
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GOAL-CONDITIONED REINFORCEMENT LEARNING
WITH SUBGOALS GENERATED FROM RELABELING

Anonymous authors
Paper under double-blind review

ABSTRACT

In goal-conditioned reinforcement learning (RL), the primary objective is to de-
velop a goal-conditioned policy capable of reaching diverse desired goals, a process
often hindered by sparse reward signals. To address the challenges associated with
sparse rewards, existing approaches frequently employ hindsight relabeling, sub-
stituting original goals with achieved goals. However, these methods exhibit a
tendency to prioritize the optimization of closer achieved goals during training,
leading to the loss of potentially valuable information from the trajectory and low
sample efficiency. Our key insight is that achieved goals, derived from hindsight
relabeling, can serve as effective subgoals to facilitate the learning of policies that
can reach long-horizon desired goals within the same trajectory. By leveraging
these subgoals, we aim to incorporate more longer trajectory information within the
same hindsight framework. From this perspective, we propose a novel framework
called Goal-Conditioned reinforcement learning with Q-BC (i.e, behavior cloning
(BC)-regularized Q) and Subgoals (GCQS) for goal-conditioned RL. GCQS is
a innovative goal-conditioned actor-critic framework that systematically exploits
more trajectory information to improve policy learning and sample efficiency. As
an extension of the traditional goal-conditioned actor-critic framework, GCQS
further exploits longer trajectory information, treating them as subgoals that guide
the learning process and improve the accuracy of action predictions. Experimen-
tal results in simulated robotic environments demonstrate that GCQS markedly
improves sample efficiency and overall performance when compared to existing
goal-conditioned methods. Additionally, GCQS demonstrated competitive per-
formance on long-horizon AntMaze tasks, achieving results comparable to such
state-of-the-art subgoal-based methods.

1 INTRODUCTION

The integration of Reinforcement Learning (RL) and Deep Learning (DL) has resulted in remarkable
progress across various domains. These include advanced robotic control (Quiroga et al., 2022; Qi
et al., 2023; Plasencia-Salgueiro, 2023; Zheng et al., 2024), mastery in computer gaming (Quiroga
et al., 2022; Zhang et al., 2023a; Plasencia-Salgueiro, 2023; Roayaei Ardakany & Afroughrh, 2024),
and sophisticated language processing capabilities (Akakzia et al., 2020; Sharifani & Amini, 2023;
Uc-Cetina et al., 2023; Shinn et al., 2024). A critical challenge in RL is fostering efficient learning
in scenarios characterized by sparse rewards, a difficulty that is magnified in goal-conditioned RL,
thereby adversely affecting sample efficiency. To tackle this issue, Andrychowicz et al. (2017)
proposed hindsight experience replay (HER), an approach aimed at significantly enhancing sample
efficiency in goal-conditioned RL. HER leverages the abundant repository of failed experiences by
relabeling the desired goals in training trajectories with the achieved goals that were actually reached
during these failed attempts. This method effectively maximizes the utility of the data available,
promoting a more efficient learning process.

HER offers a practical principle for generating pseudo demonstrations to train control policies. Based
on HER, several efficient goal-conditioned methods have been proposed, including goal-conditioned
actor-critic (GCAC) (Andrychowicz et al., 2017; Fang et al., 2019; Yang et al., 2021) and goal-
conditioned weighted supervised learning (GCWSL) methods (Yang et al., 2022; Ma et al., 2022;

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Subgoal policy

 Policy

 Piror policy

Constrained
with KL-
divergence
Bounds

 State

 Desired goal

 Achieved goal

Subgoal derived
from achieved goal

(| ,)s g 

s

g

g

(| ,)gs s  (| ,)piror s g 

(| ,)s g 

gs

Figure 1: GCQS framework with phasic goal structure in goal-conditioned RL. During training, the
policy π is constrained to remain close to the prior policy πpiror through KL-regularization. The prior
policy πpiror is defined as the as the distribution of actions required to reach intermediate subgoals
sg of the task. Notably, the subgoal policy and subgoals are only employed during the training of the
target policy π. At test time, the trained policy π is used directly to generate appropriate actions.

Hejna et al., 2023). GCAC focuses on maximizing the Q-function through Temporal Difference
(TD)-learning, whereas GCWSL employs weighted behavior cloning.

Despite their success in effectively learning from sparse rewards across various goal-reaching tasks,
as we find, both GCAC and GCWSL often exhibit a bias towards sampling short-horizon achieved
goals generated from relabeling during policy updates. This bias may lead to suboptimal actions for
desired goals that require longer horizons to reach.

From this perspective, we introduce a novel goal-conditioned actor-critic framework, GCQS, designed
to enhance action prediction accuracy and further exploit the longer information within the same
trajectory. GCQS initially optimizes a Q-BC (i.e, behavior cloning (BC)-regularized Q) objective
to efficiently learn to reach achieved (relabeled) goals, similar to the approach employed by GCAC.
And then, it utilizes longer achieved goals as subgoals to refine and improve the policy for attaining
the desired goals. Specifically, to incorporate subgoals into policy learning, we propose a prior
policy within the GCQS framework, which is defined as a distribution over the actions needed to
achieve intermediate subgoals (refer to Fig. 3). In light of the results from Paster et al. (2020) and
Eysenbach et al. (2022), which demonstrate that imitation learning employed in GCWSL can produce
suboptimal policies when dealing with relabeled suboptimal data, we optimize a Q-function objective
regularized by behavior cloning (Q-BC) to generate an optimal policy for reaching these subgoals.
The prior policy serves as an initial approximation for reaching the desired goals when subgoals are
introduced. To refine this process, we implement a policy iteration framework, augmented with a
Kullback-Leibler (KL) divergence constraint, specifically designed to guide the refinement of the
prior policy (see Fig. 1). We refer to this as a phasic goal structure. To evaluate GCQS, we conduct
experiments in standard goal-conditioned gym robotics environments. The experimental results
demonstrate that GCQS obtains superior performance and sample efficiency compared to previous
goal-conditioned methods, including DDPG+HER (Andrychowicz et al., 2017), Model-based HER
(Yang et al., 2021), and various GCWSL approaches (Chane-Sane et al., 2021; Yang et al., 2022; Ma
et al., 2022; Hejna et al., 2023). Additionally, GCQS outperforms several advanced subgoal-based
algorithms on complex AntMaze tasks. The overall framework of GCQS is shown in Fig. 1.

We briefly summarize our contributions as follows: (1) We demonstrate that both the GCAC and
GCWSL methodologies exhibit a tendency to prioritize the learning of actions associated with short-
horizon achieved goals, as relabeled from the replay buffer. (2) We propose GCQS, a subgoal-based
extension of the GCAC that incorporates longer trajectory information within the hindsight relabeling
framework to enhance policy learning efficiency and performance. To the best of our knowledge,
GCQS is the first approach to leverage relabeled goals as subgoals to enhance the performance
of goal-conditioned policies. Additionally, we provide a detailed analysis demonstrating that this
phasic policy structure more accurately predicts actions required to reach desired goals compared
to the conventional flat policy structure. (3) Experimental evidence reveals that GCQS outperforms

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

GCAC and GCWSL in terms of both performance and sample efficiency across various complex
goal-conditioned tasks. On more complex long-horizon AntMaze tasks, GCQS achieved performance
comparable to such state-of-the-art subgoal-based methods.

2 RELATED WORK

Goal-conditioned Methods Addressing goal-conditioned RL tasks involves significant complexi-
ties due to the requirement for agents to reach multiple goals concurrently. The major challenge in
goal-conditioned RL is managing sparse rewards. To address the issue of sparse rewards, the concept
of hindsight was developed, which reinterprets past failures as successes. HER (Andrychowicz et al.,
2017) integrates off-policy learning by incorporating hindsight transitions into the replay buffer. This
approach enables agents to learn from their experiences by relabeling the goals they initially aimed
for with they actually reached (achieved goals). Based on HER, curriculum hindsight experience
replay (CHER) (Fang et al., 2019) and model-based hindsight experience replay (MHER) (Yang et al.,
2021) introduce heuristically goal selection from failed attempts and model-based goal relabeling,
respectively. Goal-conditioned weighted supervised learning (GCWSL) methods (Chane-Sane et al.,
2021; Yang et al., 2022; Ma et al., 2022; Hejna et al., 2023) provide theoretical guarantees that
learning from achieved goals (relabeled goals) optimizes a lower bound on the goal-conditioned RL
objective. In contrast to these methods, GCQS aims to obtain optimal policies to reach these achieved
goals by employing a Q-BC objective. This method integrates reinforcement learning and imitation
learning, accelerating the learning process. Experimental results demonstrate its superior sample
efficiency and performance compared to previous goal-conditioned methods.

Subgoal Based Approaches Several previous studies have suggested employing subgoals to tackle
goal-reaching tasks (Jurgenson et al., 2020; Chane-Sane et al., 2021; Kim et al., 2021; Islam et al.,
2022; Lee et al., 2022; Zhang et al., 2023b; Kim et al., 2023; Yoon et al., 2024). Our approach diverges
from these hierarchical RL methods in that it does not require additional algorithms for subgoal
discovery. The closest related work is by Chane-Sane et al. (2021). However, there are significant
differences between their method and our GCQS framework. Firstly, Chane-Sane et al. (2021)
assumes that the state and goal are identical, which is not applicable in our general goal-conditioned
RL environments where states and goals are distinct. Secondly, our method utilizes the relabeled
goals within a goal-conditioned RL setting as natural subgoals, thus eliminating the need for separate
subgoal discovery mechanisms. This approach has been validated through extensive experimental
evaluations. Moreover, Chane-Sane et al. (2021) lacks a theoretical framework explaining why
subgoals can enhance policy performance. In contrast, our approach systematically integrates
subgoals into the learning process, demonstrating through empirical evidence how these subgoals
contribute to improved policy efficiency and effectiveness in realizing possible long-horizon tasks.

3 PRELIMINARIES

3.1 GOAL-CONDITIONED RL AND HINDSIGHT EXPERIENCE REPLAY

Goal-conditioned reinforcement learning (RL) can be characterized by the tuple
⟨S,A,G,P, r, γ, ρ0, T ⟩, where S, A, G, γ, ρ0 and T respectively represent the state space,
action space, goal space, discounted factor, the distribution of initial states and the horizon of the
episode. P : P(s′|s, a) is the dynamic transition function, and r : r(s, a, g) is typically a simple
unshaped binary signal. A typical sparse reward function employed in goal-conditioned RL can be
expressed as follows:

r(st, at, g) =

{
0, ||ϕ(st)− g||2 < µ

−1, otherwise
, (1)

where ϕ(st) is the achieved goals, µ is a threshold and ϕ : S → G is a known state-to-goal mapping
function from states to achieved goals. HER (Andrychowicz et al., 2017) is an innovative technique
designed to enhance learning from unsuccessful attempts and to address the problem of sparse
rewards in goal-conditioned RL. HER incorporates four distinct replay strategies to improve the
learning process: (1) Final: Replaying transitions corresponding to the final achieved goals of an
episode. (2) Future: Replaying transitions with random future achieved goals from the same episode

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

as the transition being replayed. (3) Episode: Replaying transitions with random achieved goals
from within the same episode. (4) Random: Replaying transitions with random achieved goals
encountered throughout the entire training process. Among these strategies, the future scheme is
generally preferred for goal replay in practical applications. Therefore most prior works and our
framework adopt this future strategy to replace desired goals with achieved goals.

3.2 GOAL-CONDITIONED ACTOR-CRITIC (GCAC)

GCAC is an efficient temporal-difference (TD)-based RL family of methods enabling agent learns to
reach multiple goals with a goal-conditioned policy in goal-conditioned RL. Formally, the objective
of a goal-conditioned policy is to maximize expected discounted return:

J (π) = Eg∼ρg,τ∼dπ(.|g)

[
T∑
t

γtr(st, at, g)

]
(2)

under the distribution

dπ(τ |g) = ρ0(s0)

T∏
t

π(at|st, g)P(st+1|st, at) (3)

induced by the policy π, the initial state s0 and desired goal distribution g ∼ ρg . The policy π(a|s, g)
utilized in this study yields a probability distribution over continuous actions a, conditioned on the
state s and desired goal g. Several algorithms fundamentally rely on the effective estimation of the
state-action-goal value function Qπ and the state-goal value function V π , which are mathematically
expressed as follows::

Qπ(s, a, g) = Es0=s,a0=a,τ∼dπ(·|g)[
T∑
t

γtr(st, at, g)] (4)

and
V π(s, g) = Ea∼π(·|s,g)Qπ(s, a, g). (5)

GCAC aims to approximate the Qπ(s, a, g) and develop a goal-conditioned policy π(a|s, g) that
selects actions to maximize Qπ(s, a, g). This is obtained through the use of a function approximator,
typically a neural network. The learning process involves an iterative approach where the regression
of Qπ(s, a, g) alternates with the optimization of π. During this process, the neural network is trained
to predict Qπ(s, a, g) while simultaneously optimizing π(a|s, g) to choose actions that result in high
values as determined by Qπ(s, a, g). This iterative process ensures that the policy continuously
improves by leveraging the learned value function. GCAC is following the standard off-policy actor-
critic paradigm such as DQN (Mnih et al., 2015), DDPG (Silver et al., 2014), TD3 (Fujimoto et al.,
2018), and SAC (Haarnoja et al., 2018). To further enhance sampling efficiency in goal-conditioned
RL, the GCAC framework is often combined with HER. This combination leverages the on the
benefits of both approaches, enabling more efficient learning and improved handling of sparse reward
environments in goal-conditioned scenarios. In this paper, GCAC refers to the goal-conditioned
actor-critic approach combined with the HER variant.

During training, the value function Qπ is updated to minimize the TD error:

LTD = E(st,at,g′,st+1)∼Br

[
(r′t + γQ̂π(st+1, π(st+1, g

′), g′)−Qπ(st, at, g′))2
]
, (6)

where Br is the data distribution after hindsight relabeling, g′ represents the achieved goals from
Br, and Q̂ refers to the target network which is slowly updated to stabilize training. The policy π is
trained with policy gradient on the following objective in GCAC:

JGCAC(π) = E(st,g′)∼Br
[Qπ(st, π(st, g

′), g′)] . (7)

3.3 GOAL-CONDITIONED WEIGHTED SUPERVISED LEARNING (GCWSL)

In contrast to GCAC methods, which focus on directly optimizing the discounted cumulative return,
GCWSL provides theoretical guarantees that weighted supervised learning from hindsight relabeled

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

10 20 30 40 50
Trajectory horizon

0

2

4

6

8
%

FetchReach
DDPG+HER

10 20 30 40 50
Trajectory horizon

0

2

4

6

8

%

FetchPick
DDPG+HER

10 20 30 40 50
Trajectory horizon

2

6

10

14

18

%

HandReach
WGCSL

20 40 60 80 100
Trajectory horizon

2
4
6
8

10

%

BlockRotateZ
WGCSL

Figure 2: Four example histograms illustrate the distances between initial states and achieved goals
when calculating the achieved goals used to update the targets network for DDPG+HER and WGCSL
in the Fetch and Hand series tasks. These tasks were trained over a fixed number of epochs: 20 for the
Fetch series and 50 for the Hand series. The X axis denotes the horizon between the initial states and
achieved goals, while the Y axis represents the percentage of each bin relative to the total updates.
This phenomenon suggests a tendency to optimize for shorter distances during the training process,
potentially leading to biased learning towards short-horizon goals.

data optimizes a lower bound on the goal-conditioned RL objective. During training, trajectories are
sampled form a relabeled dataset by utilizing hindsight mechanisms (Kaelbling, 1993; Andrychowicz
et al., 2017). And the policy optimization satisfies the following definition:

JGCWSL(π) = E(st,at,g)∼Dr
[w · log πθ(at|st, g)] , (8)

where Dr denotes relabeled data, g = ϕ(si) denotes the relabeled goal for i ≥ t. The weighted
function w exists various forms in GCWSL methods (Ghosh et al., 2021; Yang et al., 2022; Ma et al.,
2022; Hejna et al., 2023) and can be considered as the scheme choosing optimal path between s
and g. Therefore GCWSL includes typical two process, acquiring sub-trajectories corresponding to
(s, g) pairs and imitating them. In the process of imitation, GCWSL first train the specific weighted
function w, and then extract the policy with the Equation 10. Note that GCSL (Ghosh et al., 2021) is
a special case, and for convenience, we include GCWSL here. Generally, w ̸= 1.

4 GCAC AND GCWSL ARE OFTEN BIASED TOWARDS LEARNING SHORT
TRAJECTORIES

The core principle in GCAC and GCWSL is the substitution of desired goals with achieved goals to
facilitate the learning process. This strategy leverages the agent’s capacity to learn from the states
it has successfully reached, thereby promoting effective learning even in the presence of sparse
rewards. By focusing on the achieved goals, these frameworks encourage the agent to reinforce
its ability to navigate towards goal states it has previously encountered, thus optimizing its pol-
icy for a broader range of goal conditions. We use τ = {(s1, a1, g, r1), (s2, a2, g, r2) . . . , (sT−1,

aTmax−1, g, rTmax−1), sTmax)} to denote a trajectory visited by state in replay buffer, and τg
′
=

{ϕ(s1), ϕ(s2), . . . , ϕ(sTmax−1), ϕ(sTmax)} denotes the achieved goal trajectory. GCAC and GCWSL
alternates g and rt in the t-th transition (st, at, g, rt, st+1) with a future achieved goal g′ =
ϕ(si+t+1), 1 ≤ i ≤ Tmax − t selected from achieved goal trajectory and r′t = r(si+t+1, ai+t+1, g

′)
in the same suffix. Upon relabeling, transitions within failed trajectories can be assigned non-negative
rewards. Consequently, HER effectively mitigates the primary challenge of sparse rewards in goal-
conditioned RL. To be precise, the process involves sampling t ∼ U(1, Tmax − 1) which determines
the current state τ(st). Subsequently, an achieved goal is selected from the achieved goal trajectory:
τg

′
(ϕ(si+t+1)), i ∼ U(1, Tmax − t), where i is the chosen future offset. We define p(i) probability

of selecting a future offset with a horizon length i. This leads us to establish the following theorem:
Theorem 4.1. The cumulative function S(x(K)) :=

∑
k≥K xk of the probability p of fixed offset

horizon length I for GCAC and GCWSL updates is characterized by a monotonically decreasing
function:

S(p(I + 1)) ≤ S(p(I)). (9)

The proof is available in Appendix A.1. This theorem remains unaffected by the value of p(i), even
though p(i) is derived from the transition dynamics P and the behavior policy, as demonstrated
in Eq. (2) and Eq. (3). Consequently, we infer that within the HER framework, both GCAC and

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

GCWSL are predisposed to select achieved goals with shorter horizons for relabeling and updating.
We performed a statistical analysis on the time step offsets i used for updates in a fixed number of
DDPG+HER examples within GCAC and GCWSL, determining the percentage distribution of each
time step offset (refer to Fig. 2).

The analysis demonstrates that a significant portion of the updates is concentrated on relatively short
segments of sub-trajectories, despite the trajectories often reaching their maximum permissible length,
Tmax, illustrated at the furthest right of the X axis. This pattern indicates a pronounced inclination
within these methods to favor updates concerning immediate goals, resulting in a model that primarily
acquires information from scenarios involving goals with shorter horizons.

5 GCQS: AN EXTENDED VERSION OF GCAC

Based on the insights and analysis from Section 4, we have developed a novel framework for goal-
conditioned RL called GCQS. The primary motivation behind GCQS is to leverage more extensive
long trajectories for updates. Overall of this framework is illustrated in Fig. 1. Since we find
that GCWSL underperforms compared to GCAC in our experiments, which may be attributed to
GCWSL’s lack of stitching capability (Cheikhi & Russo, 2023; Ghugare et al., 2024). Therefore
GCQS integrates the SAC following GCAC. The core of GCQS is grounded in the observation
that it is generally more straightforward to identify future achieved goals that lead to the ultimate
desired goals, rather than determining the optimal action directly from the initial state. By redefining
these achieved goals as subgoals and embedding them within GCAC models, the accuracy of action
predictions can be significantly enhanced. This process not only simplifies the learning trajectory but
also improves the overall efficiency and effectiveness of the policy learning framework.

In the following sections we describe the specific implementation and analysis of GCQS. We first
introduce a policy π(·|s, g′) for reaching achieved goals, as detailed in Section 5.1. Next, we
enhance the desired goal-conditioned policy π(·|s, g) by using achieved goals trajectory as subgoals
distribution, as discussed in Section 5.2.

5.1 OBTAIN THE OPTIMAL POLICY TO REACH THE ACHIEVED GOALS VIA Q-BC

In this section, we elucidate the process for training a policy to effectively reach achieved goals,
specifically when utilizing the future strategy.

First, we posit the existence of a relabeling policy πrelabel capable of generating achieved goals g′
within the relabeled data Br. Our goal-conditioned policy that reaching achieved goals is then trained
to optimize the following objective function while adhering to KL-divergence constraints:

argmax
π

E(s,g′)∼Br,a∼π(s,g′)[Q
π(s, a, g′)], s.t. DKL (π∥πrelabel) ≤ ϵ. (10)

Since minimizing the KL-divergence corresponds to optimizing for maximum likelihood (LeCun
et al., 2015):

minDKL (π||πrelabel) = minEBr
[log π(a|s, g′)] . (11)

and considering a stochastic policy, we have the following Lagrangian equation:

L(λ, π) = Ea∼π(·|s,ϕ(s)) [Qπ(s, a, g′)] + λE(s,a,ϕ(s))∼Br
log π(a|s, g′).

In this case, the stochastic policy π(s, g′) can be regarded as a Dirac-Delta function thus, the∫
a
π(a|s, g′)da = 1 constraint always satisfies. Therefore optimization objective become:

argmax
π

E(s,a,g′)∼Br
[Qπ(s, a, g′) + log(π(a|s, g′))] . (12)

We refer to our goal-conditioned policy objective that reaches achieved goals in Eq. (12) as Q-BC.

Compared with GCAC In practice, the Q-BC objective integrates reinforcement learning (by
maximizing Qπ) with imitation learning (by maximizing the behavior cloning). This integration
effectively accelerates the GCAC learning process through behavior cloning regularization derived
from relabeled data. This concept aligns with various methods designed to expedite reinforcement

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

learning through demonstrations (Atkeson & Schaal, 1997). Historically, behavior cloning has been
employed to regularize policy optimization using natural policy gradients (Kakade, 2001; Lillicrap
et al., 2015; Rajeswaran et al., 2017; Nair et al., 2018; Goecks et al., 2019), often incorporating
additional complexities such as modified replay buffers and pre-training stage. Moreover, our Q-BC
approach eliminates the need for additional parameters while maintaining training stability, akin to
the methods discussed in Fujimoto & Gu (2021).

5.2 POLICY IMPROVEMENT WITH SUBGOALS DERIVED FROM ACHIEVED GOALS

In this section, we redefine the well-learned achieved goals g′ as subgoals sg that facilitate reaching the
desired goals g. This approach enhances the learning process by integrating intermediate objectives
that guide the agent towards its ultimate goal, leveraging the structure provided by the achieved goals
to optimize the overall policy. The key perspectives in this section can be visualized in the Fig. 3. To
formalize this notion, we first introduce a KL constraint on the policy distribution, conditioning on
desired goals g and subgoals sg:

DKL (π(·|s, g)||π(·|s, sg)) ≤ η. (13)

Figure 3: Achieved goals g′ are considered sub-
goals sg because they are easy to reach and bound-
ing KL-constrained optimal path for reaching sg
and desired goals g.

In goal-conditioned RL, for a given state s and de-
sired goal g, we implement a bootstrapping technique
to estimate the policy’s performance at subgoals sg.
These subgoals are sampled from the trajectory dis-
tribution of achieved goals τg

′
. Then we have the

following definition for the prior goal-conditioned
policy that reaches desired goals:

πprior(a|s, g) := Esg∼τg′ [π(a|s, sg)] . (14)

Given the premise that subgoals are typically more
reachable than final desired goals, we utilize the
prior policy as a valuable initial estimate to guide the
search for optimal actions. To ensure proper align-
ment of the policy behavior, we introduce a policy
iteration framework that incorporates an additional
KL divergence constraint. During the policy improve-
ment stage, in addition to maximizing the Q-function as specified in Eq. (12), we integrate a KL
regularization term to maintain the policy’s proximity to the prior policy. This regularization helps
ensure consistency with the initial estimate, thereby facilitating a more efficient search for optimal
actions.

Therefore the desired goal-conditioned policy objective can be expressed as follows:

argmax
π

E(s,g)∼BEa∼π(·|s,g)
[
Qπ(s, a, g)− βDKL

(
π(·|s, g) ∥ πprior(·|s, g)

)
)
]
, (15)

where β is a hyperparameter. The construction of prior policy in Eq. (14) and KL-divergence term in
Eq. (15) are estimated by Monte-Carlo approximation followed Chane-Sane et al. (2021), ensuring
stable convergence. This phasic goal-conditioned policy structure enables the derivation of more
optimal actions for potentially long-horizon goals. We will provide practical implementation of the
entire algorithm and analyze why this phasic structure is better than the previous flat structure in
detail in Appendix B.1.

Although prior work on subgoal policies has rarely provided performance guarantees, we draw upon
the insights from Ma et al. (2022) to demonstrate that iterative learning under the structured properties
of phasic structure policy can yield statistical guarantees for the optimal policy of GCQS, as described
in Eq. (15).
Theorem 5.1 (Performance Guarantee). Assume sup|r(s, a, g)| ≤ Rmax. Consider a policy class
Π : {S → ∆(A)} such that π∗ ∈ Π. Then, for any δ,with probability at least 1− δ,GCQS framework
will return a policy π̂ such that:

sup
s,g

∣∣V ∗(s, g)− V π̂(s, g)
∣∣ ≤ Rmax

√
2η

1− γ +

Rmax

√
2 log

(
|Π|
δ

)
√
N

. (16)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

The proof is available in Appendix A.2. This theorem provides a theoretical performance guarantee
for the GCQS algorithm in goal-conditioned reinforcement learning, explicitly defining the upper
bound on the V-value function error between the learned policy π̂ and the optimal policy π∗. The
theorem demonstrates that the error bound is influenced by the upper bound on KL-divergence η and
the number of samplesN . By controlling η, the policy deviation can be constrained, ensuring stability
during policy optimization. Additionally, increasing the sample size improves the approximation
accuracy of the policy. While the theorem depends on the quality of the prior policy, it offers a strong
theoretical foundation for the practical effectiveness and sample efficiency of the GCQS algorithm.

6 EXPERIMENTS

We begin by presenting the benchmarks and baseline methodologies utilized in our study, accompa-
nied by a detailed description of the experimental procedures. Following this, we report the results
and provide a thorough analysis, demonstrating how they corroborate our initial assumptions and
theoretical framework.

Benchmarks We utilize the established goal-conditioned research benchmarks as detailed by
Plappert et al. (2018), encompassing four manipulation tasks on the Shadow − hand and all tasks
on the Fetch robot. We also conducted comparisons with an advanced subgoal algorithm on the
complex long-horizon AntMaze tasks used in Hu et al. (2023). Fig. 4 presents examples of the tasks.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 4: Goal-conditioned example tasks: (a) FetchReach, (b) FetchPush, (c) FetchSlide, (d)
FetchPickAndPlace, (e) HandReach, (f) HandManipulateBlock. (h) L-AntMaze. (i) U-AntMaze. (j)
S-AntMaze. (g) π-AntMaze.

Baselines In this section, we conduct a comparative analysis of our proposed method against
various established goal-conditioned policy learning algorithms. We implemented the baseline
algorithms within the same off-policy actor-critic framework as our method to ensure a consistent
and fair evaluation. All experiments are conducted using five random seeds. Detailed algorithm
implementation is described in Appendix C. We compare with following goal-conditioned baselines
including GCAC and GCWSL methods: (1) DDPG (Lillicrap et al., 2015), which is an off-policy
actor-critic method for learning continuous actions. (2) DDPG+HER (Andrychowicz et al., 2017),
which combines DDPG with HER, which learns from failed experiences with sparse rewards. (3)
MHER (Yang et al., 2021), which constructs a dynamics model using historical trajectories and
combines current policy to generate virtual future trajectories for goal relabeling. (4) GCSL (Ghosh
et al., 2021), which incorporates hindsight relabeling in conjunction with behavior cloning to imitate
the suboptimal trajectory. (5) WGCSL (Yang et al., 2022) builds upon GCSL by incorporating
both goal relabeling and advantage-weighted updates into the policy learning process, and can be
applied to both online and offline settings. (6) GoFar (Ma et al., 2022) employs advantage-weighted
regression with f -divergence regularization based on state-occupancy matching. (7) DWSL (Hejna
et al., 2023), which initially creates a model to quantify the distance between given state and the goal
and policy derivation involves imitating actions that effectively minimize this distance metric. We
also performed comparisons with state-of-the-art subgoal-based methods on complex AntMaze tasks,
as described in Yoon et al. (2024). These methods include BEAG (Yoon et al., 2024), PIG (Hu et al.,
2023), DHRL (Lee et al., 2022), and HIGL (Kim et al., 2021).

6.1 PERFORMANCE EVALUATION ON GOAL-CONDITIONED BENCHMARKS RESULTS

For all experiments, we use a single GPU to train the agent for 20 epochs in Fetch tasks and 50
epochs in Hand tasks. Upon completing the training stage, the most effective policy is evaluated by
testing it on the designated tasks. The performance outcomes are then expressed as mean success

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5 10 15 20
Epoch

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s

Ra
te

FetchReach

5 10 15 20
Epoch

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s

Ra
te

FetchPick

5 10 15 20
Epoch

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s

Ra
te

FetchPush

5 10 15 20
Epoch

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s

Ra
te

FetchSlide

10 20 30 40 50
Epoch

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s

Ra
te

HandReach

10 20 30 40 50
Epoch

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s

Ra
te

BlockRotateZ

10 20 30 40 50
Epoch

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s

Ra
te

BlockRotateXYZ

10 20 30 40 50
Epoch

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s

Ra
te

BlockRotateParallel

Figure 5: Performance on eight robot goal-reaching tasks in goal-conditioned benchmarks. Results
are averaged over five random seeds and the shaded region represents the standard deviation.

10 20 30 40 50
Trajectory horizon

0
1
2
3
4
5

Re
pe

tit
io

ns

×106 FetchReach

10 20 30 40 50
Trajectory horizon

0
1
2
3
4
5

Re
pe

tit
io

ns

×106 FetchPick

10 20 30 40 50
Trajectory horizon

0
1
2
3
4
5
6
7

Re
pe

tit
io

ns

×107 BlockRotateZ

20 40 60 80 100
Trajectory horizon

0
1
2
3
4
5
6
7

Re
pe

tit
io

ns

×107 BlockRotateZ

DDPG+HER WGCSL GCQS

Figure 6: Histogram of lengths of successful trajectories in the four goal-conditioned tasks. X axis
is the length of the successful trajectory, Y axis is the bin count for that length. The histograms
show that GCQS successes are more concentrated on long trajectories compared to DDPG+HER and
WGCSL.

rate. Performance comparisons across training epochs are illustrated in Fig. 5. As illustrated in Fig. 5,
GCQS demonstrates significantly superior performance compared to the other baseline methods,
coupled with a markedly faster learning speed. The results indicate that DDPG and Actionable
Models exhibit slow learning across all tasks, whereas other methods benefit from HER, showcasing
its critical role in enhancing learning efficiency and handling sparse rewards in goal-conditioned RL.

Interestingly, the advanced algorithms DWSL and GoFar perform poorly, likely due to their configu-
rations being more suited for offline goal-conditioned RL. Furthermore, we compared our method
with two representative approaches, DDPG+HER and WGCSL, during the update process, as shown
in Fig. 6. It is evident that GCQS effectively addresses the issue of short trajectory updates, applying
robustly across all trajectory lengths, especially for longer trajectories.

6.2 PERFORMANCE EVALUATION ON COMPLEX ANTMAZE RESULTS

As illustrated in Fig. 7, although GCQS does not incorporate additional algorithms to determine
subgoal selection, it demonstrates performance comparable to the advanced SOTA algorithms on
L-Antmaze task. This indicates that selecting subgoals from relabeled data is highly effective. In the
U-Antmaze, S-Antmaze, and π-Antmaze environments, GCQS demonstrates performance slightly
inferior to or comparable with PIG, but outperforms both HIGL and DHRL. Further research could
focus on refining methods for choosing more suitable subgoals from the relabeled goals.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

GCQS BEAG PIG HIGL DHRL

1e5 2e5 3e5 4e5 5e5
Environment step

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s

Ra
te

L-AntMaze

2e5 4e5 6e5 8e5 10e5
Environment step

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s

Ra
te

U-AntMaze

6e5 12e5 18e5 24e5 30e5
Environment step

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s

Ra
te

S-AntMaze

6e5 12e5 18e5 24e5 30e5
Environment step

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s

Ra
te

Pi-AntMaze

Figure 7: Performance on four complex long-horizon Antmaze tasks. We note that certain baselines
may not be visible in specific environments due to overlapping values, especially at zero success
rates.

0 2 4 6 8 10
Epoch

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s

Ra
te

FetchReach

0 2 4 6 8 10
Epoch

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s

Ra
te

FetchPick

0 2 4 6 8 10
Epoch

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s

Ra
te

FetchPush

0 2 4 6 8 10
Epoch

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s

Ra
te

HandReach

Figure 8: Ablation studies in FetchReach, FetchPick, FetchPush and HandReach.

6.3 ABLATION STUDIES

To evaluate the significance of subgoals and BC regularization during the stage of learning achieved
goals in the GCQS framework, we conducted a series of ablation experiments comparing GCQS
variants with HER. In these experiments, the number of subgoals corresponds to all achieved goals,
and the parameter β is set to 0.2 by default. We experiment with the following settings:

• GCQS SAC+Q-BC+Subgoals.

• No BC-Regularized Q which is equivalent to remove KL constraints.

• No Subgoals which is equivalent to apply flat goal-conditioned policy.

The empirical results shown in Fig. 8 demonstrate that subgoals are more pivotal than BC-Regularized
Q within the GCQS framework. The GCQS method attains faster learning compared to competitive
baseline DDPG+HER, while the state-of-the-art DWSL struggles to learn effectively in these tasks,
with the exception of FetchReach. This observation implies that supervised learning (SL) approaches
are suboptimal for relabeled data.

Integrating BC-Regularized Q with subgoals leads to substantial performance enhancements. This
improvement arises from the synergistic interaction between BC-Regularized Q and subgoals within
the GCQS framework. Subgoals offer an improved policy for attaining desired goals, while BC-
Regularized Q fine-tunes this policy, thereby efficiently directing the subgoal curriculum.

7 CONCLUSION

This paper presents GCQS, an advanced GCAC framework for goal-conditioned RL that incorporates
a subgoal generation strategy. This approach is motivated by the observation that existing goal-
conditioned methods tend to prioritize updates on short-horizon trajectories. A distinctive feature of
GCQS is its ability to autonomously generate subgoals using the same relabeling technique applied to
the same trajectory, thereby removing the need for additional discovery mechanisms. By leveraging
longer trajectories as intermediate subgoals, GCQS enhances the agent’s capacity to predict more
accurate actions. Future work will focus on developing more refined techniques for identifying
subgoals from accomplished outcomes, further optimizing the training of goal-conditioned policies.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ahmed Akakzia, Cédric Colas, Pierre-Yves Oudeyer, Mohamed Chetouani, and Olivier Sigaud.
Grounding language to autonomously-acquired skills via goal generation. arXiv preprint
arXiv:2006.07185, 2020.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
Advances in neural information processing systems, 30, 2017.

Christopher G Atkeson and Stefan Schaal. Robot learning from demonstration. In ICML, volume 97,
pp. 12–20. Citeseer, 1997.

G Brockman. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Elliot Chane-Sane, Cordelia Schmid, and Ivan Laptev. Goal-conditioned reinforcement learning with
imagined subgoals. 2021.

David Cheikhi and Daniel Russo. On the statistical benefits of temporal difference learning. In
International Conference on Machine Learning, pp. 4269–4293. PMLR, 2023.

Benjamin Eysenbach, Soumith Udatha, Russ R Salakhutdinov, and Sergey Levine. Imitating past
successes can be very suboptimal. Advances in Neural Information Processing Systems, 35:
6047–6059, 2022.

Meng Fang, Tianyi Zhou, Yali Du, Lei Han, and Zhengyou Zhang. Curriculum-guided hindsight
experience replay. Advances in neural information processing systems, 32, 2019.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Dibya Ghosh, Abhishek Gupta, Ashwin Reddy, Justin Fu, Coline Manon Devin, Benjamin Eysenbach,
and Sergey Levine. Learning to reach goals via iterated supervised learning. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=rALA0Xo6yNJ.

Raj Ghugare, Matthieu Geist, Glen Berseth, and Benjamin Eysenbach. Closing the gap between td
learning and supervised learning–a generalisation point of view. arXiv preprint arXiv:2401.11237,
2024.

Vinicius G Goecks, Gregory M Gremillion, Vernon J Lawhern, John Valasek, and Nicholas R
Waytowich. Integrating behavior cloning and reinforcement learning for improved performance in
dense and sparse reward environments. arXiv preprint arXiv:1910.04281, 2019.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. PMLR, 2018.

Joey Hejna, Jensen Gao, and Dorsa Sadigh. Distance weighted supervised learning for offline
interaction data. arXiv preprint arXiv:2304.13774, 2023.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. The collected
works of Wassily Hoeffding, pp. 409–426, 1994.

Edward S Hu, Richard Chang, Oleh Rybkin, and Dinesh Jayaraman. Planning goals for exploration.
arXiv preprint arXiv:2303.13002, 2023.

Riashat Islam, Hongyu Zang, Anirudh Goyal, Alex M Lamb, Kenji Kawaguchi, Xin Li, Romain
Laroche, Yoshua Bengio, and Remi Tachet des Combes. Discrete compositional representations
as an abstraction for goal conditioned reinforcement learning. Advances in Neural Information
Processing Systems, 35:3885–3899, 2022.

11

https://openreview.net/forum?id=rALA0Xo6yNJ
https://openreview.net/forum?id=rALA0Xo6yNJ

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tom Jurgenson, Or Avner, Edward Groshev, and Aviv Tamar. Sub-goal trees – a framework for
goal-based reinforcement learning. 2020.

Leslie Pack Kaelbling. Learning to achieve goals. In IJCAI, volume 2, pp. 1094–8. Citeseer, 1993.

Sham M Kakade. A natural policy gradient. Advances in neural information processing systems, 14,
2001.

Junsu Kim, Younggyo Seo, and Jinwoo Shin. Landmark-guided subgoal generation in hierarchical
reinforcement learning. Advances in neural information processing systems, 34:28336–28349,
2021.

Junsu Kim, Younggyo Seo, Sungsoo Ahn, Kyunghwan Son, and Jinwoo Shin. Imitating graph-based
planning with goal-conditioned policies. arXiv preprint arXiv:2303.11166, 2023.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

Seungjae Lee, Jigang Kim, Inkyu Jang, and H Jin Kim. Dhrl: a graph-based approach for long-
horizon and sparse hierarchical reinforcement learning. Advances in Neural Information Processing
Systems, 35:13668–13678, 2022.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Jason Yecheng Ma, Jason Yan, Dinesh Jayaraman, and Osbert Bastani. Offline goal-conditioned
reinforcement learning via f -advantage regression. Advances in Neural Information Processing
Systems, 35:310–323, 2022.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Over-
coming exploration in reinforcement learning with demonstrations. In 2018 IEEE international
conference on robotics and automation (ICRA), pp. 6292–6299. IEEE, 2018.

Seohong Park, Dibya Ghosh, Benjamin Eysenbach, and Sergey Levine. Hiql: Offline goal-conditioned
rl with latent states as actions. Advances in Neural Information Processing Systems, 36, 2024.

Keiran Paster, Sheila A McIlraith, and Jimmy Ba. Planning from pixels using inverse dynamics
models. arXiv preprint arXiv:2012.02419, 2020.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Mark S Pinsker. Information and information stability of random variables and processes. Holden-
Day, 1964.

Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn Powell,
Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, et al. Multi-goal reinforcement learn-
ing: Challenging robotics environments and request for research. arXiv preprint arXiv:1802.09464,
2018.

Armando de Jesús Plasencia-Salgueiro. Deep reinforcement learning for autonomous mobile robot
navigation. In Artificial Intelligence for Robotics and Autonomous Systems Applications, pp.
195–237. Springer, 2023.

Wen Qi, Haoyu Fan, Hamid Reza Karimi, and Hang Su. An adaptive reinforcement learning-based
multimodal data fusion framework for human–robot confrontation gaming. Neural Networks, 164:
489–496, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Francisco Quiroga, Gabriel Hermosilla, Gonzalo Farias, Ernesto Fabregas, and Guelis Montenegro.
Position control of a mobile robot through deep reinforcement learning. Applied Sciences, 12(14):
7194, 2022.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017.

Mehdy Roayaei Ardakany and Ali Afroughrh. Maximize score in stochastic match-3 games using
reinforcement learning. Signal and Data Processing, 20(4):129–140, 2024.

Koosha Sharifani and Mahyar Amini. Machine learning and deep learning: A review of methods and
applications. World Information Technology and Engineering Journal, 10(07):3897–3904, 2023.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International conference on machine learning, pp.
387–395. Pmlr, 2014.

Victor Uc-Cetina, Nicolas Navarro-Guerrero, Anabel Martin-Gonzalez, Cornelius Weber, and Stefan
Wermter. Survey on reinforcement learning for language processing. Artificial Intelligence Review,
56(2):1543–1575, 2023.

Rui Yang, Meng Fang, Lei Han, Yali Du, Feng Luo, and Xiu Li. Mher: Model-based hindsight
experience replay. arXiv preprint arXiv:2107.00306, 2021.

Rui Yang, Yiming Lu, Wenzhe Li, Hao Sun, Meng Fang, Yali Du, Xiu Li, Lei Han, and Chongjie
Zhang. Rethinking goal-conditioned supervised learning and its connection to offline rl. arXiv
preprint arXiv:2202.04478, 2022.

Wenyan Yang, Huiling Wang, Dingding Cai, Joni Pajarinen, and Joni-Kristen Kämäräinen. Swapped
goal-conditioned offline reinforcement learning. arXiv preprint arXiv:2302.08865, 2023.

Youngsik Yoon, Gangbok Lee, Sungsoo Ahn, and Jungseul Ok. Breadth-first exploration on adaptive
grid for reinforcement learning. In Forty-first International Conference on Machine Learning,
2024.

Shuaiqi Zhang, Guodong Zhao, Peng Lin, Mingshuo Liu, Jianhua Dong, and Haoyu Zhang. Deep
reinforcement learning for a humanoid robot basketball player. In 2023 IEEE International
Conference on Robotics and Biomimetics (ROBIO), pp. 1–6. IEEE, 2023a.

Zichen Zhang, Yunshuang Li, Osbert Bastani, Abhishek Gupta, Dinesh Jayaraman, Yecheng Jason
Ma, and Luca Weihs. Universal visual decomposer: Long-horizon manipulation made easy. arXiv
preprint arXiv:2310.08581, 2023b.

Chongyi Zheng, Benjamin Eysenbach, Homer Rich Walke, Patrick Yin, Kuan Fang, Ruslan Salakhut-
dinov, and Sergey Levine. Stabilizing contrastive RL: Techniques for robotic goal reaching from
offline data. In The Twelfth International Conference on Learning Representations, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Contents of Appendix

A Proofs 15

A.1 Proof of Theorem 4.1 . 15

A.2 Proof of Theorem 5.1 . 15

B GCQS Technical Details 16

B.1 Practical GCQS Algorithm . 16

B.2 Phasic Policy Structure Analysis . 16

C Experimental Details 19

C.1 Algorithm and Architecture . 19

C.2 Evaluation Setup . 20

C.3 Experimental Hyperparameters . 20

C.4 Environment Details . 20

D Additional Results 21

D.1 The Impact Number of Subgoals . 21

D.2 The Impact of Hyperparameter β . 22

D.3 Error Bars of Mean Performance . 22

D.4 Robust to Environmental Stochasticity . 22

D.5 Sample Efficiency . 23

D.6 Relabeling Ratio . 24

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A PROOFS

In this section, we restate theorems in the paper and present their proofs.

A.1 PROOF OF THEOREM 4.1

First we write S(p(I)) as:

S
(
p(I)

)
=
∑
i≥I

pi =
∑
i≥I

pi +
∑
i<I

pi · 0. (17)

Then we can obtain S(p(I + 1)) as:

S
(
p(I + 1)

)
=
∑
i≥I+1

pi +
∑
i<I+1

pi · 0. (18)

Comparing Eq. (17) and Eq. (18), we can see that:
S
(
p(I)

)
= p(I) + S

(
p(I + 1)

)
, (19)

since p(I) ≥ 0, we have that the cumulative function S of the probability of fixed offset horizon
length I is monotonically decreasing:

S
(
p(I + 1)

)
≤ S

(
p(I)

)
. (20)

A.2 PROOF OF THEOREM 5.1

Notation. Let π∗ be the optimal policy and π̂ be the policy returned by GCQS. The π∗ satisfies
V ∗(s, g) = maxπ̂ V

π̂(s, g). γ ∈ (0, 1) is the discount factor.

Assumptions. Before proving this theorem, we first have the following assumptions:

1. For all states s, actions a, and goals g, the reward function satisfies |r(s, a, g)| ≤ Rmax.
2. The size of the policy class Π is |Π| and δ represents the confidence level controlling the

error bound.
3. The training samples a1, a2, . . . , aN are independently and identically distributed (IID)

from the policy .

Proof. Since our algorithm is built on the basis of GCAC, we can define the error between V ∗(s, g)
and V π̂(s, g) as:

δV (s, g) =: V ∗(s, g)− V π̂(s, g)
= max

a
[r(s, a, g) + γEs′∼P [V ∗(s′, g)]]− Ea∼π̂

[
r(s, a, g) + γEs′∼P

[
V π̂(s′, g)

]]
= γEs′∼P

[
V ∗(s′, g)− V π̂(s′, g)

]
+
(
max
a

r(s, a, g)− Ea∼π̂[r(s, a, g)]
)

(21)
Since δV (s, g) reflects the difference between the policies π̂ and π∗, we need to quantify this
difference further. In GCQS, the policy π̂ satisfies a KL-divergence constraint with respect to the
prior policy πpiror:

DKL(π̂(·|s, g) ∥ πprior(·|s, g)) ≤ η, ∀s, g. (22)
Using Pinsker’s Inequality (Pinsker, 1964),we can obtain:

∥π̂(·|s, g)− πprior(·|s, g)∥1 ≤
√

2DKL(π̂(·|s, g) ∥ πprior(·|s, g)) ≤
√
2η. (23)

We consider the impact of policy differences on the V-value function error. Using the recursive nature
of Bellman error and the maximum difference impact, we have:

|δV (s, g)| ≤
∣∣∣max
a

r(s, a, g)− Ea∼π̂[r(s, a, g)]
∣∣∣+ γEs′∼P

[
|V ∗(s′, g)− V π̂(s′, g)|

]
≤ Rmax∥π∗(·|s, g)− πθ̂(·|s, g)∥1 + γEs′∼P

[
|V ∗(s′, g)− V π̂(s′, g)|

]
≤ Rmax

√
2η + γEs′∼P

[
|V ∗(s′, g)− V π̂(s′, g)|

]
≤ Rmax

√
2η

1− γ

(24)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

The first line utilizes the inequality E[|X|] ≥ |E[X]|. The second line shows that the discrepancy in
immediate rewards can be controlled through the distribution of action selection. The fourth line is
derived through the recursive expansion of the future value differences. Additionally, considering
the effect of sample size N on policy learning, we use Hoeffding’s inequality (Hoeffding, 1994) to
further limit the value function estimation error under finite samples. Here’s the detailed process.
First, let us review Hoeffding’s inequality. Hoeffding’s inequality is a concentration inequality that
provides a bound on the deviation of the sum of bounded independent random variables. For given
random variables (X1, X2, . . . , XN) bounded within an interval [a, b], the probability of deviation
from the expected value can be bounded as follows:

P

(∣∣∣∣∣ 1N
N∑
i=1

Xi − E[X]

∣∣∣∣∣ ≥ ϵ
)
≤ 2 exp

(
− 2Nϵ2

(b− a)2
)

(25)

Equivalently, for a given confidence level 1 − δ, the inequality can be inverted to yield an upper
bound on the deviation: ∣∣∣∣∣ 1N

N∑
i=1

Xi − E[X]

∣∣∣∣∣ ≤
√

(b− a)2 log(2/δ)
2N

(26)

Then, we apply it to value function estimation. To apply Hoeffding’s inequality within our setting,
we assume that we have N independent samples (s, a, g) for estimating the value function V π(s, g).
Given that the reward function r(s, a, g)is bounded by |r(s, a, g)| ≤ Rmax,the discrepancy between
the empirical and true values of V π(s, g) can be controlled using Hoeffding’s inequality. Specifically,
we obtain the following bound on the error of the value function estimation with confidence 1− δ:

sup
s,g
|V ∗(s, g)− V π(s, g)| ≤ Rmax

√
2 log(|Π|/δ)

N
(27)

Finally, combining the infinite-sample bound from Eq. (24) with the finite-sample bound derived via
Hoeffding’s inequality, we arrive at the following refined bound:

sup
s,g

∣∣V ∗(s, g)− V π̂(s, g)
∣∣ ≤ Rmax

√
2η

1− γ +

Rmax

√
2 log

(
|Π|
δ

)
√
N

. (28)

B GCQS TECHNICAL DETAILS

In this section, we provide additional technical details of GCQS that are omitted in the main text.
These include (1) detail of the overall GCQS algorithm, and (2) phasic policy structure analysis in
GCQS.

B.1 PRACTICAL GCQS ALGORITHM

The complete GCQS algorithm is detailed in Algorithm 1. GCQS extends the SAC framework within
GCAC. For each episode, a goal g is sampled from the desired goal distribution, and a trajectory
is collected using the current policy as behavior policy. This trajectory is subsequently stored in
the replay buffer B. Following data collection, a minibatch m is sampled from the replay buffer.
The future strategy is employed to relabel goals in the minibatch with achieved goals g′ = ϕ(si).
After hindsight relabeling, the minibatch m belongs to the relabeled distribution Br and is used to
train both the Qπ network and the policy network. The Qπ network is updated according to Eq. (6),
and the subgoal policy is trained to minimize the Q-BC objective as described in Eq. (12). Finally,
these achieved goals are reused as subgoals to refine the policy by maximizing the KL-divergence
regularized Qπ function as described in Eq. (15).

B.2 PHASIC POLICY STRUCTURE ANALYSIS

To further elucidate the advantages of our phasic goal-conditioned policy structure in Section 5.2,
we analyze an example trajectory between a randomly selected state and a desired goal (s, g) under

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm 1 GCQS For Goal-conditioned RL

1: Initialize off-policy replay buffer B
2: Initialize policy πθ, policy target network weights θ̄ ← θ, value Qψ, value target network

weights ψ̄ ← ψ
3: while a fixed number of iteration do
4: Sample goal from desired goal distribution g ∼ p(g)
5: Collect trajectories with the policy π and save to the replay buffer B
6: for Update goal-conditioned policy step do
7: Sample a minibatch m from the replay buffer: {(st, at, g, rt)} ∼ B
8: Relabel g with achieved goals through future strategy for minibatch m: m ←
{(st, at, ϕ(si), r(st, at, ϕ(si))), i ≥ t}, where ϕ(si) is the achieved goals

9: Compute target yt with yt = r′t + γQ̂ψ̄(st+1, π(st+1, g
′), g′) and minimize critic loss in

Eq. (6)
10: //Subgoal Policy Learning
11: Update πpirorθ with minimize actor loss in Eq. (12)
12: //Policy Improvement with Subgoals Derived from Achieved Goals
13: Update πθ with minimize actor loss in Eq. (15)
14: Soft update the target policy and value network: θ̄ ← τθ + (1− τ)θ̄, ψ̄ ← τψ + (1− τ)ψ̄

⋯ ⋯ ⋯

�

� �g g
⋯

Figure 9: One-dimensional state space and goal space trajectory example between s and g. In this trajectory,
the agent can only perform left or right actions at each time step with equal transition probability. Similar to
reward definition in Eq. (1), the agent gets a reward of 0 when it reaches the desired goal and -1 in otherwise.
We assume that T is the horizon distance between state s and desired goal g which satisfies g = s+ T , i is the
horizon distance between state s and subgoal sg .

certain assumptions motivated by Park et al. (2024), as illustrated in Fig. 9. This example demonstrates
the intermediate stages and decision points within the trajectory, highlighting the effectiveness of
integrating subgoals into the learning process. Through this analysis, we aim to provide a clearer
understanding of how phasic structure enhances the policy’s ability to navigate towards long-horizon
goals while maintaining adaptability and robustness.

Based on the above description the optimal goal-conditioned Q-value function is hence given as

Q∗ = −T − 1. (29)

Proof. In the one-dimensional state space and goal space example in Fig. 9, we obviously obtain
the optimal V -value is V ∗(s, g) = −T (assume that γ = 1). According to Qπ(s, a, g) = r(s, a, g) +
γ
∑
s′∈S P(s′|s, a)V π(s′, g) we can obtain:

Q∗(s, a, g) = −1 + P1V
∗(s− 1, g) + P2V

∗(s+ 1, g)

= −1 + P1(T − 1) + P2(T + 1)

= −T + P2 − P1 − 1

= −T − 1.

(30)

GCQS builds upon the GCAC framework by first fitting a Qπ function and then extracting a policy
that selects actions leading to high-value outcomes. However, when the goal g is distant from the
current state s, the goal-conditioned value function may struggle to provide a clear learning signal for
a straightforward goal-conditioned policy. This issue arises for two main reasons:

The first is the precise estimation of the value function. As the distance between s and g increases,
the precision of the Qπ values tends to decrease. This reduction in precision occurs because the
differences in Qπ values for subsequent states Qπ(st+1, a, g) may be minimal. Consequently,
suboptimal actions can be easily corrected within a few steps, resulting in only minor penalties.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

The second is the noise and error accumulation. The Qπ function’s noise and errors, including
sampling and approximation errors, become more pronounced when the goal g is far from the
current state s. These errors can overshadow the minor differences in value estimates, making it
challenging for the policy to distinguish between optimal and suboptimal actions effectively. This
issue is exacerbated when the magnitude of the value function, and consequently its noise, is large
due to the long horizon involved. By addressing these two issues, GCQS aims to provide a more
robust and efficient approach to goal-conditioned RL, particularly in scenarios involving long-horizon
goals.

We assume that the noise in the learned value function Q̂π(s, a, g) is propor-
tional to the optimal value: i.e., Q̂π(s, a, g) = Q∗(s, a, g) + σzs,gQ

∗(s, a, g),
where zs,g is sampled independently from the standard normal distribution,

10 20 30 40 50
distance

0.0

0.5

1.0

1.5

2.0

le
ar

ne
d

q
st

d

FetchPick

Figure 10: The relationship curve
between distance and standard devia-
tion in the FetchPick Task.

and σ is its standard deviation. This assumption implies that noise
increases as the desired goal becomes more distant. We illustrate
this concept with references in Fig. 10, where the distance repre-
sents the horizon length between the state s and the desired goal
g. The curve illustrates a clear trend: as the distance between the
state and the goal increases, the learned value function exhibits
greater noise.

In this case, we assess the probability of selecting incorrect ac-
tions when comparing flat and phasic goal-conditioned policies.
Note that we define achieved goal policy as subgoal policy. The
subgoal policy evaluates values at s± i by considering subgoals
that are i-steps away. For the phasic structure approach, both the
subgoal and desired goal policies are queried at each step. This methodology allows us to derive the
bounds on the error probability for both approaches, as follows:

Theorem B.1. In the trajectory depicted in Fig. 9, the probability of the flat policy π selecting

an incorrect action is given as Ω(π) = Φ

(
−

√
2

σ
√
T (T+2)

)
and the probability of the phasic pol-

icy structure πsubgoal ◦ πdeisredgoal selecting an incorrect action is bounded as Ω(πsg ◦ πdg) ≤
Φ

(
−

√
2

σ
√

(T/i)2+2(T/i)

)
+Φ

(
−

√
2

σ
√
i(i+2)

)
, where Φ denotes the cumulative distribution function

of the standard normal distribution Φ(x) = P [z ≤ x] = − 1√
2π

∫ x

−∞
e−T

2/2dT .

Proof. Defining z1 := z1,T and z2 := z1,T , the probability of the flat policy π selecting an incorrect
action can be computed as follows:

Ω(π) = P
[
Q̂(s+ 1, a, g) ≤ Q̂(s− 1, a, g)

]
= P [−T (1 + σz1) ≤ −(T + 2)(1 + σz2)]

= P [z1σ(T)− z2σ(T + 2) ≤ −2]
= P

[
zσ
√
T (T + 2) ≤ −

√
2
]

= Φ

(
−

√
2

σ
√
T (T + 2)

)
,

(31)

where z represent a standard Gaussian random variable. We leverage the property that the sum of
two independent Gaussian random variables with standard deviations σ1 and σ2 results in a Gaussian
distribution with a standard deviation of

√
σ2
1 + σ2

2 .

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Similar to the flat policy, the probability of the phasic policy selecting an incorrect action can be
estimated using a union bound as follows:

Ω(πsubgoal ◦ πdesiredgoal) ≤ Ω(πsubgoal) + Ω(πdesiredgoal)

= P
[
Q̂(s+ i, a, g) ≤ Q̂(s− i, a, g)

]
+

P
[
Q̂(s+ 1, a, s+ i) ≤ Q̂(s− 1, a, s+ i)

]
= P

[
Q̂(i, a, T) ≤ Q̂(−i, a, T)

]
+ P

[
Q̂(1, a, i) ≤ Q̂(−1, a, i)

]
= Φ

(
−

√
2

σ
√

(T/i)2 + 2(T/i)

)
+Φ

(
−

√
2

σ
√
i(i+ 2)

)
.

(32)

We observe that the error terms in the phasic goal-conditioned policy bound are consistently smaller
than or equal to those in the flat policy. This implies that the accuracy of both the subgoal and desired
goal policies surpasses that of the flat policy.

To evaluate the effectiveness of our phasic policy in selecting the correct actions, we conducted
experiments on the gridworld environment, following the methodology outlined in Park et al. (2024).
Specifically, we tested whether the policy learned by GCQS could reliably reach the desired goals.
As illustrated in Fig. 11, under noisy Q-values, traditional flat policies do not always produce correct
actions and may even generate erroneous actions, particularly in states far from the desired goal. In
contrast, our GCQS approach demonstrates the ability to consistently generate correct policies that
direct the agent towards the desired goals.

g

(a) Noisy Q-value function.(a) Optimal value function (b) Noisy value function

°25

°20

°15

°10

°5

0

(c) Flat policy (d) Hierarchical policy

Goal

(b) Traditional flat policy.(a) Optimal value function (b) Noisy value function

°25

°20

°15

°10

°5

0

(c) Flat policy (d) Hierarchical policy

Goal

(c) Our phasic policy.

Figure 11: The phasic policy structure in GCQS outperforms traditional flat policies in learning under
noisy Q-values. g is the desired goal. (a) Noisy Q-values are inherent in this gridworld environment.
(b) The traditional flat policy is prone to producing incorrect actions (→), especially in states that are
far from the desired goal. (c) The phasic policy is still able to produce correct actions (→), thanks to
the subgoal mechanism.

C EXPERIMENTAL DETAILS

In this section, we provide experimental details omitted in Section 6 of the main paper. These
include (1) technical and architecture details for all methods, (2) experimental evaluating setup, (3)
hyperparameters for all methods.

C.1 ALGORITHM AND ARCHITECTURE

We employ the off-policy actor-critic algorithm with HER (Andrychowicz et al., 2017) as our
foundational goal-conditioned RL framework. This sequential comparison experiment allows us to
directly assess the relative performance and effectiveness of each approach under identical conditions.
Additionally, temporal difference (TD) learning is utilized for value function estimation, and soft
updates are applied to network parameters. Our implementation adheres to the optimal parameter
settings as outlined in Plappert et al. (2018). The hyperparameters for all baseline methods remain
consistent. For GCQS, the policy objective parameter β is set to 0.2. For further details, refer to

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Appendix D.2. Our implementation of baselines and GCQS draw knowledge from and references the
following four code repositories:

• DDPG, DDPG+HER, MHER, GCSL, WGCSL: https://github.com/
Cranial-XIX/metric-residual-network;

• Actionable Models, GoFar: https://github.com/JasonMa2016/GoFAR;

• DWSL: https://github.com/jhejna/dwsl/;

• RIS: https://github.com/elliotchanesane31/RIS;

• BEAG, PIG, HIGL, CQM: https://github.com/ml-postech/BEAG;

Notably, although GoFar and DWSL are offline goal-conditioned methods, Yang et al. (2023) and
(Hejna et al., 2023) indicate that they are both derived from Advantage-Weighted Regression (AWR)
(Peng et al., 2019). Therefore, we re-implemented them, and they remain effective in the online
setting.

C.2 EVALUATION SETUP

For each baseline and task, we conducted evaluations using random five seeds (e.g,
{100, 200, 300, 400, 500}). The policy was trained for 1000 episodes per epoch. Upon completing
each training epoch, the policy’s performance was measured by calculating the mean success rate
from 100 independent rollouts, each using randomly selected desired goals. These success rates were
averaged across five seeds and plotted over the learning epochs, with the standard deviation illustrated
as a shaded region on the performance figure.

C.3 EXPERIMENTAL HYPERPARAMETERS

We consistently utilize the Adam optimizer (Kingma, 2014) across all experimental setups. For
each state, goals are uniformly relabeled by sampling from all future states within its trajectory.
In environments applying discount factors, we set γ = 0.98 for all goal-conditioned tasks. Each
algorithm follows a predetermined set of hyperparameters specifically designed for goal-conditioned
environments. PIG, DWSL, GoFar, WGCSL, GCSL, MHER, and DDPG have been previously
calibrated for our task set, and we have adopted the parameter values as reported in prior research.
Our implementation of PIG shares the same network architecture as DDPG, thus utilizing DDPG’s
hyperparameter values. Detailed hyperparameter configurations used in this study are provided in
Table 1, which have been identified through the aforementioned parameter search process.

C.4 ENVIRONMENT DETAILS

In this section, we describe the tasks in our experiments in Section 6. All goal-conditioned tasks are
derived from OpenAI Gym (Brockman, 2016).

Fetch Tasks The Fetch tasks (i.e, FetchReach, FetchPush, FetchSlide, FetchPick), involve control-
ling a 7-DoF robotic arm to complete various goal-directed actions such as reaching, pushing, sliding,
or picking up an object and moving it to a target location. These environments share common charac-
teristics, including a multidimensional state space that represents the arm’s position and velocities,
and a 4-dimensional action space for movement and gripper control. The tasks are goal-conditioned,
with the reward function defined by whether the arm or object reaches the desired goal within an
allowable margin of error. The main variation between tasks lies in the specific goal (i.e, reaching,
pushing, or picking) and the interactions with the object, such as sliding it beyond the robot’s direct
reach or placing it at a target on the table or in the air. The allowable error in Fetch tasks is µ = 0.05.
The reward function is defined as:

r(s, a, gXY Z) = 1(∥ϕ(s)− gXY Z∥22 ≤ µ).

Hand Tasks The Hand tasks (i.e, HandReach, BlockRotateZ, BlockRotateXYZ, BlockRotatePar-
allel) focus on controlling a Shadow Dexterous Hand to manipulate objects in high-dimensional
tasks, requiring precise control over 20 independent joints. Each task features complex observations,

20

https://github.com/Cranial-XIX/metric-residual-network
https://github.com/Cranial-XIX/metric-residual-network
https://github.com/JasonMa2016/GoFAR
https://github.com/jhejna/dwsl/
https://github.com/elliotchanesane31/RIS
https://github.com/ml-postech/BEAG

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 1: Hyperparameters for Baselines.

Actor and critic networks Value

Learning rate 1e-3
Buffer size 106 transitions
Polyak-averaging coeffi-
cient

0.95

Action L2 norm coefficient 1.0
Observation clipping [-200,200]
warmup steps 5000

Batch size 256
Rollouts per MPI worker 2
Number of MPI workers 16
Cycles per epoch 50
Batches per cycle 40
Test rollouts per epoch 10
Probability of random ac-
tions

0.3

Scale of additive Gaussian
noise

0.2

Probability of HER experi-
ence replay

0.8

Normalized clipping [-5, 5]
β 0.2

including joint positions, velocities, and object state information (position, rotation, and velocities).
The reward structure is sparse and binary, with goals achieved when the object reaches a specified
position or rotation within a defined tolerance. These tasks, which vary in manipulation complexity
(e.g., specific axis rotations), present a challenging testbed for advanced goal-conditioned reinforce-
ment learning algorithms in high-dimensional control settings. The reward function is the same as
Fetch tasks and the allowable threshold (µ = 0.01).

AntMaze Tasks A quadruped ant robot is trained to reach a random goal from a random location
and tested under the most difficult setting for each maze. The states of ant is 30-dimension, including
positions and velocities. An ant should reach the target point within 500 steps for U-shaped mazes,
and 1000 steps for S-, ω-, and Π-shaped mazes. The reward function is the same as Fetch tasks and
the allowable threshold (µ = 0.1).

D ADDITIONAL RESULTS

This section evaluates the resilience of GCQS across several factors, including the number of
subgoals, the hyperparameter β, robustness to environmental stochasticity, and the relabeling ratio.
Due to space limitations, not all of these variations were discussed in the main body of this study.
These details are provided below.

D.1 THE IMPACT NUMBER OF SUBGOALS

In our approach, subgoals play a pivotal role, and thus, apart from their selection, investigating the
optimal quantity of subgoals is imperative. We systematically vary the proportion of subgoals selected
from τg

′
relative to the total trajectory goals, and benchmark these against competitive algorithms

such as WGCSL, DDPG+HER, GoFar, and DWSL. We evaluate algorithmic performance across four
different subgoal proportions {20%, 50%, 90%, 100%}. Analysis presented in Fig. 12 demonstrates

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

10 20 30 40 50
Epoch

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s

Ra
te

FetchPick

10 20 30 40 50
Epoch

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s

Ra
te

FetchPush

10 20 30 40 50
Epoch

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s

Ra
te

FetchSlide

10 20 30 40 50
Epoch

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s

Ra
te

HandReach

Figure 12: Subgoal number ablation studies in some goal-conditioned tasks.

that GCQS consistently surpasses the performance of the aforementioned algorithms, regardless
of the percentage of subgoals employed. This finding highlights the robustness of our method in
response to variations in the quantity of subgoals utilized.

D.2 THE IMPACT OF HYPERPARAMETER β

Since the addition of KL regularization term in the policy improvement stage of our method (as
shown in Eq. (15)), this section explores the influence of the balancing parameter β. We evaluate
β values from the set {0.2, 0.5, 1.0, 3.0} and compare the results against competitive HER-based
algorithms such as WGCSL and DDPG+HER, as shown in Fig. 13. The findings in Fig. 13 reveal
that GCQS consistently delivers superior performance over the other algorithms, regardless of the β
parameter variation. This demonstrates that our method maintains robustness and is not significantly
affected by changes in the β parameter.

5 10 15 20
Epoch

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s

Ra
te

FetchPick

5 10 15 20
Epoch

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s

Ra
te

FetchPush

5 10 15 20
Epoch

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s

Ra
te

FetchSlide

0 10 20 30 40 50
Epoch

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s

Ra
te

HandReach

Figure 13: Hyperparameter β ablation studies in such goal-conditioned tasks.

D.3 ERROR BARS OF MEAN PERFORMANCE

To further assess the effectiveness and robustness of the algorithm, we present error bar plots for
each task based on the mean ± standard deviation (SD) of results across five seeds for each algorithm.
As shown in Fig. 14, the GCQS algorithm demonstrates a significant advantage across all goal-
conditioned tasks. Its mean success rate approaches 100% on simpler tasks (e.g., FetchReach and
BlockRotateZ), and it substantially outperforms other algorithms on moderately challenging tasks
(e.g., FetchPush and HandReach), with shorter error bars indicating greater result stability and
robustness. However, in more difficult tasks (e.g., BlockRotateXYZ and BlockRotateParallel), the
performance of GCQS declines, as evidenced by lower success rates and longer error bars, suggesting
performance fluctuations. Overall, GCQS exhibits strong learning capabilities in complex goal spaces
but still has room for improvement, particularly in handling extreme tasks such as high-dimensional
rotations and parallel rotations.

D.4 ROBUST TO ENVIRONMENTAL STOCHASTICITY

To test whether our GCQS is robust to random environmental factors, we follow GoFar’s settings.
Specifically, we examine a modified FetchPush environment characterized by the introduction of
Gaussian noise with a zero mean before action execution. This modification generates various

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
Mean Success Rate (%)

DDPG
MHER

HER
GCSL

WGCSL
GoFar
DWSL
GCQS

Al
go

rit
hm

s

FetchReach

0 20 40 60 80 100
Mean Success Rate (%)

FetchPick

0 20 40 60 80 100
Mean Success Rate (%)

FetchPush

0 20 40 60 80 100
Mean Success Rate (%)

FetchSlide

0 20 40 60 80 100
Mean Success Rate (%)

DDPG
MHER

HER
GCSL

WGCSL
GoFar
DWSL
GCQS

Al
go

rit
hm

s

HandReach

0 20 40 60 80 100
Mean Success Rate (%)

BlockRotateZ

0 20 40 60 80 100
Mean Success Rate (%)

BlockRotateXYZ

0 20 40 60 80 100
Mean Success Rate (%)

BlockRotateParallel

Figure 14: The error bars for each goal-conditioned task presented in Fig. 5. Error bars represent the
standard error of the mean (SEM) for each algorithm’s average performance across multiple seeds in
each task.

environmental conditions with standard deviations of {0.2, 0.5, 1.0, 1.5}, allowing us to analyze the
robustness and performance of the proposed method under differing levels of stochasticity.

As we see in Fig. 15, GCQS is the most robust to stochasticity in the FetchPush environment,
also outperforming baseline algorithms in terms of mean success rate under various noise lev-
els. WGCSL exhibits minimal sensitivity to variations in all noise levels, whereas DDPG+HER
is moderately sensitive. At a noise level of 0.5, the performance gap continues to widen,

0.0 0.2 0.5 1.0 1.5
Noise Level

0

20

40

60

80

100

Su
ce

ss
 R

at
e(

%
)

FetchPush

GCQS
DWSL
GoFar
WGCSL
DDPG+HER

Figure 15: Mean success rate (%) for FetchPush
task under environment stochasticity.

with GoFar exhibiting a significant collapse, under-
scoring its heightened sensitivity to noise. Despite
DWSL’s insensitivity to noise, its overall perfor-
mance remains suboptimal. Overall, the phsic struc-
tural policy optimization in GCQS indeed confers
greater robustness to environmental stochasticity.

We suggest that the assumption of deterministic dy-
namics embedded in self-supervised learning meth-
ods, such as WGCSL, GoFar, and DWSL, may lead to
overly optimistic performance assessments in stochas-
tic environments. In contrast, reinforcement learning
methods have the ability to effectively adapt to these stochastic changes.

D.5 SAMPLE EFFICIENCY

To assess the sample efficiency of baseline methods in comparison to GCQS, we ex-
amined the number of training samples (i.e., ⟨s, a, g′, g⟩ tuples) necessary to obtain
a particular mean success rate. This comparative analysis is depicted in Fig. 16.

10 20 30 40 50
Training Samples(x2e3)

0.00
0.20

0.45
0.60
0.80
1.00

Su
cc

es
s R

at
e

FetchPush

10 20 30 40 50
Training Samples(x2e3)

0.00
0.20

0.45
0.60
0.80
1.00

Su
cc

es
s R

at
e

BlockRotateZ

Figure 16: Number of training samples needed with respect
to mean success rate for Fetchpush and HandManipulate-
BlockRotateZ tasks (the lower the better).

From the FetchPush task, depicted on
the left side of Fig. 16, we observe that
to attain the 0.45 mean success rate,
the competitive baseline DDPG+HER
requires over 6000 training samples,
whereas GCQS only needs approxi-
mately 4000 samples. This indicates
that GCQS is 1.5 times more sample
efficient than DDPG+HER.

In another task, BlockRotateZ, GCQS
uses the fewest number of samples
to attain the same 0.5 mean success

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

rate. These findings demonstrate that
GCQS significantly enhances sample efficiency compared to other baseline methods, underscoring
its effectiveness in improving learning performance with fewer training samples.

D.6 RELABELING RATIO

Given our approach to learning in goal-conditioned RL settings, which assumes data annotated
with relabeled goals, this study examines the influence of explicit goal labels on performance.
We conducted experiments across four distinct relabeling ratios (i.e, 0.2, 0.5, 0.8, 1.0) in various
environments to evaluate algorithmic efficacy. As illustrated in Fig. 17, GCQS exhibits substantial
resilience to variations in the relabeling ratio. Furthermore, GCQS consistently surpasses competing
algorithms such as WGCSL and DDPG+HER across different labeling ratios.

5 10 15 20
Epoch

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s

Ra
te

FetchSlide, 0.2 Ratio

5 10 15 20
Epoch

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s

Ra
te

FetchPush, 0.5 Ratio

0 10 20 30 40 50
Epoch

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s

Ra
te

HandReach, 0.8 Ratio

5 10 15 20
Epoch

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s

Ra
te

FetchPick, 1.0 Ratio

Figure 17: Relabel ratio ablation studies in some goal-conditioned tasks.

24

	Introduction
	Related Work
	Preliminaries
	Goal-conditioned RL and Hindsight Experience Replay
	Goal-Conditioned Actor-Critic (GCAC)
	Goal-conditioned Weighted Supervised Learning (GCWSL)

	GCAC and GCWSL are Often Biased Towards Learning Short Trajectories
	GCQS: An extended version of GCAC
	Obtain the Optimal Policy to Reach the Achieved Goals via Q-BC
	Policy Improvement with Subgoals derived from achieved goals

	Experiments
	Performance Evaluation on goal-conditioned Benchmarks Results
	Performance Evaluation on complex Antmaze Results
	Ablation Studies

	Conclusion
	Proofs
	Proof of Theorem 4.1
	Proof of Theorem 5.1

	GCQS Technical Details
	Practical GCQS Algorithm
	Phasic Policy Structure Analysis

	Experimental Details
	Algorithm and Architecture
	Evaluation Setup
	Experimental Hyperparameters
	Environment Details

	Additional Results
	The Impact Number of Subgoals
	The Impact of Hyperparameter
	Error Bars of Mean Performance
	Robust to Environmental Stochasticity
	Sample Efficiency
	Relabeling Ratio

