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Abstract
The rapid advancement of Zero-Shot Text-to-
Speech (ZS-TTS) technology has enabled high-
fidelity voice synthesis from minimal audio cues,
raising significant privacy and ethical concerns.
Despite the threats to voice privacy, research to
selectively remove the knowledge to replicate un-
wanted individual voices from pre-trained model
parameters has not been explored. In this paper,
we address the new challenge of speaker iden-
tity unlearning for ZS-TTS systems. To meet
this goal, we propose the first machine unlearn-
ing frameworks for ZS-TTS, especially Teacher-
Guided Unlearning (TGU), designed to ensure the
model forgets designated speaker identities while
retaining its ability to generate accurate speech
for other speakers. Our proposed methods incor-
porate randomness to prevent consistent replica-
tion of forget speakers’ voices, assuring unlearned
identities remain untraceable. Additionally, we
propose a new evaluation metric, speaker-Zero
Retrain Forgetting (spk-ZRF). This assesses the
model’s ability to disregard prompts associated
with forgotten speakers, effectively neutralizing
its knowledge of these voices. The experiments
conducted on the state-of-the-art model demon-
strate that TGU prevents the model from repli-
cating forget speakers’ voices while maintaining
high quality for other speakers.

1. Introduction
Significant advancements in Zero-Shot Text-to-Speech (ZS-
TTS) (Le et al., 2024; Casanova et al., 2022; Ju et al., 2024;
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Figure 1. An overview of speaker identity unlearning task and its
objective. When a system provider for pre-trained ZS-TTS receives
an unlearning request from a speaker, we incorporate our proposed
guided unlearning frameworks that guide random generation while
retaining performance on remain identities.

Wang et al., 2025) enable models to synthesize speech accu-
rately using minimal speaker input. Methods like VALL-E
(Wang et al., 2025) utilize discrete speech tokens, while
VoiceBox (Le et al., 2024) employs masked prediction for
speech synthesis and audio infilling. Given that a person’s
voice is a key biometric characteristic used for identification
(Nautsch et al., 2019a;b), these rapid advances in ZS-TTS
raise significant ethical concerns, especially regarding the
potential misuse of synthesizing speech from an individual’s
voice without consent.

To address these threats, machine unlearning (MU) can
serve as an effective solution by selectively removing cer-
tain knowledge by modifying model weights itself. Since
generative AI models easily create new content, they are
particularly susceptible to privacy breaches (Panariello et al.,
2024; Tomashenko et al., 2024), and thus MU has gained
traction across various fields of generative AI. Despite grow-
ing privacy concerns in speech-related tasks (Tomashenko
et al., 2022; Yoo et al., 2020), there is still no method to ef-
fectively unlearn the ability to generate speech in a specific
speaker’s voice.

To this end, this paper brings forward a new task of speaker
identity unlearning. We propose guided unlearning as the
first machine unlearning framework for ZS-TTS, and present
two novel approaches : computationally efficient Sample-
Guided Unlearning (SGU) and advanced Teacher-Guided
Unlearning (TGU). Guided Unlearning incorporates ran-
domness into voice styles when encountering forgotten
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Figure 2. The training procedure for the forget set in (b) the SGU
framework and (c) the proposed TGU framework, along with (a)
the training procedure for the remain set in both SGU and TGU.

speakers, ensuring voice neutralization while preserving
synthesis quality for other speakers. We also propose a
novel metric, speaker-Zero Retrain Forgetting (spk-ZRF), to
measure randomness in voice generation for forget prompts,
enhancing privacy evaluation. TGU notably achieves a 2.95
% increase in speaker identity randomness compared to the
baseline.

The main contributions are:

• Introducing the first speaker identity unlearning frame-
work specifically for ZS-TTS.

• Proposing SGU and TGU frameworks that effec-
tively reduce voice replication capabilities for forgotten
speakers.

• Introducing spk-ZRF, a metric evaluating the effec-
tiveness of unlearning by measuring randomness in
generated speaker identities.

2. Problem Formulation: Speaker Identity
Unlearning

As the first study to address the key idea of speaker identity
unlearning in ZS-TTS, we define the problem as follows.
A typical ZS-TTS model θ takes as input a pair (xs, y),
where xs is a speech prompt from speaker s ∈ S and y is
the corresponding text. The model generates synthesized
speech x̂spk=s

y that delivers y in the voice style of speaker
s:

θ(xs, y) ≈ x̂spk=s
y (1)

Given a pre-trained ZS-TTS model θ trained on data DS ,
we aim to construct an unlearned model θ− that satisfies the
following two objectives:

Retain Objective. For any speaker r ∈ R, the model should
behave as before, generating the given text y in the voice of

r:
θ−(xr, y) ≈ x̂spk=r

y (2)

Forget Objective. For any speaker f ∈ F , the model
should still generate speech for the given text y, but using a
voice that is different from that of speaker f :

θ−(xf , y) ≈ x̂spk ̸=f
y (3)

That is, the model should no longer replicate the voice char-
acteristics of any speaker in the forget set F . Moreover, the
generated speech should not exhibit a fixed or consistent
style that could indirectly reveal the forgotten identity. This
formulation ensures both the preservation of TTS capabili-
ties and the protection of speaker privacy.

3. Method
3.1. Guided Unlearning

To explore unlearning in ZS-TTS, we adopt VoiceBox
(Le et al., 2024), a state-of-the-art text-guided non-
autoregressive (NAR) model for multilingual speech syn-
thesis and editing. VoiceBox leverages Conditional Flow
Matching (CFM) to transform a prior distribution p0 (e.g.,
Gaussian) into the target speech distribution p1 by learn-
ing a conditional vector field vt(w, y, xctx; θ), where w =
(1 − (1 − σmin)t)x0 + tx and xctx = (1 −m) ⊙ x is the
masked input. The model is trained by minimizing the dis-
crepancy between the predicted vector field and a guiding
field ut(x|x1) through the following loss:

LCFM(θ) = Et,q(x1),pt(x|x1)

[
∥m⊙ ut(x|x1)

− vt(w, y, xctx; θ)∥2
]
, (4)

where pt(x|x1) = N (x|tx1, σ
2
t I) is a Gaussian path with

time-dependent variance σt = 1 − (1 − σmin)t. This ap-
proach allows VoiceBox to model speaker style in a label-
free manner.

To guide the model toward generating text y in a random,
non-identifiable voice style, one would ideally use paired
data (xspk ̸=f , y), where xspk ̸=f is an utterance of y in a
voice different from the forget speaker f . However, such
aligned pairs are not naturally available.

As a workaround, we propose Sample-Guided Unlearning
(SGU): for a given text y, we concatenate (xr, y) from a
remain speaker and (xf , yf ) from a forget speaker to form
a pseudo-sample. We then mask xr entirely and use it
as the target for infilling (Figure 2-(b)). However, unlike
the original VoiceBox setting where both preceding and
succeeding contexts are available, SGU provides only one-
sided context, limiting effective infilling. Furthermore, if
masking is applied mid-sequence, speaker mismatches in
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prosody or rhythm may lead to unnatural synthesis and
degraded quality.

To overcome the limitations of SGU, we propose Teacher-
Guided Unlearning (TGU), which leverages the pre-
trained model θ to generate text-speech aligned targets
for unlearning. Specifically, we utilize the property that
θ(y)—when conditioned only on text—generates speech in
varying voice styles depending on the Gaussian initialization
x0, ensuring non-identifiability:

θ−(xf , y) ≈ θ(y). (5)

As illustrated in Figure 2-(c), given (xf , y), we use x̄ = θ(y)
as the target for model θ−, which is initialized from θ. The
forget loss is defined as:

LCFM-forget(θ
−) = Et,q(x1),pt(xf |x1)

[
∥m⊙ ut(x|x̄)

− vt(w
f , y, xf

ctx; θ
−)∥2

]
, (6)

where wf = (1− (1− σmin)t)x0 + tx̄.

To preserve performance on non-forget speakers, we apply
the original CFM loss on the remain set Dr (Figure 2-(a)):

LCFM-remain(θ
−) = Et,q(x1),pt(xr|x1)

[
∥m⊙ ut(x|xr

1)

− vt(w
r, y, xr

ctx; θ
−)∥2

]
, (7)

with wr defined identically to w.

The final objective combines both losses:

Ltotal = λLCFM-remain + (1− λ)LCFM-forget, (8)

where λ balances the trade-off and is set to 0.2.

3.2. Proposed Metric: spk-ZRF

Conventional machine unlearning (MU) metrics—such as
completeness (Wang et al., 2024), JS-divergence, or activa-
tion distances—primarily assess performance gaps between
forget and remain sets. However, such comparisons can be
misleading, as consistent patterns in the forget set may still
allow reverse-engineering of the forgotten data.

To address this, we propose a novel metric named speaker-
Zero Retrain Forgetting (spk-ZRF), which quantifies the
randomness of speaker identity generation in ZS-TTS, inde-
pendent of speech content quality. Inspired by Zero Retrain
Forgetting (ZRF) (Chundawat et al., 2023), spk-ZRF adapts
the idea for voice identity by comparing the model’s outputs
with and without speaker prompts.

Given a test set DS = {(xs
yi
, yi)}ni=1, we compute speaker

embeddings of θ−(xs
i , yi) and θ(yi) using a speaker verifi-

cation model, then convert them into probability distribu-
tions via softmax. The Jensen-Shannon divergence (JSD)

between the two embeddings is:

JSDi = 0.5DKL(Softmax(θ(xs
i ,yi)) ∥ Mi)

+0.5DKL(Softmax(θ(yi)) ∥ Mi), (9)

where Mi is the average of both distributions:

Mi =
1

2

(
Softmax(θ(xs

i ,yi)) + Softmax(θ(yi))
)
. (10)

The overall spk-ZRF score is given by:

spk-ZRF = 1− 1

n

n∑
i=1

JSDi. (11)

A spk-ZRF closer to 1 indicates high randomness in gen-
erated speaker identity, implying successful unlearning. In
contrast, a lower score reflects persistent identity patterns,
suggesting incomplete forgetting.

4. Experimental Setup
Baseline Methods. We evaluate four unlearning baselines
applied to VoiceBox (Le et al., 2024). (1) Exact Unlearning
retrains a new model from scratch on the remain set DR.
(2) Fine-Tuning (FT) updates a pre-trained model using
only DR (Warnecke et al., 2021). (3) Negative Gradient
(NG) performs gradient ascent on the forget set DF (Thudi
et al., 2022; Fan et al., 2024). (4) Selective KL Divergence
(KL) maximizes KL divergence for forget samples while
minimizing it for remain samples using a teacher model (Li
et al., 2024; Chen & Yang, 2023).

Evaluation Metrics. We employ three quantitative metrics:
Word Error Rate (WER), Speaker Similarity (SIM), and
the proposed spk-ZRF. WER evaluates content accuracy
using a HuBERT-L model (Hsu et al., 2021) trained on
LibriLight and LibriSpeech. SIM measures voice similarity
between prompt and output. spk-ZRF quantifies identity
randomness for forget speakers and consistency for remain
ones. Both SIM and spk-ZRF use speaker embeddings
from WavLM-TDCNN (Chen et al., 2022). For qualitative
evaluation, we use Comparative MOS (CMOS) for audio
quality and Similarity MOS (SMOS) for voice similarity.
Details on training, inference, and datasets are provided in
Appendix A.

4.1. Evaluation

Correctness and Speaker Similarity. Table 1 reports WER
and SIM for both remain and forget sets across all methods.
As per our objectives (Section 2), effective unlearning re-
quires low WER for all sets, high SIM for remain speakers,
and low SIM for forget speakers.

Exact Unlearning and Fine-Tuning show similar perfor-
mance to the original model, indicating that removing DF
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Table 1. Quantitative results on LibriSpeech test-clean evaluation set (-R) and the forget evaluation set (-F). ⋄ refers to the reported value
in the original paper. ”-” refers to unavailable values. For spk-ZRF-R, the optimal benchmark is to achieve the same score as the Original
model. The result of ANOVA test on JSD, which was averaged to calculate spk-ZRF, indicated significant differences in spk-ZRF across
remain set (F (4, 768) = 116.31, p < 0.0001) and forget set (F (4, 1188) = 807.97, p < 0.0001) among models.

Methods WER-R ↓ SIM-R ↑ WER-F ↓ SIM-F ↓ spk-ZRF-R spk-ZRF-F ↑
Original⋄ 1.9 0.662 - - - -
Original 2.1 0.649 2.1 0.708 0.857 0.846

Exact Unlearning 2.3 0.643 2.2 0.687 0.823 0.846
FT 2.2 0.658 2.3 0.675 0.821 0.853

NG 6.1 0.437 5.0 0.402 0.840 0.842
KL 5.2 0.408 47.2 0.179 0.838 0.810
SGU (Ours) 2.6 0.523 2.5 0.194 0.860 0.866
TGU (Ours) 2.5 0.631 2.4 0.169 0.857 0.871
Ground Truth 2.2 - 2.5 - - -

from training alone is insufficient to prevent style replica-
tion in ZS-TTS. NG and KL exhibit training instability,
leading to high WER and low SIM, with KL notably gener-
ating noise instead of distinct voices due to entanglement
between style and content.

Among all methods, TGU aligns with the unlearning goal.
It reduces SIM-F to 0.169, while maintaining SIM-R at
0.631 (only a 2.8% drop). In contrast, SGU sees a 21% drop
in SIM-R, indicating degraded retention of remain speak-
ers’ styles. Both TGU and SGU preserve WER, but TGU
achieves better balance between forgetting and performance
retention. See Appendix C for ground-truth SIM.

Randomness. The final two columns in Table 1 show spk-
ZRF scores, evaluating speaker identity randomness. A
desirable outcome is high spk-ZRF on the forget set and
similarity to the original model on the remain set.

NG and KL methods yield low spk-ZRF-F, indicating con-
sistent, non-random generation for forget speakers—despite
low SIM—highlighting that these methods fail to decouple
speaker identity. This confirms our earlier observation that
penalizing speaker identity without preserving linguistic
content results in degraded performance.

TGU and SGU improve spk-ZRF-F, demonstrating greater
speaker variability for forget samples. Notably, TGU
achieves the highest spk-ZRF-F while preserving low ran-
domness on remain speakers, confirming its effectiveness in
producing identity-agnostic outputs for the forget set while
maintaining fidelity elsewhere.

Human Subjective Evaluation. Table 2 reports qualitative
results via CMOS and SMOS. Compared to SGU, TGU
achieves closer CMOS scores to the original model, con-
firming its ability to maintain natural speech quality. For
SMOS, TGU outperforms SGU in preserving voice styles

Table 2. Human assessment on Librispeech test-clean evaluation
set (R) and the forget evaluation set (F).

Methods CMOS SMOS
R ↑ F ↑ R ↑ F ↓

OG 0.00 ± 0.0 0.00 ± 0.0 4.47 ± 0.4 4.44 ± 0.4

SGU -0.15 ± 0.3 -0.53 ± 0.3 3.12 ± 0.8 1.45 ± 0.3
TGU -0.02 ± 0.2 -0.45 ± 0.2 4.67 ± 0.3 1.28 ± 0.2

GT 1.00 ± 0.26 0.22 ± 0.29 3.70 ± 0.7 3.89 ± 0.7

for remain speakers and generates more distinct outputs
for forget prompts, effectively preventing voice replication.
These findings support that TGU restricts imitation of forget
speakers while maintaining the ZS-TTS model’s usability.
See Appendix F for details.

5. Conclusion
In this paper, we applied machine unlearning for the first
time in the context of speaker identity unlearning in Zero-
Shot Text-to-Speech (ZS-TTS). Unlike traditional unlearn-
ing methods, randomness is incorporated to ensure that a
model has forgotten its ability to process the audio prompts
of forget speakers. TGU effectively neutralizes the model’s
responses to replicate unwanted voices, while maintaining
the performance of original ZS-TTS system. Our experi-
ments showed that TGU results in only a 2.6% decrease in
speaker similarity (SIM) for remain speakers, while main-
taining competitive word error rate (WER) scores compared
to the original model. Furthermore, we introduce a new met-
ric to evaluate the lack of knowledge on the forget speakers,
spk-ZRF. This metric evaluates randomness in voice genera-
tion to assess how effectively the unlearned model prevents
reverse engineering attacks that could expose a speaker’s
identity.
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A. Experiment Settings
A.1. Dataset and Model Configuration.

We adopt a realistic setting by unlearning multiple speakers simultaneously, unlike prior works that focus on a single identity
(Gandikota et al., 2023; Seo et al., 2024). Experiments are conducted on LibriHeavy (Kang et al., 2024), a 50K-hour English
corpus with transcriptions. In Table 1, we unlearn 10 randomly chosen speakers (20 minutes each). Each speaker has 5
minutes for evaluation and the rest for training. VoiceBox is trained on LibriHeavy with consistent configurations. For
generalization to unseen speakers, we use LibriSpeech test-clean (Panayotov et al., 2015).

A.2. Dataset Details

For the training set, we utilized the LibriHeavy dataset ((Kang et al., 2024)), which contains approximately 50,000 hours of
speech from 7,000 speakers. To create the forget set, 10 speakers were randomly selected from the dataset. To avoid any
bias in speaker selection, we first analyzed the distribution of audio duration per speaker in the LibriHeavy dataset. The
lower and upper quartiles of audio duration per speaker were 440 seconds and 4,603 seconds, respectively. We randomly
sampled 10 speakers whose audio durations fell within this range. For each selected speaker, approximately 300 seconds of
audio was randomly chosen as the evaluation set, while the remaining audio was designated for the unlearning training set.
The selected speakers are: 789, 1166, 3912, 5983, 6821, 7199, 8866, 9437, 9794, and 10666.

To evaluate the performance of the existing ZS-TTS model, specifically its ability to replicate the voices of unseen speakers,
we used the LibriSpeech test-clean set ((Panayotov et al., 2015)). It is important to note that there is no overlap between the
speakers in the LibriSpeech test-clean set and those in LibriHeavy ((Kang et al., 2024)). Following the experimental setup
outlined in the original VoiceBox paper ((Le et al., 2024; Wang et al., 2025)), for both the forget and remain evaluation
sets, a different sample from the same speaker was randomly selected, and a 3-second segment was cropped to be used as a
prompt.

A.3. Data Preprocessing

Speech is represented using an 80-dimensional log Mel spectrogram. The audio, sampled at 16 kHz, has its Mel spectral
features extracted at 100 Hz. A 1024-point short-time Fourier transform (STFT) is applied with a 10 ms hop size and a
40 ms analysis window. A Hann windowing function is then used, followed by an 80-dimensional Mel filter with a cutoff
frequency of 8 kHz. We used the Montreal Forced Aligner (MFA) (McAuliffe et al., 2017) to phonemize and force-align
the transcripts, utilizing the MFA phone set, a modified version of the International Phonetic Alphabet (IPA), while also
applying word position prefixes.

A.4. Model Configurations

We applied both baseline machine unlearning methods and the proposed method to VoiceBox (Le et al., 2024), using the
same configuration. The audio feature generator is based on a vanilla Transformer (Vaswani, 2017), enhanced with U-Net
style residual connections, convolutional positional embeddings (Baevski et al., 2020), and AliBi positional encoding (Press
et al., 2022). This model has 24 Transformer layers, 16 attention heads, and an embedding/feed-forward network (FFN)
dimension of 1024/4096, with skip connections implemented in the U-Net style.

A.5. Duration Predictor and Vocoder

We used the regression version of duration predictor proposed in (Le et al., 2024). The duration predictor has a similar model
structure to the audio model, but with 8 Transformer layers, 8 attention heads, and 512/2048 embedding/FFN dimensions. It
is trained for 600K steps. The Adam optimizer was employed with a peak learning rate of 1e-4, linearly warmed up over the
first 5K steps and decayed afterward. HiFi-GAN (Kong et al., 2020), trained on the LibriHeavy (Kang et al., 2024) English
speech dataset, is employed to convert the spectrogram into a time-domain waveform.

A.6. Pre-training

Following (Le et al., 2024), we trained the original Voice model for 500K steps. Each mini-batch consisted of 75-second
audio segments, and the Adam optimizer was employed with a peak learning rate of 1e-4, linearly warmed up over the first
5K steps and decayed afterward. All training was conducted using mixed precision with FP16.
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A.7. Inference Configurations

During inference, classifier-free guidance (CFG, (Ho & Salimans, 2022; Le et al., 2024)) was applied as follows:

v̂t(w, x, y; θ) = (1 + α) · vt(w, xctx, y; θ)− α · vt(w; θ) (12)

where α is fixed at 0.7, as specified in the original paper. Refer to Appendix E for information on the impact of α.

We utilized the torchdiffeq package (Chen, 2018), which offers both fixed and adaptive step ODE solvers, using the
default midpoint solver. The number of function evaluations (NFEs) was fixed at 32 for both the evaluation stage and the
generation of x̄ in the proposed method.

B. Unlearning Implementations
B.1. Teacher-Guided Unlearning

The Teacher-Guided Unlearning (TGU) model was trained for 145K steps for 1 and 10K steps for 6. Each mini-batch
included 75-second audio segments. The Adam optimizer was employed with a peak learning rate of 1e-4, which was
linearly warmed up during the first 5 K steps and subsequently decayed throughout the remainder of the training. To facilitate
the unlearning process, samples from the forget set xf were randomly selected with a 20% probability in each mini-batch.

B.2. Sample-Guided Unlearning

To apply Sample-Guided Unlearning (SGU) in the ZS-TTS system, we set up the training process such that when a forget
sample xf is provided, a random retain sample xr is selected as the target for training. To train VoiceBox, both speech data
and aligned text segments are required. However, as discussed in Section ??, it is not naturally feasible to collect utterances
from different speakers that share the same alignment. To address this, the SGU training was set up as follows: Let yf and
yr represent the corresponding text segments for xf and xr, respectively. We generated a mask corresponding to the length
of xr, training the model to predict xr based on this masked input. The text segments yf and yr were concatenated along
the time axis and used as input, with the same process applied to the other input components, such as wf and wr. During
the training phase, the model was fine-tuned using 145K steps for 1 and 10K steps for 6. Additionally, forget samples xf

and remain samples xr were selected and trained in a 2:8 ratio.

B.3. Exact Unlearning & Fine-Tuning

The Exact Unlearning method was trained with the same configuration as the pre-training, except that only the dataset Dr

was used. Similarly, the Fine Tuning method involved additional training for 145K steps, exclusively using the dataset Dr.

B.4. Negative Gradient

Implementation of Negative Gradient (NG) method follows that of (Thudi et al., 2022). On the pre-trained VoiceBox model,
we provide only the samples from the forget speaker set F . The loss is inverted to counteract loss minimization previously
occurred in the pre-trained model’s weights. Given that approaches based on reversing the gradient often suffer from low
model performance and unstable training, we searched for learning rate with best evaluation score {1e-5, 1e-6, 1e-7, 1e-8}.
For evaluation, we use the checkpoint of 9.5K fine-tuned with Adam optimizer with a peak learning rate of 1e-8, linearly
warmed up over first 5K steps and decayed after.

B.5. Selective Kullback-Leibler Divergence

Numerous studies have adopted a loss function that focuses on utilizing a teacher-student framework with selective Kullback-
Leibler divergence loss (Li et al., 2024; Chen & Yang, 2023). We implement this loss so the student model is fine-tuned to
maximize KL-divergence between teacher and student output when xf is given as input, and minimize when xr is given :

LKL = λ(θ(xr, yr)∥θ−(xr, yr))− (1− λ)(θ(xf , yf )∥θ−(xf , yf )) (13)

where λ is a hyper-parameter between 0 and 1 to balance the trade-off. Similar to NG, unbounded reverted loss on
KL-divergence is prone to low model performance. We searched for learning rate with best evaluation score from {1e-5,
1e-6, 1e-7, 1e-8}, and λ from {0.5, 0.8}. For evaluation, we use the checkpoint of 32.5K fine-tuned with Adam optimizer
with a peak learning rate of 1e-8, following warm up and decay of previous methods using λ = 0.5.
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C. Speaker similarity in real samples
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Figure 3. Boxplot of speaker similarity on same speaker’s and different speakers’ audio. Each are evaluated with 100 pairs of random
speech audio in LibriSpeech test-clean subset.

From the LibriSpeech dataset, we make extensive analysis to get a grip of actual speaker similarity scores between pairs of
audios from the same speaker, and that consisting of different speakers. For the SIM of same speakers, we retrieved random
100 pairs of audio, each pair comprised of different audio from random speaker. For the SIM of different speakers, similarly,
we retrieved random 100 pairs of audio, with each pair comprised of audio from different speakers.

As shown in Figure 3, audios with same speaker’s voice return SIM with 0.66 as mean, 0.57 and 0.76 each being lower and
upper quartiles. With different speakers, mean of SIM is 0.09, lower and upper quartiles are 0.02 and 0.17. We take these
values into consideration when evaluating Table 1 and Table 6. While actual values can have a wider range, we focus on the
lower and upper quartiles as a primary boundary to achieve in unlearned models.
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D. Quantitative results over the training process

(a) WER-R (b) WER-F

(c) SIM-R (d) SIM-F

Figure 4. Quantitative results for SGU and TGU across different training stages. The top row shows the WER for both methods, while the
bottom row displays the SIM results at each stage of the training process.

Figure 4 depicts the training process of our two proposed methods : SGU and TGU in Table 1. We evaluate the unlearning
model’s checkpoints at every 10% of full iterations. Notably, SIM score for the forget set declines quickly within first 10%
of steps. However, SIM score for the remain set also declines in the early unlearning process - with the remaining process
improving SIM-R.

Also, for WER scores for both remain set and the forget set remains relatively stable for both SGU and TGU. This suggests
that guided unlearning method is highly effective in maintaining model performance in generating accurate speech on the
given target text. It can also be interpreted that guided unlearning method is successful in disentangling speaker specific
speech features from model’s knowledge of correct speech generation.
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E. Impact of α

Table 3. Quantitative results based on the alpha value of CFG during the TGU inference process

WER-R ↓ SIM-R ↑ WER-F ↓ SIM-F ↓
α = 0.0 3.4 0.552 2.6 0.265
α = 0.3 2.6 0.583 2.3 0.198
α = 0.7 2.4 0.631 2.4 0.169
α = 1.0 2.5 0.629 2.4 0.187

In the CFG used during inference, vt(w; θ) does not incorporate linguistic information y or the surrounding audio context
xctx, making it relevant to our formulation. To assess the impact of CFG on unlearning, we experimented with different
values of α. Table 3 presents the results of these experiments.

According to the results, when α is set to 0, removing the influence of vt(w; θ), the model showed the highest SIM-F value,
indicating increased reliance on xctx. On the other hand, when α was set to 0.3 or higher, the model consistently produced
lower SIM-F values.

F. Qualitative Instruction
Table 4 and Table 5 present the instructions used for evaluating CMOS and SMOS in the qualitative assessment. Both the
CMOS and SMOS evaluations were conducted with 25 participants.

Table 4. Comparative mean opinion score (CMOS) Instruction

Introduction
Your task is to evaluate how the quality of two speech recordings compares,
using the Comparative mean opinion score (CMOS) scale.

Task Instructions
In this task, you will hear two samples of speech recordings, one from each system.
The purpose of this test is to evaluate the difference in quality between the two files.
Specifically, you should assess the quality and intelligibility of each file in terms of
its overall sound quality and the amount of mumbling and unclear phrases in the recording.

You should give a score according to the following scale: -3 (System 2 is much worse)
-2 (System 2 is worse)
-1 (System 2 is slightly worse)
0 (No difference)
1 (System 2 is slightly better)
2 (System 2 is better)
3 (System 2 is much better)
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Table 5. Similarity mean opinion score (SMOS) Instruction

Introduction
Your task is to evaluate how similar the two speech recordings sound in terms of
the speaker’s voice.

Task Instructions
In this task you will hear two samples of speech recordings.
The purpose of this test is to evaluate the similarity of the speaker’s voice between
the two files.
You should focus on the similarity of the speaker,
speaking style, acoustic conditions, background noise, etc.

You should give a score according to the following scale:
5 (Very Similar)
4 (Similar)
3 (Neutral)
2 (Not very similar)
1 (Not similar at all)

F.1. Demographics of Human Evaluators

To assess the quality of synthesized speech, we conducted quantitative evaluation with total of 25 participants. Participants
were recruited for individuals physically and cognitively capable of normal activities with ages between 20 and 45 years
with high proficiency in English. Recruitment and study procedures adhered to Institutional Review Board guidelines, and
all participants provided informed consent. Additionally, all participants were general listeners with no prior expertise in
audio or speech synthesis.

F.2. Evaluation Conditions

All participants completed a brief instructive session with an evaluator to familiarize themselves with the evaluation criteria.
Evaluation was conducted in a quiet enclosed environment with the same listening device and volume levels, under the
instructions of Table 4 and Table 5. Each evaluation took less than 10 minutes.

G. Visualization
Figure 5 illustrates the results of t-SNE, focusing on the model outputs for eight speakers selected from each set. The
speaker embedding vectors of the input speech prompt and its resulting generated outputs were used for this analysis. For
the forget set, SGU and TGU both showed that the embedding vectors of generated speech are intermixed, regardless of
the prompt used. Both unlearning methods effectively remove the ZS-TTS system’s ability to mimic forget speakers. In
contrast, for the remain set, TGU demonstrated strong clustering among the embeddings of prompt and generated speech,
showing consistent results for each speaker. SGU failed to achieve the same degree of clustering, with some embedding
vectors intermixing rather than forming tight clusters. This indicates that TGU better preserves the performance of the
original ZS-TTS system. NG and KL embeddings failed to cluster for remain speakers, and to show random distribution for
forget speakers - suggesting poor unlearning performance oveall.

H. Scalability
Table 6 shows that both SGU and TGU successfully unlearn the target speakers in both scenarios while preserving
intelligibility on the remain set (R). Notably, even when scaling from 1 to 10 speakers, both methods continue to yield solid
results, with TGU displaying almost no performance degradation. In contrast, SGU sees a drop in similarity scores as more
speakers are removed. On the scalability of guided unlearning approaches, this indicates that both methods can maintain
similar levels of unlearning and speech quality irrespective of the number of forgotten speakers.
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Figure 5. t-SNE analysis comparing NG, KL, SGU, and TGU for remain and forget sets. Samples from the same speaker are represented
with the same color, where circles indicate actual speaker embeddings and triangles represent the embeddings of the model-generated
speech. Ideal unlearned model should generate speech samples of remain speakers similar to its speech prompts; while generated speech
samples of forget speakers should show random distribution - no correlation with any identity.

Table 6. Quantitative results on LibriSpeech test-clean evaluation set (-R) and the forget evaluation set of (-F). k refers to the number of
forget speakers in the forget set.

Methods WER-R SIM-R WER-F SIM-F

SGU (k=1) 2.7 0.586 2.8 0.173
SGU (k=10) 2.6 0.523 2.5 0.194

TGU (k=1) 2.3 0.624 2.5 0.164
TGU (k=10) 2.5 0.631 2.4 0.169
Ground Truth 2.2 - 2.5 -

I. Experiment on Unlearning Robustness
While Table 1 shows that TGU has effectively unlearned in overall, we go through extensive experiments to evaluate
unlearning robustness. Figure 6 illustrates how TGU unlearned model behaves on remain speakers’ speech prompts with
various similarity scores to a forget speaker’s speech prompt. As unlearning specifically on forget speakers is our objective
in speaker identity unlearning, we expect the model to clearly classify forget speakers and remain speakers despite possible
resemblances of each other.

For the x-axis, we identified speech prompts in remain set and the highest speaker similarity (SIM) score with any forget
speech prompt. Then, the same remain speech prompts were used to generate speech with TGU unlearned model. The y-aixs
was then obtained, by comparing the speech prompt with its TGU generated output speech. The results are visualized on 6.

A Pearson correlation analysis was conducted to assess the relationship between the similarity of remain speech prompts to
forget speech prompts (x-axis) and the similarity of remain speech prompts to TGU-generated speech output (y-axis). The
obtained statistic is 0.1396 while the p-value is 0.0003. This indicates a weak positive correlation with statistical significance,
meaning that TGU generated speech is generally independent of the remain samples’ similarity to forget speakers. Had the
model not been robust and mistreated remain samples as forget speaker samples, there would have been a strong negative
correlation.
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Figure 6. Robustness scatterplot of TGU on remain speakers. The x-axis represents the maximum SIM score between the remain speech
prompt and forget speech prompt to depict the level of similarity between a remain speaker and a forget speaker. The y-axis represents the
similarity score between the remain speech prompt and its resulting generated output using TGU. The red dashed line indicates average
SIM score for all remain speech prompts in the evaluation set.
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Table 7. Transient noise removal results on LibriSpeech test-clean set

Methods WER↓ SIM↑
Clean speech 4.3 0.689
Noisy speech 47.9 0.213

Original 2.4 0.666

TGU (ours) 2.5 0.641

Table 8. Diverse speech sampling results on LibriSpeech test-other evaluation set

Methods WER ↓ FSD ↓
Ground truth 4.5 164.4

Original 8.0 170.2

TGU (ours) 7.9 177.8

J. Experiment on General Tasks
To provide deeper insights on how TGU unlearning may affect model performances on general tasks where ZS-TTS is used,
we experiment the original model and TGU on transient noise removal.

J.1. Transient Noise Removal

ZS-TTS can be applied in tasks where editing is required to remove undesired noise in speech datasets. To prevent having
to go through repetitive and inefficient recording to obtain clean speech, ZS-TTS can generate clean audio for the noisy
segment. We follow experimental settings of (Le et al., 2024) to analyze how TGU unlearned model performs on the task of
transient noise removal.

From LibriSpeech test-clean dataset samples of durations 4 to 10 seconds, we construct noise at a -10dB signal-to-noise
ratio over half of each sample’s duration. Table 7 suggests that TGU provides comparable performances to that of the
original model. While seemingly low, diminished model performances on transient noise removal is present relatively to the
original model. We suggest that this is a trade-off from successful unlearning. While the model has unlearned to generate
voice characteristics of the forget dataset, smaller knowledge-base and implemented randomness could have affected its
reconstructing abilities.

J.2. Diverse Speech Sampling

Being able to generate diverse speech is also an important feature of ZS-TTS models as it ensures realistic and high-quality
speech that resembles natural distributions. This is necessary in applications such as speech synthesis or generating training
data for speech related tasks (e.g., Automatic Speech Recognition). The diversity of generated speech samples is measured
with Fréchet Speech Distance (FSD) as suggested in (Le et al., 2024). From generated speech samples, we extracted
self-supervised features using 6th layer representation of wav2vec 2.0 (Baevski et al., 2020). The features were reduced to
128 dimensions with principle component analysis and used to calculate the similarity of distributions with real speech.
High FSD indicates lower quality and minimal diversity, while low FSD refers to high quality and more diversity. For this
experiment, α is set to 0 to ensure more diversity. Ground truth FSD is obtained by partitioning the LibriSpeech test-other
set into half while ensuring equal distribution of data per speaker across both subsets

Experimental results in Table 8 show that FSD increases in TGU unlearned model. Because this task does not require
input audio prompts, diverse speech sampling relies relatively heavier on datasets used to train the model. Implementing
machine unlearning and thus inducing forgetting of specific speakers causes a trade-off in model’s diversity. Meanwhile, it
is noticeable that TGU achieves a lower WER in this case. We can infer that TGU obtains robustness in relatively noisy
dataset comparable to the Original model.
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Table 9. Recovery experiment on TGU unlearned model

Methods Recover Steps Audio per Spk WER-R ↓ SIM-R ↑ WER-F ↓ SIM-F ↑
Original - 15 min 2.1 0.649 2.1 0.708

TGU - 15 min 2.5 0.631 2.4 0.169

TGU 36.25K 15 min 4.23 0.303 2.5 0.735
TGU 14.5K 1 min 4.61 0.226 2.8 0.162

Table 10. Quantitative results for recovery experiments on unlearned models. WER and SIM evaluation follows the procedures of Table1.

K. Recovery Experiment
Table 10 illustrates an experimental result on whether an unlearned model is recoverable to its original state. Aligning with
our motivation to make ZS-TTS models safe, we presume a scenario of a privacy attacker who attempts to retrieve the
original model parameters. We train the TGU unlearned checkpoints on all 10 of forget speaker’s dataset to recover the
original model. We also presume a practical scenario and attempt to recover the model performance using average of 1
minute for each speaker.

When given audio duration of 15 minutes for the forget speakers, the model fails to generalize over other speakers, hence,
failing to mimic voices other than the forget speaker’s. Additionally, the recovered model is more likely to generate wrong
speech content as shown with higher WER in both remain set and the forget set. This process resembles fine-tuning a
Text-to-Speech model for specific speakers rather than true recovery. Consequently, the original ZS-TTS model cannot be
restored, and the attacker is essentially leveraging transfer learning to create a forget speaker-specific TTS model, provided
sufficient training data for the forget speaker is available. However, with enough training data, the attacker could achieve
similar results using any other non-zero-shot TTS model. We also consider a scenario where an attacker has access to only 1
minute of the forget speaker’s voice sample. In this case, the model parameters also remain unrecoverable. With shorter
audio duration, the model also fails to generate forget speaker’s voice. The model loses its zero-shot abilities hence the
performance at early steps. Therefore, in practical scenarios where an attacker may attempt to train the model to clone
an individual’s voice with short sample of speech (e.g., voice phishing), it would not be feasible to recover the model or
successfully generate the forget speaker’s voice.

L. Inference Samples
Figures 7 and 8 show the Mel-spectrograms for the ground truth, original VoiceBox, SGU, and TGU inference results
on forget speaker samples. These figures represent samples from speakers 789 and 6821, respectively. The ground truth
Mel-spectrogram corresponds to the audio where the same speaker as the prompt reads the same transcription.
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(a) Ground Truth

(b) Original

(c) SGU Sample 1

(d) SGU Sample 2

(e) TGU Sample 1

(f) TGU Sample 2

Figure 7. Mel-Spectrogram Comparisons: GT, Original, SGU Samples, and TGU Samples for the forget speaker 789
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(a) Ground Truth

(b) Original

(c) SGU Sample 1

(d) SGU Sample 2

(e) TGU Sample 1

(f) TGU Sample 2

Figure 8. Mel-Spectrogram Comparisons: GT, Original, SGU Samples, and TGU Samples for the forget speaker 6821
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