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Abstract

Causal representation learning, particularly in the
context of nonlinear independent component analy-
sis, aims to uncover the underlying latent variables
from observed data, providing critical insights into
the true generative processes. However, achieving
the identifiability of these latent variables has been
an obstacle due to the possibility of infinite spuri-
ous solutions. Prior works often rely on auxiliary
variable assumptions that enforce conditional in-
dependence among latents. However, they require
that auxiliary variables not be involved in the mix-
ing function—a constraint that significantly limits
the applicability in real-world settings as it is of-
ten difficult to obtain suitable label data that can
serve as external side information. In this work,
we address this challenge by leveraging observable
sources as auxiliary variables, a more practical sce-
nario. We also propose a novel framework that
selects proper auxiliary variables to improve the
recoverability of the latents while ensuring that
identifiability conditions are satisfied. To the best
of our knowledge, this is the first work to demon-
strate identifiability under this setting, offering a
more practical solution for causal representation
learning. By exploiting the graphical structure of
the latent variables, we enhance both identifiability
and recoverability, extending the boundaries of cur-
rent approaches to causal representation learning.

1 INTRODUCTION

Understanding the underlying generative process of observa-
tions is crucial for scientific discovery. In this context, causal
representation learning (CRL) [Schölkopf et al., 2021], in-
cluding nonlinear independent component analysis (ICA)
[Hyvärinen et al., 2009], aims to recover latent variables

from observed data. This approach holds significant promise
for applications in areas such as healthcare [Sanchez et al.,
2022], climate science [Yao et al., 2024a], and recommen-
dation [Wang et al., 2022, 2024, Yang et al., 2024], as un-
derstanding the causal mechanisms can lead to better inter-
pretability and improved generalization to new settings.

However, without proper assumptions, infinitely many spu-
rious solutions could exist, yielding independent mixtures
of the true sources [Hyvärinen and Pajunen, 1999]. This has
made unsupervised learning of disentangled representations
challenging from a theoretical perspective [Locatello et al.,
2019]. Accordingly, recent studies employed the assumption
that sources are conditionally independent given observed
auxiliary variables u, as shown in Fig. 1a [Hyvärinen and
Morioka, 2016, Khemakhem et al., 2020], thereby achiev-
ing identifiability. Although the conditional independence
assumption enables identifiability, it is often violated in
practice, as dependencies between sources are frequently
encountered in real-world settings such as computational
biology [Cardoso, 1998, Theis, 2006].

Several approaches have attempted to relax the assumption
of conditional independence by addressing the dependence
on the source.source. For example, Lu et al. [2022] achieved
identifiability upto component-wise transformation under
source dependence by assuming a structured exponential
family form with a parametric decomposition of sufficient
statistics into factorizable part and correlated part. Zheng
and Zhang [2023] also achieved the identification of latent
sources under source dependence, up to a subspace-wise
invertible transformation and permutation, given auxiliary
variables but without relying on parametric forms, thereby
providing a non-parametric generalization.

While there has been progress in addressing source de-
pendence, the use of observed sources as auxiliary vari-
ables—specifically, those that participate in the mixing func-
tion—remains largely underexplored. This can pose a prob-
lem in the identifiability proof, where the log-determinant
term cannot be eliminated. Nevertheless, using observed
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sources as auxiliary variables is especially important in
practical scenarios, as it reflects more general and realistic
data-generating processes. This approach also opens up the
possibility of extracting the auxiliary information directly
from the data, even when explicit auxiliary variables are not
available.

One illustrative case is that of a robotic arm carrying out a
manipulation task The underlying latent sources may cor-
respond to various physical parameters, such as the joint
angles, torques, or the forces exerted by the arm, while the
observed variables could consist of camera images captur-
ing the robot’s movements. In this context, we can treat
arm angle information directly extracted from image data as
observable sources, which provide only partial information
about the true latent variables governing the system.

Moreover, scientific systems like robotic arms that are gov-
erned by physical laws can often be represented using causal
graphs [Mooij et al., 2013, Baumann et al., 2022]. In such
cases, the conditional independence relations implied by the
graph (via d-separation) can reveal which subsets of latent
variables are identifiable. For example, fixing the angle of a
specific joint in a robotic arm can render the movements of
the joints before and after it conditionally independent.

When considering the causal graph as more general data-
generating process, the conditional independence between
the latents can vary depending on which variables are con-
ditioned. Thus, selecting proper auxiliary variables can de-
termine the degree of identifiability. However, this topic,
i.e., how to exploit/select auxiliary variables leveerating
graphical information, has remained unexplored in recent
studies.

We summarize our contributions as follows:

• To the best of our knowledge, we are the first to propose
generalized setting and achieve identifiability with ob-
served sources as auxiliaries in the context of causal
representation learning.

• We introduce a principled framework for selecting a
subset of auxiliary variables—when multiple are avail-
able—that maximizes identifiability, leveraging the
conditional independence structure of the latent causal
graph.

• We empirically validate our approach across various
experimental settings, demonstrating that the represen-
tation effectively disentangles according to the condi-
tional independence structure of the latent graph.

2 PRELIMINARY

We formalize observed sources as auxiliaries in terms of
nonlinear ICA and causal representation learning to con-
struct our problem setting. We use upper case letters for

random variables or vectors, and lower case for their assign-
ments. Bold letters represent a set of random variables or
random variables which is not a singleton. We use [d] to
denote a set {1, 2, · · · , d}.

2.1 OBSERVED SOURCES AS AUXILIARIES

Let x ∈ Rm be an observation (e.g., image) which are gen-
erated from latent sources z ∈ Rn with a mixing function g
as follow:

x = g(z). (1)

where g is an arbitrary invertible and smooth nonlinear
function in the sense that its second-order derivatives ex-
ist. By adopting a Bayesian network, we represent a data-
generating process regarding latent sources as

zi = fi(Pa
G(zi), ϵi), ϵi ∼ pϵi , (2)

for all i ∈ [n] where PaG(·) represents parent nodes on a
known causal graph G consisting of nodes V and edges E.
Nonlinear ICA considers independent latent sources, i.e.,

p(z) =

n∏
i=1

p(zi). (3)

The primary goal is to recover inverse function g−1 and the
true independent components z = (z1, · · · , zn) solely from
observations. However, the model is known to be unidentifi-
able only with i.i.d samples [Hyvärinen and Pajunen, 1999].
This means that the mapping from observations to indepen-
dent sources cannot be uniquely determined based solely on
the assumption of mutually independent sources.

Accordingly, various conditions have been explored to ad-
dress non-identifiability. The most widely used condition is
independence given auxiliary observable variables u, i.e.,

p(z | u) =
n∏

i=1

p(zi | u), (4)

where u can be a class label, time index, or historical
information [Hyvarinen et al., 2019]. Fig. 1a illustrates
a data generating process where u is the observable and
z = (z1, z2, z3, z4) is the latent sources that generates the
observation. However, they rely on the critical assumption
that the auxiliary variable does not have a direct influence
to the observation x to establish identifiability.

In this work, we consider a more generalized setup where
auxiliary variables may directly participate in the mixing
function, rather than being restricted to external side infor-
mation. Specifically, we treat auxiliary variables as observed
latent sources zo ⊂ z that directly participate in the mix-
ing function, where the generative process is governed by
a DAG G capturing arbitrary dependencies. Note that CRL
also aims to recover the latent sources with arbitrary depen-
dencies, but it remains unclear how to leverage observed
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Figure 1: Examples of data generating process except mix-
ing process, i.e. latent mechanism. Blue nodes represent the
observable variables.

sources. We will discuss related works in nonlinear ICA and
CRL in Sec. 5.

To deal with the dependence between sources, we can
partition the latent sources into conditionally independent
sets, zci(i = 1, ..., d) where ∪di=1zci = {z1, . . . , zn}.Thus,
Eq. (4) can be restated in the context of observed sources as
auxiliaries:

pzo− |zo
(zo− |zo) =

d∏
j=1

pzcj
|zo

(zcj |zo). (5)

where zo is observed sources and zo− is unobserved sources.

However, we do not consider the case where zo is an empty
set (i.e., an empty latent graph, without auxiliary variables),
as this scenario requires additional assumptions such as
structural sparsity for identifiability [Zheng and Zhang,
2023].

2.2 PROBLEM FORMULATION

Suppose a data generating process in Eq. (1) and Eq. (2).
Our goal is to establish the identifiability of the independent
latent sources (i.e., zci) up to certain subspace-wise invert-
ible transformation and permutation, given the observations
x, observable sources zo(⊆ z), and the latent Bayesian
network G which encodes the conditional independence
relationships between the latent sources as shown in Fig. 1.

In contrast to previous works exploiting a specific factor-
ization of the latent sources, e.g., Eq. (3) or Eq. (12), the
knowledge of the latent Bayesian network G allows us to
leverage diverse conditional independence relationships be-
tween the sources. Importantly, the partition of the latent
sources into subspaces zo− = ∪izci determines the degree
of the identifiability we could achieve (Thm. 4.3 of Zheng
and Zhang [2023]). Therefore, it is crucial to capture the
proper observable sources zu ⊆ zo that entails fine-grained
subspaces zcj mutually independent to each other condi-
tioned on zu.

2.3 MOTIVATING EXAMPLES

We illustrate the concept of a proper auxiliary variable and
fine-grained subspaces through a representative example in
Fig. 1.

In Fig. 1b, it is straightforward to find the most fine-grained
conditionally independent groups, i.e. {z1}, {z2}, {z4, z5}.
However, as the number of sources or observed sources
increases, finding auxiliary variables that make the latent
grouping fine-grained can become computationally chal-
lenging.

In addition, there is an another problem in exploiting aux-
iliary variables. Considering the case where the multiple
sources are observed as Fig. 1c, if all observed sources are
conditioned, z1 and z3 cannot be disentangled. z2 should
not be conditioned to satisfy conditional independence. Al-
though

It is true that dillema of which node to condition on typically
arises in collider structures, but as the graph grows larger
and more complex, the same node can act as a confounder
for one group of nodes and as a collider for another. In such
case, it becomes necessary to carefully choose which nodes
to condition on in order to achieve optimal results.

3 METHOD

In this section, we establish identifiability in the presence of
observable sources (Sec. 3.1). Based on conditions for identi-
fiability, we introduce a framework with a graphical criterion
to effectively leverage auxiliary variables that makes the con-
ditionally independent latents more fine-grained (Sec. 3.2)
and method to recover unobserved latents (Sec. 3.3).

3.1 IDENTIFIABILITY

We can consider existing approaches with auxiliary variables
as the case that observed sources zo do not have edges into
the observations x. (See Prop. 2 in Appendix B.) To deal
with problems that the observed sources zo are included in
the mixing function, we assume that the mixing function
is constrained to a specific form as Yang et al. [2022]. We
adopt the proof of Zheng and Zhang [2023] for identifiability
with dependent sources.

Proposition 1. Suppose the following assumptions hold:

1. The observed data and sources are generated from
Eq. (1) and Eq. (5)

2. The mixing function g is volume-preserving, i.e.,
|det(Jg(z))| = 1

3. For every value of zo− , there exists 2d values of zo,
such that the 2d vectors w(zo− , zoi) are linearly in-
dependent, where vector w(zo− , zoi) is defined as fol-



lows:

w(zo− , zoi) =
(
v(zc1 , zoi), . . . ,v(zcd , zoi),

v′(zc1 , zoi), . . . ,v
′(zcd , zoi)

)
where

v(zcj , zoi) =

∂ log p(zcj |zoi)
∂z

(l)
cj

, . . . ,
∂ log p(zcj |zoi)

∂z
(h)
cj

 ,

v′(zcj , zoi) =

∂2log p(zcj |zoi)
∂(z

(l)
cj )

2
, . . . ,

∂2log p(zcj |zoi)
∂(z

(h)
cj )2


and zcj = (z

c
(l)
j
, . . . , z

c
(h)
j

).

Then all the components of zo− (i.e., zci where ci ∈
{c1, . . . , cd}) is identifiable up to a subspace-wise invertible
transformation and a subspace-wise permutation.

Most prior works on CRL achieve identifiability by assum-
ing the mixing function is fixed across environments. Un-
der a common invertible mixing g, one can write the log-
likelihood of the data under two domains and subtract them,
causing the Jacobian log-determinant terms to cancel (since
the same g applies in both cases). In such settings the la-
tent distributions change across domains while g remains
invariant, so the log-determinant terms disappear when dif-
ferencing log-likelihoods.

In our setting, by contrast, the observed source (domain
label) is used to index the mixing function, so g varies
with the source. As a result the usual cancellation does not
occur and the standard identifiability proof breaks down. To
address the problem, we constrain the mixing to be volume-
preserving (i.e., |det(Jg(z))| = 0 everywhere). With the
volume-preserving assumption on the mixing function, the
Jacobian determinant remains constant at 1, making the log-
determinant term equal to zero. Details of the proof are in
Appendix B.

3.2 SELECTION ON OBSERVABLES

According to the Prop. 1, the conditional independence de-
termines the number of recoverable sources in the identifia-
bility of latent variables and our goal is first to capture mutu-
ally independent groups of nodes given observable sources
and the known causal graph. However, a naive approach
of leveraging all observed sources might not capture con-
ditional independence relationships, i.e., z1 ̸⊥⊥ z3 | z2, z4
in Fig. 1c. It is necessary to capture a proper subset of ob-
served sources that entails the most fine-grained groups of
mutually independent sources, and ultimately, leads to the
most granular identifiability.

Formally, we aim to discover a conditional independence
structure that partition zo− into the most fine-grained sub-

Algorithm 1 Selection on Observables
1: Input: graph G, observed set O
2: Output: conditioning set C
3: C ← {nodes acting only as confounders on G }
4: O ← O \ {nodes acting only as colliders on G }
5: max← 0
6: for each subset T ⊆ O do
7: S ← Partition(G,T,O)
8: if |S| > max or (|S| = max and |T | < |C|) then
9: max← |S|

10: C ← T
11: end if
12: end for
13: return C

groups such that:

zci ⊥⊥ zcj | zu, for all i ̸= j, (6)

where zu ⊆ zo, ∪izci ⊆ z \ zo, and zci ∩ zcj = ∅ for all
i ̸= j. Importantly, satisfying a fine-grained conditional in-
dependence condition enables the identification of a greater
number of latent variables. This ensures a more precise dis-
entanglement of the underlying causal structure, leading to
improved recoverability and manipulability of the true latent
factors.

We propose a strategy that selects the most fine-grained
conditionally independent groups of the latents with the
minimum set of observed sources in Alg. 1. The algorithm
initializes a candidate set by including only nodes that act as
confounders and excluding those that act solely as colliders,
in order to account for nodes that may serve as both. The
Partition algorithm counts the number of groups that satisfy
conditional independence by running Bayes-ball [Shachter,
1998] algorithm repeatedly. Finally, the algorithm outputs
the conditioning set that results in the largest number of
groups, i.e., the most fine-grained partitioning.

Example Consider the latent graph in the Fig. 1c. Ob-
served set O = {z2, z4}. We will iterate all the subsets of
O, i.e., {z2}, {z4}, {z2, z4}.1 Firstly, with conditioning set
{z2}, the partition process is as follow:

1. Started from z1, the result contains z1.

2. Bayes-ball algorithm get input as G, {z2} and result.

3. In the Bayes-ball, path from z1 to z3 through z2 cannot
be d-separated because z2 works as collider.

4. The path from z1 to z3 also cannot be d-separated.

5. The result is {{z1, z3}} except for observed source z2.

With conditioning set {z4}, by following same process, the
result will be {{z1}, {z3}}. The conditioning set {z2, z4}

1∅ cannot be considered due to the condition for the identifia-
bility.



makes the result to be {{z1, z3}}. Hence, the selection re-
sult will be {z4} for the most fine-grained conditionally
independent latents.

3.3 LEARNING TO RECOVER

To construct a representation that satisfies the identifiabil-
ity conditions in Prop. 1, we enforce volume preservation
in the encoder by adopting General Incompressible-flow
Network (GIN) [Sorrenson et al., 2020] as our encoder. In
addition to volume preservation, we also impose a graphical
constraint via a structural neural network to preserve depen-
dencies among latent variables that are not assumed to be
independent, reflecting the known latent causal structure to
strengthen disentanglement.

Volume-preservation While GIN originally optimizes
only the log-likelihood of the conditional distribution given
the auxiliary variables, we factorize the log-likelihood of
the distribution as follows:

log pĝ−1(x) = log p(ẑ) = log p(zu)+
∑
i

log p(ẑu−
i
| zu),

where ẑu−
i
= ẑ \ ẑui

. By factorizing the log-likelihood of
the distribution, we can naturally address the issue that the
information from the auxiliary variable is directly entangled
with the observations. The preceding term will serve to
absorb information about zu from x while the latter term
enforces the components of zu− to be independent given zu
by modeling them as a multivariate normal distribution with
zero off-diagonal elements.

Graphical constraint Besides, ẑu− contain the informa-
tion of sources that are observed but not selected (expressed
as zn), i.e., ẑu− = {ẑo− , ẑn}. We need to keep the re-
lationship between ẑn and ẑo− which is not independent
(relationship between z2 and z1, z3 in Fig. 1c).

To deal with this problem, we leverage the structural neural
net to enforce the relationship between ẑo− and ẑn. A struc-
tural neural network is designed based on the latent graph
G and not selected label zn. Specifically, zn is predicted by
arbitrary dimensions of ẑu− working as parents of zn. Since
we do not know exactly which dimension of the representa-
tion corresponds to which true latent variable, we rely only
on the number of parents of zn. For example, in Fig. 1c, true
z2 is predicted by the certain dimension of the estimated
representation given the other dimensions (ẑ1, ẑ3), naturally
reflecting the causal structure. The full objective function is:

L(θ) = E(x,zu,zn)∈D

[
log p(zu) +

∑
i

log p(ẑu−
i
| zu)

+ log p(zn | PaG(zn))

]
. (7)
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(a) Pendulum System
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(b) Flow System

Figure 2: Causal graphs for two systems. Colored nodes are
observed sources: (a) Pendulum and (b) Flow.

4 EXPERIMENT

We conduct experiments to empirically validate both the
effectiveness of the selection procedure and the capability of
our proposed architecture in leveraging observable sources.

4.1 EXPERIMENTAL SETUP

Data Reflecting the setup of observable sources, we con-
sider synthetic datasets generated from the three graphs in
Fig. 1: D = {(x(i), z

(i)
o )}Ni=1, where N is the sample size

and z
(i)
o is the observed sources corresponding to the data

point x(i). When we run our selection procedure given a
graph to choose the best combination of the auxiliary vari-
ables, zo will be partitioned into zu and zn.

The data was generated using a linear Structural Causal
Model (SCM) where each variable is determined by a linear
combination of its parents and an additive noise term:

Xi =
∑

j∈pa(Xi)

βijXj + εi, (8)

where βij are sampled uniformly from [0.5, 1.0], and εi is
the additive noise term with coefficient fixed to 1.0.

To further demonstrate the effectiveness of our method on
high-dimensional data, we used the Pendulum and modified
Flow datasets Yang et al. [2021], which consist of structured,
systematically sampled image data. Corresponding latent
causal graphs are shown in Fig. 2. The implementation
details is in Appendix D.

Metrics After training the proposed method, we measure
Disentanglement, Completeness, Informativeness (DCI)
metric [Eastwood and Williams, 2018] based on Mean Cor-
relation Coefficient (MCC) matrix which is a widely ac-
cepted metric in the literature for measuring the degree of
identifiability [Hyvärinen and Morioka, 2016]. We assess
how well the learned representation aligns with the indepen-
dence structure of the underlying graph.

Specifically, the MCC matrix is defined as:

MCCij = corr(zi, ẑj), (9)



disentanglement completeness

0.08

0.09

0.10

0.11

0.12

0.13

0.14

Ours, DGP: Flow
Model
w/ selection
w/o selection
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where each entry MCCij represents the Pearson correla-
tion coefficient between the true latent variable zi and the
estimated latent variable ẑj . The optimal permutation σ∗

is selected to maximize the total correlation, ensuring that
each estimated latent variable is matched to the most similar
true latent variable.

Based on the computed MCC matrix, we evaluate mod-
els with Disentanglement and Completeness among DCI
metrics:

D = 1−H(Pi,·), (10)

C = 1−H(P·,j), (11)

where Pi,j is the value from the MCC matrix, representing
the contribution of the estimated latent variable ẑj to the
true latent factor zi. The entropy function H(·) measures
the dispersion of importance values across dimensions, en-
suring that a lower entropy corresponds to a more structured
and disentangled representation. Disentanglement (D) quan-
tifies whether each estimated latent variable captures at most
one true latent factor, computed by applying row-wise en-
tropy over Pi,·. Completeness (C) assesses whether each
true latent factor is captured by a single estimated latent vari-
able, computed via column-wise entropy over P·,j . Since
both scores range from 0 to 1, higher values indicate better
structured representations with minimal mixing between
factors. Further discussions on why MCC alone is insuffi-
cient for evaluation are provided in the Appendix A. All the
metrics are measured over 20 repetitions.

4.2 EMPIRICAL RESULTS

Effectiveness of selection We conducted an ablation study
on the selection procedure for our architecture. The experi-
ments are based on the data-generating process illustrated in
Fig. 2b, where the differences in results arise depending on
the selection procedure. Fig. 3 shows the change in DCI met-
ric for our model before and after selection. The selection
procedure improves disentanglement in the representation as
shown in Fig. 3. For the graph in Fig. 2b, using all observed
sources as auxiliary variables without a selection procedure
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Figure 4: Comparison plot for DCI metric between Ours,
GIN, and iVAE.
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Figure 5: Mean correlation matrices of Ours, GIN applying
selection, and iVAE applying selection matched with the
best permutation on the setting of Fig. 1a.

breaks the conditional independence between Water Height
and Hole, leading to entangled representations.

Effectiveness of architecture To verify the effectiveness
of our proposed architecture, we choose GIN [Sorrenson
et al., 2020] and iVAE [Khemakhem et al., 2020] as base-
line models. GIN is used as the encoder in our architecture,
ensuring the volume-preserving property but not designed
to handle observed sources. iVAE is also not designed to
handle partially observed sources. Furthermore, it does not
impose any constraints on the mixing function and solely
relies on a multivariate normal distribution as the prior, en-
suring that each latent variable is conditionally factorizable.
For a fair comparison, all experiments are conducted using
the same auxiliary variables filtered through the selection
procedure.

Fig. 4 demonstrates that our proposed method outperforms
other approaches in terms of the DCI metric. Our proposed
method maximizes the likelihood of a conditionally fac-
torizable distribution for the remaining components while
simultaneously excluding the information of auxiliary vari-
ables mixed with the observation x. This prevents spurious
correlations in the representation by ensuring that the infor-
mation of zu, which is related to unobserved latents, does
not mix into the representation.

We further analyzed the results with the MCC matrix for
a more detailed examination. The proposed architecture
shows a comparable MCC score (mean of diagonal terms)
as GIN and iVAE, as illustrated in Fig. 5 for the DGP of
Fig. 1a. However, looking at the MCC matrix, we can ob-
serve that both GIN and iVAE show high correlations with
the other latents besides the true latent, even when matched
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Figure 6: Mean correlation matrices of Ours, GIN applying
selection, and iVAE applying selection matched with the
best permutation on the setting of Fig. 1b.
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Figure 7: Mean correlation matrices of Ours, GIN applying
selection and iVAE applying selection matched with the
best permutation on the setting of Fig. 1c.

with the best permutation. This suggests that manipulating
a specific dimension of the representation simultaneously
affects other latents, indicating that the representation is not
well disentangled.

Considering the DGP in Fig. 1b, the ideal disentanglement
is that ẑ1, ẑ2, (ẑ3, and ẑ4) are conditionally independent.
The result of our architecture for MCC matrix in Fig. 6
represents the almost ideal disentanglement, while the other
methods still show entangled results. As the conditional
independence in DGP in Fig. 1b does not ensure each latent
to be identified, but block-identified, the MCC score might
be lower. Even in this case, GIN and iVAE, which do not
consider observed sources, show a high MCC score because
of spurious correlation. Likewise, on the DGP (Fig. 1c), our
architecture yields a disentangled MCC matrix as expected.

High-Dimensional data We also conduct the experiments
on the Pendulum and Flow datasets from Yang et al. [2021].
The images are generated by a latent mechanism shown
in Fig. 2. The images have a size of 4 × 96 × 96. For the
Flow dataset, the auxiliary variable Ball Size is determined
through the selection process. In the case of the Pendulum
dataset, all observed latents should be selected as auxil-
iary variables to ensure the conditional independence of the
unobserved latent variables.

As illustrated in Fig. 8, our proposed method demonstrated
performance that is comparable to or superior to other mod-
els. Unlike the results on synthetic data, the GIN model
exhibited strong performance because its normalizing flow-
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Figure 8: Comparison plot for DCI metric between Ours,
GIN , and iVAE on high-dimensional data.
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Figure 9: Mean correlation matrices of Ours, GIN applying
selection and iVAE applying selection matched with the
best permutation on the Pendulum dataset.

based architecture is more suitable for handling image data
in terms of model capacity. The MCC matrices (Figs. 9
and 10) also show that our method learns disentangled rep-
resentations for unobserved latent variables. It suggests that
the learned representations align well with the conditional
independence structure of the underlying latent graph in
Figs. 2a and 2b.

We also observed that the representations in Flow were more
entangled compared to Pendulum. There exists an observed
but unselected variable zn (Water Flow), which introduces
additional graph constraints. The graph constraints may
conflict with the term enforcing conditional independence,
making the learning process more challenging. Addressing
this challenge remains an avenue for future work.

4.3 LATENT TRAVERSE

For better comprehensibility, we further extend our model
to the image reconstruction task and perform latent traversal
to assess whether the factors have been disentangled effec-
tively. We conducted experiments on the pendulum dataset
as shown in Fig. 2a, choosing the pendulum angle and light
position as selected variables. To efficiently extract relevant
features from high-dimensional image data and visualize
disentangled factors, an extra encoder-decoder architecture
with an additional MSE (Mean Squared Error) loss was
adopted to ensure successful compression and reconstruc-
tion of the images.

The encoder initially compresses the image into exogenous
latent variables corresponding to the number of nodes in the
causal graph. This set of variables is then passed through
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Figure 10: Mean correlation matrices of Ours, GIN applying
selection and iVAE applying selection matched with the best
permutation on the Flow dataset.

Figure 11: Latent traversal results for unobserved variables.
The upper and lower rows show reconstructed images by
traversing the variables for shadow length and shadow posi-
tion, respectively.

our model, generating endogenous latent variables of the
same dimensionality. The decoder follows a scene-mixture
approach, where each scalar from the endogenous latent
variables passes through multiple fully connected layers to
generate a full-size image. The final output is then recon-
structed by averaging these images.

Fig. 11 presents the results of generating counterfactual
images by traversing unobserved latent variables after train-
ing our model with the reconstruction objective. As shown
in the upper row, traversing the variable associated with
shadow length gradually decreases its extent in the recon-
structed images. Similarly, modifying the latent variable
corresponding to shadow position causes the shadow to shift
progressively to the right while mostly preserving the other
factors. The successful disentanglement of unobserved la-
tent variables further demonstrates the model’s effectiveness
in its transferability.

5 RELATED WORK

One of the key obstacles in CRL is the dependence among
latent sources induced by underlying causal mechanisms. It
directly violates the assumption of conditionally indepen-
dent sources, which underlies the identifiability of many non-
linear ICA approaches that rely on conditionally factorized
priors [Khemakhem et al., 2020]. To address this issue, sev-
eral works explicitly incorporate a known or assumed causal

graph over the latent variables to model source dependen-
cies. For example, Yang et al. [2021] (CausalVAE) propose a
structured variational autoencoder where the latent variables
follow a predefined causal DAG, enabling do-interventions
in the latent space. Similarly, Pan and Bareinboim [2024]
(ANCM) handle non-Markovian generative processes by
modeling image generation with an augmented causal graph
that captures temporally entangled latent factors. While
these methods provide a framework for incorporating causal
structure into representation learning, they operate under
a fully supervised setting, assuming access to structured
semantic labels or ground-truth causal factors. Moreover,
they are primarily focused on image generation and counter-
factual editing tasks, rather than the general identifiability
or recovery of latent sources from more weakly supervised
or observational data.

To achieve identifiability under such dependencies, many
methods rely on interventional data which can be imprac-
tical in real-world settings [Lippe et al., 2023, Liang et al.,
2023, Li et al., 2024]. In particular, the Liang et al. [2023]
(CauCa) assumes a Markovian graph and leverages inter-
ventions for identifiability, while Li et al. [2024] (CRID)
handles more general non-Markovian settings by explic-
itly modeling unobserved confounders. Both of CauCA and
CRID share with our approach the use of causal graph to
guide recovery, suggesting that our method could be ex-
tended to non-Markovian settings in future work.

As an alternative, recent efforts have aimed to prove identifi-
ability from observational data alone. For example, Yao et al.
[2024b] introduce a method based on block-identifiability
[Kügelgen et al., 2021], which extracts shared latent vari-
ables from multiple views using contrastive learning and
entropy regularization. Zhang et al. [2024] show that assum-
ing structural sparsity among the sources enables identifia-
bility without any explicit causal graph. While these works
relax assumptions on data collection, they rely on indirect
structural constraints. In contrast, we investigate how to
select or exploit observed sources as auxiliary variables un-
der a known causal structure to recover latent sources. This
approach retains the strengths of causal modeling while im-
proving recoverability in settings where full interventions
or disentangled views are unavailable.

6 CONCLUSION

CRL aims to uncover latent variables in real-world systems.
Our work is the first to achieve identifiability with observed
sources by incorporating auxiliary variables into the mix-
ing function. We also introduce a framework for selecting
auxiliary variables to improve recoverability by leverag-
ing the causal structure. Empirical results show that our
method outperforms others in identifying true latent vari-
ables, effectively mitigating spurious correlations arising
from observable sources.
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A DISCUSSION

Related Work To deal with the case of Fig. 1b, we can partition the latent sources into conditionally independent sets,
zci(i = 1, ..., d) where ∪di=1zci = {z1, . . . , zn}. It enables a more general formulation of Eq. (3) as Zheng and Zhang
[2023]:

pz|u(z|u) =
ni∏
i=1

pzi(zi)

d∏
j=1

pzcj
|u(zcj |u). (12)

where ni is the number of mutually independent sources. Zheng and Zhang [2023] partition all the sources into a set of
mutually independent sources zI and a set of variables in which do not need to be independent zo− = ∪di=1zci . In ??, we
further generalize Eq. (12) into the setting with observed sources, which includes Eq. (12) as a special case in that u is
independent from DGP.

pzo− |zo
(zo− |zo) =

ni∏
i=1

pzi(zi)

d∏
j=1

pzcj
|zo

(zcj |zo). (13)

where zo is observed sources and zo− is unobserved sources. The former term corresponds to the case without auxiliary
variables, which is beyond the scope of our study and thus not considered further.

Metrics After training the proposed method, we measure Disentanglement, Completeness, Informativeness (DCI) metric
[Eastwood and Williams, 2018] to measure the degree of identifiability based on Mean Correlation Coefficient (MCC)
matrix which is a widely accepted metric in the literature for measuring the degree of identifiability [Hyvärinen and Morioka,
2016]. Specifically, MCC metric is expressed as follows:

MCC(z, ẑ) =
1

n
max
σ∈Sn

n∑
i=1

corr(zi, ẑσ(i)),

where σ ∈ Sn is a permutation of the set of indices. If the model successfully recovers the latent variables, MCC will match
estimation with the most similar distributions to true latent (i.e., the highest correlation). However, the MCC metric alone is
insufficient for measuring the degree of identifiability in scenarios involving partially observable sources since spurious
correlation can arise without disentangling the information of zo due to the information from the auxiliary variable zo being
entangled with the observation x.

The Fig. 12 demonstrates the insufficiency of MCC score in evaluating the degree of identifiability. The MCC scores of the
GIN and iVAE models are around 0.7, suggesting that they recover the true latents reasonably well. However, examining the
correlation matrix reveals that the estimated latents also show high correlations with dimensions other than the one with the
highest correlation. This is because existing methods do not account for cases where the mixing function includes auxiliary
variables, leading to information from the auxiliary variables being entangled in the estimated latents.

Accordingly, we leverage the DCI metric [Eastwood and Williams, 2018] to evaluate whether the learned representation
correctly models the conditional independence structure of the graph without spurious correlation. The DCI metric evaluates
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Figure 12: MCC score and mean correlation matrices of GIN and iVAE matched with the best permutation on the setting of
Fig. 1b.

the performance of disentanglement, completeness, and informativeness of representation by measuring the entropy of
the importance matrix (in our case, a MCC matrix) If the true sources are well identified without spurious correlation, the
representation will be highly disentangled with complete information.

B THEORETICAL ANLAYSIS

Firstly, we begin with the definition of identifiability, which is the goal of nonlinear ICA and causal representation learning.
By adopting a Structural Causal Model (SCM, Pearl [2009]), we represent a data-generating process regarding latent sources
as

zi = fi(Pa
G(zi), ϵi), ϵi ∼ pϵi , (14)

for all i ∈ [n] where PaG(·) represents parent nodes on a latent causal graph G consisting of nodes V and edges E.

Definition 1. (Identifiability). Suppose the observations x are generated by true latent mechanism specified by Θ =
(f , p(ϵ),g) given in Eqs. (1) and (2). The learned generative model parameterized by Θ̂ =

(
f̂ , p̂(ϵ), ĝ

)
is observationally

equivalent to the true model if the model distribution pΘ̂(x) matches the data distribution pΘ(x) for any value of x. Let A
be an arbitrary invertible transformation. We say that the model is identifiable up to A if

pΘ̂(x) = pΘ(x) =⇒ ĝ = g ◦A. (15)

Once the mixing function g is identified, the latent variables can be identified up to A:

ẑ = ĝ−1(x) = (A−1 ◦ g−1)(x)

= A−1(g−1(x))

= A−1(z).

Proposition 2. Suppose the following assumptions hold:

1. The observed data and sources are generated from Eq. (1) and Eq. (5)

2. The observable sources do not have direct edge into the observation x, i.e., ∂x
∂zo

= 0

3. For every value of zD, there exists 2d+ 1 values of zo, such that the 2d vectors w(zD, zoi)−w(zD, zo0) are linearly
independent, where vector w(ZD, zoi) is defined as follows:

w(zD, zoi) =
(
v(zc1 , zoi), . . . ,v(zcd , zoi),

v′(zc1 , zoi), . . . ,v
′(zcd , zoi)

)



where

v(zcj , zoi) =

(
∂ log p(zcj | zoi)

∂z
(l)
cj

, . . . ,
∂ log p(zcj | zoi)

∂z
(h)
cj

)
,

v′(zcj , zoi) =

(
∂2 log p(zcj | zoi)

∂(z
(l)
cj )

2
, . . . ,

∂2 log p(zcj |zoi)
∂(z

(h)
cj )2

)

and zcj = (z
c
(l)
j
, . . . , z

c
(h)
j

).

Then all components of zD (i.e., zci where ci ∈ {c1, . . . , cd}) is identifiable up to a subspace-wise invertible transformation
and a subspace-wise permutation.

Proof. Let h : zo− → ẑo− denote the transformation from true sources to estimated sources. Thus, we can derive
ĝ = g ◦ h−1(zo−) equivalently as

Jg(zo−) = Jĝ◦h(zo−) = Jĝ(ẑo−)Jh(zo−)

by using chain rule repeatedly. Jh(zo−) must be invertible and have a non-zero determinant because Jĝ(ẑo−) and Jg(zo−)
have full column rank. The change of variable rule and Assumption 2 make the following equations hold:

p(zo− | zo) · |det(Jh−1(ẑo−))| = p(ẑo− | zo).

By taking logarithm on both sides, we can obtain

log p(zo− | zo) + log |det(Jh−1(ẑo−))| = log p(ẑo− | zo).

According to the Assumption 11 and ∪izci = z \ zo, the joint log densities can be factorized as

cd∑
j=c1

log p(zj | zo) + log |det(Jh−1(ẑo−))| =
cd∑

j=c1

log p(ẑj | ẑo).

Thus, for zo = zo0 , . . . zo2d , we have 2d+ 1 equations. Subtracting each equation corresponding to zo1 , . . . , zo2d with the
equation corresponding to zo0 results in 2d equations:

cd∑
i=c1

(log p(zi | zoj )− log p(zi | zo0)) =
cd∑

i=c1

(log p(ẑi | zoj )− log p(ẑi | zo0)) (16)

Take the derivatives of both sides of Eq. (16) with respect to ẑk and ẑv where k, v ∈ {1, . . . , n} and they are not indices of
the same subspace. It is clear that the RHS of Eq. (16) equals to zero because k and v are not indices of the same subspace.
For the i-th term of the summation on the LHS, we can get following equations:

i(h)∑
l=i(l)

(∂2 log p(zi | zoj )
(∂zl)2

− ∂2 log p(zi | zo0)
(∂zl)2

)
· ∂zl
∂ẑk

∂zl
∂ẑv

(17)

+

(
∂ log p(zi | zoj )

∂zl
− ∂ log p(zi | zo0)

∂zl

)
· ∂2zl
∂ẑk∂ẑv

 = 0,

where il and ih are the minimum and maximum indices of elements in zi = (zil, . . . , zih). By iterating i from c1 to cd, we
can also iterate l from 0 to n. Thus, there exists a linear system with a 2d× 2d coefficient matrix.

Considering Assumption 3, the coefficient matrix of the linear system has full rank. The only solution of Eq. (17) is
∂zl
∂ẑk

∂zl
∂ẑv

= 0 and ∂2zl
∂ẑk∂ẑv

= 0. Note that ∂zl
∂ẑk

and ∂zl
∂ẑv

cannot be both zero because of invertibility of h. Therefore, k can
only be the index of an estimated source from one independent subspace, which, together with the invertibility, leads to the
conclusion that zo− is a composition of an invertible subspace-wise transformation and a subspace-wise permutation of ẐD .



So it is the mapping from ẑo− to zo− since the subspace-wise transformation is invertible and the inverse of a block-wise
permutation matrix is still a block-wise invertible matrix.

We now establish identifiability in the presence of partially observable sources, where an auxiliary variable directly influences
the observation x through the mixing function. This constitutes the proof of Prop. 1.

Proof. Assume observational equivalence between estimated and true model, i.e. pg(x) = pĝ(x). The change of varialbe
rule makes following equations to hold:

p(x) = p(z) · |det(Jg−1)(x)| = p(ẑ) · |det(Jĝ−1)(x)|

Since p(z) = p(zo− | zo) · p(zo),

p(zo− | zo) · p(zo) · |det(Jg−1)(x)| = p(ẑo− | ẑo) · p(ẑo) · |det(Jĝ−1)(x)|

also can hold. Note that p(ẑo) can be replaced by p(zo) because zo is already observed.

p(zo− | zo) · |det(Jg−1)(x)| = p(ẑo− | zo) · |det(Jĝ−1)(x)|

By taking logarithm on both sides, we can obtain

log p(zo− | zo) + log |det(Jg−1)(x)| = log p(ẑo− | zo) + log |det(Jĝ−1)(x)|.

According to the Assumption 1, Assumption 2 and ∪izci = z \ zo, the joint log densities can be factorized as

cd∑
j=c1

log p(zj | zo) =
cd∑

j=c1

log p(ẑj | zo).

Thus, for zo = zo0 , . . . zo2d−1
, we have 2d equations. Take the derivatives of both sides of above equation with respect to ẑk

and ẑv where k, v ∈ {1, . . . , n} and they are not indices of the same subspace. It is clear that the RHS of Eq. (16) equals
to zero because k and v are not indices of the same subspace. For the i-th term of the summation on the LHS, we can get
following equations:

i(h)∑
l=i(l)

(∂2 log p(zi | zo)
(∂zl)2

)
· ∂zl
∂ẑk

∂zl
∂ẑv

+

(
∂ log p(zi | zo)

∂zl

)
· ∂2zl
∂ẑk∂ẑv

)
= 0, (18)

where il and ih are the minimum and maximum indices of elements in zi = (zil, . . . , zih). By iterating i from c1 to cd, we
can also iterate l from 0 to n.

Considering Assumption 3, the coefficient matrix of the linear system has full rank. The only solution of Eq. (18) is
∂zl
∂ẑk

∂zl
∂ẑv

= 0 and ∂2zl
∂ẑk∂ẑv

= 0. Note that ∂zl
∂ẑk

and ∂zl
∂ẑv

cannot be both zero because of invertibility of h. Therefore, k can
only be the index of an estimated source from one independent subspace, which, together with the invertibility, leads to the
conclusion that zo− is a composition of an invertible subspace-wise transformation and a subspace-wise permutation of ẐD .
So it is the mapping from ẐD to zo− since the subspace-wise transformation is invertible and the inverse of a block-wise
permutation matrix is still a block-wise invertible matrix.

C BAYES-BALL ALGORITHM

The best known criterion for conditional independence is d-separation [Geiger et al., 1990]. We want to find clusters with
inter-cluster d-connectedness and intra-cluster d-separation.

We exploit Bayes-ball algorithm to examine the conditional independence of two node sets on the given graph G. The
Bayes-ball algorithm can be extended to partition graph. It returns a set of nodes dependent to an input node set.

D EXPERIMENTAL DETAILS

The implementation of the experiments is based on Liang et al. [2023]. Following tables are hyperparameters for learning
Ours, GIN and iVAE.



Algorithm 2 Graph Partition by Conditional Independence
1: Input: graph G = (V,E), condition C, observed set O
2: Output: a set of d-connected node clusters R
3: R← ∅
4: for each node n in V \O do
5: if ∃C∈R n ∈ C then
6: continue
7: end if
8: result← {n};
9: while result updated do

10: result← BAYESBALL(G,C,O, result)
11: end while
12: Add result to R
13: end for
14: return R

Table 1: Hyperparameters for different models.

Ours

LR scheduler Cosine
Learning rate 0.01
Number of flows 8
Optimizer Adam
Batch size 1024
Training epochs 20

(a) Synthetic data

GIN

LR scheduler -
Learning rate 0.01
Number of flows 8
Optimizer Adam
Batch size 1024
Training epochs 20

(b) Synthetic data

iVAE

Number of layers 3
Learning rate 0.0001
Hidden dim 4096
Optimizer Adam
Batch size 32
Training epochs 20

(c) Synthetic data

Ours

LR scheduler Cosine
Learning rate 0.001
Number of flows 8
Optimizer Adam
Batch size 1024
Training epochs 50

(d) High-dimensional data

GIN

LR scheduler -
Learning rate 0.001
Number of flows 8
Optimizer Adam
Batch size 1024
Training epochs 40

(e) High-dimensional data

iVAE

Number of layers 3
Learning rate 0.0001
Hidden dim 4096
Optimizer Adam
Batch size 1024
Training epochs 80

(f) High-dimensional data



Algorithm 3 Bayes Ball Algorithm for d-connected nodes
1: Input: Graph G, Conditioning Set C, Observed Set O, Set of nodes R
2: Output: Updated set of d-connected nodes R
3: Initialize an empty set V FOR visited nodes
4: Initialize an empty queue Q
5: for each node n in R do
6: Add (n, up) to Q
7: end for
8: while Q is not empty do
9: (node, direction)← Q.pop()

10: if node ∈ V then
11: continue
12: end if
13: Add node to V
14: if node ∈ C and direction ̸= down then
15: continue
16: end if
17: if direction = up then
18: for each parent of node in G do
19: Add (parent, up) to Q
20: end for
21: for each child of node in G do
22: Add (child, down) to Q
23: end for
24: else if direction = down then
25: Initialize check ← false
26: for each descendant d of node in G do
27: if d ∈ C then
28: check ← true
29: break
30: end if
31: end for
32: if node ∈ C or check = true then
33: for each parent of node in G do
34: Add (parent, up) to Q
35: end for
36: else
37: for each child of node in G do
38: Add (child, down) to Q
39: end for
40: end if
41: end if
42: if node /∈ C and node /∈ O then
43: Add node to R
44: end if
45: end while
46: return R
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