that our
method outperforms CSD [12] and STAC [37] by a large margin. Compared to recent works such as
unbiased teacher [24], instant-teaching [47] and humble teacher [39], our uncertainty-aware noise-
resistant learning can also consistently achieve better results under different degrees of supervised data.
Particularly under the 2% supervision data setting, our method outperforms the instant-teaching by
1.6%. With 5% supervision data, our method outperforms humble teacher by 1.2%. This comparative
study further validates the performance of our proposed method.

5.3 Ablation Study

We perform ablation study on VOC and COCO to analyze the impact of our designation. The results
are listed in Tab. 4 and Tab. 5, where we use VOC07/12 and COCO35/80 setting separately. We do
not adopt any data augmentation strategy in this section.

Cross-category Uncertainty. From Tab. 4, we notice that the enhancement of promoting cross-
category uncertainty is limited in the fully-supervised setting. AP50:95 and AP75 even decrease a
little. This is reasonable. In the fully-supervised setting, region proposals are certain, so suppressing
the cross-category uncertainty is no problem. In addition, in two-stage detectors, the extreme class-
imbalance problem is mollified by RPN and random sampling, leaving little space for focal loss to
improve by hard example mining. But in the semi-supervised setting, it is effective. By promoting
cross-category uncertainty, the lateral inhibition effect is mitigated and the probability of the actual
category is increased, which better accommodates the uncertain regions. It brings about a 1.6% AP50

improvement. The more precise classification result even helps the localization, increasing AP50:95

by 1.0% and AP75 by 0.8%. From Tab. 5, a similar trend is also observed. This again demonstrates
that promoting cross-category uncertainty is effective for semi-supervised detection.

Uncertainty-aware Soft target. From Tab. 4, we observe that after adopting the uncertainty-aware
soft target and optimizing with the KL divergence, the overall AP is improved by 3.0%. The
localization ability is boosted even more - AP75 increases by over 5%. This is because under the soft
target, those certain regions contribute more to the classification for positive proposals and bounding
box regression. With the uncertainty quantification involved in the soft target, the network better
avoids uncertain regions. After further combining with the focal loss, the performance is further
boosted, finally achieving a 49.3% AP and 80.6% AP50. This illustrates that adopting uncertainty
into both the probability distribution and classification target can further accommodate the uncertain
region proposals. Experimental results from the COCO dataset in Tab. 5 also verify its effectiveness.

Visualization of Noise Quantification. We perform illustrative analysis to explain the dynamic
uncertainty quantification u(β). Specifically, we collect positive proposals that are assigned with the
correct labels (clean ones) and the wrong labels (noisy ones). The probability distribution of their
u(β) is plotted in Fig. 4, where Fig. 4a, 4b, 4c is the distribution in the early, middle, late stage
separately. We observe that clean region proposals generally have lower u(β) than noisy ones, which
demonstrates that our designed u(β) is reasonable for uncertainty quantification. From Fig. 4a, we
notice that most clean proposals and about a half of noisy proposals possess small u(β). This ensures
enough data for the model’s initial training. As the training proceeds, the value of u(β) turns larger
because of the dynamic β, from the middle stage of Fig. 4b to the late stage of Fig. 4c. At this time,
almost all noisy samples possess a close-to-1 u(β). As a cost, u(β) for many clean proposals is
also enlarged. But some of them are still preserved. This guarantees that the model is learned with
high-quality proposals when it is sensitive to noise.
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(a) (b) (c)

Figure 4: Distribution of the uncertainty quantification u(β) on clean or noisy region proposals
in the early stage of training (a), the middle stage (b) and the late stage (c). Clean regions’ u(β) is
usually smaller than noisy ones, and u(β) increases gradually as the training proceeds.

The choice of hyper-parameters. We also evaluate our method under different hyper-parameter
settings, including the value of C, ∆f , q. The results are in the supplementary material. We find
that our method is relatively robust to the variance of hyper-parameters. Therefore, even in a new
environment, it is not so hard to tune the hyper-parameters.

6 Conclusion

In this paper, we focus on pseudo label based semi-supervised learning and target at combating noise.
By utilizing our proposed uncertainty quantification as the soft target and facilitating multi-peak
probability distribution, we introduce uncertainty into semi-supervised learning. Experimental results
on multiple semi-supervised object detection settings demonstrate that our proposed method can
better adapt to the uncertain regions, thus achieves the state-of-the-art results. In the future, we will
further explore more efficient approaches to utilize unlabeled data.
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