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Abstract

While scaling laws tell us that metrics like per-
plexity effectively indicate how a model per-
forms as it grows, we still don’t fully grasp its
predictive power at a fixed size. This lack of
clarity makes it challenging to conduct effective
ablation studies on smaller models, for exam-
ple, when trying out various pre-training ob-
jectives. Since a primary application for these
pre-trained models is supervised fine-tuning
(SFT) on specific data or tasks, it’s crucial for
our ablation studies to connect this post-SFT
performance back to the initial pre-training
choices. This helps us conduct more effective
pre-training research.

To study this problem, we first construct a
dataset using 50 1B parameter LLM variants
with systematically varied pre-training configu-
rations, e.g., objectives or data, and evaluate
them on diverse downstream tasks after su-
pervised fine-tuning (SFT). We demonstrate
that the conventional perplexity is a highly mis-
leading indicator in this scenario. To address
this gap, we formulate the task of selecting
pre-training checkpoints to maximize down-
stream fine-tuning performance as a pairwise
classification problem: predicting which of two
LLMs, differing in their pre-training, will per-
form better after SFT. We introduce novel un-
supervised and supervised proxy metrics de-
rived from pre-training that successfully reduce
the relative performance prediction error rate
by over 50% when comparing with existing
methods. Despite the inherent complexity of
this task, we demonstrate the practical utility
of our proposed proxies in specific scenarios,
paving the way for more efficient design of pre-
training schemes optimized for various down-
stream tasks.

1 Introduction

Large Language Models (LLMs) (Comanici et al.,
2025; OpenAl, 2023; Chowdhery et al., 2023;
Grattafiori et al., 2024) are central to contempo-

rary NLP, powering systems like Chatbots and spe-
cialized assistants. They are typically employed
via few-shot prompting or task-specific fine-tuning.
While prompting is easily accessible, SFT is of-
ten essential for state-of-the-art performance, es-
pecially in specialized domains or with private
data (Singhal et al., 2025; Lee et al., 2024; Lai
et al., 2023).

While LLMs demonstrably improve on super-
vised fine-tuning (SFT) tasks with increasing
scale (Zhang et al., 2024; Isik et al., 2025), the sub-
stantial costs associated with larger models strongly
motivate performance optimization art a fixed size.
Existing efforts often concentrate on refining pre-
training elements, such as data compositions (Shen
et al., 2024; Penedo et al., 2024) or training objec-
tives (Raffel et al., 2020; Tay et al., 2023a,b). This
context underscores a critical need: the ability to re-
liably forecast the post-SFT performance of same-
sized LLM variants, using only indicators available
during pre-training. This requirement is especially
pronounced for guiding decisions throughout the
lengthy pre-training cycles (often months) of very
large models (Liu et al., 2024a; Grattafiori et al.,
2024), and when subsequent SFT involves substan-
tial cost which can take months—and when the
subsequent SFT itself is very costly due to massive
amounts of SFT data or many SFT tasks. While
pre-training perplexity is known to correlate with
performance as models scale up (Grattafiori et al.,
2024; Isik et al., 2025), its reliability for predict-
ing SFT outcomes among same-sized models is an
open question.

To investigate this, we conduct a controlled
study by training 50 variants of a 1B-parameter
LLM, each with a different pre-training configu-
rations, by systematically altering pre-training ob-
jectives (Raffel et al., 2020; Tay et al., 2023a,b),
data composition strategies (Shen et al., 2024), and
data processing techniques such as filtering and
domain tagging (Penedo et al., 2024). We then fine-
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Figure 1: Mean pairwise error rates across three SFT tasks (separate plots). Each plot compares perplexity, the best
individual proxy (Section 3), and the learning-to-compare proxy (shown on the x-axis). The y-axis represents the
error rate, defined as the proportion of mis-classified LLM pairs regarding post-SFT performance.

tune each model on a diverse suite of downstream
tasks, including commonsense reasoning, retrieval-
augmented generation, and closed-book question
answering. To align with the practical model de-
velopment scenarios where the primary goal is to
identify top performers from a set of candidate
models, we formulate the prediction challenge as a
pairwise classification task: given two pre-trained
models differing only in pre-training, the goal is to
predict which model will achieve superior perfor-
mance after SFT.

Our first key finding is that conventional causal
language modeling perplexity (Brown et al., 2020)
is a remarkably poor predictor for post-SFT perfor-
mance of models in a fixed size, which is precisely
the scenario we’re focusing on. It yields prediction
error rates exceeding 60% across all three evalu-
ated tasks—worse than a random guess (Figure 1).
Motivated by this failure, we first investigate alter-
native signals available during pre-training, such as
span-corruption perplexity (Raffel et al., 2020; Tay
et al., 2023a; Von Oswald et al., 2023) and k-shot
evaluation performance (Min et al., 2022). These
proxies yield substantially improved prediction ac-
curacy; the best-performing proxy for each task
reduces the error rate by nearly half compared to
conventional perplexity (Figure 1). For example,
in the commonsense reasoning task, the error rate
drops from 69.4% to 31.3%.

Furthermore, we propose a learning-to-compare
(LTC) framework that integrates multiple proxies
via supervised classification, achieving even more
robust and accurate predictions. The contributions
of this paper are three-folds.

* We conduct the first systematic study on predict-
ing post-SFT performance for same-size LLM

variants based on pre-training signals, a departure
from prior scaling-based analyses.

* Our work demonstrates the insufficiency of
perplexity for this prediction task and intro-
duces novel unsupervised and supervised proxies
achieving over a 50% reduction in error rates.

* Our work underscores the challenges of predict-
ing supervised fine-tuning performance and con-
firms the practical value of the proposed proxies
in specific scenarios; to foster further research,
we provide the SFT performance data and indi-
vidual pre-training proxy measurements in Ap-
pendix Table 6.

2 Problem Definition and Setup

This section defines the problem and details the
setup, including the generation of diverse LLM
variants, the target SFT tasks, and the pre-training
signals used as prediction proxies.

2.1 LLM Variants and Target SFT Tasks

LLM model variations. To approximate pre-
training studies while maintaining reasonable com-
putational resources, we continuously trained a 1B
parameter LLM with 100B tokens, systematically
ablating pre-training objectives, data mixture re-
weighting, and data filtering and tagging. This
continuous pre-training approach allowed us to
generate a wider range of model variants while
managing computational resources. Pre-training
objectives: We explored seven pre-training objec-
tives: causal language modeling (CLM) (Brown
et al., 2020), span corruption (SC) (Raffel et al.,
2020), prefix language modeling (PLM) (Raffel
et al., 2020), SC+CLM, UL2 (Tay et al., 2023a),



UL2R (Tay et al., 2023b), and UL2R+CLM (Gar-
cia et al., 2023). CLM and PLM generate to-
kens left-to-right, with CLM using the full con-
text and PLM conditioning on a prefix. SC re-
constructs masked spans, parameterized by noise
density and mean span length, set to (0.15, 3) fol-
lowing (Raffel et al., 2020). SC+CLM jointly trains
SC and CLM. UL2 mixes six SC variants with
PLM, while UL2R uses two SC settings—(0.15, 3)
and (0.5,32)—with PLM. UL2R+CLM extends
UL2R by adding a CLM objective. Mixture re-
weighting: We train on the 627B-token Slimpa-
jama corpus (Soboleva et al., 2023), which includes
seven diverse domains. We reweigh different do-
mains following (Shen et al., 2024), producing
six 100B-token subsets by adjusting domain dis-
tributions (detailed in Table 3 in Appendix); Data
filtering and tagging: Source domain metadata
was integrated by pre-pending each instance with
its respective domain label (e.g., [Common Crawl]).
Length-based sub-corpora were generated by se-
lecting instances within the [25%, 75%] and [75%,
100%] token length quantiles. We in total pro-
duced 50 distinct LLM variants, the specifications
of which are provided in Table 4 in Appendix.

Target SFT tasks. We employed commonsense
reasoning (CMS), retrieval-augmented genera-
tion (RAG), and closed-book question answer-
ing (CBQA) as the target supervised fine-tuning
(SFT) tasks. These tasks were chosen to as-
sess critical LLM capabilities such as reasoning,
context utilization, and memorization, which are
complex and challenging. Furthermore, they are
well-established within the NLP community and
offer ample training data. To obtain task-level
SFT scores, we averaged dataset-specific scores
within each task. Specifically, CMS included
BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2019),
HellaSwag (Zellers et al., 2019), Winogrande (Sak-
aguchi et al., 2021), and OpenBookQA (Mihaylov
et al.,, 2018); RAG utilized NQ (Kwiatkowski
et al., 2019), TriviaQA (Joshi et al., 2017), Hot-
potQA (Yang et al., 2018), and 2Wiki (Ho et al.,
2020); and CBQA used NQ (Kwiatkowski et al.,
2019) and TriviaQA (Joshi et al., 2017).

2.2 Prediction Proxies

This study investigates two distinct prediction prox-
ies: perplexity (PPL) and k-shot learning (Kshot).
Perplexity is a prevalent prediction proxy for moni-
toring LLM pre-training, whereas the intuitive ra-

tionale for k-shot learning lies in its potential corre-
lation with fine-tuned performance on the identical
task (Ahn et al., 2023; Von Oswald et al., 2023).

Perplexity (PPL) is calculated through two dis-
tinct methods. PPL-CLM represents the conven-
tional causal language modeling perplexity. Driven
by UL2’s (Tay et al., 2023a) demonstration of
span corruption’s efficacy in supervised fine-tuning,
we present the PPL-SC proxy. This metric is de-
rived from the span corruption methodology, as
in TS5 (Raffel et al., 2020), and computes perplex-
ity over randomly sampled text spans. Both per-
plexities are computed on the PILE development
set (Gao et al., 2020), with span corruption parame-
ters (0.15, 3) (Raffel et al., 2020). For the purposes
of clarity in presentation, we utilize the inverse of
the actual perplexity values, namely, m. This
transformation aligns with Kshot such that higher
proxy values correspond to improved SFT perfor-
mance. Unless explicitly stated otherwise, PPL-
CLM and PPL-SC in this paper refer to these in-
verted values. K-shot performance is calculated by
averaging the results from evaluating test sets of tar-
get datasets for each SFT task. The actual prompts
are detailed in Appendix F. Akin to (Chowdhery
et al., 2023), we use 1 shot for CMS and 5 shots for
RAG and CBQA. This yields five efficient proxy
scores for each model: PPL-CLM, PPL-SC, Kshot-
CMS, Kshot-RAG, and Kshot-CBQA.

2.3 Pairwise Accuracy as a Measure of
Predictive Power

We evaluated each pre-trained LLM variant by fine-
tuning it on individual target dataset training sets
and assessing performance on the corresponding
evaluation sets. Task-level scores (SFT-CMS, SFT-
RAG, SFT-CBQA) were computed by averaging
these dataset results. Since practical model selec-
tion often involves choosing the best from a small
candidate pool, our primary analysis focused on
evaluating the discriminating power of prediction
proxies (like perplexity). To achieve this, we formu-
lated the evaluation as a pairwise prediction task.
We generated all 1225 unique pairs from the 50
LLM variants and measured how accurately each
proxy could predict which model in a pair would
achieve better aggregated task-level SFT perfor-
mance. This pairwise prediction accuracy is our
main metric for proxy effectiveness.



SFT-CMS SFT-RAG SFT-CBQA

Conventional Perplexity

PPL-CLM 332 .380 354
Individual Prediction Proxies

PPL-SC 703 .622 .609
Kshot-CMS 573 .569 525
Kshot-RAG .696 766 704
Kshot-CBQA 437 447 467
Aggregated Prediction Proxies

Combine Five Proxies .622 .598 564
Analytical Exploration of Headroom Potential

PPL-SC + Kshot-RAG 744 .696 .642
PPL-SC + Kshot-RAG - PPL-CLM = .763 .692 .635

Table 1: Accuracy of Individual vs. Aggregated Proxy Predictors.

3 Predictive Power on SFT Tasks

Accuracy of individual prediction proxies to
SFT performance. Table 1 details the pairwise
SFT prediction accuracy of various proxy metrics
across 50 LLM variants. Conventional perplex-
ity (PPL-CLM) exhibited low accuracy (e.g., 0.3
on SFT-CMS), contrasting sharply with its known
correlation strength in scaling studies. The span
corruption perplexity (PPL-SC) performed better
(> 0.5 accuracy), consistent with prior findings on
span corruption benefits (UL2) (Tay et al., 2023a).
Few-shot (k-shot) proxies achieved higher accu-
racy still, with Kshot-RAG reaching ~ 0.7 on SFT-
CMS and SFT-RAG. Despite these improvements,
no single proxy proved universally reliable across
all tested SFT tasks.

Aggregating diverse prediction proxies. We
explore improving prediction by combining nor-
malized proxy scores (Table 1). While averaging
all five proxies underperforme Kshot-RAG alone,
combining PPL-SC and Kshot-RAG matched
Kshot-RAG’s performance and surpass PPL-SC.
Despite these improvements, even the best individ-
ual or combined proxies yield pairwise error rates
around 30%, suggesting inherent task difficulty
limits performance. Nevertheless, these simple
arithmetic combinations demonstrate the potential
to outperform individual proxies through effective
aggregation.

A predictive power case study using varied pre-
training objectives. To understand proxy limita-
tions, we analyzed how well PPL-CLM, PPL-SC,
and Kshot-RAG predict relative SFT performance
between models differing only in their pre-training
objective. We grouped models by objective (CLM,

SC, UL2, etc.) and evaluated pairwise prediction
accuracy for comparisons between these groups
(details in Figure 2; Appendix B covers data vari-
ations). Confirming earlier results, PPL-SC and
Kshot-RAG consistently outperformed PPL-CLM.
However, their accuracy depended significantly on
two factors: (1) The specific pre-training differ-
ence: Proxies better captured large performance
gaps caused by different objectives (e.g., SC vs.
CLM, often > 0.6 accuracy) than smaller varia-
tions. (2) The target SFT task: A specific com-
parison (e.g., SC vs. SC+CLM) could yield low
accuracy on one task (SFT-CMS, 0.2) but high ac-
curacy on others (SFT-RAG/SFT-CBQA, > 0.6).

4 Learning to Compare

Recognizing the complementary strengths of indi-
vidual proxies amidst their challenges in the pre-
vious section, we explore supervised classifiers to
combine these signals.

4.1 Formulation

Given two LLMs m; and m,, our goal is to pre-
dict which model achieves better downstream SFT
performance. We denote the values of the five
proxies for each model m; as { P% },cp, where D
= {PPL-CLM, PPL-SC, Kshot-CMS, Kshot-RAG,
Kshot-CBQA}. The learning-to-compare model
leverages these proxies by training a binary classi-
fier f to predict the fine-tuned performance compar-
ison between model pair (m;, m;). For each proxy
k, we construct the feature vector: hy(pm,, Pm;) =

Pra, = Pays Dy Phays Dy pm € R%. We
concatenate features from all five proxies to
form the input and lead to 20 features, namely,



Proxy

PPL-CLM PPL-SC Kshot-RAG
cm- cm- cm
sc sc 5 1
" B
2 PLM - PLM PLM
('-_,) SC+CLM SC+CLM EQRTE 1 (02 0 |
[ uL2 ; | 0 | uL2 - uL2
)
UL2R - UL2R - UL2R -
UL2R+CLM 1 n UL2R+CLM UL2R+CLM - n
RO SR S AR N SN I A S
S TSP VGO S TSPV S (SRR SRR RN
& & & & & &
N N Ne
cm cm- cm-
sc sc JEY scJEl
~ S(D PLM e 1 pLM
LT sc+cLm S sc+cLm
= E uL2- uL2- uL2-
t UL2R - UL2R - UL2R-
U ur+CM- UL2R+CLM - n UL2R+CLM -
S L SR S DD S & DD
S EI S IFS S TS S IFES S TS SIS
S & < Ol < i
N & R
cm- cm- cM-
< sc sc scH
o PLM - PLM - PLM -
s}
O sc+cum 0N SC+CLM - SC+CLM -
7
T uL2 - n uL2 - uL2 |
n UL2R - UL2R - UL2R -
UL2R+CLM n n UL2R+CLM n UL2R+CLM - n
S & S O R S & S O X S & S O LD
S & O XC}‘\ IS O x(ye\ S &S S Y
Y ol < Ol & ol

Figure 2: Pairwise prediction accuracy for PPL-CLM, PPL-SC, and Kshot-RAG comparing LLMs differing only in
pre-training objective, across three SFT tasks (rows) and the three proxies (columns). Each cell indicates average
accuracy of pairs where the proxy prediction agreed with the SFT result.

H(pm,,pm;) € R*. We define the ground-truth
label y;; as a binary value, where y;; = 1 if LLM
m; performs better after SFT than m;, and y;; = 0
otherwise. The classifier is trained by minimiz-
ing the binary cross-entropy loss (formulation is
provided in Appendix Section C).

4.2 Experiment Setup

We implemented the supervised classifier using
LightGBM (details in Appendix Section C), train-
ing separate models per SFT task (CMS, RAG,
CBQA). To ensure robustness, we performed 20
runs, each using a random 60%/40% split of the
50 LLM variants to generate training/testing pairs
(splits varied per run). We report mean accuracy
and standard deviation over the 20 runs in Table 2
(middle section), compared against unsupervised
baselines including PPL-CLM and Kshot-RAG.

4.3 Results

Learning-to-compare enhances predictive
power beyond the best-performing proxies.
Despite the challenges of constructing prediction
proxies, supervised learning significantly enhances
predictive performance compared to individual or
aggregated proxies. LightGBM outperforms the
best individual proxy, Kshot-RAG, by a substantial

margin on the SFT-CMS and SFT-CBQA tasks,
improving predictive power by 10% while main-
taining comparable performance on SFI-RAG.
This confirms that combining diverse proxies can
further boost predictive accuracy.

Learning-to-compare generalizes well across dif-
ferent target tasks. We further assessed Light-
GBM’s generalization by training on one SFT task
(source) and evaluating on others (target), using all
five proxies as input. The aim was to determine if a
classifier learned for one task could predict perfor-
mance on different ones. Results (Table 2, bottom
section) reveal effective generalization: models
trained on a source task maintained high predic-
tive accuracy on target tasks, typically performing
within 2-3% of classifiers trained directly on the
target task. This demonstrates the robustness of the
learning-to-compare approach across different SFT
domains.

Proxy importance. We quantify each proxy’s
contribution to the LightGBM classifiers by com-
puting their normalized gain-based importance
scores, as illustrated in Figure 3 (detailed in
Appendix Section E). Kshot-RAG consistently
emerged as the most influential proxy across the
three SFT tasks, showing particular dominance



SFT-CMS SFT-RAG SFT-CBQA
Conventional Perplexity
PPL-CLM 3064081 3664060 3314054
Individual and Aggregated Proxies
Kshot-RAG .687 %073 1244 0a7 6834077
Combine Five Proxies .6124.0s5 5854051 5404104
Learning To Compare (% Relative to Kshot-RAG)
Trained on the target task
Learning-to-compare | .7534-.0s4 (+9.6%) T27+ 039 (+0.4%)  .753+t.060 (+10.2%)

Trained on the source task

SFT-CMS (Src) 753+ 051 (+9.6%)
SFT-RAG (Src) 734t 00 (+6.8%)
SFT-CBQA (Src) 734 052 (+6.8%)

124054 (-1.7%)
7274039 (+0.4%)
718+ 050 (-0.1%)

707+ 057 (+3.3%)
T1740m (+5.0%)
753+ 060 (+10.2%)

Table 2: Pairwise prediction accuracy (mean =+ std dev, 20 runs): Unsupervised baselines vs. supervised classifiers

on SFT-CMS, SFT-RAG, SFT-CBQA.

in SFT-RAG and SFT-CBQA. PPL-SC and PPL-
CLM represented the next tier of importance; for
instance, PPL-SC was second most important for
SFT-CMS, while PPL-CLM ranked second for SFT-
CBQA. Intriguingly, PPL-CLM contributed more
significantly to the LightGBM model’s predictions
than Kshot-CMS and Kshot-CBQA, despite pos-
sessing lower standalone accuracy (Table 1). Our
hypothesis is that the supervised classifier effec-
tively utilizes the strong negative correlation be-
tween PPL-CLM and SFT performance.

5 Can Post SFT LLM Performance be
Reliably Predicted?

While the learning-to-compare method doubles pre-
diction accuracy over perplexity (Table 2), its per-
sistent 25% pairwise error rate may limit general
applicability. In this section, we further explore its
practical utility by demonstrating reliable recall of
top models within small candidate sets.

5.1 Impact of Performance Gaps on
Prediction Reliability

Predicting the relative performance between two
language models is expected to be more reliable
when their actual performance levels are signif-
icantly different. Conversely, distinguishing be-
tween models with similar performances poses a
greater challenge. This section investigates how the
magnitude of the performance gap between model
pairs influences the reliability of our prediction
classifiers.

To explore the relationship between performance
disparity and classifier accuracy, we first calcu-

lated the absolute difference in supervised fine-
tuning (SFT) performance for each model pair
on the target task. We hypothesized that classi-
fication accuracy would correlate positively with
the size of this performance gap. For quantita-
tive analysis, we categorized the model pairs into
five quantiles based on their true post-SFT perfor-
mance difference: [0-20%], [20-40%], [40-60%],
[60-80%], and [80-100%]. Subsequently, we
evaluated and compared the classification accu-
racy for three predictors—PPL-CLM, Kshot-RAG,
and Learning-to-compare—within each quantile.
These results are visualized in Figure 4.

The findings show that prediction reliability for
both Kshot-RAG and the Learning-to-compare pre-
dictors indeed improves as the performance gap
between models widens. For pairs with minimal
performance differences ([0-20%] quantile), where
models perform almost identically after fine-tuning,
prediction accuracy is low, near chance levels (ap-
proximately 0.5). As the absolute performance
difference increases, accuracy steadily rises, reach-
ing approximately 0.9 for the most distinct pairs
([80-100%] quantile). This confirms that these
classifiers yield more reliable predictions when
comparing models that are easier to distinguish.
Interestingly, PPL-CLM demonstrates the opposite
behavior: its accuracy diminishes as the perfor-
mance gap increases, further highlighting that con-
ventional perplexity is not a dependable indicator
for this prediction scenario. Among the methods
tested, the learning-to-compare classifier consis-
tently outperformed both PPL-CLM and Kshot-
RAG across the quantiles.
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Figure 4: Accuracy comparison of PPL-CLM, Kshot-RAG, and Learning-to-Compare (LTC) on SFT tasks (CMS,
RAG, CBQA), grouped into five quantiles by absolute SFT performance difference.

5.2 Recall the Best Model from a Small
Candidate Set

One key practical use for LLM performance pre-
dictors is to identify the most promising candidates
within a group of models, which can lead to signifi-
cant cost savings. To assess our classifier’s effec-
tiveness in this critical application, we performed a
ranking experiment based on win rates from pair-
wise comparisons (detailed in Appendix D) (Dwork
et al., 2001). The evaluation results, presented as
top-1 and top-5 recall in Figure 5, show that our
“learning-to-compare” method consistently identi-
fied the top-performing LLMs. Impressively, it
achieved perfect top-1 recall for the SFT-CMS,
SFT-RAG, and SFT-CBQA tasks by focusing on
the top 7, 7, and 8 predicted models respectively,
demonstrating its effectiveness even when narrow-
ing down a relatively small candidate pool (as few
as 8§ models). Additionally, the unsupervised Kshot-
RAG method showed strong performance, corrobo-
rating observations from Section 3.

6 Related Work

LLM pre-training fundamentally shapes capabili-
ties like reasoning (Wei et al., 2022; Kojima et al.,
2022; Zellers et al., 2019), knowledge (Chang
et al., 2024), and tool use (Yao et al., 2023; Mo
et al., 2023). Critical pre-training design choices

include the training objective—such as dominant
CLM (Brown et al., 2020; OpenAl, 2023) for
generation, SC (Raffel et al., 2020) which aids
fine-tuning (Tay et al., 2023a), or combined UL2-
style approaches (Tay et al., 2023a,b; Garcia et al.,
2023) potentially using PrefixLM (Du et al., 2022;
Chowdhery et al., 2023)—and pre-trained corpus
composition, which involves quality curation (Rae
et al., 2021; Touvron et al., 2023), filtering (Penedo
et al., 2023; Xia et al., 2024), and source mix-
ing (Weber et al., 2024; Shen et al., 2024) to ensure
broad coverage and robustness. Given the variety
of design options, lightweight methods to predict
final performance are highly desirable for efficient
model development. This work investigates predic-
tors for supervised fine-tuning outcomes, utilizing
systematic variations across several pre-training
design factors in our study.

The ability to predict the performance of large
language models (LLMs) after fine-tuning has
gained significant importance due to the substantial
computational investment required for pre-training.
Previous research (Kaplan et al., 2020; Hoffmann
et al., 2022; Henighan et al., 2020; Gadre et al.,
2025) established scaling laws showing that in-
creasing pre-training FLOPs typically reduces per-
plexity on held-out data, correlating with enhance-
ments in capabilities like chain-of-thought reason-
ing (Wei et al., 2022; Kojima et al., 2022), pref-
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Figure 5: Top-1 (top row) and Top-5 (bottom row) recall comparison at various cutoffs: supervised Learning-to-
compare (LTC) vs. unsupervised baselines on SFT-CMS, SFT-RAG, and SFT-CBQA tasks.

erence alignment (Ouyang et al., 2022; Bai et al.,
2022), and multilingual understanding (Chowdhery
et al., 2023), suggesting larger models generally
yield better downstream performance. Analogous
scaling phenomena, where lower perplexity often
corresponds to improved outcomes, have also been
noted when fine-tuning LL.Ms for specific appli-
cations (Zhang et al., 2024; Isik et al., 2025); for
instance, Isik et al. (2025) reported such a corre-
lation for machine translation performance. Nev-
ertheless, the dependability of perplexity as a uni-
versal predictor has recently come under scrutiny
in certain contexts, particularly for tasks involving
long-context generation (Liu et al., 2024b) or many-
shot in-context learning (Agarwal et al., 2024), im-
plying it may not be a robust indicator across all
downstream tasks.

7 Conclusion and Future Directions

This study focused on the challenge of predict-
ing LLM performance after supervised fine-tuning
(SFT) using only pre-training indicators, establish-
ing that conventional perplexity is unreliable for
this purpose. We approached this as a pairwise
classification task, using 1B parameter LLM vari-
ants with diverse pre-training configurations. We

introduced both novel unsupervised and supervised
proxy metrics, which successfully reduced relative
performance prediction error by over 50% com-
pared to perplexity. These proxies proved effective
for predicting outcomes, particularly between mod-
els with large performance gaps, and for identifying
top-performing candidates, thereby enabling more
efficient LLM development pathways.

Future research could focus on validating the
generalizability of these methods across larger
model scales, a wider range of tasks. Furthermore,
investigating whether signals from intermediate
checkpoints during long pre-training cycles can
predict final fine-tuning outcomes represents an
important research topic not covered here.

Limitations

Due to resource constraints, our study is limited to
one family of LLM backbones, a single size (1B)
and certain number (50) of trained models. Our
studies mainly concern common tasks (Common-
sense Reasoning, Retrieval-Augmented Generation,
and Closed-Book Question Answering), though
there are a wide range of tasks that are relevant to
LLM applications.



References

Rishabh Agarwal, Avi Singh, Lei M Zhang, Bernd
Bohnet, Luis Rosias, Stephanie C.Y. Chan, Biao
Zhang, Aleksandra Faust, and Hugo Larochelle. 2024.
Many-shot in-context learning. In ICML 2024 Work-
shop on In-Context Learning.

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and
Suvrit Sra. 2023. Transformers learn to implement
preconditioned gradient descent for in-context learn-
ing. In Proceedings of the 37th International Con-
ference on Neural Information Processing Systems,
NIPS ’23, Red Hook, NY, USA. Curran Associates
Inc.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova Dassarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan,
Nicholas Joseph, Saurav Kadavath, John Kernion,
Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac
Hatfield-Dodds, Danny Hernandez, Tristan Hume,
and 12 others. 2022. Training a helpful and harmless
assistant with reinforcement learning from human
feedback. ArXiv, abs/2204.05862.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2019. Piga: Reasoning about
physical commonsense in natural language. In AAAI
Conference on Artificial Intelligence.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, and 12 others. 2020. Language
models are few-shot learners. In Proceedings of the
34th International Conference on Neural Information
Processing Systems, NIPS *20, Red Hook, NY, USA.
Curran Associates Inc.

Hoyeon Chang, Jinho Park, Seonghyeon Ye, Sohee
Yang, Youngkyung Seo, Du-Seong Chang, and Min-
joon Seo. 2024. How do large language models ac-
quire factual knowledge during pretraining? arXiv
preprint arXiv:2406.11813.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sashank Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodku-
mar Prabhakaran, and 48 others. 2023. Palm: scaling
language modeling with pathways. J. Mach. Learn.
Res., 24(1).

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. BoolQ: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume I (Long and

Short Papers), pages 2924-2936, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann,

Ice Pasupat, Noveen Sachdeva, Inderjit Dhillon, Mar-
cel Blistein, Ori Ram, Dan Zhang, Evan Rosen, and
1 others. 2025. Gemini 2.5: Pushing the frontier with
advanced reasoning, multimodality, long context, and
next generation agentic capabilities. arXiv preprint
arXiv:2507.06261.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding,

Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022. GLM:
General language model pretraining with autoregres-
sive blank infilling. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 320-335,
Dublin, Ireland. Association for Computational Lin-
guistics.

Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivaku-

mar. 2001. Rank aggregation methods for the web.
In Proceedings of the 10th International Conference
on World Wide Web, WWW ’01, page 613-622, New
York, NY, USA. Association for Computing Machin-
ery.

Samir Yitzhak Gadre, Georgios Smyrnis, Vaishaal

Shankar, Suchin Gururangan, Mitchell Wortsman,
Rulin Shao, Jean Mercat, Alex Fang, Jeffrey Li,
Sedrick Keh, Rui Xin, Marianna Nezhurina, Igor
Vasiljevic, Luca Soldaini, Jenia Jitsev, Alex Dimakis,
Gabriel Ilharco, Pang Wei Koh, Shuran Song, and 6
others. 2025. Language models scale reliably with
over-training and on downstream tasks. In The Thir-
teenth International Conference on Learning Repre-
sentations.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-

ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020. The pile: An
800gb dataset of diverse text for language modeling.
ArXiv, abs/2101.00027.

Xavier Garcia, Yamini Bansal, Colin Cherry, George

Foster, Maxim Krikun, Melvin Johnson, and Orhan
Firat. 2023. The unreasonable effectiveness of few-
shot learning for machine translation. In Proceedings
of the 40th International Conference on Machine
Learning, ICML’23. JMLR.org.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,

Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 1 others. 2024. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783.

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen,

Christopher Hesse, Jacob Jackson, Heewoo Jun,
Tom B. Brown, Prafulla Dhariwal, Scott Gray, Chris
Hallacy, Benjamin Mann, Alec Radford, Aditya
Ramesh, Nick Ryder, Daniel M. Ziegler, John Schul-
man, Dario Amodei, and Sam McCandlish. 2020.
Scaling laws for autoregressive generative modeling.
ArXiv, abs/2010.14701.


https://openreview.net/forum?id=goi7DFHlqS
https://api.semanticscholar.org/CorpusID:248118878
https://api.semanticscholar.org/CorpusID:248118878
https://api.semanticscholar.org/CorpusID:248118878
https://api.semanticscholar.org/CorpusID:248118878
https://api.semanticscholar.org/CorpusID:248118878
https://api.semanticscholar.org/CorpusID:208290939
https://api.semanticscholar.org/CorpusID:208290939
https://api.semanticscholar.org/CorpusID:208290939
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/2022.acl-long.26
https://doi.org/10.18653/v1/2022.acl-long.26
https://doi.org/10.18653/v1/2022.acl-long.26
https://doi.org/10.18653/v1/2022.acl-long.26
https://doi.org/10.18653/v1/2022.acl-long.26
https://doi.org/10.1145/371920.372165
https://openreview.net/forum?id=iZeQBqJamf
https://openreview.net/forum?id=iZeQBqJamf
https://openreview.net/forum?id=iZeQBqJamf
https://api.semanticscholar.org/CorpusID:230435736
https://api.semanticscholar.org/CorpusID:230435736
https://api.semanticscholar.org/CorpusID:230435736
https://api.semanticscholar.org/CorpusID:225094178

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara,
and Akiko Aizawa. 2020. Constructing a multi-
hop QA dataset for comprehensive evaluation of
reasoning steps. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 6609—6625, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,

Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karen Si-
monyan, Erich Elsen, and 3 others. 2022. Training
compute-optimal large language models. In Proceed-
ings of the 36th International Conference on Neu-
ral Information Processing Systems, NIPS *22, Red
Hook, NY, USA. Curran Associates Inc.

Berivan Isik, Natalia Ponomareva, Hussein Hazimeh,

Dimitris Paparas, Sergei Vassilvitskii, and Sanmi
Koyejo. 2025. Scaling laws for downstream task per-
formance in machine translation. In The Thirteenth
International Conference on Learning Representa-
tions.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke

Zettlemoyer. 2017. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1601-1611, Vancouver,
Canada. Association for Computational Linguistics.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.

Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeff Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. ArXiv,
abs/2001.08361.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-

taka Matsuo, and Yusuke Iwasawa. 2022. Large
language models are zero-shot reasoners. In Pro-
ceedings of the 36th International Conference on
Neural Information Processing Systems, NIPS *22,
Red Hook, NY, USA. Curran Associates Inc.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-

field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: A benchmark for question answering
research. Transactions of the Association for Compu-
tational Linguistics, 7:452-466.

Jinqi Lai, Wensheng Gan, Jiayang Wu, Zhenlian Qi, and

Philip S. Yu. 2023. Large language models in law: A
survey. ArXiv, abs/2312.03718.

Jean Lee, Nicholas Stevens, Soyeon Caren Han, and

Minseok Song. 2024. A survey of large lan-
guage models in finance (finllms). arXiv preprint
arXiv:2402.02315.

10

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, and 1 others.
2024a. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024b. Lost in the middle: How language
models use long contexts. Transactions of the Asso-
ciation for Computational Linguistics, 12:157-173.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. In Conference on Empirical Methods in Natural
Language Processing.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstrations:
What makes in-context learning work? In Proceed-
ings of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 11048-11064,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Fengran Mo, Kelong Mao, Yutao Zhu, Yihong Wu,
Kaiyu Huang, and Jian-Yun Nie. 2023. ConvGQR:
Generative query reformulation for conversational
search. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 4998-5012, Toronto,
Canada. Association for Computational Linguistics.

OpenAl. 2023. Gpt-4 technical report.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Proceedings of the 36th Interna-
tional Conference on Neural Information Processing
Systems, NIPS *22, Red Hook, NY, USA. Curran
Associates Inc.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, Jake Vanderplas, Alexandre Passos,
David Cournapeau, Matthieu Brucher, Matthieu Per-
rot, and Edouard Duchesnay. 2011. Scikit-learn:
Machine learning in python. J. Mach. Learn. Res.,
12(null):2825-2830.

Guilherme Penedo, Hynek Kydlicek, Anton Lozhkov,
Margaret Mitchell, Colin A Raffel, Leandro
Von Werra, Thomas Wolf, and 1 others. 2024. The
fineweb datasets: Decanting the web for the finest
text data at scale. Advances in Neural Information
Processing Systems, 37:30811-30849.


https://doi.org/10.18653/v1/2020.coling-main.580
https://doi.org/10.18653/v1/2020.coling-main.580
https://doi.org/10.18653/v1/2020.coling-main.580
https://doi.org/10.18653/v1/2020.coling-main.580
https://doi.org/10.18653/v1/2020.coling-main.580
https://openreview.net/forum?id=vPOMTkmSiu
https://openreview.net/forum?id=vPOMTkmSiu
https://openreview.net/forum?id=vPOMTkmSiu
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://api.semanticscholar.org/CorpusID:210861095
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://api.semanticscholar.org/CorpusID:266054920
https://api.semanticscholar.org/CorpusID:266054920
https://api.semanticscholar.org/CorpusID:266054920
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.1162/tacl_a_00638
https://api.semanticscholar.org/CorpusID:52183757
https://api.semanticscholar.org/CorpusID:52183757
https://api.semanticscholar.org/CorpusID:52183757
https://api.semanticscholar.org/CorpusID:52183757
https://api.semanticscholar.org/CorpusID:52183757
https://doi.org/10.18653/v1/2022.emnlp-main.759
https://doi.org/10.18653/v1/2022.emnlp-main.759
https://doi.org/10.18653/v1/2022.emnlp-main.759
https://doi.org/10.18653/v1/2023.acl-long.274
https://doi.org/10.18653/v1/2023.acl-long.274
https://doi.org/10.18653/v1/2023.acl-long.274
https://doi.org/10.18653/v1/2023.acl-long.274
https://doi.org/10.18653/v1/2023.acl-long.274
https://arxiv.org/abs/2303.08774

Guilherme Penedo, Quentin Malartic, Daniel Hesslow,

Ruxandra Cojocaru, Hamza Alobeidli, Alessandro
Cappelli, Baptiste Pannier, Ebtesam Almazrouei, and
Julien Launay. 2023. The refinedweb dataset for fal-
con llm: outperforming curated corpora with web
data only. In Proceedings of the 37th International
Conference on Neural Information Processing Sys-
tems, NIPS ’23, Red Hook, NY, USA. Curran Asso-
ciates Inc.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie
Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susan-
nah Young, Eliza Rutherford, Tom Hennigan, Ja-
cob Menick, Albin Cassirer, Richard Powell, George
van den Driessche, Lisa Anne Hendricks, Maribeth
Rauh, Po-Sen Huang, and 61 others. 2021. Scaling
language models: Methods, analysis & insights from
training gopher. ArXiv, abs/2112.11446.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine

Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(1).

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: an adver-
sarial winograd schema challenge at scale. Commun.
ACM, 64(9):99-106.

Zhigiang Shen, Tianhua Tao, Liqun Ma, Willie

Neiswanger, Zhengzhong Liu, Hongyi Wang, Bowen
Tan, Joel Hestness, Natalia Vassilieva, Daria Sobol-
eva, and Eric Xing. 2024. Slimpajama-dc: Under-
standing data combinations for Ilm training. Preprint,
arXiv:2309.10818.

Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres,
Ellery Wulczyn, Mohamed Amin, Le Hou, Kevin
Clark, Stephen R. Pfohl, Heather Cole-Lewis, Dar-
lene Neal, Qazi Mamunur Rashid, Mike Schaeker-
mann, Amy Wang, Dev Dash, Jonathan H. Chen,
Nigam H. Shah, Sami Lachgar, Philip Andrew Mans-
field, and 16 others. 2025. Toward expert-level medi-
cal question answering with large language models.
Nature Medicine, 31:943 — 950.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Ja-

cob R Steeves, Joel Hestness, and Nolan Dey. 2023.
SlimPajama: A 627B token cleaned and deduplicated
version of RedPajama.

Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier

Garcia, Jason Wei, Xuezhi Wang, Hyung Won
Chung, Siamak Shakeri, Dara Bahri, Tal Schuster,
Huaixiu Steven Zheng, Denny Zhou, Neil Houlsby,
and Donald Metzler. 2023a. Ul2: Unifying language
learning paradigms. Preprint, arXiv:2205.05131.

Yi Tay, Jason Wei, Hyung Chung, Vinh Tran, David

So, Siamak Shakeri, Xavier Garcia, Steven Zheng,
Jinfeng Rao, Aakanksha Chowdhery, Denny Zhou,
Donald Metzler, Slav Petrov, Neil Houlsby, Quoc Le,
and Mostafa Dehghani. 2023b. Transcending scaling

11

laws with 0.1% extra compute. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 1471-1486, Singapore.
Association for Computational Linguistics.

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter

Albert, Amjad Almabhairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava,
Shruti Bhosale, Daniel M. Bikel, Lukas Blecher, Cris-
tian Cant6n Ferrer, Moya Chen, Guillem Cucurull,
David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin
Fu, and 49 others. 2023. Llama 2: Open foundation
and fine-tuned chat models. ArXiv, abs/2307.09288.

Johannes Von Oswald, Eyvind Niklasson, Ettore Ran-

dazzo, Jodo Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. 2023.
Transformers learn in-context by gradient descent.
In Proceedings of the 40th International Conference
on Machine Learning, ICML’23. JMLR.org.

Maurice Weber, Daniel Y Fu, Quentin Gregory An-

thony, Yonatan Oren, Shane Adams, Anton Alexan-
drov, Xiaozhong Lyu, Huu Nguyen, Xiaozhe Yao,
Virginia Adams, Ben Athiwaratkun, Rahul Chala-
mala, Kezhen Chen, Max Ryabinin, Tri Dao, Percy
Liang, Christopher Re, Irina Rish, and Ce Zhang.
2024. Redpajama: an open dataset for training large
language models. In The Thirty-eight Conference on
Neural Information Processing Systems Datasets and
Benchmarks Track.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten

Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Proceedings of the 36th International Conference on
Neural Information Processing Systems, NIPS *22,
Red Hook, NY, USA. Curran Associates Inc.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan,

Sanjeev Arora, and Danqi Chen. 2024. Less: select-
ing influential data for targeted instruction tuning. In
Proceedings of the 41st International Conference on
Machine Learning, ICML’24. JMLR.org.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,

William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369-2380, Brussels, Belgium. Association for Com-
putational Linguistics.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak

Shafran, Karthik R Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali

Farhadi, and Yejin Choi. 2019. HellaSwag: Can a ma-
chine really finish your sentence? In Proceedings of


https://api.semanticscholar.org/CorpusID:245353475
https://api.semanticscholar.org/CorpusID:245353475
https://api.semanticscholar.org/CorpusID:245353475
https://api.semanticscholar.org/CorpusID:245353475
https://api.semanticscholar.org/CorpusID:245353475
https://doi.org/10.1145/3474381
https://doi.org/10.1145/3474381
https://doi.org/10.1145/3474381
https://arxiv.org/abs/2309.10818
https://arxiv.org/abs/2309.10818
https://arxiv.org/abs/2309.10818
https://api.semanticscholar.org/CorpusID:275427710
https://api.semanticscholar.org/CorpusID:275427710
https://api.semanticscholar.org/CorpusID:275427710
https://arxiv.org/abs/2205.05131
https://arxiv.org/abs/2205.05131
https://arxiv.org/abs/2205.05131
https://doi.org/10.18653/v1/2023.emnlp-main.91
https://doi.org/10.18653/v1/2023.emnlp-main.91
https://doi.org/10.18653/v1/2023.emnlp-main.91
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998
https://openreview.net/forum?id=lnuXaRpwvw
https://openreview.net/forum?id=lnuXaRpwvw
https://openreview.net/forum?id=lnuXaRpwvw
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472

the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4791-4800, Florence,
Italy. Association for Computational Linguistics.

Biao Zhang, Zhongtao Liu, Colin Cherry, and Orhan
Firat. 2024. When scaling meets LLM finetuning:
The effect of data, model and finetuning method. In
The Twelfth International Conference on Learning
Representations.

A Pretraining and LLMs

We use SlimPajama (Soboleva et al., 2023) as our
pretraining corpus, which consists of data from
seven domains. Following (Shen et al., 2024), we
apply domain re-weighting to create six dataset
variants. The detailed domain proportions for each
variant are provided in Table 3.

We pretrain 50 LLMs, each with 1 billion pa-
rameters, on 100 billion tokens. Model variants are
generated by varying pretraining objectives, dataset
composition strategies, and learning rates. The de-
tailed pretraining configuration for each model is
provided in Table 4.

B Proxy Predictive Accuracy

Similar to Section 3, we group the pre-trained
LLM:s into six categories either based on their do-
main re-weighting or tagging & length filtering
configurations. In both cases, paired models share
the same pretraining configurations except for the
group-specific factor (domain re-weighting or tag-
ging & length filtering). We compute the predictive
accuracy of each proxy on three SFT tasks and
report the results in the Figure 6 and Figure 7.

C Classifier Implementation Detail

Loss function: Assuming the LLMs in training set
as Myyqin, we train the classifier using the binary
cross-entropy loss.
1
L= 2
m;,m; EMirqin and i#£j
— (1= yij)log (1 = f (H(pm;»Pm;))) )

Where C' is the total number of pairs in Mypqip,
equals to \thinmg/ltmzﬂ—l) )

We also instantiate the learning-to-compare
framework using Logistic Regression and Neural
Networks as backbone models. Their performance,
compared with unsupervised baselines, is reported
in Table 5.

The implementation details are as follows: For

logistic regression, we use scikit-learn’s (Pedregosa
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et al., 2011) LogisticRegression with the default
Ibfgs solver for binary classification. The model
applies Lo regularization with strength C' = 1.0,
fits an intercept, and runs up to 100 iterations.
Class weighting is not applied. For the neural
network, we use scikit-learn’s MLPClassifier with
two hidden layers of size 32 each and ReLU
activation. The model is optimized using the
Adam solver and trained for a maximum of 100
iterations. All other hyperparameters are set to
their default values. For LightGBM, we use the
LGBMClassifie from the official lightgbm library !.
The objective is set to binary with binary_logloss
as the evaluation metric. All other hyperparameters
follow the default settings: num_leaves=31,
learning_rate=0.1, n_estimators=100, fea-
ture_fraction=1.0, bagging_fraction=1.0, and no
regularization (lambda_11=0.0, lambda_12=0.0).

D Ranking using Borda Count

We adopt a Borda Count-style scoring
method (Dwork et al.,, 2001) to transform
the pairwise prediction between models to a global
ranking. For each model m;, we compute its total
score by counting the number of pairwise wins
over all other models.

Score(m;) = ZH‘ (f(ms, m;) > 0.5),
J#
where f(m;, m;) denotes the classifier’s predicted
probability that m; outperforms m;. #(-) is the in-
dicator function. Finally, models are ranked based
on their total scores, with higher scores indicating
better predicted fine-tuned performance.

E Proxy Normalized Importance Score
for LightGBM

We use LightGBM’s gain-based feature impor-

( — yijlog f (H (Pm.» pm}ﬁﬂce, which quantifies how much each feature con-

tributes to reducing the model’s loss. Specifically,
for each feature f, the importance is defined as the
total reduction in the loss function (binary log-loss
in our case) due to splits on that feature across all
trees in the ensemble.

Let 7 denote the set of all decision trees in the
trained LightGBM model. For each tree t € T and
each split node s € t, let f; be the feature used
at split s, and let AL(s) denote the reduction in
the loss function caused by that split. Then, the

1https: //lightgbm.readthedocs.io/en/latest/
pythonapi/lightgbm.LGBMClassifier.html
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Sub Dataset DC-0 DC-1 DC-2 DC-3 DC-4 DC-5
Commoncrawl 52.2% 100.0% 909% 75.8% 75.8% 75.8%
C4 26.7% 0.0% 0.0% 0.0% 00% 0.0%
GitHub 52%  0.0% 91% 242% 00% 9.1%
SlimPajama = Books 42%  0.0% 0.0% 0.0% 00% 79%
ArXiv 4.6%  0.0% 0.0% 0.0% 0.0% 0.0%
Wikipedia 38% 0.0% 0.0% 0.0% 242% 7.3%
StackExchange 3.3%  0.0% 0.0% 0.0% 0.0% 0.0%

Table 3: six configurations of sub dataset combinations in Slimpajama

gain-based importance for feature f is computed

' Gain(f) = Y > AL(s)

teT se€t

In our setting, we construct a 20-dimensional
feature vector H (pyy,, Pm;) € R?° for each model
pair (m;, m;) using five proxies, with each proxy
contributing four dimensions as defined in:

R (P> Pmy) = | P = Pivss Ping * Prvys Plings P,

To compute proxy-level importance, we group
every four dimensions corresponding to each proxy
and sum their individual gain scores:

Gain(k) = Z Gain(f)

fEF%

where Fj, denotes the set of four features derived
from proxy k.

This aggregation allows us to assess the overall
contribution of each proxy to the classifier’s pre-
dictions. To facilitate comparison across proxies,
we normalize the aggregated importance scores.
Specifically, let I(p) denote the total importance
score for proxy p (i.e., the sum of importance scores
for its four associated features). The normalized
importance for proxy p is computed as:

= I(p)
(p) = Ty
Zp/E'P (p)
where P is the set of all proxies. This yields a

distribution over proxies, where higher values indi-
cate greater influence on the classifier’s decision.

~

F Prompts

The exampled prompts used for Kshot-CMS,
Kshot-RAG, and Kshot-CBQA tasks are shown
in Figure 8, Figure 9 and Figure 10 respectively.
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G Supervised Finetuned, Perplexity and
Kshot Results of LLMs

The all supervised fine-tuned, perplexity and Kshot-
learning results are detailed in Table 6.



Proxy

PPL-CLM PPL-SC Kshot-RAG

SFT Task

SFT-CBQA

Figure 6: Predictive accuracy of PPL-CLM, PPL-SC, and Kshot-RAG in distinguishing the better-performing model
between two LLMs with different pre-trained dataset domain re-weighting (other pre-trained configurations fixed).
DC-0 to DC-5 referes to different dataset variants, detailed in Table 3.
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Model ID = Pretrained Objective Domain Re-weight LR Domain Tagging Length Filtering

1 CLM DC-0 le-4 X X
2 CLM DC-0 25e-4 X X
3 CLM DC-0 Se-4 X X
4 CLM DC-0 75e-4 X X
5 CLM DC-0 le-3 X X
6 SC DC-0 le-4 X X
7 SC DC-0 25e-4 X X
8 SC DC-0 Se-4 X X
9 SC DC-0 75e-4 X X
10 SC DC-0 le-3 X X
11 PLM DC-0 le-4 X X
12 PLM DC-0 25e-4 X X
13 PLM DC-0 Se-4 X X
14 PLM DC-0 7.5e-4 X X
15 PLM DC-0 le-3 X X
16 SC+CLM DC-0 le-4 X X
17 SC+CLM DC-0 2.5e-4 X X
18 SC+CLM DC-0 Se-4 X X
19 SC+CLM DC-0 7.5e-4 X X
20 SC+CLM DC-0 le-3 X X
21 UL2 DC-0 le-4 X X
22 UL2 DC-0 2.5e-4 X X
23 UL2 DC-0 Se-4 X X
24 UL2 DC-0 7.5e-4 X X
25 UL2 DC-0 le-3 X X
26 UL2R DC-0 le-4 X X
27 UL2R DC-0 2.5e-4 X X
28 UL2R DC-0 Se-4 X X
29 UL2R DC-0 7.5e-4 X X
30 UL2R DC-0 le-3 X X
31 UL2R+CLM DC-0 le-4 X X
32 UL2R+CLM DC-0 2.5e-4 X X
33 UL2R+CLM DC-0 Se-4 X X
34 UL2R+CLM DC-0 7.5e-4 X X
35 UL2R+CLM DC-0 le-3 X X
36 CLM DC-1 2.5e-4 X X
37 CLM DC-2 2.5e-4 X X
38 CLM DC-3 2.5e-4 X X
39 CLM DC-4 2.5e-4 X X
40 CLM DC-5 2.5e-4 X X
41 PLM DC-1 2.5e-4 X X
42 PLM DC-2 2.5e-4 X X
43 PLM DC-3 2.5e-4 X X
44 PLM DC-4 2.5e-4 X X
45 PLM DC-5 2.5e-4 X X
46 CLM DC-0 2.5e-4 X [25% 75%]
47 CLM DC-0 2.5e-4 X [75% 100%]
48 CLM DC-0 2.5e-4 Vv X
49 CLM DC-0 2.5e-4 Vv [25% T75%]
50 CLM DC-0 2.5e-4 Vv [75% 100%]

Table 4: Pre-trained configurations of LLMs
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Proxy

PPL-CLM PPL-SC Kshot-RAG
Tag-All - Tag-All - Tag-All -
Tag-Mid Tag-Mid Tag-Mid
n fag-Mi fag-Mi fag-Mi
5 Tag-Max Tag-Max Tag-Max
L—'_ NoTag-All NoTag-All 1 NoTag-All
V) NoTag-Mid NoTag-Mid 0 NoTag-Mid
NoTag-Max NoTag-Max 1 NoTag-Max
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Figure 7: Predictive accuracy of PPL-CLM, PPL-SC, and Kshot-RAG in distinguishing the better-performing model
between two LLMs with different length & filtering methods (other pre-trained configuration fixed). The naming
follows the format of [Tagging]-[Length Filtering]. “Tag” and “NoTag” indicate whether domain tags are added.
“All” keeps all examples, “Mid” keeps samples with lengths in the 25-75% quantile range, and “Max” keeps the
longest 25% of examples.

16



SFT-CMS SFT-RAG SFT-CBQA

Conventional Perplexity

PPL-CLM 3064031 .366= 060 3314054
Individual and Combined Proxies

Kshot-RAG 6871013 7244 047 6834077
Combine Five Proxies .612=t.0s5 5854051 5404104

Learning To Compare

Train and Evaluate on the same task

Logistic Regression 138+ 0m .688+0ss  .624+E 087
Neural Networks T78+E 056 691+ 055 673+ 0m
LightGBM 153+ 054 T274030 7533060
Train on SRC task

Logistic Regresion

SFT-CMS (SI‘C) 138044 669+ 059 .636+ 060
SFT-RAG (Src) 124+ 074 .688+.054 641407
SFT-CBQA (SRC) 7084 060 6804049 6244 087
Neural Networks

SFT-CMS (Src) 778+ 056 7062 060 0.683+.062
SFT-RAG (Src) T424 o073 6914055 0.667 4075
SFT-CBQA (Src) 748+ 067 695+ 050 673+ 0m
LightGBM

SFT-CMS (Src) 7534054 T1240sa 707 d057
SFT-RAG (Src) T34 047 T27 403 T17+0m
SFT-CBQA (Src) T34=+ 052 J18+0s0 753+ 060

Table 5: Performance comparison of unsupervised baselines and supervised classifiers (Logistic Regression, Neural
Networks, LightGBM) for predicting SFT-CMS, SFT-RAG, and SFT-CBQA. Results are reported as mean accuracy
=+ standard deviation over 20 runs.
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Performance after Supervised Fine-tuning Individual Proxies from Pre-Training

Model ID = SFT-CMS SFT-RAG SFT-CBQA PPL-CLM PPL-SC Kshot-CMS Kshot-RAG Kshot-CBQA
1 69.800 47.275 35.600 0.395 0.089 61.560 34.990 20.390
2 70.980 47.600 36.350 0.394 0.094 61.660 33.130 20.130
3 70.520 47.850 36.000 0.391 0.087 60.680 21.230 19.950
4 70.900 48.425 0.150 0.389 0.092 61.100 34.011 0.121
5 70.900 48.375 38.550 0.388 0.079 55.000 39.072 19.315
6 73.560 48.200 36.950 0.377 0.141 59.780 35.980 18.280
7 70.260 47.900 37.350 0.385 0.131 60.300 36.500 17.410
8 74.560 48.600 38.250 0.360 0.143 58.420 35.300 17.810
9 75.200 48.600 38.300 0.331 0.141 56.920 42.692 19.221
10 75.360 48.725 37.750 0.306 0.140 56.460 42.494 18.945
11 70.000 47.750 36.250 0.394 0.096 61.960 37.710 21.090
12 70.420 47.675 36.000 0.387 0.097 61.480 37.300 19.440
13 72.160 48.125 37.800 0.387 0.102 61.980 37.900 20.260
14 73.240 48.475 38.250 0.386 0.104 62.240 42.300 19.177
15 73.560 48.925 38.750 0.382 0.094 62.240 43.003 19.422
16 70.440 47.725 35.600 0.395 0.129 61.560 36.800 20.350
17 71.620 48.000 37.500 0.392 0.132 61.480 36.810 20.200
18 72.980 48.650 37.900 0.388 0.143 61.480 36.490 19.860
19 72.940 48.650 38.450 0.385 0.143 61.180 42.789 19.297
20 73.420 48.825 38.900 0.382 0.143 61.620 43.306 19.522
21 73.140 47.150 34.900 0.394 0.170 61.940 37.100 20.780
22 70.540 46.775 36.900 0.376 0.153 59.500 34.810 15.950
23 74.200 48.350 38.050 0.383 0.178 61.420 37.760 20.610
24 75.140 48.825 38.400 0.378 0.172 61.200 42.933 19.286
25 75.340 49.025 39.100 0.375 0.173 61.700 42.931 19.637
26 68.720 47.150 35.500 0.386 0.129 61.100 36.380 18.290
27 69.760 46.600 35.750 0.378 0.130 60.180 35.740 17.170
28 73.000 48.425 37.900 0.386 0.131 61.660 37.950 21.610
29 73.840 48.625 38.800 0.382 0.134 61.600 42.658 19.467
30 74.340 48.675 39.050 0.379 0.133 61.820 42.700 19.592
31 70.400 47.425 35.900 0.395 0.130 61.780 37.470 20.970
32 71.540 48.100 37.300 0.393 0.125 62.180 37.690 21.700
33 72.900 47.875 35.850 0.390 0.127 62.080 37.710 21.080
34 72.820 48.650 38.800 0.388 0.130 62.120 42.775 19.465
35 73.640 48.600 38.450 0.385 0.129 61.560 42711 19.290
36 71.620 47.625 37.700 0.364 0.102 61.680 31.760 20.280
37 71.700 47.900 37.250 0.373 0.102 61.640 33.080 19.940
38 70.200 47.650 37.700 0.374 0.096 51.580 11.330 1.230
39 71.080 47.825 37.550 0.387 0.110 60.800 33.860 20.290
40 71.480 48.000 37.850 0.389 0.107 60.720 33.170 19.250
41 72.400 48.000 37.800 0.360 0.101 61.880 37.180 19.720
42 72.300 48.125 37.300 0.368 0.103 62.200 37.610 19.390
43 72.360 48.100 37.350 0.368 0.104 62.180 37.370 20.040
44 72.800 48.350 37.550 0.382 0.111 62.300 37.660 20.320
45 72.480 47.825 38.000 0.383 0.111 61.560 37.870 20.860
46 72.220 47.900 37.650 0.380 0.104 61.860 26.500 20.160
47 72.040 47.575 37.300 0.387 0.106 61.120 32.380 20.200
48 71.800 47.325 37.350 0.386 0.107 61.160 33.210 18.540
49 72.220 47.900 37.650 0.380 0.104 61.860 26.500 20.160
50 72.040 47.575 37.300 0.387 0.106 61.120 32.380 20.200

Table 6: SFT, perplexity and kshot performance for all pretrained LLMs.
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You are an expert in commonsense reasoning tasks.

/[ five in-context examples in total.

Question: do iran and afghanistan speak the same language
Answer: True

Question: does canada’s worst driver lose their license

Answer: No
Question: does canada’s worst driver lose their license
Answer:

Figure 8: Prompt used for Kshot-CMS
(D

You are an expert in question answering. I am going to give you five example triples of context,
question and answer, in which the context may or may not be relevant to the question. The
examples will be written.

/[ five in-context examples in total.

Context: <Retrieved documents>

Question: who sang the original blinded by the light
Answer: Bruce Springsteen

Context: <Retrieved documents>
Question: who played vincent in nanny mcphee and the big bang
Answer: Oscar Steer

Context: <Retrieved documents>
Question: how many episodes are there in dragon ball z
Answer:

Figure 9: Prompt used for Kshot-RAG.
(S

You are an expert in question answering. I am going to give you five example of question-answer
pairs as the in-context examples first. Your task is to generate a answer given a question.

/I five in-context examples in total.
Question: the first life forms to appear on earth were
Answer: putative fossilized microorganisms

Question: who made the beavis and butthead theme song
Answer: Mike Judge

Question: what network is showing the monday night football game
Answer:

Figure 10: Prompt used for Kshot-CBQA.

19



	Introduction
	Problem Definition and Setup
	LLM Variants and Target SFT Tasks
	Prediction Proxies
	Pairwise Accuracy as a Measure of Predictive Power

	Predictive Power on SFT Tasks
	Learning to Compare
	Formulation
	Experiment Setup
	Results

	Can Post SFT LLM Performance be Reliably Predicted?
	Impact of Performance Gaps on Prediction Reliability
	Recall the Best Model from a Small Candidate Set

	Related Work
	Conclusion and Future Directions
	Pretraining and LLMs
	Proxy Predictive Accuracy
	Classifier Implementation Detail
	Ranking using Borda Count
	Proxy Normalized Importance Score for LightGBM
	Prompts
	Supervised Finetuned, Perplexity and Kshot Results of LLMs

