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Abstract001

While scaling laws tell us that metrics like per-002
plexity effectively indicate how a model per-003
forms as it grows, we still don’t fully grasp its004
predictive power at a fixed size. This lack of005
clarity makes it challenging to conduct effective006
ablation studies on smaller models, for exam-007
ple, when trying out various pre-training ob-008
jectives. Since a primary application for these009
pre-trained models is supervised fine-tuning010
(SFT) on specific data or tasks, it’s crucial for011
our ablation studies to connect this post-SFT012
performance back to the initial pre-training013
choices. This helps us conduct more effective014
pre-training research.015

To study this problem, we first construct a016
dataset using 50 1B parameter LLM variants017
with systematically varied pre-training configu-018
rations, e.g., objectives or data, and evaluate019
them on diverse downstream tasks after su-020
pervised fine-tuning (SFT). We demonstrate021
that the conventional perplexity is a highly mis-022
leading indicator in this scenario. To address023
this gap, we formulate the task of selecting024
pre-training checkpoints to maximize down-025
stream fine-tuning performance as a pairwise026
classification problem: predicting which of two027
LLMs, differing in their pre-training, will per-028
form better after SFT. We introduce novel un-029
supervised and supervised proxy metrics de-030
rived from pre-training that successfully reduce031
the relative performance prediction error rate032
by over 50% when comparing with existing033
methods. Despite the inherent complexity of034
this task, we demonstrate the practical utility035
of our proposed proxies in specific scenarios,036
paving the way for more efficient design of pre-037
training schemes optimized for various down-038
stream tasks.039

1 Introduction040

Large Language Models (LLMs) (Comanici et al.,041

2025; OpenAI, 2023; Chowdhery et al., 2023;042

Grattafiori et al., 2024) are central to contempo-043

rary NLP, powering systems like Chatbots and spe- 044

cialized assistants. They are typically employed 045

via few-shot prompting or task-specific fine-tuning. 046

While prompting is easily accessible, SFT is of- 047

ten essential for state-of-the-art performance, es- 048

pecially in specialized domains or with private 049

data (Singhal et al., 2025; Lee et al., 2024; Lai 050

et al., 2023). 051

While LLMs demonstrably improve on super- 052

vised fine-tuning (SFT) tasks with increasing 053

scale (Zhang et al., 2024; Isik et al., 2025), the sub- 054

stantial costs associated with larger models strongly 055

motivate performance optimization at a fixed size. 056

Existing efforts often concentrate on refining pre- 057

training elements, such as data compositions (Shen 058

et al., 2024; Penedo et al., 2024) or training objec- 059

tives (Raffel et al., 2020; Tay et al., 2023a,b). This 060

context underscores a critical need: the ability to re- 061

liably forecast the post-SFT performance of same- 062

sized LLM variants, using only indicators available 063

during pre-training. This requirement is especially 064

pronounced for guiding decisions throughout the 065

lengthy pre-training cycles (often months) of very 066

large models (Liu et al., 2024a; Grattafiori et al., 067

2024), and when subsequent SFT involves substan- 068

tial cost which can take months—and when the 069

subsequent SFT itself is very costly due to massive 070

amounts of SFT data or many SFT tasks. While 071

pre-training perplexity is known to correlate with 072

performance as models scale up (Grattafiori et al., 073

2024; Isik et al., 2025), its reliability for predict- 074

ing SFT outcomes among same-sized models is an 075

open question. 076

To investigate this, we conduct a controlled 077

study by training 50 variants of a 1B-parameter 078

LLM, each with a different pre-training configu- 079

rations, by systematically altering pre-training ob- 080

jectives (Raffel et al., 2020; Tay et al., 2023a,b), 081

data composition strategies (Shen et al., 2024), and 082

data processing techniques such as filtering and 083

domain tagging (Penedo et al., 2024). We then fine- 084
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Figure 1: Mean pairwise error rates across three SFT tasks (separate plots). Each plot compares perplexity, the best
individual proxy (Section 3), and the learning-to-compare proxy (shown on the x-axis). The y-axis represents the
error rate, defined as the proportion of mis-classified LLM pairs regarding post-SFT performance.

tune each model on a diverse suite of downstream085

tasks, including commonsense reasoning, retrieval-086

augmented generation, and closed-book question087

answering. To align with the practical model de-088

velopment scenarios where the primary goal is to089

identify top performers from a set of candidate090

models, we formulate the prediction challenge as a091

pairwise classification task: given two pre-trained092

models differing only in pre-training, the goal is to093

predict which model will achieve superior perfor-094

mance after SFT.095

Our first key finding is that conventional causal096

language modeling perplexity (Brown et al., 2020)097

is a remarkably poor predictor for post-SFT perfor-098

mance of models in a fixed size, which is precisely099

the scenario we’re focusing on. It yields prediction100

error rates exceeding 60% across all three evalu-101

ated tasks–worse than a random guess (Figure 1).102

Motivated by this failure, we first investigate alter-103

native signals available during pre-training, such as104

span-corruption perplexity (Raffel et al., 2020; Tay105

et al., 2023a; Von Oswald et al., 2023) and k-shot106

evaluation performance (Min et al., 2022). These107

proxies yield substantially improved prediction ac-108

curacy; the best-performing proxy for each task109

reduces the error rate by nearly half compared to110

conventional perplexity (Figure 1). For example,111

in the commonsense reasoning task, the error rate112

drops from 69.4% to 31.3%.113

Furthermore, we propose a learning-to-compare114

(LTC) framework that integrates multiple proxies115

via supervised classification, achieving even more116

robust and accurate predictions. The contributions117

of this paper are three-folds.118

• We conduct the first systematic study on predict-119

ing post-SFT performance for same-size LLM120

variants based on pre-training signals, a departure 121

from prior scaling-based analyses. 122

• Our work demonstrates the insufficiency of 123

perplexity for this prediction task and intro- 124

duces novel unsupervised and supervised proxies 125

achieving over a 50% reduction in error rates. 126

• Our work underscores the challenges of predict- 127

ing supervised fine-tuning performance and con- 128

firms the practical value of the proposed proxies 129

in specific scenarios; to foster further research, 130

we provide the SFT performance data and indi- 131

vidual pre-training proxy measurements in Ap- 132

pendix Table 6. 133

2 Problem Definition and Setup 134

This section defines the problem and details the 135

setup, including the generation of diverse LLM 136

variants, the target SFT tasks, and the pre-training 137

signals used as prediction proxies. 138

2.1 LLM Variants and Target SFT Tasks 139

LLM model variations. To approximate pre- 140

training studies while maintaining reasonable com- 141

putational resources, we continuously trained a 1B 142

parameter LLM with 100B tokens, systematically 143

ablating pre-training objectives, data mixture re- 144

weighting, and data filtering and tagging. This 145

continuous pre-training approach allowed us to 146

generate a wider range of model variants while 147

managing computational resources. Pre-training 148

objectives: We explored seven pre-training objec- 149

tives: causal language modeling (CLM) (Brown 150

et al., 2020), span corruption (SC) (Raffel et al., 151

2020), prefix language modeling (PLM) (Raffel 152

et al., 2020), SC+CLM, UL2 (Tay et al., 2023a), 153
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UL2R (Tay et al., 2023b), and UL2R+CLM (Gar-154

cia et al., 2023). CLM and PLM generate to-155

kens left-to-right, with CLM using the full con-156

text and PLM conditioning on a prefix. SC re-157

constructs masked spans, parameterized by noise158

density and mean span length, set to (0.15, 3) fol-159

lowing (Raffel et al., 2020). SC+CLM jointly trains160

SC and CLM. UL2 mixes six SC variants with161

PLM, while UL2R uses two SC settings—(0.15, 3)162

and (0.5, 32)—with PLM. UL2R+CLM extends163

UL2R by adding a CLM objective. Mixture re-164

weighting: We train on the 627B-token Slimpa-165

jama corpus (Soboleva et al., 2023), which includes166

seven diverse domains. We reweigh different do-167

mains following (Shen et al., 2024), producing168

six 100B-token subsets by adjusting domain dis-169

tributions (detailed in Table 3 in Appendix); Data170

filtering and tagging: Source domain metadata171

was integrated by pre-pending each instance with172

its respective domain label (e.g., [Common Crawl]).173

Length-based sub-corpora were generated by se-174

lecting instances within the [25%, 75%] and [75%,175

100%] token length quantiles. We in total pro-176

duced 50 distinct LLM variants, the specifications177

of which are provided in Table 4 in Appendix.178

Target SFT tasks. We employed commonsense179

reasoning (CMS), retrieval-augmented genera-180

tion (RAG), and closed-book question answer-181

ing (CBQA) as the target supervised fine-tuning182

(SFT) tasks. These tasks were chosen to as-183

sess critical LLM capabilities such as reasoning,184

context utilization, and memorization, which are185

complex and challenging. Furthermore, they are186

well-established within the NLP community and187

offer ample training data. To obtain task-level188

SFT scores, we averaged dataset-specific scores189

within each task. Specifically, CMS included190

BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2019),191

HellaSwag (Zellers et al., 2019), Winogrande (Sak-192

aguchi et al., 2021), and OpenBookQA (Mihaylov193

et al., 2018); RAG utilized NQ (Kwiatkowski194

et al., 2019), TriviaQA (Joshi et al., 2017), Hot-195

potQA (Yang et al., 2018), and 2Wiki (Ho et al.,196

2020); and CBQA used NQ (Kwiatkowski et al.,197

2019) and TriviaQA (Joshi et al., 2017).198

2.2 Prediction Proxies199

This study investigates two distinct prediction prox-200

ies: perplexity (PPL) and k-shot learning (Kshot).201

Perplexity is a prevalent prediction proxy for moni-202

toring LLM pre-training, whereas the intuitive ra-203

tionale for k-shot learning lies in its potential corre- 204

lation with fine-tuned performance on the identical 205

task (Ahn et al., 2023; Von Oswald et al., 2023). 206

Perplexity (PPL) is calculated through two dis- 207

tinct methods. PPL-CLM represents the conven- 208

tional causal language modeling perplexity. Driven 209

by UL2’s (Tay et al., 2023a) demonstration of 210

span corruption’s efficacy in supervised fine-tuning, 211

we present the PPL-SC proxy. This metric is de- 212

rived from the span corruption methodology, as 213

in T5 (Raffel et al., 2020), and computes perplex- 214

ity over randomly sampled text spans. Both per- 215

plexities are computed on the PILE development 216

set (Gao et al., 2020), with span corruption parame- 217

ters (0.15, 3) (Raffel et al., 2020). For the purposes 218

of clarity in presentation, we utilize the inverse of 219

the actual perplexity values, namely, 1
Perplexity . This 220

transformation aligns with Kshot such that higher 221

proxy values correspond to improved SFT perfor- 222

mance. Unless explicitly stated otherwise, PPL- 223

CLM and PPL-SC in this paper refer to these in- 224

verted values. K-shot performance is calculated by 225

averaging the results from evaluating test sets of tar- 226

get datasets for each SFT task. The actual prompts 227

are detailed in Appendix F. Akin to (Chowdhery 228

et al., 2023), we use 1 shot for CMS and 5 shots for 229

RAG and CBQA. This yields five efficient proxy 230

scores for each model: PPL-CLM, PPL-SC, Kshot- 231

CMS, Kshot-RAG, and Kshot-CBQA. 232

2.3 Pairwise Accuracy as a Measure of 233

Predictive Power 234

We evaluated each pre-trained LLM variant by fine- 235

tuning it on individual target dataset training sets 236

and assessing performance on the corresponding 237

evaluation sets. Task-level scores (SFT-CMS, SFT- 238

RAG, SFT-CBQA) were computed by averaging 239

these dataset results. Since practical model selec- 240

tion often involves choosing the best from a small 241

candidate pool, our primary analysis focused on 242

evaluating the discriminating power of prediction 243

proxies (like perplexity). To achieve this, we formu- 244

lated the evaluation as a pairwise prediction task. 245

We generated all 1225 unique pairs from the 50 246

LLM variants and measured how accurately each 247

proxy could predict which model in a pair would 248

achieve better aggregated task-level SFT perfor- 249

mance. This pairwise prediction accuracy is our 250

main metric for proxy effectiveness. 251
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SFT-CMS SFT-RAG SFT-CBQA

Conventional Perplexity
PPL-CLM .332 .380 .354

Individual Prediction Proxies
PPL-SC .703 .622 .609
Kshot-CMS .573 .569 .525
Kshot-RAG .696 .766 .704
Kshot-CBQA .437 .447 .467

Aggregated Prediction Proxies
Combine Five Proxies .622 .598 .564

Analytical Exploration of Headroom Potential
PPL-SC + Kshot-RAG .744 .696 .642
PPL-SC + Kshot-RAG - PPL-CLM .763 .692 .635

Table 1: Accuracy of Individual vs. Aggregated Proxy Predictors.

3 Predictive Power on SFT Tasks252

Accuracy of individual prediction proxies to253

SFT performance. Table 1 details the pairwise254

SFT prediction accuracy of various proxy metrics255

across 50 LLM variants. Conventional perplex-256

ity (PPL-CLM) exhibited low accuracy (e.g., 0.3257

on SFT-CMS), contrasting sharply with its known258

correlation strength in scaling studies. The span259

corruption perplexity (PPL-SC) performed better260

(> 0.5 accuracy), consistent with prior findings on261

span corruption benefits (UL2) (Tay et al., 2023a).262

Few-shot (k-shot) proxies achieved higher accu-263

racy still, with Kshot-RAG reaching ≈ 0.7 on SFT-264

CMS and SFT-RAG. Despite these improvements,265

no single proxy proved universally reliable across266

all tested SFT tasks.267

Aggregating diverse prediction proxies. We268

explore improving prediction by combining nor-269

malized proxy scores (Table 1). While averaging270

all five proxies underperforme Kshot-RAG alone,271

combining PPL-SC and Kshot-RAG matched272

Kshot-RAG’s performance and surpass PPL-SC.273

Despite these improvements, even the best individ-274

ual or combined proxies yield pairwise error rates275

around 30%, suggesting inherent task difficulty276

limits performance. Nevertheless, these simple277

arithmetic combinations demonstrate the potential278

to outperform individual proxies through effective279

aggregation.280

A predictive power case study using varied pre-281

training objectives. To understand proxy limita-282

tions, we analyzed how well PPL-CLM, PPL-SC,283

and Kshot-RAG predict relative SFT performance284

between models differing only in their pre-training285

objective. We grouped models by objective (CLM,286

SC, UL2, etc.) and evaluated pairwise prediction 287

accuracy for comparisons between these groups 288

(details in Figure 2; Appendix B covers data vari- 289

ations). Confirming earlier results, PPL-SC and 290

Kshot-RAG consistently outperformed PPL-CLM. 291

However, their accuracy depended significantly on 292

two factors: (1) The specific pre-training differ- 293

ence: Proxies better captured large performance 294

gaps caused by different objectives (e.g., SC vs. 295

CLM, often ≥ 0.6 accuracy) than smaller varia- 296

tions. (2) The target SFT task: A specific com- 297

parison (e.g., SC vs. SC+CLM) could yield low 298

accuracy on one task (SFT-CMS, 0.2) but high ac- 299

curacy on others (SFT-RAG/SFT-CBQA, ≥ 0.6). 300

4 Learning to Compare 301

Recognizing the complementary strengths of indi- 302

vidual proxies amidst their challenges in the pre- 303

vious section, we explore supervised classifiers to 304

combine these signals. 305

4.1 Formulation 306

Given two LLMs mi and mj , our goal is to pre- 307

dict which model achieves better downstream SFT 308

performance. We denote the values of the five 309

proxies for each model mi as {P k
mi

}k∈D, where D 310

= {PPL-CLM, PPL-SC, Kshot-CMS, Kshot-RAG, 311

Kshot-CBQA}. The learning-to-compare model 312

leverages these proxies by training a binary classi- 313

fier f to predict the fine-tuned performance compar- 314

ison between model pair (mi,mj). For each proxy 315

k, we construct the feature vector: hk(pmi , pmj ) = 316[
pkmi

− pkmj
, pkmi

· pkmj
, pkmi

, pkmj

]
∈ R4. We 317

concatenate features from all five proxies to 318

form the input and lead to 20 features, namely, 319
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Figure 2: Pairwise prediction accuracy for PPL-CLM, PPL-SC, and Kshot-RAG comparing LLMs differing only in
pre-training objective, across three SFT tasks (rows) and the three proxies (columns). Each cell indicates average
accuracy of pairs where the proxy prediction agreed with the SFT result.

H(pmi , pmj ) ∈ R20. We define the ground-truth320

label yij as a binary value, where yij = 1 if LLM321

mi performs better after SFT than mj , and yij = 0322

otherwise. The classifier is trained by minimiz-323

ing the binary cross-entropy loss (formulation is324

provided in Appendix Section C).325

4.2 Experiment Setup326

We implemented the supervised classifier using327

LightGBM (details in Appendix Section C), train-328

ing separate models per SFT task (CMS, RAG,329

CBQA). To ensure robustness, we performed 20330

runs, each using a random 60%/40% split of the331

50 LLM variants to generate training/testing pairs332

(splits varied per run). We report mean accuracy333

and standard deviation over the 20 runs in Table 2334

(middle section), compared against unsupervised335

baselines including PPL-CLM and Kshot-RAG.336

4.3 Results337

Learning-to-compare enhances predictive338

power beyond the best-performing proxies.339

Despite the challenges of constructing prediction340

proxies, supervised learning significantly enhances341

predictive performance compared to individual or342

aggregated proxies. LightGBM outperforms the343

best individual proxy, Kshot-RAG, by a substantial344

margin on the SFT-CMS and SFT-CBQA tasks, 345

improving predictive power by 10% while main- 346

taining comparable performance on SFT-RAG. 347

This confirms that combining diverse proxies can 348

further boost predictive accuracy. 349

Learning-to-compare generalizes well across dif- 350

ferent target tasks. We further assessed Light- 351

GBM’s generalization by training on one SFT task 352

(source) and evaluating on others (target), using all 353

five proxies as input. The aim was to determine if a 354

classifier learned for one task could predict perfor- 355

mance on different ones. Results (Table 2, bottom 356

section) reveal effective generalization: models 357

trained on a source task maintained high predic- 358

tive accuracy on target tasks, typically performing 359

within 2-3% of classifiers trained directly on the 360

target task. This demonstrates the robustness of the 361

learning-to-compare approach across different SFT 362

domains. 363

Proxy importance. We quantify each proxy’s 364

contribution to the LightGBM classifiers by com- 365

puting their normalized gain-based importance 366

scores, as illustrated in Figure 3 (detailed in 367

Appendix Section E). Kshot-RAG consistently 368

emerged as the most influential proxy across the 369

three SFT tasks, showing particular dominance 370
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SFT-CMS SFT-RAG SFT-CBQA

Conventional Perplexity
PPL-CLM .306±.081 .366±.060 .331±.054

Individual and Aggregated Proxies
Kshot-RAG .687±.073 .724±.047 .683±.077

Combine Five Proxies .612±.055 .585±.051 .540±.104

Learning To Compare (% Relative to Kshot-RAG)

Trained on the target task
Learning-to-compare .753±.054 (+9.6%) .727±.039 (+0.4%) .753±.060 (+10.2%)

Trained on the source task
SFT-CMS (Src) .753±.054 (+9.6%) .712±.054 (-1.7%) .707±.057 (+3.3%)
SFT-RAG (Src) .734±.047 (+6.8%) .727±.039 (+0.4%) .717±.071 (+5.0%)
SFT-CBQA (Src) .734±.052 (+6.8%) .718±.050 (-0.1%) .753±.060 (+10.2%)

Table 2: Pairwise prediction accuracy (mean ± std dev, 20 runs): Unsupervised baselines vs. supervised classifiers
on SFT-CMS, SFT-RAG, SFT-CBQA.

in SFT-RAG and SFT-CBQA. PPL-SC and PPL-371

CLM represented the next tier of importance; for372

instance, PPL-SC was second most important for373

SFT-CMS, while PPL-CLM ranked second for SFT-374

CBQA. Intriguingly, PPL-CLM contributed more375

significantly to the LightGBM model’s predictions376

than Kshot-CMS and Kshot-CBQA, despite pos-377

sessing lower standalone accuracy (Table 1). Our378

hypothesis is that the supervised classifier effec-379

tively utilizes the strong negative correlation be-380

tween PPL-CLM and SFT performance.381

5 Can Post SFT LLM Performance be382

Reliably Predicted?383

While the learning-to-compare method doubles pre-384

diction accuracy over perplexity (Table 2), its per-385

sistent 25% pairwise error rate may limit general386

applicability. In this section, we further explore its387

practical utility by demonstrating reliable recall of388

top models within small candidate sets.389

5.1 Impact of Performance Gaps on390

Prediction Reliability391

Predicting the relative performance between two392

language models is expected to be more reliable393

when their actual performance levels are signif-394

icantly different. Conversely, distinguishing be-395

tween models with similar performances poses a396

greater challenge. This section investigates how the397

magnitude of the performance gap between model398

pairs influences the reliability of our prediction399

classifiers.400

To explore the relationship between performance401

disparity and classifier accuracy, we first calcu-402

lated the absolute difference in supervised fine- 403

tuning (SFT) performance for each model pair 404

on the target task. We hypothesized that classi- 405

fication accuracy would correlate positively with 406

the size of this performance gap. For quantita- 407

tive analysis, we categorized the model pairs into 408

five quantiles based on their true post-SFT perfor- 409

mance difference: [0–20%], [20–40%], [40–60%], 410

[60–80%], and [80–100%]. Subsequently, we 411

evaluated and compared the classification accu- 412

racy for three predictors—PPL-CLM, Kshot-RAG, 413

and Learning-to-compare—within each quantile. 414

These results are visualized in Figure 4. 415

The findings show that prediction reliability for 416

both Kshot-RAG and the Learning-to-compare pre- 417

dictors indeed improves as the performance gap 418

between models widens. For pairs with minimal 419

performance differences ([0–20%] quantile), where 420

models perform almost identically after fine-tuning, 421

prediction accuracy is low, near chance levels (ap- 422

proximately 0.5). As the absolute performance 423

difference increases, accuracy steadily rises, reach- 424

ing approximately 0.9 for the most distinct pairs 425

([80–100%] quantile). This confirms that these 426

classifiers yield more reliable predictions when 427

comparing models that are easier to distinguish. 428

Interestingly, PPL-CLM demonstrates the opposite 429

behavior: its accuracy diminishes as the perfor- 430

mance gap increases, further highlighting that con- 431

ventional perplexity is not a dependable indicator 432

for this prediction scenario. Among the methods 433

tested, the learning-to-compare classifier consis- 434

tently outperformed both PPL-CLM and Kshot- 435

RAG across the quantiles. 436
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Figure 3: Relative influence of proxy metrics in the LTC framework (LightGBM).

Figure 4: Accuracy comparison of PPL-CLM, Kshot-RAG, and Learning-to-Compare (LTC) on SFT tasks (CMS,
RAG, CBQA), grouped into five quantiles by absolute SFT performance difference.

5.2 Recall the Best Model from a Small437

Candidate Set438

One key practical use for LLM performance pre-439

dictors is to identify the most promising candidates440

within a group of models, which can lead to signifi-441

cant cost savings. To assess our classifier’s effec-442

tiveness in this critical application, we performed a443

ranking experiment based on win rates from pair-444

wise comparisons (detailed in Appendix D) (Dwork445

et al., 2001). The evaluation results, presented as446

top-1 and top-5 recall in Figure 5, show that our447

“learning-to-compare” method consistently identi-448

fied the top-performing LLMs. Impressively, it449

achieved perfect top-1 recall for the SFT-CMS,450

SFT-RAG, and SFT-CBQA tasks by focusing on451

the top 7, 7, and 8 predicted models respectively,452

demonstrating its effectiveness even when narrow-453

ing down a relatively small candidate pool (as few454

as 8 models). Additionally, the unsupervised Kshot-455

RAG method showed strong performance, corrobo-456

rating observations from Section 3.457

6 Related Work458

LLM pre-training fundamentally shapes capabili-459

ties like reasoning (Wei et al., 2022; Kojima et al.,460

2022; Zellers et al., 2019), knowledge (Chang461

et al., 2024), and tool use (Yao et al., 2023; Mo462

et al., 2023). Critical pre-training design choices463

include the training objective—such as dominant 464

CLM (Brown et al., 2020; OpenAI, 2023) for 465

generation, SC (Raffel et al., 2020) which aids 466

fine-tuning (Tay et al., 2023a), or combined UL2- 467

style approaches (Tay et al., 2023a,b; Garcia et al., 468

2023) potentially using PrefixLM (Du et al., 2022; 469

Chowdhery et al., 2023)—and pre-trained corpus 470

composition, which involves quality curation (Rae 471

et al., 2021; Touvron et al., 2023), filtering (Penedo 472

et al., 2023; Xia et al., 2024), and source mix- 473

ing (Weber et al., 2024; Shen et al., 2024) to ensure 474

broad coverage and robustness. Given the variety 475

of design options, lightweight methods to predict 476

final performance are highly desirable for efficient 477

model development. This work investigates predic- 478

tors for supervised fine-tuning outcomes, utilizing 479

systematic variations across several pre-training 480

design factors in our study. 481

The ability to predict the performance of large 482

language models (LLMs) after fine-tuning has 483

gained significant importance due to the substantial 484

computational investment required for pre-training. 485

Previous research (Kaplan et al., 2020; Hoffmann 486

et al., 2022; Henighan et al., 2020; Gadre et al., 487

2025) established scaling laws showing that in- 488

creasing pre-training FLOPs typically reduces per- 489

plexity on held-out data, correlating with enhance- 490

ments in capabilities like chain-of-thought reason- 491

ing (Wei et al., 2022; Kojima et al., 2022), pref- 492
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Figure 5: Top-1 (top row) and Top-5 (bottom row) recall comparison at various cutoffs: supervised Learning-to-
compare (LTC) vs. unsupervised baselines on SFT-CMS, SFT-RAG, and SFT-CBQA tasks.

erence alignment (Ouyang et al., 2022; Bai et al.,493

2022), and multilingual understanding (Chowdhery494

et al., 2023), suggesting larger models generally495

yield better downstream performance. Analogous496

scaling phenomena, where lower perplexity often497

corresponds to improved outcomes, have also been498

noted when fine-tuning LLMs for specific appli-499

cations (Zhang et al., 2024; Isik et al., 2025); for500

instance, Isik et al. (2025) reported such a corre-501

lation for machine translation performance. Nev-502

ertheless, the dependability of perplexity as a uni-503

versal predictor has recently come under scrutiny504

in certain contexts, particularly for tasks involving505

long-context generation (Liu et al., 2024b) or many-506

shot in-context learning (Agarwal et al., 2024), im-507

plying it may not be a robust indicator across all508

downstream tasks.509

7 Conclusion and Future Directions510

This study focused on the challenge of predict-511

ing LLM performance after supervised fine-tuning512

(SFT) using only pre-training indicators, establish-513

ing that conventional perplexity is unreliable for514

this purpose. We approached this as a pairwise515

classification task, using 1B parameter LLM vari-516

ants with diverse pre-training configurations. We517

introduced both novel unsupervised and supervised 518

proxy metrics, which successfully reduced relative 519

performance prediction error by over 50% com- 520

pared to perplexity. These proxies proved effective 521

for predicting outcomes, particularly between mod- 522

els with large performance gaps, and for identifying 523

top-performing candidates, thereby enabling more 524

efficient LLM development pathways. 525

Future research could focus on validating the 526

generalizability of these methods across larger 527

model scales, a wider range of tasks. Furthermore, 528

investigating whether signals from intermediate 529

checkpoints during long pre-training cycles can 530

predict final fine-tuning outcomes represents an 531

important research topic not covered here. 532

Limitations 533

Due to resource constraints, our study is limited to 534

one family of LLM backbones, a single size (1B) 535

and certain number (50) of trained models. Our 536

studies mainly concern common tasks (Common- 537

sense Reasoning, Retrieval-Augmented Generation, 538

and Closed-Book Question Answering), though 539

there are a wide range of tasks that are relevant to 540

LLM applications. 541
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A Pretraining and LLMs893

We use SlimPajama (Soboleva et al., 2023) as our894

pretraining corpus, which consists of data from895

seven domains. Following (Shen et al., 2024), we896

apply domain re-weighting to create six dataset897

variants. The detailed domain proportions for each898

variant are provided in Table 3.899

We pretrain 50 LLMs, each with 1 billion pa-900

rameters, on 100 billion tokens. Model variants are901

generated by varying pretraining objectives, dataset902

composition strategies, and learning rates. The de-903

tailed pretraining configuration for each model is904

provided in Table 4.905

B Proxy Predictive Accuracy906

Similar to Section 3, we group the pre-trained907

LLMs into six categories either based on their do-908

main re-weighting or tagging & length filtering909

configurations. In both cases, paired models share910

the same pretraining configurations except for the911

group-specific factor (domain re-weighting or tag-912

ging & length filtering). We compute the predictive913

accuracy of each proxy on three SFT tasks and914

report the results in the Figure 6 and Figure 7.915

C Classifier Implementation Detail916

Loss function: Assuming the LLMs in training set917

as Mtrain, we train the classifier using the binary918

cross-entropy loss.919

L =
1

C

∑
mi,mj∈Mtrain and i ̸=j

(
− yij log f

(
H(pmi , pmj )

)
920

− (1− yij) log
(
1− f

(
H(pmi , pmj )

)) )
921

Where C is the total number of pairs in Mtrain922

equals to |Mtrain|(|Mtrain|−1)
2 .923

We also instantiate the learning-to-compare924

framework using Logistic Regression and Neural925

Networks as backbone models. Their performance,926

compared with unsupervised baselines, is reported927

in Table 5.928

The implementation details are as follows: For929

logistic regression, we use scikit-learn’s (Pedregosa930

et al., 2011) LogisticRegression with the default 931

lbfgs solver for binary classification. The model 932

applies L2 regularization with strength C = 1.0, 933

fits an intercept, and runs up to 100 iterations. 934

Class weighting is not applied. For the neural 935

network, we use scikit-learn’s MLPClassifier with 936

two hidden layers of size 32 each and ReLU 937

activation. The model is optimized using the 938

Adam solver and trained for a maximum of 100 939

iterations. All other hyperparameters are set to 940

their default values. For LightGBM, we use the 941

LGBMClassifie from the official lightgbm library 1. 942

The objective is set to binary with binary_logloss 943

as the evaluation metric. All other hyperparameters 944

follow the default settings: num_leaves=31, 945

learning_rate=0.1, n_estimators=100, fea- 946

ture_fraction=1.0, bagging_fraction=1.0, and no 947

regularization (lambda_l1=0.0, lambda_l2=0.0). 948

D Ranking using Borda Count 949

We adopt a Borda Count-style scoring 950

method (Dwork et al., 2001) to transform 951

the pairwise prediction between models to a global 952

ranking. For each model mi, we compute its total 953

score by counting the number of pairwise wins 954

over all other models. 955

Score(mi) =
∑
j ̸=i

⊮ (f(mi,mj) > 0.5) , 956

where f(mi,mj) denotes the classifier’s predicted 957

probability that mi outperforms mj . ⊮(·) is the in- 958

dicator function. Finally, models are ranked based 959

on their total scores, with higher scores indicating 960

better predicted fine-tuned performance. 961

E Proxy Normalized Importance Score 962

for LightGBM 963

We use LightGBM’s gain-based feature impor- 964

tance, which quantifies how much each feature con- 965

tributes to reducing the model’s loss. Specifically, 966

for each feature f , the importance is defined as the 967

total reduction in the loss function (binary log-loss 968

in our case) due to splits on that feature across all 969

trees in the ensemble. 970

Let T denote the set of all decision trees in the 971

trained LightGBM model. For each tree t ∈ T and 972

each split node s ∈ t, let fs be the feature used 973

at split s, and let ∆L(s) denote the reduction in 974

the loss function caused by that split. Then, the 975

1https://lightgbm.readthedocs.io/en/latest/
pythonapi/lightgbm.LGBMClassifier.html
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Sub Dataset DC-0 DC-1 DC-2 DC-3 DC-4 DC-5

SlimPajama

Commoncrawl 52.2% 100.0% 90.9% 75.8% 75.8% 75.8%
C4 26.7% 0.0% 0.0% 0.0% 0.0% 0.0%
GitHub 5.2% 0.0% 9.1% 24.2% 0.0% 9.1%
Books 4.2% 0.0% 0.0% 0.0% 0.0% 7.9%
ArXiv 4.6% 0.0% 0.0% 0.0% 0.0% 0.0%
Wikipedia 3.8% 0.0% 0.0% 0.0% 24.2% 7.3%
StackExchange 3.3% 0.0% 0.0% 0.0% 0.0% 0.0%

Table 3: six configurations of sub dataset combinations in Slimpajama

gain-based importance for feature f is computed976

as:977

Gain(f) =
∑
t∈T

∑
s∈t
fs=f

∆L(s)978

In our setting, we construct a 20-dimensional979

feature vector H(pmi , pmj ) ∈ R20 for each model980

pair (mi,mj) using five proxies, with each proxy981

contributing four dimensions as defined in:982

hk(pmi , pmj ) =
[
pkmi

− pkmj
, pkmi

· pkmj
, pkmi

, pkmj

]
983

To compute proxy-level importance, we group984

every four dimensions corresponding to each proxy985

and sum their individual gain scores:986

Gain(k) =
∑
f∈Fk

Gain(f)987

where Fk denotes the set of four features derived988

from proxy k.989

This aggregation allows us to assess the overall990

contribution of each proxy to the classifier’s pre-991

dictions. To facilitate comparison across proxies,992

we normalize the aggregated importance scores.993

Specifically, let I(p) denote the total importance994

score for proxy p (i.e., the sum of importance scores995

for its four associated features). The normalized996

importance for proxy p is computed as:997

Ĩ(p) =
I(p)∑

p′∈P I(p′)
998

where P is the set of all proxies. This yields a999

distribution over proxies, where higher values indi-1000

cate greater influence on the classifier’s decision.1001

F Prompts1002

The exampled prompts used for Kshot-CMS,1003

Kshot-RAG, and Kshot-CBQA tasks are shown1004

in Figure 8, Figure 9 and Figure 10 respectively.1005

G Supervised Finetuned, Perplexity and 1006

Kshot Results of LLMs 1007

The all supervised fine-tuned, perplexity and Kshot- 1008

learning results are detailed in Table 6. 1009
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Figure 6: Predictive accuracy of PPL-CLM, PPL-SC, and Kshot-RAG in distinguishing the better-performing model
between two LLMs with different pre-trained dataset domain re-weighting (other pre-trained configurations fixed).
DC-0 to DC-5 referes to different dataset variants, detailed in Table 3.
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Model ID Pretrained Objective Domain Re-weight LR Domain Tagging Length Filtering

1 CLM DC-0 1e-4 ✗ ✗

2 CLM DC-0 2.5e-4 ✗ ✗

3 CLM DC-0 5e-4 ✗ ✗

4 CLM DC-0 7.5e-4 ✗ ✗

5 CLM DC-0 1e-3 ✗ ✗

6 SC DC-0 1e-4 ✗ ✗

7 SC DC-0 2.5e-4 ✗ ✗

8 SC DC-0 5e-4 ✗ ✗

9 SC DC-0 7.5e-4 ✗ ✗

10 SC DC-0 1e-3 ✗ ✗

11 PLM DC-0 1e-4 ✗ ✗

12 PLM DC-0 2.5e-4 ✗ ✗

13 PLM DC-0 5e-4 ✗ ✗

14 PLM DC-0 7.5e-4 ✗ ✗

15 PLM DC-0 1e-3 ✗ ✗

16 SC+CLM DC-0 1e-4 ✗ ✗

17 SC+CLM DC-0 2.5e-4 ✗ ✗

18 SC+CLM DC-0 5e-4 ✗ ✗

19 SC+CLM DC-0 7.5e-4 ✗ ✗

20 SC+CLM DC-0 1e-3 ✗ ✗

21 UL2 DC-0 1e-4 ✗ ✗

22 UL2 DC-0 2.5e-4 ✗ ✗

23 UL2 DC-0 5e-4 ✗ ✗

24 UL2 DC-0 7.5e-4 ✗ ✗

25 UL2 DC-0 1e-3 ✗ ✗

26 UL2R DC-0 1e-4 ✗ ✗

27 UL2R DC-0 2.5e-4 ✗ ✗

28 UL2R DC-0 5e-4 ✗ ✗

29 UL2R DC-0 7.5e-4 ✗ ✗

30 UL2R DC-0 1e-3 ✗ ✗

31 UL2R+CLM DC-0 1e-4 ✗ ✗

32 UL2R+CLM DC-0 2.5e-4 ✗ ✗

33 UL2R+CLM DC-0 5e-4 ✗ ✗

34 UL2R+CLM DC-0 7.5e-4 ✗ ✗

35 UL2R+CLM DC-0 1e-3 ✗ ✗

36 CLM DC-1 2.5e-4 ✗ ✗

37 CLM DC-2 2.5e-4 ✗ ✗

38 CLM DC-3 2.5e-4 ✗ ✗

39 CLM DC-4 2.5e-4 ✗ ✗

40 CLM DC-5 2.5e-4 ✗ ✗

41 PLM DC-1 2.5e-4 ✗ ✗

42 PLM DC-2 2.5e-4 ✗ ✗

43 PLM DC-3 2.5e-4 ✗ ✗

44 PLM DC-4 2.5e-4 ✗ ✗

45 PLM DC-5 2.5e-4 ✗ ✗

46 CLM DC-0 2.5e-4 ✗ [25% 75%]
47 CLM DC-0 2.5e-4 ✗ [75% 100%]
48 CLM DC-0 2.5e-4 ✓ ✗

49 CLM DC-0 2.5e-4 ✓ [25% 75%]
50 CLM DC-0 2.5e-4 ✓ [75% 100%]

Table 4: Pre-trained configurations of LLMs
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Figure 7: Predictive accuracy of PPL-CLM, PPL-SC, and Kshot-RAG in distinguishing the better-performing model
between two LLMs with different length & filtering methods (other pre-trained configuration fixed). The naming
follows the format of [Tagging]-[Length Filtering]. “Tag” and “NoTag” indicate whether domain tags are added.
“All” keeps all examples, “Mid” keeps samples with lengths in the 25–75% quantile range, and “Max” keeps the
longest 25% of examples.
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SFT-CMS SFT-RAG SFT-CBQA

Conventional Perplexity
PPL-CLM .306±.081 .366±.060 .331±.054

Individual and Combined Proxies
Kshot-RAG .687±.073 .724±.047 .683±.077

Combine Five Proxies .612±.055 .585±.051 .540±.104

Learning To Compare

Train and Evaluate on the same task
Logistic Regression .738±.044 .688±.054 .624±.087

Neural Networks .778±.056 .691±.055 .673±.071

LightGBM .753±.054 .727±.039 .753±.060

Train on SRC task
Logistic Regresion
SFT-CMS (Src) .738±.044 .669±.059 .636±.060

SFT-RAG (Src) .724±.074 .688±.054 .641±.079

SFT-CBQA (SRC) .708±.069 .680±.049 .624±.087

Neural Networks
SFT-CMS (Src) .778±.056 .706±.060 0.683±.062

SFT-RAG (Src) .742±.073 .691±.055 0.667±.075

SFT-CBQA (Src) .748±.067 .695±.059 .673±.071

LightGBM
SFT-CMS (Src) .753±.054 .712±.054 .707±.057

SFT-RAG (Src) .734±.047 .727±.039 .717±.071

SFT-CBQA (Src) .734±.052 .718±.050 .753±.060

Table 5: Performance comparison of unsupervised baselines and supervised classifiers (Logistic Regression, Neural
Networks, LightGBM) for predicting SFT-CMS, SFT-RAG, and SFT-CBQA. Results are reported as mean accuracy
± standard deviation over 20 runs.
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Performance after Supervised Fine-tuning Individual Proxies from Pre-Training
Model ID SFT-CMS SFT-RAG SFT-CBQA PPL-CLM PPL-SC Kshot-CMS Kshot-RAG Kshot-CBQA

1 69.800 47.275 35.600 0.395 0.089 61.560 34.990 20.390
2 70.980 47.600 36.350 0.394 0.094 61.660 33.130 20.130
3 70.520 47.850 36.000 0.391 0.087 60.680 21.230 19.950
4 70.900 48.425 0.150 0.389 0.092 61.100 34.011 0.121
5 70.900 48.375 38.550 0.388 0.079 55.000 39.072 19.315
6 73.560 48.200 36.950 0.377 0.141 59.780 35.980 18.280
7 70.260 47.900 37.350 0.385 0.131 60.300 36.500 17.410
8 74.560 48.600 38.250 0.360 0.143 58.420 35.300 17.810
9 75.200 48.600 38.300 0.331 0.141 56.920 42.692 19.221
10 75.360 48.725 37.750 0.306 0.140 56.460 42.494 18.945
11 70.000 47.750 36.250 0.394 0.096 61.960 37.710 21.090
12 70.420 47.675 36.000 0.387 0.097 61.480 37.300 19.440
13 72.160 48.125 37.800 0.387 0.102 61.980 37.900 20.260
14 73.240 48.475 38.250 0.386 0.104 62.240 42.300 19.177
15 73.560 48.925 38.750 0.382 0.094 62.240 43.003 19.422
16 70.440 47.725 35.600 0.395 0.129 61.560 36.800 20.350
17 71.620 48.000 37.500 0.392 0.132 61.480 36.810 20.200
18 72.980 48.650 37.900 0.388 0.143 61.480 36.490 19.860
19 72.940 48.650 38.450 0.385 0.143 61.180 42.789 19.297
20 73.420 48.825 38.900 0.382 0.143 61.620 43.306 19.522
21 73.140 47.150 34.900 0.394 0.170 61.940 37.100 20.780
22 70.540 46.775 36.900 0.376 0.153 59.500 34.810 15.950
23 74.200 48.350 38.050 0.383 0.178 61.420 37.760 20.610
24 75.140 48.825 38.400 0.378 0.172 61.200 42.933 19.286
25 75.340 49.025 39.100 0.375 0.173 61.700 42.931 19.637
26 68.720 47.150 35.500 0.386 0.129 61.100 36.380 18.290
27 69.760 46.600 35.750 0.378 0.130 60.180 35.740 17.170
28 73.000 48.425 37.900 0.386 0.131 61.660 37.950 21.610
29 73.840 48.625 38.800 0.382 0.134 61.600 42.658 19.467
30 74.340 48.675 39.050 0.379 0.133 61.820 42.700 19.592
31 70.400 47.425 35.900 0.395 0.130 61.780 37.470 20.970
32 71.540 48.100 37.300 0.393 0.125 62.180 37.690 21.700
33 72.900 47.875 35.850 0.390 0.127 62.080 37.710 21.080
34 72.820 48.650 38.800 0.388 0.130 62.120 42.775 19.465
35 73.640 48.600 38.450 0.385 0.129 61.560 42.711 19.290
36 71.620 47.625 37.700 0.364 0.102 61.680 31.760 20.280
37 71.700 47.900 37.250 0.373 0.102 61.640 33.080 19.940
38 70.200 47.650 37.700 0.374 0.096 51.580 11.330 1.230
39 71.080 47.825 37.550 0.387 0.110 60.800 33.860 20.290
40 71.480 48.000 37.850 0.389 0.107 60.720 33.170 19.250
41 72.400 48.000 37.800 0.360 0.101 61.880 37.180 19.720
42 72.300 48.125 37.300 0.368 0.103 62.200 37.610 19.390
43 72.360 48.100 37.350 0.368 0.104 62.180 37.370 20.040
44 72.800 48.350 37.550 0.382 0.111 62.300 37.660 20.320
45 72.480 47.825 38.000 0.383 0.111 61.560 37.870 20.860
46 72.220 47.900 37.650 0.380 0.104 61.860 26.500 20.160
47 72.040 47.575 37.300 0.387 0.106 61.120 32.380 20.200
48 71.800 47.325 37.350 0.386 0.107 61.160 33.210 18.540
49 72.220 47.900 37.650 0.380 0.104 61.860 26.500 20.160
50 72.040 47.575 37.300 0.387 0.106 61.120 32.380 20.200

Table 6: SFT, perplexity and kshot performance for all pretrained LLMs.
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You are an expert in commonsense reasoning tasks.
// five in-context examples in total.
Question: do iran and afghanistan speak the same language
Answer: True
...
Question: does canada’s worst driver lose their license
Answer: No
Question: does canada’s worst driver lose their license
Answer:

Figure 8: Prompt used for Kshot-CMS

You are an expert in question answering. I am going to give you five example triples of context,
question and answer, in which the context may or may not be relevant to the question. The
examples will be written.

// five in-context examples in total.
Context: <Retrieved documents>
Question: who sang the original blinded by the light
Answer: Bruce Springsteen
...
Context: <Retrieved documents>
Question: who played vincent in nanny mcphee and the big bang
Answer: Oscar Steer

Context: <Retrieved documents>
Question: how many episodes are there in dragon ball z
Answer:

Figure 9: Prompt used for Kshot-RAG.

You are an expert in question answering. I am going to give you five example of question-answer
pairs as the in-context examples first. Your task is to generate a answer given a question.

// five in-context examples in total.
Question: the first life forms to appear on earth were
Answer: putative fossilized microorganisms
...
Question: who made the beavis and butthead theme song
Answer: Mike Judge

Question: what network is showing the monday night football game
Answer:

Figure 10: Prompt used for Kshot-CBQA.
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