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Abstract

Feature selection is a critical step in data-driven
applications, reducing input dimensionality to
enhance learning accuracy, computational effi-
ciency, and interpretability. Existing state-of-the-
art methods often require post-selection retrain-
ing and extensive hyperparameter tuning, com-
plicating their adoption. We introduce a novel,
non-intrusive feature selection layer that, given
a target feature count k, automatically identifies
and selects the k most informative features during
neural network training. Our method is uniquely
simple, requiring no alterations to the loss func-
tion, network architecture, or post-selection re-
training. The layer is mathematically elegant and
can be fully described by:

x̃i = aixi + (1− ai)zi

where xi is the input feature, x̃i the output, zi a
Gaussian noise, and ai trainable gain such that∑

i a
2
i = k. This formulation induces an auto-

matic clustering effect, driving k of the ai gains
to 1 (selecting informative features) and the rest to
0 (discarding redundant ones) via weighted noise
distortion and gain normalization. Despite its ex-
treme simplicity, our method achieves competitive
performance on standard benchmark datasets and
a novel real-world dataset, often matching or ex-
ceeding existing approaches without requiring hy-
perparameter search for k or retraining. Theoreti-
cal analysis in the context of linear regression fur-
ther validates its efficacy. Our work demonstrates
that simplicity and performance are not mutually
exclusive, offering a powerful yet straightforward
tool for feature selection in machine learning.
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1. Introduction
Feature selection is a fundamental problem in high-
dimensional statistics and machine learning (Guyon & Elis-
seeff, 2003; Li et al., 2017). Unlike feature extraction tech-
niques that alter features’ semantics by creating new ones
in a lower dimensional space, feature selection involves
the identification and retention of the most informative fea-
tures while discarding irrelevant or redundant ones. This
preservation enhances the interpretability and explainability
of predictive models, particularly critical in domains like
medicine and biology where gene selection is a focal ap-
plication (Guyon et al., 2002). By retaining the original
features, researchers can directly relate model outputs to the
underlying data, facilitating insights and hypothesis gener-
ation. Furthermore, feature selection not only contributes
to storage reduction by eliminating unnecessary data points,
optimizing memory usage, and enhancing computational
efficiency, but also aids in reducing model size and com-
plexity. By selecting a subset of input features, models can
improve performance and generalization capabilities crucial
for mitigating overfitting and addressing the curse of dimen-
sionality. Moreover, in applications where sensing hardware
costs or energy consumption are major concerns, such as
in IoT devices or sensor-based systems, feature selection
can inform the design of simpler and more cost-effective
hardware by ensuring that only relevant features are sensed
or measured, thereby conserving resources without compro-
mising performance.

Feature selection methods can be broadly categorized into
two main groups: unsupervised and supervised. Unsuper-
vised methods often involve an analysis of the relations
between input features through methods like clustering (He
et al., 2005), matrix factorization (Wang et al., 2015), and
the use of autoencoder neural networks (Balın et al., 2019).
These methods are useful when labeled data is scarce or
unavailable, allowing for the exploration of inherent data
structures and patterns. On the other hand, supervised meth-
ods leverage the availability of labeled data to guide the
selection process. Within the realm of these methods, there
exist model-independent and model-dependent approaches.
Model-independent methods, also known as filter-based,
rely on statistical tests and information-theoretic metrics to
evaluate feature relevance with respect to the target vari-
able, irrespective of the underlying machine learning model

1



SAND: One-Shot Feature Selection with Additive Noise Distortion

(Yang & Pedersen, 1997; Chandrashekar & Sahin, 2014).
While these methods are computationally efficient and can
handle high-dimensional data, they may overlook complex
interactions between features. Model-dependent methods,
on the other hand, tailor feature selection to specific ma-
chine learning models or architectures. This category can be
further divided into wrapper and embedded methods. Wrap-
per methods (Kohavi & John, 1997) involve a search process
guided by the final performance of a learning model, such
as classifier accuracy. Examples include greedy sequential
feature selection (Das & Kempe, 2011), SHAP (SHapley
Additive exPlanations) values calculation (Lundberg & Lee,
2017), in addition to combinatorial optimization and meta-
heuristic search algorithms (Zadeh et al., 2017; Dokeroglu
et al., 2022). Wrapper methods offer the advantage of
considering feature interactions but may suffer from high
computational costs due to intensive search over the input
space, which is highly impractical for complex models and
large feature dimensions. In contrast, embedded methods
rank features based on metrics intrinsically learned during
model training, seamlessly integrating feature selection into
the learning process. Examples include feature importance
for tree-based algorithms (Breiman, 2001), Recursive Fea-
ture Elimination for Support Vector Machine (RFE-SVM)
(Guyon et al., 2002), sparsity-promoting models (Tibshirani,
1996), and deep learning techniques (Simonyan et al., 2014;
Wang et al., 2014). Such methods enable an automatic selec-
tion of relevant features during training and can effectively
handle non-trivial relationships in data.

Related works

Given the pervasive adoption of deep learning in recent
years, this work concentrates on embedded feature selection
techniques tailored to neural networks. Within this domain,
a multitude of approaches have emerged, predominantly
centered around various adaptations of LASSO-based regu-
larization (Luo & Chen, 2014; Zhao et al., 2015; Li et al.,
2016; Lemhadri et al., 2021; Cancela et al., 2023), the addi-
tion of stochastic gates (Srinivas et al., 2017; Borisov et al.,
2019; Yamada et al., 2020), the use of attention mechanisms
(Liao et al., 2021; Yasuda et al., 2023), and the applica-
tion of saliency maps (Cancela et al., 2020) to solve the
feature selection problem on non-linear models. For in-
stance, Sequential LASSO (Luo & Chen, 2014) provides an
efficient implementation of greedy LASSO to recursively
select input features, while Group LASSO (Zhao et al.,
2015; Scardapane et al., 2017) further modifies the objec-
tive function to encourage sparsity at the group level. In
LassoNet (Lemhadri et al., 2021), a skip linear connection is
added to the neural network with two types of regularization
parameters. A continuous search is then applied using a
hierarchical proximity algorithm, which combines a prox-
imal gradient descent method with a hierarchical feature

selection. Alternatively, to impose sparsity and overcome
the limitations of applying gradient descent on ℓ1 regular-
ized objective functions, (Yamada et al., 2020) introduces
a continuous relaxation of Bernoulli gates that are attached
to the input features. A Gaussian-based regularization is
then added to the objective function and grid-search over
the regularization parameter is applied to select the required
number of features. While (Yamada et al., 2020) employs a
similar stochastic approach as ours, it modifies the loss func-
tion by adding an additional term and lacks direct control
over the number of selected features, requiring a grid search
over a model hyperparameter. In contrast, our stochastic
framework does not alter or rely on the loss function, elim-
inating the need for retraining or hyperparameter tuning.
Additionally, our method allows direct specification of the
desired number of features as an input. Lately, the attention
mechanism is being employed to relate a trainable softmax
mask to feature importance, and hence perform embedded
feature selection by adaptively estimating marginal feature
gains over multiple rounds (Yasuda et al., 2023).

Contributions

The existing methods mentioned above typically necessitate
alterations to the objective function or significant modifica-
tions to the neural network architecture involving the addi-
tion of new connections. Consequently, feature selection is
often a separate phase followed by a retraining phase on the
selected features, or it requires some kind of hyperparameter
tuning to control the number of selected features (Yamada
et al., 2020; Lemhadri et al., 2021; Yasuda et al., 2023). In
this work, we propose a novel, yet exceptionally simple,
method for one-shot feature selection. It involves the in-
tegration of a simple constrained weighted additive noise
layer at the neural network’s input. The constrained stochas-
ticity helps the network generate a polarized input space
and effectively select the desired number of features during
training. As a result, the network architecture inherently
converges to its final form, which can be used for inference
without necessitating any additional retraining. The con-
straint on the weights is imposed by construction through
a normalization operation and requires no regularization
terms in the objective function. The proposed layer imposes
negligible computational overhead and can be seamlessly
incorporated, akin to the addition of Dropout or Batch Nor-
malization layers. Through this layer, direct control over
the number of selected features is enabled without the need
for additional grid search or further tuning of regularization
terms. The simplicity of our method does not compromise
the final prediction performance of the neural network. In
this work, we conduct an extensive benchmarking study
against state-of-the-art feature selection methods using com-
mon datasets and a novel real-world dataset, showcasing our
method’s effective competition against existing approaches
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while highlighting its practicality and application-driven
nature. Furthermore, we provide theoretical insights by
demonstrating that our method, when applied to linear re-
gression, promotes the selection of a predefined number of
features on an equivalent problem.

2. Selection with Additive Noise Distortion
(SAND)

In a typical supervised learning problem, we are tasked to
map a set of input vectors to predefined outputs. These input
vectors consist of various features. However, not all features
are equally important in determining the output. Some may
be irrelevant, while others might contain redundant infor-
mation. This leads us to the concept of feature selection:
the quest to identify the subset of features that provide suf-
ficient information to determine the output accurately. In
real-world applications, the number of features to select is
typically pre-defined due to constraints on data acquisition
burden, computation cost, or memory footprint.

Consider an n-dimensional feature vector x =
(x1,x2, . . . ,xn)

⊤ (which can be of any shape; but
for the sake of simplicity in notations, we assume it to be
n × 1) to be mapped to the output vector y1. Figure 1(a)
depicts a typical neural network solution to this problem.
Now, assume we are interested in finding the k dimensions
that yield the highest performance, with k ≤ n.

Our idea is to multiply each feature xi with a gain ai and
add a zero-mean Gaussian noise with the standard deviation
of |(1− ai)σ| to it before feeding it to the neural network.
Here, σ is a fixed scalar. Moreover, we constrain the vector
a = (a1, a2, . . . , an)

⊤ to have the ℓα-norm equal to k
1
α for

a pre-selected α > 0. Thus, we define

x̃ = a⊙ x+ (1− a)⊙ z (1)

where

∥a∥αα = k. (2)

We then feed x̃ to the neural network during the training
phase instead of x as illustrated in Figure 1(b)). Here, z
is a Gaussian vector with i.i.d. entries with zero-mean and
standard deviation σ. In this setting, when ai is close to
1, x̃i is close to noiseless xi, and when ai is close to 0,
x̃i becomes almost pure noise (the signal-to-noise ratio is
proportional to a2

i

(1−ai)2σ2 ). During the training phase, we
allow the ai’s to be trained alongside the other parameters of
the network. The architecture of the neural network and the
loss function remain unchanged; the only difference is the

1Throughout the paper, we use small characters to denote
scalars, underlined characters to indicate vectors, capital characters
for matrices and bold font for random objects

addition of n extra parameters (ai’s) to optimize. As training
progresses, we observe that k of the ai’s cluster around 1,
indicating the selected features, while the remaining ai’s
cluster around 0, indicating the neglected features. We refer
to this approach as SAND, which stands for Selection with
Additive Noise Distortion.
Remark 2.1. The two operations of the SAND layer in (1)
and (2) are implemented together. This means the constraint
(2) is enforced by construction where we normalize the
ai’s by their ℓα-norm inside the layer, without adding any
regularization term to the loss function. Hence, the SAND
layer takes this form in practice:

x̃ =
a

∥a∥α
k

1
α ⊙ x+

(
1− a

∥a∥α
k

1
α

)
⊙ z. (3)

Notice that if there is no noise z (i.e., σ = 0), the ai’s would
be absorbed in the weights of the first layer of the neural
network. Additionally, if k = n, all ai’s can become 1 and
then x̃ will be identical to x without any noise. Given that
the noise is independent of the data and lacks information
about the output, the network naturally adjusts to mitigate
its impact during training.

The first non-trivial property is that there is always an op-
timal a whose entries are between 0 and 1. Here, optimal
means with respect to the loss function of the network. To
prove that, assume there is an optimal a that has an aj < 0.
By replacing aj by −aj , while the constraint (2) still holds,
x̃j is a less noisy version of xj . On the other hand, if there
is an optimal a that has an aj > 1, we can decrease aj to 1,
which results in x̃j becoming a noiseless copy of xj , and
increase other ai’s that are less than 1 towards 1 to satisfy
the condition (2); it decreases the noise added to those fea-
tures as well. Therefore, we can confine the search space of
a to the vectors that have all entries between 0 and 1, i.e.,
a = (a1, a2, . . . , an)

⊤ that have

0 ≤ ai ≤ 1 for i = 1, . . . , n. (4)

Now, we analyze what is happening during the training. In-
tuitively, a more informative feature xj will get a gain aj
closer to 1 so that it will be passed to the neural network
with less noise. Due to the constraint (2), this automatically
yields smaller gains aj′ for other features which are less
informative. Consequently, the less informative features
become noisier, which makes them even less informative
and pushes them to get even smaller gains. This leaves
more room, due to (2), for the more informative features
to get their gains closer to 1 and become less noisy. This
reinforcing loop, summarized in Figure 2, results in polar-
ization of the gains around 1 and 0. Ideally, we will end up
with a vector a which has k entries equal to 1, indicating
the selected features, and the rest equal to 0, indicating the
neglected features. However, since in practice the smallest
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Figure 1. Neural network architecture and the loss function before and after adding the SAND layer. Here, L and W indicate the loss
function and the trainable parameters of the neural network respectively.

values have not necessarily converged to absolute zero, at
the end of the training phase, we keep the top k gains intact
and manually set the n− k smallest gains to 0, effectively
removing those features. Notably, features with small gains
are noisy and hence inherently ignored by other parts of the
neural network.

Linear Regression

Here, we mathematically show that in the case of linear
regression, adding the SAND layer introduced above is
equivalent to adding a term in the loss function that promotes
selection of k features.

In linear regression problem, the loss function is

L (W, b) = Ex,y

{∥∥y −Wx− b
∥∥2
2

}
, (5)

where E denotes the expected value, W is the coefficient
matrix and b is the bias vector. Thus, optimal solution is

W∗, b∗ = argmin
W,b

L(W, b). (6)

Now, we add the SAND layer in the beginning, i.e.,

x̃ = a⊙ x+ (1− a)⊙ z such that ∥a∥αα = k. (7)

We get

L (a,W, b) (8)

= Ex̃,y

{∥∥y −Wx̃− b
∥∥2
2

}
= Ex,y,z

{∥∥y −W(a⊙ x+ (1− a)⊙ z)− b
∥∥2
2

}
= Ex,y

{∥∥y −W(a⊙ x)− b
∥∥2
2

}
+

n∑
i=1

w2
i (1− ai)

2
σ2

where wi is the ℓ2-norm of the ith column of W. Define the
matrix W to be the matrix W that its ith column is multiplied
by ai for i = 1, . . . , n. Rewriting (9), we obtain

L
(
a,W, b

)
(9)

= Ex,y

{∥∥y −Wx− b
∥∥2
2

}
+ σ2

n∑
i=1

w2
i

(
1

ai
− 1

)2

where wi is the ℓ2-norm of the ith column of W. Using the
Lagrange multiplier method for constrained optimization,
we obtain

∂

∂aj
L
(
a,W, b

)
= −λ

∂

∂aj
∥a∥αα (10)

where λ is a scalar and the right side of the equation is from
the constraint in (7). Thus, we have

2σ2w2
j

1

a2j

(
1

aj
− 1

)
= λ α sgn (aj) |aj |α−1 (11)

which leads to

σ2w2
j

(
1

aj
− 1

)2

=
λ

2
α |aj |α (1− aj) . (12)

By summing over j’s and incorporating the constraint in (7),
we get

σ2
n∑

j=1

w2
j

(
1

aj
− 1

)2

=
λ

2
α

n∑
j=1

|aj |α (1− aj)

=
λ

2
α

k −
n∑

j=1

aj |aj |α
 (13)
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Figure 2. Reinforcing loop that results in polarization of the gains with n = 5 and k = 3.

Combining (13) and (10), we obtain

L
(
a,W, b

)
(14)

= Ex,y

{∥∥y −Wx− b
∥∥2
2

}
+

λ

2
αk − λ

2
α

n∑
i=1

ai |ai|α

Remember that we can confine the search space to the ai’s
between 0 and 1. Hence, according to (12), we have λ ≥ 0.
Therefore, the term at the end of (14) achieves its minima
when there are k of ai’s equal to 1 and n− k of them equal
to 0, which completes the proof.
Remark 2.2. There are three hyper parameters in the SAND
layer, k, σ and α:

– k is the number of features to be selected. It will be
initially set straightforwardly.

– σ indicates how firmly we would like to restrict the
number of features to k. A higher value of sigma
places greater emphasis on precisely achieving k fea-
tures, resulting in faster binarization (polarization to-
ward 0 and 1) of the gains (ai’s).

– α indicates which norm to be used to normalize the
gain vector a during training.

We will see in the experiments that the method is not sensi-
tive to the choice of σ and α. In fact, setting σ within the
range of standard deviation of the input features, and α = 2,
yields nearly optimal results across all datasets. Thus, there
is no need to fine-tune σ and α. Moreover, to ensure stable
training, we apply clipping to the ai values throughout the
training process, keeping them within the range [0, 1].

3. Experiments
Feature Selection for Neural Networks

We explored the performance of SAND through experiments
on standard benchmark datasets used for feature selection
in neural networks. Specifically, we utilized nine datasets,
seven of which were used in previous studies by (Balın et al.,
2019; Lemhadri et al., 2021; Yamada et al., 2020; Yasuda
et al., 2023). The additional real and synthetic datasets were
California Housing (Torgo, 1997) and HAR70 (Logacjov &
Ustad, 2023). California (CA) Housing is a real dataset con-
sisting of 20640 samples with 8 interpretable features, with
the task of regressing the price of the house with the least
features. Additionally, HAR70 is a large synthetic dataset
comprising 2.3 million samples. It includes 6 informative
features, which we augment with 100 nuisance features sam-
pled from N (0, 0.1), and the task involves classifying the
activity being performed. The testing metric for all datasets
was accuracy, except for the CA Housing dataset, where the
mean absolute error (MAE) was used. The datasets were
normalized to have zero mean and unit standard deviation
for each feature. Furthermore, we evaluated SAND on a
novel multi-spectral image dataset, introduced in this paper
for the first time, which has never been used before for fea-
ture selection. Details of this dataset and our evaluation are
provided in Appendix C.

We implemented a neural network with one hidden layer
and a ReLU activation. Given the variation in hidden layer
widths across cited works, we opted for a width equal to
n/3, where n represents the dimensionality of the input data.
Please refer to Table 3 of Appendix A for a comprehensive
overview of the nine datasets, the corresponding number of
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Figure 3. Test metrics on 9 datasets over 10 trials. The metric is accuracy (↑) for all except MAE (↓) for CA Housing being a regression
problem. SA = Sequential Attention, LLY = Batch-wise Attenuation, GL = Group LASSO, SL = Sequential LASSO, and STG =
Stochastic Gates.

epochs and batch size used for training, along with the mean
accuracy/absolute-error of the model with all features.2

Our evaluation included a comparison between SAND and
five established feature selection algorithms, namely Se-
quential Attention (SA) (Yasuda et al., 2023), Sequential
LASSO (SL) (Luo & Chen, 2014), Btach-wise Attenuation
(LLY) (Liao et al., 2021), Group LASSO (GL) (Zhao et al.,
2015), and Stochastic Gates (STG) (Yamada et al., 2020).3

For all methods except ours, training comprised a feature se-
lection phase followed by a fitting phase wherein the neural
network was retrained on the selected features. Although
STG often eliminates the need for retraining thanks to its
weight polarization, on some datasets (e.g. MICE Protein)
the weights fail to polarize when k = 60, even after an
exhaustive search over the regularization parameter which
indirectly governs the number of selected features, and so
we resort to retraining in some cases. As for SAND, the
fitting phase was omitted and the weights learned during
the selection phase were directly utilized for inference. In
other words, the gains corresponding to the non-selected
features where set to zero while keeping all other weights

2The code to reproduce our experiments is available at https:
//github.com/csem/SAND

3These algorithms represent the top-performing methods re-
ported in the literature. A comparison with other approaches
(Atashgahi et al., 2022; Lemhadri et al., 2021; Sokar et al., 2022)
demonstrates that SAND achieves better performance.

of the model intact. Hence, from this point of view, our
method offers two key benefits. Firstly, it demands fewer
epochs (33% fewer epochs in our experiments). Secondly,
it provides a streamlined pipeline where both selection and
inference are handled by the same model.

Across all experiments, we employed the Adam optimizer
with a learning rate of 10−3, and we partitioned the datasets
into 70-10-20 splits for training, validation, and testing,
respectively. For hyperparameters of the SAND layer, we
used σ = 1.5 and α = 2 consistently. Unless otherwise
specified, we selected k = 60 features for all datasets by
default, except for the following: k = 5 for the Madelon
dataset, k = 3 for the CA Housing dataset, and k = 6 for the
Har70 dataset. The comparative results are summarized in
Figure 3, and the exact numerical values are shared in Table
4 of Appendix B. The error bars were calculated using the
standard deviation over 10 trials. Drawing from the results
in Figure 3, SAND competes effectively with other feature
selection methods, while offering a streamlined pipeline that
requires fewer iterations. It also exhibits a very consistent
behavior as shown in Table 5 of Appendix B.

To provide additional insights, we varied the number of
selected features k under consistent settings and evaluated
performance on the test set. Results are shown in Figure 4.
Notably, SAND demonstrates its strength in feature selec-
tion, showcasing results that outperform or are comparable
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Figure 4. Test metrics for different k’s. Accuracy (↑) for all except MAE (↓) for CA Housing.

to other methods across different feature counts. This ad-
vantage is particularly significant given the fact that the best
method is changing from dataset to dataset. Thus, there is a
need for algorithms that deliver value beyond marginal accu-
racy improvements, prioritizing enhancements in computa-
tional demand and simplicity—qualities that our method ex-
emplifies. It is important to note that all SAND experiments
were conducted using fixed values of σ = 1.5 and α = 2,
without any fine-tuning. We omitted STG from Figure 4
due to the high computational cost of performing an exhaus-
tive search over the regularization parameter λ for each k.
Moreover, on the MICE Protein dataset (77 features), STG
fails to identify a clear feature subset once k exceeds 37.
For k ≤ 37, STG produces a polarized solution—exactly k
features attain importance weight at almost 1, while the re-
mainder are almost zero. However, for k > 37, the selection
process stalls: irrespective of λ, only the same 37 features
remain at weight 1, and the other 40 features converge to
an almost uniform, nonzero weight. Adjusting λ cannot
induce the selection of additional features; it only uniformly
increases the weights of these 40 unselected features above
zero.

Role of σ

As discussed in Remark 2.2, the parameter σ influences the
rate of gain polarization. To demonstrate this, we trained
SAND model on MICE dataset for 2000 epochs, using σ
values of 1.0 and 2.0, while keeping other settings fixed.

We recorded the gains every 10 epochs. Figure 5 presents
the sorted gains for selected epochs.We observe that while
the gains tend to cluster around 1 and 0 in both plots, this
clustering occurs at a higher rate for a larger σ. Moreover,
to assess SAND’s sensitivity to σ, we replicated the initial
experiment while varying σ ∈ {1.0, 1.5, 2.0, 2.5, 3.0}. Re-
sults are presented in Table 1. As evident in the table, our
approach demonstrates high robustness to the selection of σ,
which underscores a positive aspect of the proposed method.

Effect of the choice of α in ℓα-Normalization

To have an insight of the effect of α, we conducted a du-
plicate experiment, this time employing α = 1.0 (with
σ ∈ {0.5, 1.5}). The outcomes are presented in Table 2. As
shown in the table, the performance remains highly consis-
tent, despite variations in α.

4. Summary and Future Works
In this paper, we introduced a novel feature selection method.
Specifically, we presented a new layer (SAND) that inte-
grates into a neural network, enabling automatic feature
selection during the training phase. The benefits of this
approach include:

• On par with the state-of-the-are performance: Through
extensive experiments, we showed that the proposed
method has effectively state-of-the-art performance.
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Figure 5. Polarization of the feature gains in SAND layer for k = 30.

Table 1. Test metrics for feature selection with SAND using different σ’s.

Dataset σ = 1.0 σ = 1.5 σ = 2.0 σ = 2.5 σ = 3.0

Mice Protein 0.988± 0.006 0.988± 0.006 0.988± 0.007 0.988± 0.006 0.987± 0.006
MNIST 0.953± 0.007 0.962± 0.002 0.958± 0.002 0.953± 0.002 0.948± 0.004

MNIST-Fashion 0.830± 0.007 0.832± 0.007 0.833± 0.003 0.831± 0.004 0.825± 0.003
ISOLET 0.913± 0.009 0.926± 0.005 0.922± 0.007 0.921± 0.006 0.916± 0.006
COIL-20 0.991± 0.005 0.998± 0.003 0.998± 0.002 0.998± 0.003 0.996± 0.004
Activity 0.929± 0.006 0.923± 0.004 0.922± 0.006 0.924± 0.004 0.922± 0.005
Madelon 0.741± 0.022 0.732± 0.021 0.708± 0.023 0.689± 0.017 0.646± 0.025
HAR70 0.901± 0.002 0.897± 0.005 0.889± 0.002 0.881± 0.005 0.873± 0.006

CA Housing 0.514± 0.026 0.521± 0.027 0.532± 0.030 0.557± 0.022 0.566± 0.007

• Low computational and memory burden: The layer
introduces only n trainable parameters, along with n
multiplication-additions and a single n-dimensional
ℓ2-normalization, where n is the number of features.

• One-shot feature selection and network training: There
is no need for selecting the features in one phase of the
training and then retrain the network with the selected
features. Once the training phase has finished, the
features are selected and the neural network is trained
for the selected features.

• Control on the number of selected features: The num-
ber of features can be directly set in the algorithm in
contrast to the main stream methods which require
sweeping over a hyper parameter to be able to obtain
the desired number of features.

• Considerably faster: As there is no need for the retrain-
ing phase, and due to the low computational overload,
the method is considerably faster than the competitors.

• Handy Integration of Feature Selection in Neural Net-
works: Our feature selection method seamlessly inte-
grates as an additional layer at the outset of the neural

network, preserving the original architecture and loss
function. With only input gradients required to train the
layer gains, the network architecture or loss function
can be treated as a black box.

• Tailored features to the application and the neural net-
work architecture: Since SAND layer is an integral
component of the base model, the features selected are
automatically adapted for the specific application at
hand and the chosen model architecture.

• Remarkably simple both conceptually and practically:
the mathematical model of our method involves only
entrywise multiplication, addition with Gaussian noise,
followed by ℓ2-norm normalization, rendering it re-
markably simple in theory and in practice.

It is worth mentioning that the proposed SAND layer works
in a very similar way to the Dropout layer but with an op-
posing effect. In the Dropout layer, randomization leads to
an even distribution of information across all neurons. Con-
versely, randomization in SAND, due to weights’ constraint,
selects only neurons with the highest information content.

A straightforward continuation of this work is to explore
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SAND layer’s performance for network pruning by incor-
porating it into intermediate layers, akin to how Dropout
and Batch Normalization layers are utilized. Additionally,
studying the effect of different noise distributions and rig-
orous understanding of the effect of α and σ for different
network architectures (dense, convolutional, transformers,
etc.) are interesting lines for future researches. Furthermore,
considering features relation structure during the selection
is another valuable avenue to explore.

Table 2. Effect of α on SAND layer.
Dataset α = 1.0 α = 2.0

σ = 0.5 σ = 1.5

Mice Protein 0.987± 0.005 0.988± 0.007 0.988± 0.006
MNIST 0.959± 0.002 0.956± 0.002 0.962± 0.002

MNIST-Fashion 0.828± 0.007 0.830± 0.006 0.832± 0.007
ISOLET 0.922± 0.008 0.910± 0.010 0.926± 0.005
COIL-20 0.997± 0.003 0.996± 0.005 0.998± 0.003
Activity 0.922± 0.004 0.907± 0.008 0.923± 0.004
Madelon 0.756± 0.059 0.675± 0.029 0.732± 0.021
HAR70 0.854± 0.036 0.814± 0.038 0.897± 0.005

CA Housing 0.538± 0.063 0.560± 0.023 0.521± 0.027
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A. Experimental set-up
We provide Table 3 containing details about all datasets utilized in the feature selection experiments. Additionally, the table
includes the epochs employed during training for each dataset, identifying the ones used for feature selection and the ones
used to retrain/fit the model on the selected features. As indicated in the experiments (Section 3), fitting epochs are only
utilized by models other than SAND, whereas SAND employs only the ‘Select Epochs’. The table also presents the test
accuracy of the base model trained using all features.

Table 3. Dataset characteristics, experiment parameters, and all-features performance metrics.5

Dataset (n, d) # Classes Select Epochs Fit Epochs Batch Size All Features

Mice Protein (1,080, 77) 8 400 200 64 0.987± 0.006
MNIST (70,000, 784) 10 100 50 64 0.978± 0.001

MNIST-Fashion (70,000, 784) 10 200 100 64 0.878± 0.003
ISOLET (7,797, 617) 26 400 200 64 0.958± 0.002
COIL-20 (1,440, 400) 20 1000 500 64 0.996± 0.003
Activity (10,299, 561) 6 200 100 64 0.941± 0.002
Madelon (2,600, 500) 2 500 250 64 0.575± 0.017
HAR70 (2,259,597, 106) 8 6 3 64 0.890± 0.002

CA Housing (20,640, 8) N/A 200 100 64 0.440± 0.011

Moreover, the experiments were executed on a machine equipped with an NVIDIA GeForce RTX 4090 GPU with 24GB of
RAM, paired with an AMD Ryzen 9 5900X 12-Core Processor featuring 24 threads. The code to reproduce our experiments
is available at https://github.com/csem/SAND.

B. Experimental results
We present in Table 4 the benchmarking results of SAND alongside other methods on the nine datasets discussed in the
experiments (Section 3). The intervals were calculated using the standard deviation across 10 trials.

Table 4. Test metrics over 10 trials (mean ± standard deviation): Accuracy (↑) for all except MAE (↓) for CA Housing.

Dataset SA LLY GL SL STG SAND

Mice Protein 0.986± 0.005 0.983± 0.011 0.988± 0.007 0.987± 0.007 0.988± 0.007 0.988± 0.006
MNIST 0.961± 0.002 0.949± 0.003 0.930± 0.006 0.963± 0.002 0.962± 0.002 0.962± 0.002

MNIST-Fashion 0.836± 0.003 0.830± 0.004 0.828± 0.004 0.829± 0.003 0.856± 0.002 0.836± 0.005
ISOLET 0.927± 0.004 0.908± 0.011 0.924± 0.003 0.924± 0.007 0.936± 0.005 0.926± 0.005
COIL-20 0.996± 0.005 0.998± 0.003 0.998± 0.003 0.996± 0.003 0.997± 0.004 0.998± 0.003
Activity 0.920± 0.009 0.894± 0.050 0.930± 0.004 0.915± 0.005 0.922± 0.006 0.923± 0.004
Madelon 0.786± 0.008 0.862± 0.027 0.612± 0.010 0.603± 0.011 0.793± 0.03 0.732± 0.021
HAR70 0.901± 0.001 0.910± 0.001 0.910± 0.003 0.908± 0.004 0.897± 0.002 0.897± 0.005

CA Housing 0.639± 0.063 0.636± 0.063 0.590± 0.097 0.589± 0.097 0.577± 0.119 0.521± 0.027

Table 5 presents the consistency analysis for the HAR70 dataset, which comprises 6 informative features augmented with
100 synthetically generated noisy ones. This dataset was specifically chosen because SAND demonstrates its lowest relative
performance here compared to other methods, as shown in Table 4 (with SAND’s classification accuracy being 0.013%
lower than the best-performing method, LLY). Nevertheless, SAND exhibits high consistency, consistently selecting 5 out
of the 6 informative features and misidentifying the remaining feature only 20% of the time. Compared to SA and SL,
SAND is more reliable in selecting the informative features. However, its slightly lower performance can be attributed to the
inherent randomness of the experiments and the fact that other methods benefit from retraining after feature selection, unlike
SAND, which operates without this additional training phase.

5The metric is classification accuracy (↑) for all except MAE (↓) for CA Housing. Our study utilizes the entire MNIST and Fashion
datasets, unlike related works. Additionally, the Activity dataset sourced from (Lemhadri et al., 2021)’s Google Drive and (Yasuda et al.,
2023)’s repository contains 10,299 samples, as opposed to the 5,744 samples reported in the referenced papers.
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Table 5. Selection consistency on HAR70: feature selection frequency of the useful features (0− 5) and the misselected ones over 10
runs for k = 6.

Feature SA SL SAND STG GL LLY

0 10 10 10 10 10 10
1 8 9 8 8 9 10
2 10 10 10 10 10 10
3 10 10 10 10 10 10
4 10 7 10 10 10 10
5 2 10 10 10 10 10

Misselected 10 4 2 2 1 0

C. Benchmarking on real-world multi-spectral image dataset
In this section, we introduce a novel real-world multi-spectral image dataset, where feature selection is crucial for developing
efficient and cost-effective acquisition hardware. We apply SAND to this dataset and demonstrate that it outperforms
state-of-the-art methods.

Multi-spectral imaging is a powerful technology that captures images across multiple wavelengths, unlike conventional
RGB imaging, which may fail to reveal critical spectral information. This approach has shown significant promise in various
applications, including cancer detection in medical imaging (Ortega et al., 2020), precision agriculture (ElMasry et al., 2019),
and chemometrics (Dupont et al., 2020). There are multiple ways to acquire multi-spectral data, including snapshot cameras,
push-broom scanners, and filter wheel systems (Spigulis, 2024). However, a more cost-effective and flexible approach
involves actively controlling the illumination. This method uses a monochromatic camera while sequentially activating
lights at different wavelengths, enabling multi-spectral acquisition without requiring specialized optical components (Dunbar
et al., 2020).

Figure 6. Demo of real-time segmentation on the MSI Grain dataset using multi-spectral imaging.

The “MSI Grain” dataset was acquired using active LED light control across 15 narrow spectral bands ranging from 360 nm
to 940 nm. It contains spectral data for four distinct classes: Lentils, Wood, Stones, and Background. The goal is to leverage
multi-spectral imaging to classify these visually similar classes, which are difficult to distinguish with the naked eye or
conventional imaging. The dataset consists of 50,000 spectra per class, extracted from several multi-spectral image cubes
(see Figure 6). Each spectrum corresponds to a 15-dimensional pixel within the image, representing its spectral signature
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across the measured wavelengths. The dataset intentionally includes only spectral information, excluding spatial context.
This design choice ensures that classification relies solely on the material’s spectral response rather than its shape. The
dataset is available in the code repository at https://github.com/csem/SAND.

A key challenge in multi-spectral imaging is reducing the number of spectral bands, or features, to optimize hardware
efficiency. Fewer bands help minimize heat dissipation, lower hardware costs for commercial adoption, and enable fast
real-time image acquisition. As a result, feature selection is not just a theoretical challenge but a practical necessity in
this domain. SAND was developed to address this real-world need by jointly optimizing machine learning-based spectral
detection and hardware design. Conventional feature selection methods often fall short in terms of performance and
consistency, while state-of-the-art approaches tend to be complex and less user-friendly. In contrast, SAND provides a
practical, application-driven solution inspired by these challenges, reinforcing its effectiveness in real-world scenarios.

We present in Table 6 the benchmarking results of SAND alongside other methods on the MSI Grain dataset. The target
number of selected features is k = 9 and the experiments were run across 5 trials. All other experimental set-ups and
pre-processing steps are the same as discussed in Section 3. Along with its remarkable simplicity compared to other methods,
SAND achieves the highest performance, as demonstrated below.

Table 6. Test accuracy over 5 trials on MSI Grain (mean ± standard deviation).
Method SA LLY GL SL STG SAND

Accuracy 0.917 ± 0.003 0.917 ± 0.001 0.916 ± 0.002 0.918 ± 0.002 0.911 ± 0.005 0.919 ± 0.002

All Features Accuracy 0.924 ± 0.001

It is important to note that the segmentation in Figure 6 occurs in real-time, with the trained neural network running directly
on the handheld edge device capturing the image. No cloud computing is involved—the tablet is used solely for visualization.
Real-time edge processing was made possible by feature selection, which reduced the number of relevant spectral bands to
nine, significantly decreasing both the model size and the number of spectral acquisitions. This optimization enabled the
algorithm to be deployed on the edge device and operate in real-time.
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