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ABSTRACT

Despite the tremendous success, existing machine learning models still fall short
of human-like systematic generalization—learning compositional rules from lim-
ited data and applying them to unseen combinations in various domains. We pro-
pose Neural-Symbolic Recursive Machine (NSR) to tackle this deficiency. The
core representation of NSR is a Grounded Symbol System (GSS) with combi-
natorial syntax and semantics, which entirely emerges from training data. NSR
implements a modular design for neural perception, syntactic parsing, and se-
mantic reasoning, which are jointly learned by a deduction-abduction algorithm.
We prove that NSR is expressive enough to model various sequence-to-sequence
tasks. Superior systematic generalization is achieved via the inductive biases of
equivariance and recursiveness embedded in NSR. In experiments, NSR achieves
state-of-the-art performance in three benchmarks from different domains: SCAN
for semantic parsing, PCFG for string manipulation, and HINT for arithmetic rea-
soning. Specifically, NSR achieves 100% generalization accuracy on SCAN and
PCFG and outperforms state-of-the-art models on HINT by about 23%. Our NSR
demonstrates stronger generalization than pure neural networks due to its sym-
bolic representation and inductive biases. NSR also demonstrates better trans-
ferability than existing neural-symbolic approaches due to less domain-specific
knowledge required.

1 INTRODUCTION

A remarkable property underlying human intelligence is its systematic compositionality: the alge-
braic capacity to interpret an infinite number of novel combinations from finite known components
(Chomsky, 1957)—“infinite use of finite means” (Chomsky, 1965). This type of compositionality is
central to the human ability to generalize from limited data to novel combinations (Lake et al., 2017).
Recently, several datasets have been proposed to test systematic generalization of machine learning
models—SCAN (Lake & Baroni, 2018), PCFG (Hupkes et al., 2020), CFQ (Keysers et al., 2020),
and HINT (Li et al., 2021), to name a few. While conventional neural networks fail dramatically
on these datasets, certain inductive biases have been explored to improve systematic generalization.
Csordás et al. (2021); Ontanón et al. (2022) improve Transformers’ generalization performance by
using relative positional encoding and sharing weights between layers. Chen et al. (2020) introduce
a neural-symbolic stack machine to achieve nearly perfect accuracy on SCAN-like datasets. Despite
the improved performance, these neural-symbolic methods often require domain-specific knowledge
to design non-trivial symbolic components and are difficult to transfer to other domains.

To achieve human-like systematic generalization in a wide range of domains, we propose Neural-
Symbolic Recursive Machine (NSR), which integrates the joint learning of perception, syntax, and
semantics in a principled framework. The core representation of NSR is a Grounded Symbol System
(GSS) (see Fig. 1), which entirely emerges from training data without domain-specific knowledge.
NSR implements a modular design for neural perception, syntactic parsing, and semantic reasoning.
Specifically, we first utilize a neural network as the perception module to ground symbols on the
raw inputs. Next, the symbols are parsed into a syntax tree of the Grounded Symbol System by a
transition-based neural dependency parser (Chen & Manning, 2014). Finally, we adopt functional
programs to realize the semantic meaning of symbols (Ellis et al., 2021). Theoretically, we show that
the proposed NSR is expressive enough to model various sequence-to-sequence tasks. Critically, the
inductive biases of equivariance and recursiveness, encoded in each module, enable NSR to break
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down the long input into small components, process them progressively, and compose the results,
encouraging the model to learn meaningful symbols and their compositional rules. Such inductive
biases are the crux of NSR’s superb systematic generalization.

It is challenging to optimize NSR in an end-to-end fashion since annotations for the internal GSS
are oftentimes unavailable and NSR is not fully differentiable. To tackle this issue, we present a
probabilistic learning framework and derive a novel deduction-abduction algorithm to coordinate the
joint learning of different modules. In the learning phase (see also Fig. 2), the model first performs
greedy deduction over these modules to propose an initial GSS, which may yield wrong results.
Next, a search-based abduction is applied top-down to search the neighborhood of initial GSS for
possible solutions; such abduction revises the GSS until it generates the correct result. As a plausible
solution, the revised GSS provides pseudo supervision to train each module, facilitating the learning
of individual components in NSR.

We evaluate NSR on three benchmarks from various domains to study systematic generalization: (1)
SCAN (Lake & Baroni, 2018), mapping natural language commands to action sequences; (2) PCFG
(Hupkes et al., 2020), predicting the output sequences of string manipulation commands; (3) HINT
(Li et al., 2021), predicting the results of handwritten arithmetic expressions. All these datasets
include multiple splits for evaluating different aspects of systematic generalization. NSR achieves
state-of-the-art performance on all these benchmarks. Specifically, NSR obtains 100% generaliza-
tion accuracy on SCAN and PCFG and improves the state-of-the-art accuracy on HINT by about
23%. Result analyses reveal that NSR possesses stronger generalization than pure neural networks
due to its symbolic representation and inductive bias. It also demonstrates better transferability than
existing neural-symbolic approaches due to less domain-specific knowledge required. We also eval-
uate NSR on a proof-of-concept machine translation task from Lake & Baroni (2018) and the results
demonstrate the promise of applying NSR to realistic domains.

2 RELATED WORK

There has been an increasing interest in studying the systematic generalization of deep neural net-
works. Started by the SCAN dataset (Lake & Baroni, 2018), multiple benchmarks across various
domains have been proposed, including semantic parsing (Keysers et al., 2020; Kim & Linzen,
2020), string manipulation (Hupkes et al., 2020), visual question answering (Bahdanau et al., 2019),
grounded language understanding (Ruis et al., 2020), and mathematical reasoning (Saxton et al.,
2018; Li et al., 2021). These datasets serve as the test bed for evaluating different aspects of gen-
eralization, including systematicity and productivity. A line of research has developed different
techniques for these datasets by injecting various inductive biases into deep neural networks. We
categorize previous approaches into three classes by how they inject the inductive bias:

Architectural Prior The first class of methods explores different architectures of deep neural net-
works for compositional generalization. Dessì & Baroni (2019) found that convolutional networks
are significantly better than recurrent networks in the “jump” split of SCAN. Russin et al. (2019)
improved the standard RNNs by learning separate modules for syntax and semantics. Gordon et al.
(2019) proposed the equivariant seq2seq model by incorporating convolution operations into RNNs
to achieve local equivariance over permutation symmetries of interest, which are provided before-
hand. Csordás et al. (2021) and Ontanón et al. (2022) observed that relative position encoding and
sharing weights across layers significantly improve the systematic generalization of Transformers.

Data Augmentation The second class of methods designs different schemes to generate auxiliary
training data for encouraging compositional generalization. Andreas (2020) performed data augmen-
tation by replacing fragments of training samples with other fragments from similar samples, and
Akyürek et al. (2020) trained a generative model to recombine and resample training data. The meta
sequence-to-sequence model (Lake, 2019) and the rule synthesizer (Nye et al., 2020) are trained
with samples drawn from a meta-grammar with a format close to the SCAN grammar.

Symbolic Scaffolding The third class of methods bakes symbolic components into neural ar-
chitectures for improving compositional generalization. Liu et al. (2020) connected a memory-
augmented neural model with analytical expressions, simulating the reasoning process. Chen et al.
(2020) integrated a symbolic stack machine into a seq2seq framework and learned a neural con-
troller to operate the machine. Kim (2021) learned latent neural grammars for both the encoder
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jump left after walk twice

jump 4 [JUMP]

left 5 [LTURN, JUMP]

walk 1 [WALK]

twice 9 [WALK, WALK]

after 12 [WALK, WALK , LTURN, JUMP]

append swap A B C , repeat B E

A 0 [A]

swap 51 [C, B, A]

B 1 [B]

repeat 52 [B, E, B, E]

append 53 [C, B, A, B, E, B, E]

B 1 [B] C 2 [C] E 4 [E]

2 2

10 29

3 3

12 27

9 9

(3) HINT(1) SCAN (2) PCFG

Figure 1: Examples of Grounded Symbol Systems, which are interpretable and illustrate a human-like
reasoning process. (1) SCAN: each node is a triplet of (word, symbol, action sequence); (2) PCFG: each node
is a triplet of (word, symbol, letter list). (3) HINT: each node is a triplet of (image, symbol, value). Each symbol
is denoted by its index.

and the decoder in a seq2seq framework. These methods achieved strong generalization by inject-
ing a symbolic scaffolding into their models. However, these symbolic components require domain
knowledge for specialized modules and complicated training procedures, such as hierarchical rein-
forcement learning in Liu et al. (2020) and expensive search process for execution traces in Chen
et al. (2020), which often have to be constrained under a carefully designed curriculum in prac-
tice. In contrast, the proposed NSR model requires less domain-specific knowledge for designing
its modules and the proposed deduction-abduction algorithm for learning NSR does not require a
specialized curriculum, leading to better transferability and easier optimization.

3 NEURAL-SYMBOLIC RECURSIVE MACHINE

3.1 REPRESENTATION: GROUNDED SYMBOL SYSTEM (GSS)

Two schools of thought, connectionism and symbolism, have a long debate about the proper rep-
resentation of the human mind (Fodor et al., 1988; Fodor & Lepore, 2002; Marcus, 2018). Central
to connectionism is distributed representations (Hinton, 1984), arguing that a certain concept or
meaning is represented by a pattern of activity across many neurons. In contrast, symbolism pos-
tulates a physical symbol system (Newell, 1980), wherein each symbol alone represents an atomic
concept, and more complicated concepts are formed by combining multiple symbols with certain
syntax (Chomsky, 1965; Hauser et al., 2002; Evans & Levinson, 2009). Symbol systems are more
interpretable and support stronger abstraction and generalization than distributed representations
(Launchbury, 2017). However, handcrafting a symbol system for a domain requires a lot of domain-
specific knowledge, and the constructed system is fragile and suffers from the notorious symbol
grounding problem (Harnad, 1990).

In this work, we propose a grounded version of the symbol system as the internal representation for
systematic generalization. Such a Grounded Symbol System (GSS) provides a principled integration
of perception, syntax, and semantics, as exemplified by Fig. 1. Formally, a GSS is defined as a
directed tree T “ă px, s, vq, e ą. Each node is a triplet of the grounded input x, the abstract symbol
s, and the semantic meaning v. Each edge denotes the semantic dependency between the parent and
the child node; an edge i Ñ j denotes that the node i’s semantic meaning depends on node j’s.

Despite their nice properties, handcrafted symbol systems are inevitably fragile and labor-intensive.
Therefore, it is essential to ground symbol systems on raw inputs and learn their syntax and seman-
tics from the training examples, which we will discuss next.

3.2 MODEL: NEURAL-SYMBOLIC RECURSIVE MACHINE (NSR)

We now describe the proposed NSR that induces a GSS from training data. As illustrated in Fig. 2,
the NSR consists of three learnable modules: A neural perception module for grounding symbols on
the raw input, a dependency parser for predicting the dependencies between symbols, and a program
synthesizer for predicting the semantic meanings. Since the ground-truth GSS is unavailable during
training, these three modules ought to be learned in an end-to-end fashion without intermediate
supervision. Below, we first describe the three modules of NSR and then discuss how to learn NSR
end-to-end with our proposed deduction-abduction algorithm.

Neural Perception The role of the perception module is to map a raw input x (e.g., a handwritten
expression) into a symbolic sequence s (denoted by a list of indices). This perception module handles
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Figure 2: The pipeline of inference and learning in NSR.

the perceptual variance from raw input signals, such that each predicted token wi P s is grounded in
a certain part of the input xi P x. Formally, we have:

pps|x; θpq “
ź

i

ppwi|xi; θpq “
ź

i

softmaxpϕpwi, xi; θpqq, (1)

where ϕpwi, xi; θpq is a scoring function parameterized by a neural network with parameters θp. The
architecture of the perceptual neural network depends on the format of the raw input, which could
be pre-trained; for example, we use a pre-trained convolutional neural network for images.

Dependency Parsing To predict the dependencies between symbols, we adopt a transition-based
neural dependency parser (Chen & Manning, 2014), commonly used for parsing natural language
sentences. The transition-based dependency parser relies on a state machine that defines the possible
transitions to parse the input sequence into a dependency tree. The parser constructs the parse tree
from the input sequence by recursively applying the predicted transition to the state machine until the
parsing process ends; see Fig. A1 for an illustration. At each step, the parser predicts one transition
based on the state representation. The state representation is constructed from a local window and
contains: (i) the top three words in the stack and buffer, (ii) the first and second leftmost/rightmost
children of the top two words in the stack, and (iii) the leftmost of leftmost/rightmost of rightmost
children of the top two words in the stack. Given the state representation, we adopt a two-layer
feed-forward neural network to predict the transition. Formally, given the input sentence s, we have:

ppe|s; θsq “ ppT |s; θsq “
ź

tiPT
ppti|ci; θsq, (2)

where θs is the parser’s parameters, T “ tt1, t2, ..., tlu ( e the transition sequence that generates
the dependencies e, and ci the state representation at the i-th step. In practice, we use a greedy
decoding strategy to predict the transition sequence for the input sentence.

Program Induction Inspired by recent advances in program induction (Ellis et al., 2021; Ba-
log et al., 2017; Devlin et al., 2017), we adopt functional programs to represent the semantics of
symbols and view learning as program induction. Compared to purely statistical approaches, sym-
bolic programs exhibit better generalizability and interpretability, and the learning is usually more
sample-efficient. Formally, given the input symbols s and their dependencies e, we have:

ppv|e, s; θlq “
ź

i

ppvi|si, childrenpsiq; θlqq (3)

where θl is the set of programs induced for every symbol. In practice, we use symbolic programs,
yielding a deterministic reasoning process.

Learning semantics for a symbol is equivalent to searching for a program that matches the given
examples. Candidate programs are composed of a set of pre-defined primitives. Based on the Peano
axioms (Peano, 1889), we find a universal set of primitives: (1) 0; (2) inc: i Ñ i ` 1; (3) dec:
i Ñ i´ 1; (4)==; (5) if: pa, b, cq Ñ if a is true, return b, else c. Such a simple set of primitives are
provably sufficient to represent any symbolic function, which we will further demonstrate in Sec. 3.4.
To speed up the search process and facilitate generalization, we augment this set of primitives with
a minimal subset of Lisp primitives for list processing (cons, car, cdr, etc.) and the recursion
primitive (Y-combinator (Peyton Jones, 1987)). The Y-combinator allows to represent any recursive
function and is the crux of extrapolation on semantics.

In practice, we adopt DreamCoder (Ellis et al., 2021) for program induction, which can efficiently
synthesize programs from input-output pairs across a wide range of domains. We revised the original
DreamCoder to handle noise in the given examples during the search process.

4



Under review as a conference paper at ICLR 2023

3.3 LEARNING

Since the intermediate GSS is latent and non-differentiable, the back-propagation is not applicable
to learn NSR. Previous methods usually learn such neural-symbolic models with policy gradient
algorithms, such as REINFORCE (Williams, 1992). However, the policy gradient methods have
been shown to converge slowly or even fail to converge (Liang et al., 2018; Li et al., 2020); it requires
generating a large number of samples over a large latent space with sparse rewards, hoping some
samples may be lucky enough to hit high rewards for updating the policy. Due to the prohibitively
large space of GSS, we have to seek for an alternative and more efficient learning algorithm.

Formally, let x denote the input, T “ă px, s, vq, e ą the intermediate GSS, and y the output. During
learning, px, yq is observed but T is latent. The likelihood of the observation px, yq marginalized over
T can be decomposed as:

ppy|x; Θq “
ÿ

T

ppT, y|x; Θq “
ÿ

s,e,v

pps|x; θpqppe|s; θsqppv|s, e; θlqppy|vq. (4)

s|x denotes the process of grounding symbols to raw signals, guided by the perception module θp.
e|s denotes the process of parsing the symbol sequence into a parse tree, guided by the syntax module
θs. v|s, e denotes the process of reasoning over the parse tree, guided by the semantic module θl.
y|v is a deterministic process: ppy|vq “ 1 if the final output of v equals to y, otherwise 0.

From a maximum likelihood estimation (MLE) perspective, the learning objective is to maximize
the observed-data log-likelihood Lpx, yq “ log ppy|xq. Assuming θp, θs, θl are continuous, we take
the derivative of L w.r.t. θp, θs, θl (see Eq. (A2) for the detailed derivation):

∇θpLpx, yq “ ET„ppT |x,yqr∇θp log pps|x; θpqs,

∇θsLpx, yq “ ET„ppT |x,yqr∇θs log ppe|s; θsqs,

∇θlLpx, yq “ ET„ppT |x,yqr∇θl log ppv|s, e; θlqs,

(5)

where ppT |x, yq is the posterior distribution of T given px, yq. Since ppy|vq can only be 0 or 1,
ppT |x, yq can be rewritten as:

ppT |x, yq “
ppT, y|x; Θq

ř

T 1 ppT 1, y|x; Θq
“

#

0, for T R Q
ppT |x;Θq

ř

T 1PQ ppT 1|x;Θq
, for T P Q (6)

where Q “ tT : ppy|T q “ 1, T P ΩT u is the set of T that match y. Usually, Q is a very small subset
of the entire space of ps, e, vq, i.e., Q Ď ΩT .

Since taking expectation w.r.t. this posterior distribution (Eq. (5)) is intractable, we use Monte Carlo
sampling to approximate it. The optimization procedure for an example px, yq is as follows:

1. Sample a plausible solution: T̂ “ă px, ŝ, v̂q, ê ą„ ppT |x, yq.
2. Use px, ŝq to update the perception module (θp).
3. Use pŝ, êq to update the syntax module (θs).
4. Use pŝ, ê, v̂q to update the semantic module (θl).

Steps 2–4 are supervised training for each module and no longer require the continuous assumption
for the derivation of Eq. (5). Step 1 requires sampling from a highly sparse distribution in a large
space, which we describe below.

Deduction-Abduction The key to the above learning procedure is the efficient sampling from the
posterior distribution ppT |x, yq. To tackle this problem, we develop a novel deduction-abduction
algorithm, summarized in Alg. A1. Concretely, for a given example px, yq, we first perform greedy
deduction from x to obtain an initial GSS T “ă px, ŝ, v̂q, ê ą, which may yield a wrong result. To
find a revised T˚ that matches the correct result y during training, we search the neighbors of T in
a top-down manner by performing abduction over perception, syntax, and semantics; see Alg. A1
and Fig. A2 and A3. Theoretically, the above deduction-abduction process behaves as a Metropolis-
Hastings sampler for the posterior distribution ppT |x, yq, as proven by Li et al. (2020).

3.4 EXPRESSIVENESS AND GENERALIZATION OF NSR

We now discuss NSR’s properties. Overall, we find that NSR has the expressive power to model var-
ious seq2seq tasks, and the inductive biases in NSR enhance its systematic generalization capability.
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Expressiveness We prove that NSR has the expressive power to model various seq2seq tasks.
Lemma 1. For a finite unique set of txi : i “ 0, ..., Nu, there exists a neural network fp with enough
capability, satisfying: @xi, fppxiq “ i.

Provably, there exists a neural network that maps every element in a finite set to a unique index,
i.e., xi Ñ i (Hornik et al., 1989; Lu et al., 2017). The parsing process is trivial since every input is
mapped to a single token.
Lemma 2. Any index space can be created from the primitives t0,incu.

All indices are natural numbers, which can be recursively defined by t0,incu: 0 Ñ 0, 1 Ñ

inc(0), 2 Ñ inc(inc(0)), 3 Ñ inc(inc(inc(0))), .... We can create indices for both
inputs and outputs via this lemma.

Equipped with the above lemmas, we have the following theorem on the expressiveness of NSR:
Theorem 3. For any finite dataset D “ tpxi, yiq : i “ 0, ..., Nu, there exists an NSR that can
sufficiently express D using four primitives t0,inc,==,ifu.

This theorem can be proven by constructing a degenerate NSR to “memorize” all examples in D via
a long program:

NSRpxq “ ifpfppxq==0, y0,ifpfppxq==1, y1, ...ifpfppxq==N, yN ,∅q...q (7)

The above program is akin to a lookup table, composed by the primitives tif,==u and the index
space created by the primitives t0,incu. Since these four primitives are universal for all domains,
we are assured that NSR is expressive enough to model various seq2seq tasks and thus enjoys better
transferability than previous neural-symbolic approaches.

Generalization Although the degenerate program defined by Eq. (7) achieves perfect accuracy on
the training set, it can hardly generalize beyond training examples. To achieve strong generalization,
we have to impose certain inductive biases; these inductive biases should be minimal and applica-
ble to most domains. Inspired by previous progress on compositional generalization (Gordon et al.,
2019; Chen et al., 2020), we hypothesize two necessary inductive biases: equivariance and recur-
siveness. Intuitively, equivariance enables the model’s systematicity, generalizing from {“run”,
“run twice”, “jump”} to “jump twice”, whereas recursiveness enables the model’s pro-
ductivity, generalizing to longer sequences like “run and jump twice”.

Following Gordon et al. (2019), we formalize the hypothesis of equivariance and recursiveness from
the perspective of group theory. A discrete group G is a set of elements tg1, ..., g|G|u with a binary
group operation “¨”, satisfying the group axioms (closure, associativity, identity, and invertibility).
For equivariance, we consider a permutation group P , whose elements are permutations of a set X .
For p P P , we define the permutation operation Tp : X Ñ X . For recursiveness, we consider a
composition operation C and define Tc : pX ,X q Ñ X . Formally, we have:
Definition 1 (Equivariance). Given two sets X and Y , let P be a permutation group, whose group
operations on X and Y are denoted by Tp : X Ñ X and T 1

p : Y Ñ Y , respectively. A mapping
Φ : X Ñ Y is equivariant if and only if

@x P X , p P P : ΦpTpxq “ T 1
pΦpxq.

Definition 2 (Recursiveness). Given two sets X and Y , let Tc : pX ,X q Ñ X and T 1
c : pY,Yq Ñ Y

C be two composition operations on X and Y , respectively. A mapping Φ : X Ñ Y is recursive if
and only if

DTc, T
1
c,@x1 P X , x2 P X : ΦpTcpx1, x2qq “ T 1

cpΦpx1q,Φpx2qq.

It is straightforward to see that the three modules of NSR, i.e., neural perception (Eq. (1)), depen-
dency parsing (Eq. (2)), and program induction (Eq. (3)) are equivariant and recursive, because they
are all pointwise transformations according to their formulations. Empirically, models that achieve
superb compositional generalization on certain reasoning tasks, including NeSS (Chen et al., 2020),
LANE (Liu et al., 2020), and the proposed NSR, are equivariant and recursive. Therefore, we pro-
pose the following hypothesis about compositional generalization:
Hypothesis 1. If a model achieves compositional generalization, the mapping instantiated by the
model Φ : X Ñ Y is equivariant and recursive.
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Table 1: The test accuracy on different splits of SCAN and PCFG. “A. R.” stands for “Around Right,” “Sys.”
for “Systematicity,” and “Prod.” for “Productivity.” The results of NeSS on PCFG are reported by adapting the
source code provided by Chen et al. (2020) on PCFG.

Model SCAN PCFG
Simple Jump A. R. Length IID Sys. Prod.

Seq2Seq (Lake & Baroni, 2018) 99.7 1.2 2.5 13.8 79 53 30
CNN (Dessì & Baroni, 2019) 100.0 69.2 56.7 0.0 85 56 31

Transformer (Csordás et al., 2021) - - - 20 - 96 85
Transformer (Ontanón et al., 2022) - 0.0 - 19.6 - 83 63

Equivariant Seq2seq (Gordon et al., 2019) 100.0 99.1 92.0 15.9 - - -
NeSS (Chen et al., 2020) 100.0 100.0 100.0 100.0 „0 „0 „0

NSR (ours) 100.0 100.0 100.0 100.0 100 100 100

4 EXPERIMENTS

4.1 SCAN

The SCAN dataset (Lake & Baroni, 2018) has been widely used to evaluate the systematic general-
ization of machine learning models. The task aims to translate a natural language command into a
sequence of actions, simulating navigation in a grid world.

Evaluation Similar to previous work (Lake, 2019; Gordon et al., 2019; Chen et al., 2020), we
evaluate NSR in the following four splits. (1) Simple: randomly split samples for training and testing.
(2) Length: the output sequences in the training set contain at most 22 actions, whereas the output
lengths in the test set are between 24 and 48. (3) Jump: the primitive “jump” only appears alone in
the training set, whereas the test set contains commands combining “jump” with other primitives.
(4) Around right: the phrase “around right” is held out from the training set, but both “around” and
“right” occurs in the training set separately, such as “around left” and “opposite right.”

Baselines We compare NSR with the following baselines: (1) Seq2seq (Lake & Baroni, 2018);
(2) CNN (Dessì & Baroni, 2019); (3) Transformer (Csordás et al., 2021; Ontanón et al., 2022);
(4) Equivariant seq2seq (Gordon et al., 2019), which incorporates convolutional operations into
recurrent neural networks to achieve local equivariance; and (5) NeSS (Chen et al., 2020), which
integrates a symbolic stack machine into a seq2seq framework.

Results Tab. 1 summarizes the results. Both NSR and NeSS achieve 100% accuracy on splits
requiring systematic generalization, while other models’ best performance on the Length split is
only 20%. This contrast demonstrates the superiority of symbolic components (i.e., the symbolic
stack machine in NeSS and the Grounded Symbol System in NSR) for systematic generalization.

While both NeSS and NSR achieve perfect generalization on SCAN, we would like to highlight
some key differences. First, NeSS requires a considerable amount of domain-specific knowledge to
design the stack machine’s components, such as the stack operations and the category predictors;
NeSS without category predictors drops to around 20% for 3 out of 5 runs. Second, training NeSS
requires a manually defined curriculum with customized training procedures for the latent category
predictors. In contrast, our proposed NSR embraces a modular design with little domain-specific
knowledge and does not require any special training scheme like a pre-defined curriculum.

Fig. 3 visualizes the syntax and semantics learned by NSR from the SCAN Length split. The
dependency parser of NSR, which is equivariant as discussed in Sec. 3.4, forms clear permu-
tation equivalent groups in terms of syntax among the input words: {turn, walk, look,
run, jump}, {left, right, opposite, around, twice, thrice}, {and,
after}. Note that we do not provide any prior information about these groups—they entirely
emerge from the training data, unlike providing equivariant groups beforehand (Gordon et al.,
2019) or explicitly incorporating a category induction procedure from execution traces (Chen et al.,
2020). In the learned programs, the program synthesizer of NSR creates an index space for the
target language and finds the correct programs for representing the semantics of each source word.

4.2 PCFG

Next, we conduct experiments on the PCFG dataset (Hupkes et al., 2020), in which the model
learns to predict the output of a command of string manipulations, e.g., append swap F G H,
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turn : ∅ → [ ]
walk : ∅ → [inc 0]
look : ∅ → [inc inc 0]
run : ∅ → [inc inc inc 0]
jump : ∅ → [inc inc inc inc 0]
left : 𝑥 → cons (inc inc inc inc inc 0, 𝑥)
right : 𝑥 → cons (inc inc inc inc inc inc 0, 𝑥)
opposite : 𝑥 → cons car 𝑥 , 𝑥
around : 𝑥 → + + + 𝑥, 𝑥 , 𝑥 , 𝑥
twice : 𝑥 → + 𝑥, 𝑥
thrice : 𝑥 → + + 𝑥, 𝑥 , 𝑥
and : 𝑥, 𝑦 → + 𝑥, 𝑦
after : 𝑥, 𝑦 → + 𝑦, 𝑥

1 →WALK
2 → LOOK
3 → RUN
4 → JUMP
5 → LTRUN
6 → RTURN

Figure 3: Left: the syntactic similarity between input words of NSR trained on the SCAN Length split. The
similarity between word i and word j is measured by the percentage of test samples in which replacing i with
j, or vice versa, does not change the dependencies predicted by the dependency parser. Right: the induced
programs for input words, where x and y denote the inputs, ∅ denotes empty inputs, cons inserts an item to
the first position of a list, car returns the first item in a list, and + concatenates two lists.

repeat I J Ñ H G F I J I J. The input sequences in PCFG are generated by a proba-
bilistic context-free grammar, and the output sequences are constructed by recursively applying the
string edit operations that are specified in the input sequences. The input samples are selected to
match the statistical properties of a textual corpus from natural languages, such as the lengths of the
sentences and depths of the parse trees.

Evaluation We evaluate models on the following splits. (1) IID: randomly split samples for train-
ing and testing. (2) Systematicity: this split focuses explicitly on models’ ability to interpret pairs
of functions that were never seen together during training. (3) Productivity: this split focuses on
generalization to longer sequences; i.e., the training samples contain up to 8 functions, while the
test samples contain at least 9 functions. We compare with the following baselines: LSTM and CNN
(Hupkes et al., 2020), Transformer (Csordás et al., 2021; Ontanón et al., 2022), and NeSS (Chen
et al., 2020).

Results Tab. 1 summarizes the results. NSR achieves 100% accuracy on all splits of PCFG and out-
performs the previous state-of-the-art model (Transformer) by 4% on the “Systematicity” split and
15% on “Productivity.” Notably, NeSS completely fails on the PCFG dataset, although it achieves
perfect accuracy on SCAN. By inspecting the training process of NeSS on PCFG, we find that the
stack operations of NeSS cannot represent the binary functions in PCFG, and the trace search pro-
cess fails due to the large vocabulary and the long sequences of PCFG. Domain-specific knowledge
and significant efforts would be required to re-design the stack machine and the training procedure.

4.3 HINT

Finally, we evaluate NSR on the HINT dataset (Li et al., 2021), in which the model learns to predict
the integer result of a handwritten arithmetic expression without any intermediate supervision, e.g.,

Ñ 40. Compared with SCAN and PCFG, HINT is much more challenging since its
perception deals with real handwritten images with high variance and ambiguity, its syntax is more
complicated due to the existence of parentheses, and its semantics involves recursive functions.
The HINT dataset comes with a single training set and five test subsets for evaluating different
generalizations across perception, syntax, and semantics.

Evaluation Following Li et al. (2021), we train models on the single training set and evaluate them
on the following five test subsets. (1) “I”: expressions are seen in the training set, but composed of
unseen handwritten images. (2) “SS”: expressions are unseen, but their lengths and values are within
the same range as training. (3) “LS”: expressions are longer than training, but their values are within
the same range. (4) “SL”: expressions have larger values and their lengths are the same as training.
(5) “LL”: expressions are longer, and their values are bigger than training. A prediction is considered
correct if and only if it is exactly equal to the ground-truth result.

Baselines We compare the proposed NSR with the following baselines: the seq2seq neural models
(i.e., GRU, LSTM, and Transformer) (Li et al., 2021) and NeSS (Chen et al., 2020). Note that each
model is equipped with a ResNet-18 as the image encoder.
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Table 2: The test accuracy on HINT. The results of GRU, LSTM, and Transformer are cited from Li et al.
(2021), and the results of NeSS are reported by adapting its source code on HINT.

Model Symbol Input Image Input
I SS LS SL LL Avg. I SS LS SL LL Avg.

GRU 76.2 69.5 42.8 10.5 15.1 42.5 66.7 58.7 33.1 9.4 12.8 35.9
LSTM 92.9 90.9 74.9 12.1 24.3 58.9 83.9 79.7 62.0 11.2 21.0 51.5

Transformer 98.0 96.8 78.2 11.7 22.4 61.5 88.4 86.0 62.5 10.9 19.0 53.1
NeSS „0 „0 „0 „0 „0 „0 - - - - - -

NSR (ours) 98.0 97.3 83.7 95.9 77.6 90.1 88.5 86.2 67.1 83.2 58.2 76.0

# Training epochsmaster counting master + and − master × and ÷
0: Null
1: Null
2: Null
…
9: Null
+: Null
−: Null
×: Null
÷: Null

0: 0
1: inc 0
2: inc inc 0
…
9: inc inc … inc 0
+: Null
−: Null
×: Null
÷: Null

0: 0
1: inc 0
2: inc inc 0
…
9: inc inc … inc 0
+: if (𝑦 == 0, 𝑥, +(inc 𝑥, dec 𝑦)) 
−: if (𝑦 == 0, 𝑥, +(dec 𝑥, dec 𝑦))
×: if (𝑦 == 0, 𝑦, 𝑥)
÷: if (𝑦 == inc 0, 𝑥, if (𝑥 == 0, 𝑥, inc inc 0))

0: 0
1: inc 0
2: inc inc 0
…
9: inc inc … inc 0
+: if (𝑦 == 0, 𝑥, (inc 𝑥) + (dec 𝑦)) 
−: if (𝑦 == 0, 𝑥, (dec 𝑥) + (dec 𝑦))
×: if (𝑥 == 0, 0, 𝑦 × (dec 𝑥) + 𝑦)
÷: if (𝑥 == 0, 0, inc ( 𝑥 − 𝑦 ÷ 𝑦))

Figure 4: The evolution of learned programs in NSR for HINT. The recursive programs in DreamCoder
are represented by lambda calculus (a.k.a.. λ-calculus) with Y-combinator. Here, we translate the induced pro-
grams into pseudo code for easier interpretation. Note that there might be different yet functionally-equivalent
programs to represent the semantics of a symbol; we only visualize a plausible one here.

Results Tab. 2 summarizes the results on HINT. Comparing NSR with seq2seq neural models,
we can see that NSR improves the state-of-the-art performance (Transformer) by about 23%. By
inspecting the results on each test subset, we find that the improvement primarily comes from better
extrapolation over syntax and semantics: NSR boosts the accuracy of “LL” from 19.0% to 58.2%,
while the accuracy gains on “I” and “SS” are only around 2%. Please refer to Fig. A5 for qualitative
examples of NSR’s predictions on HINT. Again, NeSS completely fails on HINT due to similar
reasons for its failure on PCFG as discussed in Sec. 4.2.

Fig. 4 illustrates the evolution of semantics along the training of NSR in HINT. This pattern is
highly in accordance with how children learn arithmetic in developmental psychology (Carpenter
et al., 1999): The model first masters the semantics of digits as counting, then learns ` and ´ as
recursive counting, and finally figures out how to define ˆ and ˜ based on ` and ´. Crucially, ˆ

and ˜ are impossible to be correctly learned before mastering ` and ´. The model is endowed with
such an incremental learning capability since the program induction module allows the semantics of
concepts to be built compositionally from those learned earlier (Ellis et al., 2021).

5 CONCLUSION AND DISCUSSION

In this paper, we present NSR, which learns Grounded Symbol System from data to achieve sys-
tematic generalization. The Grounded Symbol System simulates a generalizable, interpretable rep-
resentation and provides a principled integration of perception, syntax, and semantics. NSR adopts a
modular design and encodes the inductive biases of equivariance and recursiveness in each module,
which are critical for achieving compositional generalization. To train NSR without the supervision
of GSS, we present a probabilistic learning framework and propose a novel deduction-abduction
algorithm to facilitate the efficient learning of NSR. NSR achieves state-of-the-art performance on
three benchmarks ranging from semantic parsing and string manipulation to arithmetic reasoning.

A proof-of-concept machine translation experiment demonstrates the promise of applying NSR to
realistic domains. At the same time, we anticipate potential challenges of applying NSR to real-
world tasks: (1) The noisy and numerous concepts in real-world tasks have a large space of grounded
symbol system and might slow the training of NSR; (2) The functional programs in NSR are deter-
ministic and thus not able to represent probabilistic semantics in real-world tasks, e.g., in machine
translation, there might be multiple ways to translate a single sentence. How to solve these chal-
lenges will be explored in future work.
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ID Stack Buffer Transition Dependency
0 3 + 4 × 2 Shift
1 3 + 4 × 2 Shift
2 3 + 4 × 2 Left-Arc 3 ← +
3 + 4 × 2 Shift
4 + 4 × 2 Shift
5 + 4 × 2 Left-Arc 4 ←×
6 + × 2 Shift
7 + × 2 Right-Arc ×→ 2
8 + × Right-Arc +→×

3 + 4×2
+

3 ×

4 2

Figure A1: Applying the transition-based dependency parser to an example of HINT. It is similar for SCAN
and PCFG.

A APPENDIX

A.1 MODEL DETAILS

Dependency Parsing Fig. A1 illustrate the process of parsing an arithmetic expression via the
dependency parser. Formally, a state c “ pα, β,Aq in the dependency parser consists of a stack
α, a buffer β, and a set of dependency arcs A. The initial state for a sequence s “ w0w1...wn is
α “ rRoots, β “ rw0w1...wns, A “ H. A state is regarded as terminal if the buffer is empty and
the stack only contains the node Root. The parse tree can be derived from the dependency arcs A.
Let αi denote the i-th top element on the stack, and βi the i-th element on the buffer. The parser
defines three types of transitions between states:

• LEFT-ARC: add an arc α1 Ñ α2 to A and remove α2 from the stack α. Precondition: |α| ě 2.
• RIGHT-ARC: add an arc α2 Ñ α1 to A and remove α1 from the stack α. Precondition: |α| ě 2.
• SHIFT: move β1 from the buffer β to the stack α. Precondition: |β| ě 1.

The goal of the parser is to predict a transition sequence from an initial state to a terminal state.
The parser predicts one transition from T “ tLEFT-ARC, RIGHT-ARC, SHIFTu at a time, based
on the current state c “ pα, β,Aq. The state representation is constructed from a local win-
dow and contains following three elements: (i) The top three words on the stack and buffer:
αi, βi, i “ 1, 2, 3; (ii) The first and second leftmost/rightmost children of the top two words on
the stack: lc1pαiq, rc1pαiq, lc2pαiq, rc2pαiq, i “ 1, 2; (iii) The leftmost of leftmost/rightmost of
rightmost children of the top two words on the stack: lc1plc1pαiqq, rc1prc1pαiqq, i “ 1, 2. We use
a special Null token for non-existent elements. Each element in the state representation is embed-
ded to a d-dimensional vector e P Rd, and the full embedding matrix is denoted as E P R|Σ|ˆd,
where Σ is the concept space. The embedding vectors for all elements in the state are concatenated
as its representation: c “ re1 e2...ens P Rnd. Given the state representation, we adopt a two-layer
feed-forward neural network to predict the transition.

Program Induction Program induction, i.e., synthesizing programs from input-output examples,
was one of the oldest theoretical frameworks for concept learning within artificial intelligence
(Solomonoff, 1964). Recent advances in program induction focus on training neural networks to
guide the program search (Kulkarni et al., 2015; Lake et al., 2015; Balog et al., 2017; Devlin et al.,
2017; Ellis et al., 2018a;b). For example, Balog et al. (2017) train a neural network to predict proper-
ties of the program that generated the outputs from the given inputs and then use the neural network’s
predictions to augment search techniques from the programming languages community. Recently,
Ellis et al. (2021) release a neural-guided program induction system, DreamCoder, which can effi-
ciently discover interpretable, reusable, and generalizable programs across a wide range of domains,
including both classic inductive programming tasks and creative tasks such as drawing pictures and
building scenes. DreamCoder adopts a “wake-sleep” Bayesian learning algorithm to extend pro-
gram space with new symbolic abstractions and train the neural network on imagined and replayed
problems.
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To learn the semantics of a symbol c from a set of examples Dc is to find a program ρc composed
from a set of primitives L, which maximizes the following objective:

max
ρ

ppρ|Dc, Lq 9 ppDc|ρq ppρ|Lq, (A1)

where ppDc|ρq is the likelihood of the program ρ matching Dc, and ppρ|Lq is the prior of ρ under
the program space defined by the primitives L. Since finding a globally optimal program is usually
intractable, the maximization in Eq. (A1) is approximated by a stochastic search process guided by
a neural network, which is trained to approximate the posterior distribution ppρ|Dc, Lq. We refer the
readers to DreamCoder (Ellis et al., 2021)1 for more technical details.

A.2 LEARNING

Derivation of Eq. (5) Take the derivative of L w.r.t. θp,

∇θpLpx, yq “ ∇θp log ppy|xq “
1

ppy|xq
∇θpppy|xq

“
ÿ

T

ppT, y|x; Θq
ř

T 1 ppT 1, y|x; Θq
∇θp log pps|x; θpq

“ET„ppT |x,yqr∇θp log pps|x; θpqs.

(A2)

Similarly, for θs, θl, we have

∇θsLpx, yq “ ET„ppT |x,yqr∇θs log ppe|s; θsqs,

∇θlLpx, yq “ ET„ppT |x,yqr∇θl log ppv|s, e; θlqs,
(A3)

Deduction-Abduction Alg. A1 describes the procedure for learning NSR by the proposed
deduction-abduction algorithm. Fig. A2 illustrate the one-step abduction over perception, syntax,
and semantics in HINT and Fig. A3 visualizes a concrete example to illustrate the deduction-
abduction process. It is similar for SCAN and PCFG.

A.3 EXPERIMENTS

Experimental Setup For tasks taking symbols as input (i.e., SCAN and PCFG), the perception
module is not required in NSR; For the task taking images as input, we adopt ResNet-18 as the
perception module, which is pre-trained unsupervisedly (Van Gansbeke et al., 2020) on handwritten
images from the training set. In the dependency parser, the token embeddings have a dimension of
50, the hidden dimension of the transition classifier is 200, and we use a dropout of 0.5. For the
program induction, we adopts the default setting in DreamCoder Ellis et al. (2021). For learning
NSR, both the ResNet-18 and the dependency parser are trained by the Adam optimizer (Kingma &
Ba, 2015) with a learning rate of 10´4. NSR are trained for 100 epochs for all datasets.

Qualitative Examples Fig. A4 and Fig. A5 show several examples of the NSR predictions on
SCAN and HINT.

1https://github.com/ellisk42/ec
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Algorithm A1 Learning by Deduction-Abduction

1: Input: Training set D “ tpxi, yiq : i “ 1, 2, ..., Nu

2: Initial Module: perception θ
p0q
p , syntax θ

p0q
s , semantics θp0q

l
3: for t Ð 0 to T do
4: Buffer B “ ∅
5: for px, yq P D do
6: T “ DEDUCEpx, θ

ptq
p , θ

ptq
s , θ

ptq
l q

7: T˚ “ ABDUCEpT, yq

8: B “ B Y tT˚u

9: end for
10: θ

pt`1q
p , θ

pt`1q
s , θ

pt`1q

l “ learnpB, θptq
p , θ

ptq
s , θ

ptq
l q

11: end for
12: return θ

pT q
p , θ

pT q
s , θ

pT q

l

1: function DEDUCE(x, θp, θs, θl)
2: sample ŝ „ pps|x; θpq, ê „ ppe|ŝ; θsq, v̂ “ fpŝ, ê; θlq
3: return T “ă px, ŝ, v̂q, ê ą

4: end function

1: function ABDUCE(T, y)
2: Q=PriorityQueue()

Q.push(rootpT q, y, 1.0)
3: while A, yA, p = Q.pop() do
4: A “ px,w, v, arcsq

5: if A.v ““ yA then
6: return T pAq

7: end if
8: Ź Abduce perception
9: for w1 P Σ do

10: A1 “ Apw Ñ w1q

11: if A1.v ““ yA then
12: Q.push(A1, yA, ppA1q)
13: end if
14: end for
15: Ź Abduce syntax
16: for arc P arcs do
17: A1 “ rotatepA, arcq
18: if A1.v ““ yA then
19: Q.push(A1, yA, ppA1q)
20: end if
21: end for
22: Ź Abduce semantics
23: A1 “ Apv Ñ yAq

24: Q.push(A1, yA, ppA1q)
25: Ź Top-down search
26: for B P childrenpAq do
27: yB “ SOLVEpB,A, yA|θlpA.wqq

28: Q.push(B, yB , ppBq)
29: end for
30: end while
31: end function
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Figure A2: Abduction over perception, syntax, and semantics in HINT. Parts revised during abduction are
highlighted in red.
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× 8 𝑎0, 𝑎1 , 18, 𝑝0
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( + 21 𝑎$, 𝑎& ), 21, 𝑝$.

( 3 3 ∅), 13, 𝑝&

Pop
𝑝$

𝑝& 𝑝0

× 8

4 4 2 2

𝑝0

𝑝1 𝑝3

𝑎0 𝑎1

Abduce perception: None
Abduce syntax: None
Abduce semantics:

× 18 𝑎0, 𝑎1 , 18, 𝑝0.
Top-down search:

4 4 ∅ , 9, 𝑝1

18

Priority Queue

( 4 4 ∅), 9, 𝑝1
( × 18 𝑎0, 𝑎1 ), 18, 𝑝0
( + 21 𝑎$, 𝑎& ), 21, 𝑝$.

( 3 3 ∅), 13, 𝑝&

Pop

4 4
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9 9 ∅ , 9, 𝑝1.

Abduce syntax: None
Abduce semantics:
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Top-down search: None

Push 9

Priority Queue

( 9 9 ∅), 9, 𝑝1.

( 4 9 ∅), 9, 𝑝1..

( × 18 𝑎0, 𝑎1 ), 18, 𝑝0
( + 21 𝑎$, 𝑎& ), 21, 𝑝$.
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Figure A3: An illustration of the deduction-abduction process for an example of HINT. Given a handwrit-
ten expression, the system first performs a greedy deduction to propose an initial solution, which generates
a wrong result. In abduction, the root node, paired with the ground-truth result, is first pushed to the priority
queue. The abduction over perception, syntax, and semantics is performed on the popped node to generate pos-
sible revisions. A top-down search is also applied to propagate the expected value to its children. All possible
revisions are then pushed into the priority queue. This process is repeated until we find the most likely revision
for the initial solution.
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run around left twice and run around right

run 3 [RUN]

left 5 [LTURN, RUN]

and 11 [LTURN, RUN] * 8 + [RTURN, RUN] * 4

around 8 [LTURN,RUN] * 4

twice 9 [LTURN, RUN] * 8

run 3 [RUN]

right 6 [RTURN, RUN]

around 8 [RTURN, RUN] * 4

walk opposite right thrice after look around left twice

walk 1 [WALK]

right 6 [RTURN, WALK]

after 12 [LTURN, LOOK] * 8 + [RTURN, RTURN, WALK] * 3

opposite 7 [RTURN, RTURN, WALK]

thrice 10 [RTURN, RTURN, WALK] * 3

look 2 [LOOK]

left 5 [LTURN, LOOK]

around 8 [LTURN, LOOK] * 4

twice 9 [LTURN, LOOK] * 8

Figure A4: Examples of NSR predictions on the test set of the SCAN Length split. We use * (repeating the
list) and + (concatenating two lists) to shorten the outputs for easier interpretation.

Test subset I

Test subset SS

Test subset SL

Test subset LS

Test subset LL

GT: (7+9/2)/3/8 = 1 PD: (7+9/2)/3/8 = 1 GT: 2/5-(0-1/6)/(8+2) = 1 PD: 2/5-(0-1/6(/(8+2) = 1

GT: (3-1-(3-2))/(0+5) = 1 PD: (3-1-(3-2()/(0+5( = 1 GT: 3*(4-0+(6+(0*6-9))-6) = 12 PD: 3*(4-0+(6+(0*6-9))-6) = 24

GT: 9*(9+8)*3-9/8 = 457 PD: 9*(9+8)*3-9/8 = 457 GT: (8*7*6+(3-0)/2*8)*7 = 2464 PD: (8*7*6+(3-0)/2*8)*7 = 448

GT: (8*7-5/5)*(3-(2-1)+1)/(9*1*(8+1)+(9+3)-0) = 2 PD: (8*7-5/5)*(3-(2-1)+1)/(9*1*(8+1)/(9+3)-0) = 24

GT: (8/5+(1+5))*(4+5*0)-(7/(9*8)+1-3/(7+0)) = 31 PD: (8/5+(1+5)(*(4+5*0)-(7/(9*8)+1-3/(7+0() = 31

Figure A5: Examples of NSR predictions on the test set of HINT. “GT” and “PD” denote “ground-truth” and
“prediction,” respectively. Each node in the tree is a tuple of (symbol, value).

A5



Under review as a conference paper at ICLR 2023

A.4 COMPOSITIONAL MACHINE TRANSLATION

To explore how well the proposed NSR model is applicable to real-world tasks, We run a proof-
of-concept machine translation experiment using the English-French translation task from Lake &
Baroni (2018), which is also used by previous works (Li et al., 2019; Chen et al., 2020; Kim, 2021)
to explore their methods on realistic domains. Compared to synthetic tasks like SCAN and PCFG,
this translation task contains more complex and ambiguous rules.

Evaluation We adopt the public data splits from Li et al. (2019). Specifically, the training set
contains 10,000 English-French sentence pairs, where the English sentences begin with phrases
such as “I am”, “you are”, and their contractions. The training set also contains 1,000 repetitions
of the sentence pair (“I am daxy”, “je suis daxiste”), which is the only sentence that introduces the
pseudoword “daxy” in the training set. The test set contains 8 combinations of “daxy” with other
phrases, e.g., “you are not daxy”, which do not appear in the training set. Note that there are 2
different French translations of “you are” that frequently appear in the training set, so both of them
are considered correct in the test set. We compare with the following baselines: Seq2Seq Lake &
Baroni (2018), Primitive Substitution Li et al. (2019), and NeSS Chen et al. (2020).

Results Tab. A1 summarizes the results of the compositional machine translation task. Similar to
previous methods (Primitive Substitution and NeSS), NSR achieves a 100% generalization accuracy
on this task. This experiment shows that NSR has the promise to be applied to real-world tasks.
Despite the perfect accuracy in this proof-of-concept experiment, we indeed anticipate potential
challenges of applying NSR to real-world tasks: (1) The noisy and numerous concepts in real-world
tasks have a large space of grounded symbol system and might slow the training of NSR; (2) The
functional programs in NSR are deterministic and thus not able to represent probabilistic semantics
in real-world tasks, e.g., in machine translation, there might be multiple ways to translate a single
sentence.

Table A1: Accuracy on the compositional machine translation task.

Model Accuracy

Seq2Seq 12.5
Primitive Substitution 100.0

NeSS 100.0
NSR (ours) 100.0

A.5 ABLATION STUDY ON HINT

To explore how well the individual modules of NSR are learned, we perform an ablation study on
HINT to analyze the performance of each module of NSR. Specifically, along with the final results,
the HINT dataset also provides the symbolic sequences and parse trees for evaluation. For Neural
Perception, we report the accuracy of classifying each symbol. For Dependency parsing, we report
the accuracy of attaching each symbol to its correct parent, given the ground-truth symbol sequence
as the input. For Program Induction, we report the accuracy of final results, given the ground-truth
symbol sequence and parse tree.

Table A2: Accuracy of the individual modules of NSR on the HINT dataset.

Module Neural Perception Dependency Parsing Program Induction

Accuracy 93.51 88.10 98.47

Overall, each module achieves high accuracy, as shown in Tab. A2. For Neural Perception, most er-
rors come from the two parentheses, "(" and ")", because they are visually similar. For Dependency
Parsing, we analyze the parsing accuracies for different concept groups: digits (100%), operators
(95.85%), and parentheses (64.28%). The parsing accuracy of parentheses is much lower than those
of digits and operators. We think this is because, as long as digits and operators are correctly parsed
in the parsing tree, where to attach the parentheses does not influence the final results because paren-
theses have no semantic meaning. For Program Induction, we can manually verify that the induced
programs (Fig. 4) have correct semantics. The errors are caused by exceeding the recursion limit
when calling the program for multiplication. The above analysis is also verified by the qualitative
examples in Fig. A5.
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