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ABSTRACT

Conventional causal discovery methods rely on centralized data, which is incon-
sistent with the decentralized nature of data in many real-world situations. This
discrepancy has motivated the development of federated causal discovery (FCD)
approaches. However, existing FCD methods may be limited by their potentially
restrictive assumptions of identifiable functional causal models or homogeneous
data distributions, narrowing their applicability in diverse scenarios. In this pa-
per, we propose a novel FCD method attempting to accommodate arbitrary causal
models and heterogeneous data. We first utilize a surrogate variable corresponding
to the client index to account for the data heterogeneity across different clients. We
then develop a federated conditional independence test (FCIT) for causal skeleton
discovery and establish a federated independent change principle (FICP) to deter-
mine causal directions. These approaches involve constructing summary statistics
as a proxy of the raw data to protect data privacy. Owing to the nonparametric
properties, FCIT and FICP make no assumption about particular functional forms,
thereby facilitating the handling of arbitrary causal models. We conduct extensive
experiments on synthetic and real datasets to show the efficacy of our method. The
code is available at https://github.com/lokali/FedCDH.git.

1 INTRODUCTION

Causal discovery aims to learn the causal structure from observational data, attracting significant
attention from fields such as machine learning and artificial intelligence (Nogueira et al., 2021),
healthcare (Shen et al., 2020), economics (Zhang & Chan, 2006), manufacturing (Vuković & Thal-
mann, 2022) and neuroscience (Tu et al., 2019). Recently, it has been facing new opportunities and
challenges from the rapid growth of data volume. One of the key challenges is data decentralization.
Traditionally, causal discovery is conducted at a centralized site where all data is gathered in one
location. However, in real-world scenarios, data is often distributed across multiple parties, such as
the healthcare data across various hospitals (Kidd et al., 2022). Consequently, there has been in-
creasing interest in federated causal discovery (FCD), which aims to uncover the underlying causal
structure of decentralized data with privacy and security concerns.

Existing FCD methods from observational data can be generally classified as continuous-
optimization-based, constraint-based, and score-based methods. Some continuous-optimization-
based methods extend NOTEARS (Zheng et al., 2018) with federated strategies, such as NOTEARS-
ADMM (Ng & Zhang, 2022) that relies on the ADMM (Boyd et al., 2011) optimization method,
FedDAG (Gao et al., 2022) that employs FedAvg (McMahan et al., 2017) technique, and FED-CD
(Abyaneh et al., 2022) that utilizes belief aggregation. These methods might suffer from various
technical issues, including convergence (Wei et al., 2020; Ng et al., 2022), nonconvexity (Ng et al.,
2023), and sensitivity to data standardization (Reisach et al., 2021). As for score-based methods,
DARLIS (Ye et al., 2022) utilizes the distributed annealing (Arshad & Silaghi, 2004) strategy to
search for the optimal graph, while PERI (Mian et al., 2023) aggregates the results of the local
greedy equivalent search (GES) (Chickering, 2002) and chooses the worst-case regret for each itera-
tion. One constraint-based method, FEDC2SL (Wang et al., 2023), extendes χ2 test to the federated
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Table 1: The comparison of related works about federated causal discovery from observational data.
Our FedCDH method could handle arbitrary functional causal models and heterogeneous data.

Method Category Data Causal Model Identifiability Federated
Distribution Assumption 1 Requirement Strategy

NOTEARS-ADMM (Ng & Zhang, 2022) Optimization-based Homogeneous Linear Gaussian, EV Yes ADMM
NOTEARS-MLP-ADMM (Ng & Zhang, 2022) Optimization-based Homogeneous Nonlinear Additive Noise Yes ADMM
FedDAG (Gao et al., 2022) Optimization-based Heterogeneous Nonlinear Additive Noise Yes FedAvg
Fed-CD (Abyaneh et al., 2022) Optimization-based Heterogeneous Nonlinear Additive Noise Yes Belief Aggregation
DARLIS (Ye et al., 2022) Score-based Homogeneous Generalized Linear No Distributed Annealing
PERI (Mian et al., 2023) Score-based Homogeneous Linear Gaussian, NV No Voting
FedPC (Huang et al., 2022) Constraint-based Homogeneous Linear Gaussian, NV No Voting
FedCDH (Ours) Constraint-based Heterogeneous Arbitrary Functions No Summary Statistics

version, however, this method is restrictive on discrete variables and therefore not applicable for
any continuous variables. Other constraint-based methods, such as FedPC (Huang et al., 2022),
aggregate the skeletons and directions of the Peter-Clark (PC) algorithm (Spirtes et al., 2000) by
each client via a voting mechanism. However, as shown in Table 1, most of these methods heav-
ily rely on either identifiable functional causal models or homogeneous data distributions. These
assumptions may be overly restrictive and difficult to be satisfied in real-world scenarios, limiting
their diverse applicability. For instance, distribution shifts may often occur in the real world across
different clients owing to different interventions, collection conditions, or domains, resulting in the
presence of heterogeneous data. Please refer to Appendix A2 for further discussion of related works,
including those of causal discovery, heterogeneous data and FCD.

In this paper, we propose FedCDH, a novel constraint-based approach for Federated Causal
Discovery from Heterogeneous data. The primary innovation of FedCDH lies in using summary
statistics as a proxy for raw data during skeleton discovery and direction determination in a fed-
erated fashion. Specifically, to address heterogeneous data, we first introduce a surrogate variable
corresponding to the client or domain index, allowing our method to model distribution changes.
Unlike existing FCD methods that only leverage the data from different clients to increase the total
sample size, we demonstrate how such data heterogeneity across different clients benefits the identi-
fication of causal directions and how to exploit it. Furthermore, we propose a federated conditional
independence test (FCIT) for causal skeleton discovery, incorporating random features (Rahimi &
Recht, 2007) to approximate the kernel matrix which facilitates the construction of the covariance
matrix. Additionally, we develop a federated independent change principle (FICP) to determine
causal directions, exploiting the causal asymmetry. FICP also employs random features to approx-
imate the embeddings of heterogeneous conditional distributions for representing changing causal
models. It is important to note that FCIT and FICP are non-parametric, making no assumption
about specific functional forms, thus facilitating the handling of arbitrary causal models. To evalu-
ate our method, we conduct extensive experiments on synthetic datasets including linear Gaussian
models and general functional models, and real-world dataset including fMRI Hippocampus (Pol-
drack et al., 2015) and HK Stock Market datasets (Huang et al., 2020). The significant performance
improvements over other FCD methods demonstrate the superiority of our approach.

2 REVISITING CAUSAL DISCOVERY FROM HETEROGENEOUS DATA

In this section, we will firstly provide an overview of causal discovery and some common assump-
tions, then we will introduce the characterizations of conditional independence and independent
change. This paper aims at extending those techniques from the centralized to the federated setting.

1) Causal Discovery with Changing Causal Models.

Consider d observable random variables denoted by V =(V1, . . . , Vd) and K clients, and one client
corresponds to one unique domain. In this paper, we focus on horizontally-partitioned data (Samet
& Miri, 2009), where each client holds a different subset of the total data samples while all the
clients share the same set of features. Let k be the client index, and ℧ be the domain index,
where k,℧∈{1, . . . ,K}. Each client has nk samples, in total there are n samples, denoted by

1Linear Gaussian model with equal noise variance (EV) (Peters & Bühlmann, 2014) and nonlinear additive
noise model (Hoyer et al., 2008) are identifiable, while linear Gaussian model with non-equal noise variance
(NV) is not identifiable. Generalized linear model and arbitrary functional model are certainly not identifiable.
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n=
∑K

k=1 nk. The task of federated causal discovery is to recover the causal graph G given the
decentralized data matrix V ∈Rn×d.

When the data is homogeneous, the causal process for each variable Vi can be represented by the
following structural causal model (SCM): Vi=fi(PAi, ϵi), where fi is the causal function, PAi is
the parents of Vi, ϵi is a noise term with non-zero variance, and we assume the ϵi’s are mutually in-
dependent. When the data is heterogeneous, there must be some causal models changing across dif-
ferent domains. The changes may be caused by the variation of causal strengths or noise variances.
Therefore, we formulate the causal process for heterogeneous data as: Vi=fi(PAi, ϵi, θi(℧), ψ̃(℧)),
where ℧ is regarded as an observed random variable referred as the domain index, the function fi
or the distribution of the noise ϵi is different or changing across different domains, both ψ̃(℧) and
θi(℧) are unobserved domain-changing factors represented as the functions of variable ℧, ψ̃(℧) is
the set of ”pseudo confounders” that influence the whole set of variables and we assume there are L
such confounders (ψ̃(℧)={ψl(℧)}Ll=1, the minimum value for L can be 0 meaning that there is no
such latent confounder in the graph, while the maximum value can be C2

d = d(d+1)
2 , meaning that

each pair of observed variables has a hidden confounder), θi(℧) denotes the effective parameters
of Vi in the model, and we assume that θi(℧) is specific to Vi and is independent of θj(℧) for any
i̸=j. ψ̃(℧) and θi(℧) input ℧ which is a positive integer and output a real number. Let Gobs be the
underlying causal graph over V , and Gaug be the augmented graph over V ∪ψ̃(℧)∪{θi(℧)}di=1. For
causal discovery with changing causal models, we follow previous work such as CD-NOD (Huang
et al., 2020) and make the following assumptions.

Assumption 1 (Pseudo Causal Sufficiency). There is no confounder in the dataset of one domain,
but we allow the changes of different causal modules across different domains to be dependent.

Assumption 2 (Markov and Faithfulness). The joint distribution over V ∪ ψ̃(℧) ∪ {θi(℧)}di=1 is
Markov and faithful to Gaug .
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Figure 1: An illustration where the causal mod-
els of variables Vi and Vj are changing across do-
mains. (a) the graph with unobserved domain-
changing factors ψℓ(℧), θi(℧) and θj(℧); (b) the
simplified graph with the surrogate variable ℧.

To remove the potential influence from confounders
and recover causal relations across different do-
mains, causal discovery could be conducted on the
augmented graph Gaug instead of Gobs. While
ψ̃(℧)∪{θi(℧)}di=1 are unobserved variables, the do-
main index ℧ is observed variable. Therefore, ℧ is
introduced as the surrogate variable (Huang et al.,
2020) for causal discovery from heterogeneous data.
An illustration is given in Figure 1, where the aug-
mented graph with the unobserved domain-changing
variables ψ̃(℧) and θi(℧) could be simplified by an
augmented graph with just a surrogate variable ℧. If
there is an edge between surrogate variable ℧ and
observed variable Vi on Gaug , then it means that the
causal model related to Vi is changing across differ-
ent domains, in other words, the data distribution of
Vi is heterogeneous across domains.

2) Characterization of Conditional Independence. Let X,Y, Z be random variables or sets of
random variables, with the domains X ,Y,Z , respectively. Define a measurable and positive definite
kernel kX , and denote the corresponding reproducing kernel Hilbert space (RKHS) HX . Similarly,
we define kY ,HY , kZ andHZ . One of the most used characterizations of conditional independence
(CI) is: X ⊥⊥ Y |Z if and only if PXY |Z = PX|ZPY |Z , or equivalently PX|Y,Z = PX|Z . Another
characterization of CI is given in terms of the partial cross-covariance operator on RKHS.

Lemma 1 (Characterization of CI with Partial Cross-covariance (Fukumizu et al., 2007)). Let Ẍ ≜
(X,Z), kẌ ≜ kXkZ , and HẌ be the RKHS corresponding to kẌ . Assume that HX ⊂ L2

X ,HY ⊂
L2
Y ,HZ ⊂ L2

Z . Further assume that kẌkY is a characteristic kernel on (X × Z) × Y , and that
HZ + R (the direct sum of two RHKSs) is dense in L2(PZ). Let ΣẌY |Z be the partial cross-
covariance operator, then

ΣẌY |Z = 0 ⇐⇒ X ⊥⊥ Y |Z. (1)
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Based on the above lemma, we further consider a different characterization of CI which enforces
the uncorrelatedness of functions in suitable spaces, which may be intuitively more appealing.
More details about the interpretation of ΣẌY |Z , the definition of characteristic kernel, and the
uncorrelatedness-based characterization of CI, are put in Appendix A3.1.

3) Characterization of Independent Change. The Hilbert-Schmidt Independence Criterion
(HSIC) (Gretton et al., 2007) is a statistical measure used to assess the independence between two
random variables in the RKHS. We use the normalized HSIC to evaluate the independence of two
changing causal models. The value of the normalized HSIC ranges from 0 to 1, and a smaller value
indicates that the two changing causal models are more independent. Let △̂X→Y be the normal-
ized HSIC between P(X) and P(Y |X), and △̂Y→X be the normalized HSIC between P(Y ) and
P(X|Y ). Then, we can determine the causal direction between X and Y with the following lemma.

Lemma 2 (Independent Change Principle (Huang et al., 2020)). Let X and Y be two random
observed variables. Assume that both X and Y have changing causal models (both of them are
adjacent to ℧ in Gaug). Then the causal direction between X and Y can be determined according
to the following rules

i) If △̂X→Y < △̂Y→X , output the direction X→Y ,

ii) If △̂X→Y > △̂Y→X , output the direction Y→X .

More details about the definition and formulation of △̂X→Y and △̂X→Y are in Appendix A3.2. It
is important to note that: once the Gaussian kernel is utilized, the kernel-based conditional inde-
pendence test (Zhang et al., 2012) and the kernel-based independent change principal (Huang et al.,
2020) assume smoothness for the relationship of continuous variables.

3 FEDERATED CAUSAL DISCOVERY FROM HETEROGENEOUS DATA

In this section, we will explain our proposed FedCDH method in details. An overall framework of
FedCDH is given in Figure 2. Two key submodules of our method are federated conditional inde-
pendent test (FCIT; Theorem 4 and Theorem 5) and federated independent change principle (FICP;
Theorem 6), which are presented in Section 3.1 and Section 3.2, respectively. We then illustrate
how to construct the summary statistics and how to implement FCIT and FICP with summary statis-
tics (Theorem 8) in Section 3.3. Last but not least, we discuss the communication costs and secure
computations in Section 3.4. For the proofs of theorems and lemmas, please refer to Appendix A4.

3.1 FEDERATED CONDITIONAL INDEPENDENT TEST (FCIT)

1) Null Hypothesis. Consider the null and alternative hypotheses

H0 : X ⊥⊥ Y |Z, H1 : X ⊥̸⊥ Y |Z. (2)

According to Eq. 1, we can measure conditional independence based on the RKHSs. Therefore, we
equivalently rewrite the above hypothesis more explicitly as

H0 : ∥ΣẌY |Z∥
2
HS = 0, H1 : ∥ΣẌY |Z∥

2
HS > 0. (3)

Note that the computation forms of Hilbert-Schmidt norm and Frobenius norm are the same, and the
difference is that the Hilbert-Schmidt norm is defined in infinite Hilbert space while the Frobenius
norm is defined in finite Euclidean space. We here consider the squared Frobenius norm of the
empirical partial cross-covariance matrix as an approximation for the hypotheses, given as

H0 : ∥CẌY |Z∥
2
F = 0, H1 : ∥CẌY |Z∥

2
F > 0, (4)

where CẌY |Z=
1
n

∑n
i=1[(Äi−E(Ä|Z))T (Bi−E(B|Z))] corresponds to the partial cross-covariance

matrix with n samples, CẌY |Z∈Rh×h, Ä=f(Ẍ)∈Rn×h, B=g(Y )∈Rn×h, {f j(Ẍ)|hj=1}∈FẌ ,
{gj(Y )|hj=1}∈FY . n and h denote the number of total samples of all clients and the number
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Figure 2: Overall framework of FedCDH. Left: The clients will send their sample sizes and local
covariance tensors to the server, for constructing the summary statistics. The federated causal dis-
covery will be implemented on the server. Right Top: Relying on the summary statistics, we propose
two submodules: federated conditional independence test and federated independent change prin-
ciple, for skeleton discovery and direction determination. Right Bottom: An example of FCD with
three observed variables is illustrated, where the causal modules related to V2 and V3 are changing.

of hidden features or mapping functions, respectively. Since Ẍ≜(X,Z), then for each function
f j :Ẍ 7→FẌ , the input is Ẍ∈Rn×2 and the output f j(Ẍ)∈Rn. For each function gk:Y 7→FY , the
input is Y ∈Rn and the output gk(Y )∈Rn. Notice that FẌ and FY are function spaces, which are
set to be the support of the process

√
2 cos(w ·+b), w follows standard Gaussian distribution, and

b follows uniform distribution from [0, 2π]. We choose these specific spaces because in this paper
we use random features to approximate the kernels. E(Ä|Z) and E(B|Z) could be non-linear func-
tions of Z which are difficult to estimate. Therefore, we would like to approximate them with linear
functions. Let q(Z)∈Rn×h, {qj(Z)|hj=1}∈FZ , FZ shares a similar function space with FY . We
could estimate E(f j |Z) with the linear ridge regression solution uTj q(Z) and estimate E(gj |Z) with
vTj q(Z) under mild conditions (Sutherland & Schneider, 2015). Now we give the following lemma.

Lemma 3 (Characterization of Conditional Independence). Let f j and gj be the functions defined
for the variables Ẍ and Y , respectively. ThenX ⊥⊥ Y |Z is approximated by the following condition

E(f̃ g̃) = 0, ∀f̃ ∈ FẌ|Z and ∀g̃ ∈ FY |Z , (5)

where FẌ|Z={f̃ | f̃ j=f j−uTj q(Z), f j∈FẌ} and FY |Z={g̃ | g̃j=gj−vTj q(Z), gj∈FY }.

Let γ be a small ridge parameter. According to Eq. 1 and Eq. 5, by ridge regression, we obtain

CẌY |Z = CẌY − CẌZ(CZZ + γI)−1CZY . (6)

2) Test Statistic and Null Distribution. In order to ensure the convergence to a non-degenerate dis-
tribution, we multiply the empirical estimate of the Frobenius norm by n, and set it as the test statistic
TCI=n∥CẌY |Z∥2F . Let K̃Ẍ|Z be the centralized kernel matrix, given by K̃Ẍ|Z≜HRẌ|ZR

T
Ẍ|ZH ,

where H=I− 1
n11

T and RẌ|Z≜f̃(Ẍ)=f(Ẍ)−uT q(Z) which can be seen as the residual after
kernel ridge regression. Here, I refers to the n×n identity matrix and 1 denotes the vector of n
ones. We now define K̃Y |Z similarly. Let λẌ|Z and λY |Z be the eigenvalues of K̃Ẍ|Z and K̃Y |Z ,
respectively. Let {α1, . . . , αL} denote i.i.d. standard Gaussian variables, and thus {α2

1, . . . , α
2
L}

denote i.i.d. χ2
1 variables. Considering n i.i.d. samples from the joint distribution PẌY Z , we have

Theorem 4 (Federated Conditional Independent Test). Under the null hypothesisH0 (X and Y are
conditionally independent given Z), the test statistic

TCI ≜ n∥CẌY |Z∥
2
F , (7)
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has the asymptotic distribution

T̂CI ≜
1

n2

L∑
i,j=1

λẌ|Z,iλY |Z,jα
2
ij .

Although the defined test statistics are equivalent to that of kernel-based conditional independence
test (KCI) (Zhang et al., 2012), the asymptotic distributions are in different forms. Please note that
the large sample properties are needed when deriving the asymptotic distribution T̂CI above, and the
proof is shown in Appendix A4.2.

Given that X ⊥⊥ Y |Z, we could introduce the independence between RẌ|Z and RY |Z , which
leads to the separation between λẌ|Z,i and λY |Z,j . We show that this separated form could help to
approximate the null distribution in terms of a decomposable statistic, such as the covariance matrix.

We approximate the null distribution with a two-parameter Gamma distribution, which is related
to the mean and variance. Under the hypothesis H0 and given the sample D, the distribution of
T̂CI can be approximated by the Γ(k̂, θ̂) distribution: P(t) = (tk̂−1 · e−t/θ̂)/(θk̂ · Γ(k̂)), where
k̂ = E2(T̂CI |D)/Var(T̂CI |D), and θ̂ = Var(T̂CI |D)/E(T̂CI |D). We propose to approximate the
null distribution with the mean and variance in the following theorem.
Theorem 5 (Null Distribution Approximation). Under the null hypothesisH0 (X and Y are condi-
tionally independent given Z), we have

E(T̂CI |D) = tr(CẌ|Z) · tr(CY |Z),

Var(T̂CI |D) = 2∥CẌ|Z∥
2
F · ∥CY |Z∥2F ,

(8)

where CẌ|Z=
1
nR

T
Ẍ|ZHHRẌ|Z , CY |Z=

1
nR

T
Y |ZHHRY |Z , and tr(·) means the trace operator.

For testing the conditional independence X ⊥⊥ Y |Z, in this paper, we only deal with the scenarios
where X and Y each contain a single variable while Z could contain a single variable, multiple
variables, or be empty. When Z is empty, the test becomes the federated unconditional independent
test (FUIT), as a special case. We provide more details about FUIT in Appendix A5.

3.2 FEDERATED INDEPENDENT CHANGE PRINCIPLE (FICP)

As described in Lemma 2, we can use independent change principle (ICP) to evaluate the depen-
dence between two changing causal models. However, existing ICP (Huang et al., 2020) heavily
relies on the kernel matrix to calculate the normalized HSIC. It may be challenging for decentral-
ized data because the off-diagonal entries of kernel matrix require the raw data from different clients,
which violates the data privacy in federated learning. Motivated by that, we propose to estimate the
normalized HSIC with the following theorem.
Theorem 6 (Federated Independent Change Principle). In order to check whether two causal models
change independently across different domains, we can estimate the dependence by

△̂X→Y =
∥C∗

X,Ỹ
∥2F

tr(C∗X) · tr(C∗
Ỹ
)
, △̂Y→X =

∥C∗
Y,X̃
∥2F

tr(C∗Y ) · tr(C∗X̃)
, (9)

where Ỹ≜(Y |X), X̃≜(X|Y ), C∗
X,Ỹ

and C∗
Y,X̃

are specially-designed covariance matrices, and
C∗X , C∗Y , C∗X̃ and C∗

Ỹ
are specially-designed variance matrices.

3.3 IMPLEMENTING FCIT AND FICP WITH SUMMARY STATISTICS

More details are given about how to implement FCIT and FICP with summary statistics. The proce-
dures at the clients and the server are shown in Algorithm 1. Each client needs to calculate its local
sample size and covariance tensor, which are aggregated into summary statistics at the server.

The summary statistics contain two parts: total sample size n and covariance tensor CT . With the
summary statistics as a proxy, we can substitute the raw data at each client for FCD. The global
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Algorithm 1 FedCDH: Federated Causal Discovery from Heterogeneous Data
Input: data matrix Dk ∈ Rnk×d at each client, k,℧ ∈ {1, . . . ,K}
Output: a causal graph G

Client executes:
1: (Summary Statistics Calculation) For each client k, use the local data Dk to get the sample size
nk and calculate the covariance tensor CTk

, and send them to the server.
Server executes:

2: (Summary Statistics Construction) Construct the summary statistics by summing up the local
sample sizes and the local covariance tensors: n =

∑K
k=1 nk, CT =

∑K
k=1 CTk

.
3: (Augmented Graph Initialization) Build a completely undirected graph G0 on the extended vari-

able set V ∪ {℧}, where V denotes the observed variables and ℧ is surrogate variable.
4: (Federated Conditional Independence Test) Conduct the federated conditional independence

test based on the summary statistics, for skeleton discovery on augmented graph and direction
determination with one changing causal module. In the end, get an intermediate graph G1.

5: (Federated Independent Change Principle) Conduct the federated independent change princi-
ple based on the summary statistics, for direction determination with two changing causal mod-
ules. Ultimately, output the causal graph G.

statistics are decomposable because they could be obtained by simply summing up the local ones,
such as n=

∑K
k=1 nk and CT = 1

n

∑K
k=1 nkCTk

. Specifically, we incorporate the random Fourier
features (Rahimi & Recht, 2007), because they have shown competitive performances to approxi-
mate the continuous shift-invariant kernels. According to the following Lemma, we could derive a
decomposable covariance matrix from an indecomposable kernel matrix via random features.
Lemma 7 (Estimating Covariance Matrix from Kernel Matrix). Assuming there are n i.i.d. samples
for the centralized kernel matrices K̃x, K̃y, K̃x,y and the covariance matrix Cx,y , we have

tr(K̃x,y) ≈ tr(ϕ̃w(x)ϕ̃w(y)T ) = tr(ϕ̃w(y)T ϕ̃w(x)) = n tr(Cx,y),
tr(K̃xK̃y) ≈ tr(ϕ̃w(x)ϕ̃w(x)T ϕ̃w(y)ϕ̃w(y)T ) = ∥ϕ̃w(x)T ϕ̃w(y)∥2 = n2∥Cx,y∥2,

(10)

where x,y∈Rn, K̃x, K̃y, K̃x,y∈Rn×n, Cx,y∈Rh×h, ϕ̃w(x)∈Rn×h is the centralized random fea-

ture, ϕ̃w(x)=Hϕw(x), ϕw(x)≜
√

2
h [cos(w1x+b1), . . . , cos(whx+bh)]

T and ϕw(x)∈Rn×h, and

similarly for ϕ̃w(y) and ϕw(y). w is drawn from P(w) and b is drawn uniformly from [0, 2π].

In this paper, we use random features to approximate the Gaussian kernel for continuous variables
and the delta kernel for discrete variables such as the surrogate variable ℧. It is important to note
that this surrogate variable ℧ is essentially a discrete variable (more specifically, a categorical vari-
able, with no numerical order among different values), and a common approach to deal with such
discrete variables is to use delta kernel. Notice that Cx,y denotes the covariance matrix for vari-
able sets x and y, which is sample-wise decomposable because Cx,y= 1

n

∑K
k=1 nkCxk,yk

, where
Cxk,yk

corresponds to the local covariance matrix of variable sets xk and yk at the k-th client.
Here, we have xk,yk∈Rnk , Cxk,yk

∈Rh×h. In the augmented graph, there are d′=d+1 variables (d
observed variables and one surrogate variable), thus we could construct a global covariance tensor
CT ∈Rd′×d′×h×h by summing up the local ones CTk

∈Rd′×d′×h×h.
Theorem 8 (Sufficiency of Summary Statistics). The summary statistics, consisting of total sample
size n and covariance tensor CT , are sufficient to represent all the statistics for FCD, including TCI

in Eq. 7, E(T̂CI |D) and Var(T̂CI |D) in Eq. 8, and △̂X→Y and △̂Y→X in Eq. 9.

According to the above theorem, with the total sample size n and the global covariance tensor CT
at the server, it is sufficient to conduct FCIT and FICP in the FCD procedures. More details about
skeleton discovery and direction determination rules will be given in Appendix A6.

3.4 COMMUNICATION COSTS AND SECURE COMPUTATIONS

We propose to construct summary statistics without directly sharing the raw data, which has already
preserved the data privacy to some extent. The original sample size of raw data is in Rn×d′

, where

7
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Figure 3: Results of synthetic dataset on linear Gaussian model. By rows, we evaluate varying num-
ber of variables d, varying number of clients K, and varying number of samples nk. By columns,
we evaluate Skeleton F1 (↑), Skeleton SHD (↓), Direction F1 (↑) and Direction SHD (↓).

we assume n ≫ d′, h. The constructed covariance tensor is in dimension Rd′×d′×h×h, which
could significantly reduce the communication costs when the sample size n is large enough and the
hidden dimension h is small enough. Furthermore, if each client is required to not directly share the
local summary statistics, one can incorporate some standard secure computation techniques, such as
secure multiparty computation (Cramer et al., 2015), which allows different clients to collectively
compute a function over their inputs while keeping them private, or homomorphic encryption (Acar
et al., 2018), which enables complex mathematical operations to process encrypted data without
compromising the encryption. Please refer to Goryczka & Xiong (2015) for more about secure
computation. It is worth noting that some secure computation techniques can introduce significant
computation overhead. To further enhance privacy protection and computational efficiency, it would
be beneficial to further improve our proposed method and we leave it for future explorations.

4 EXPERIMENTS

To evaluate the efficacy of our proposed method, we conduct extensive experiments on both synthetic
and real-world datasets. For the synthetic datasets, we consider the linear Gaussian model and
general functional model to show that our method can handle arbitrary functional causal models.
We ensure that all synthetic datasets have some changing causal models, meaning that they are
heterogeneous data. To show the wide applicability of our method, we run two real-world datasets,
fMRI Hippocampus (Poldrack et al., 2015) and HK Stock Market datasets (Huang et al., 2020).

Synthetic Datasets. The true DAGs are simulated by Erdös-Rényi model (Erdős et al., 1960) with
the number of edges equal to the number of variables. We randomly select 2 variables out of d
variables to be changing across clients. For the changing causal model, we generate according to the
SCM: Vi=

∑
Vj∈PAi

σ̂k
ijfi(Vj)+γ̂

kϵi, where Vj∈PAi is the direct cause of Vi. The causal strength
σ̂k
ij and the parameter γ̂k change across different client with index k, which are uniformly sampled

from U(0.5, 2.5) and U(1, 3), respectively. We separately generate the data for each domain with
different causal models and then combine them together. For the fixed causal model, we generate
according to Vi=

∑
Vj∈PAi

σ̂ijfi(Vj)+ϵi. We consider the linear Gaussian model with non-equal
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noise variances and the general functional model. For linear Gaussian model, fi(Vj)=Vj and ϵi
are sampled from Gaussian distribution with a non-equal variance which is uniformly sampled from
U(1, 2). For general functional model, fi is randomly chosen from linear, square, sinc, and tanh
functions, and ϵi follows uniform distribution U(−0.5, 0.5) or Gaussian distribution N (0, 1).

We compare our FedCDH method with other FCD baselines, such as NOTEARS-ADMM (for linear
case) (Ng & Zhang, 2022), NOTEARS-MLP-ADMM (for non-linear case) (Ng & Zhang, 2022),
FedDAG (Gao et al., 2022) and FedPC (Huang et al., 2022). We consider these baselines mainly
because of their publicly available implementations. We evaluate both the undirected skeleton and
the directed graph, denoted by “Skeleton” and “Direction” in the Figures. We use the structural
Hamming distance (SHD), F1 score, precision, and recall as evaluation criteria. We evaluate variable
d ∈ {6, 12, 18, 24, 30} while fixing other variables such as K=10 and nk=100. We set client
K∈{2, 4, 8, 16, 32} while fixing others such as d=6 and nk=100. We let the sample size in one
client nk∈{25, 50, 100, 200, 400} while fixing other variables such as d=6 and K=10. Following
the setting of previous works such as (Ng & Zhang, 2022), we set the sample size of each client
to be equal, although our method can handle both equal and unequal sample size per client. For
each setting, we run 10 instances with different random seeds and report the means and standard
deviations. The results of F1 score and SHD are given in Figure 3 and Figure A3 for two models,
where our FedCDH method generally outperforms the other methods. Although we need large
sample properties in the proof of Theorem 4, in practice we only have finite samples. According
to the experiment of varying samples, we can see that with more samples the performance of our
method is getting better. More analysis including the implementation details, the results of the
precision and recall, the analysis of computational time, and the hyperparameter study, the statistical
significance test, and the evaluation on graph density are provided in Appendix A7.

Real-world Datasets. We evaluate our method and the baselines on two real-world dataset, fMRI
Hippocampus (Poldrack et al., 2015) and HK Stock Market datasets (Huang et al., 2020). (i) fMRI
Hippocampus dataset contains signals from d=6 separate brain regions: perirhinal cortex (PRC),
parahippocampal cortex (PHC), entorhinal cortex (ERC), subiculum (Sub), CA1, and CA3/Dentate
Gyrus (DG) in the resting states on the same person in 84 successive days. The records for each
day can be regarded as one domain, and there are 518 samples for each domain. We select nk=100
samples for each day and select K∈{4, 8, 16, 32, 64} days for evaluating varying number of clients.
We selectK=10 days and select nk∈{25, 50, 100, 200, 400} samples for evaluating varying number
of samples. (ii) HK Stock Market dataset contains d=10 major stocks in Hong Kong stock market,
which records the daily closing prices from 10/09/2006 to 08/09/2010. Here one day can be also
seen as one domain. We set the number of clients to be K∈{2, 4, 6, 8, 10} while randomly select
nk=100 samples for each client. All other settings are following previous one by default. More
dataset information, implementation details, results and analysis are provided in Appendix A8.

5 DISCUSSION AND CONCLUSION

Discussion. (i) Strengths: First of all, by formulating our summary statistics, the requirement for
communication between the server and clients is restricted to only one singular instance, thereby
substantially reducing the communication times. This is a marked improvement over other base-
line methods that necessitate iterative communications. Additionally, the utilization of a surrogate
variable enhances our capability to handle heterogeneous data. Furthermore, leveraging the non-
parametric characteristics of our proposed FCIT and FICP, our FedCDH method can adeptly manage
arbitrary functional causal models. (ii) Limitations: Firstly, the efficiency of our summary statistics
in reducing communication costs may not be considerable when the sample size n is small or the hid-
den dimension h is large. Secondly, our method is designed specifically for horizontally-partitioned
federated data, hence it cannot be directly applied to vertically-partitioned federated data.

Conclusion. This paper has put forth a novel constraint-based federated causal discovery method
called FedCDH, demonstrating broad applicability across arbitrary functional causal models and
heterogeneous data. We construct the summary statistics as a stand-in for raw data, ensuring the
protection of data privacy. We further propose FCIT and FICP for skeleton discovery and direction
determination. The extensive experiments, conducted on both synthetic and real-world datasets,
underscore the superior performance of our method over other baseline methods. For future research,
we will enhance our method to address more complex scenarios, such as vertically-partitioned data.
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Ronald Cramer, Ivan Bjerre Damgård, et al. Secure multiparty computation. Cambridge University
Press, 2015.

JJ Daudin. Partial association measures and an application to qualitative regression. Biometrika, 67
(3):581–590, 1980.

Dorit Dor and Michael Tarsi. A simple algorithm to construct a consistent extension of a partially
oriented graph. Technicial Report R-185, Cognitive Systems Laboratory, UCLA, 1992.

Paul Erdős, Alfréd Rényi, et al. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad.
Sci, 5(1):17–60, 1960.

Kenji Fukumizu, Arthur Gretton, Xiaohai Sun, and Bernhard Schölkopf. Kernel measures of condi-
tional dependence. Advances in neural information processing systems, 20, 2007.

Erdun Gao, Junjia Chen, Li Shen, Tongliang Liu, Mingming Gong, and Howard Bondell. Feddag:
Federated dag structure learning. Transactions on Machine Learning Research, 2022.

Slawomir Goryczka and Li Xiong. A comprehensive comparison of multiparty secure additions
with differential privacy. IEEE transactions on dependable and secure computing, 14(5):463–
477, 2015.

10



Published as a conference paper at ICLR 2024

Kui Xiang Gou, Gong Xiu Jun, and Zheng Zhao. Learning bayesian network structure from dis-
tributed homogeneous data. In Eighth acis international conference on software engineering,
artificial intelligence, networking, and parallel/distributed computing (snpd 2007), volume 3, pp.
250–254. IEEE, 2007.

Arthur Gretton, Kenji Fukumizu, Choon Teo, Le Song, Bernhard Schölkopf, and Alex Smola. A
kernel statistical test of independence. Advances in neural information processing systems, 20,
2007.

Patrik Hoyer, Dominik Janzing, Joris M Mooij, Jonas Peters, and Bernhard Schölkopf. Nonlinear
causal discovery with additive noise models. Advances in neural information processing systems,
21, 2008.

Biwei Huang, Kun Zhang, and Bernhard Schölkopf. Identification of time-dependent causal model:
A gaussian process treatment. In Twenty-Fourth international joint conference on artificial intel-
ligence, 2015.

Biwei Huang, Kun Zhang, Jiji Zhang, Joseph Ramsey, Ruben Sanchez-Romero, Clark Glymour,
and Bernhard Schölkopf. Causal discovery from heterogeneous/nonstationary data. The Journal
of Machine Learning Research, 21(1):3482–3534, 2020.

Jianli Huang, Kui Yu, Xianjie Guo, Fuyuan Cao, and Jiye Liang. Towards privacy-aware causal
structure learning in federated setting. arXiv preprint arXiv:2211.06919, 2022.

Brian Kidd, Kunbo Wang, Yanxun Xu, and Yang Ni. Federated learning for sparse bayesian mod-
els with applications to electronic health records and genomics. In PACIFIC SYMPOSIUM ON
BIOCOMPUTING 2023: Kohala Coast, Hawaii, USA, 3–7 January 2023, pp. 484–495. World
Scientific, 2022.

Phillip Lippe, Taco Cohen, and Efstratios Gavves. Efficient neural causal discovery without acyclic-
ity constraints. International Conference on Learning Representations, 2022.

Lars Lorch, Scott Sussex, Jonas Rothfuss, Andreas Krause, and Bernhard Schölkopf. Amortized
inference for causal structure learning. Advances in Neural Information Processing Systems, 35:
13104–13118, 2022.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Osman Mian, David Kaltenpoth, Michael Kamp, and Jilles Vreeken. Nothing but regrets—privacy-
preserving federated causal discovery. In International Conference on Artificial Intelligence and
Statistics, pp. 8263–8278. PMLR, 2023.

Yongchan Na and Jihoon Yang. Distributed bayesian network structure learning. In 2010 IEEE
International Symposium on Industrial Electronics, pp. 1607–1611. IEEE, 2010.

Ignavier Ng and Kun Zhang. Towards federated bayesian network structure learning with continuous
optimization. In International Conference on Artificial Intelligence and Statistics, pp. 8095–8111.
PMLR, 2022.
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A1 SUMMARY OF SYMBOLS

In order to improve the readability of our paper, we summarize the most important symbols and their
meanings throughout the paper, as shown in Table A1.

Table A1: Summary of symbols
Symbol Meaning Symbol Meaning

d the number of observed variables. n the total sample size of all clients.
K the number of clients. V the data matrix, V ∈ Rn×d.
k the client index, k ∈ {1, ...,K}. nk the sample size of k-th client.
℧ domain index, ℧ ∈ {1, ...,K}. Vi the i-th variable, i ∈ {1, ..., d}.
fi(·) the causal function of variable Vi. PAi the parents of Vi.
ϵi the noise term of Vi. ψ̃ a set of “pseudo confounders”.
θi the effective parameter of Vi. L the number of “pseudo confounders”.

G, Gobs the causal graph with d variables. Gaug the augmented graph with d+1 variables.

X,Y, Z a set of random variables. kX , kY , kZ the positive definite kernels.
X ,Y,Z the domains for the variables. HX ,HY ,HZ the reproducing kernel Hilbert spaces.
Ẍ Ẍ ≜ (X,Z). △̂ the normalized HSIC.
Σ the cross-covariance operator in infinite dimension. C the cross-covariance matrix in finite dimension.

h the number of hidden features/mapping functions. f(·), g(·), q(·) the mapping functions.
F the function spaces. u, v the regression coefficients.
Ä Ä = f(Ẍ) ∈ Rn×h. B B = g(Y ) ∈ Rn×h.
γ the ridge parameter. I the identity matrix.

K̃ the centralized kernel matrix. H the matrix for centralization,H = I − 1
n11

T .
TCI the test statistic for conditional independence. R the residual for ridge regression.
α the standard Gaussian variable. α2 the χ2

1 variable.
λ the nonzero eigenvalues. T̂CI the asymptotic statistic.

k̂, θ̂ the parameters for Gamma distribution Γ(k̂, θ̂). C∗ the specially-designed covariance matrix.
tr(·) the trace operator. d′ d′ = d+ 1 (plus one surrogate variable).
CT global covariance tensor, CT ∈ Rd′×d′×h×h. CTk

local covariance tensor, CTk
∈ Rd′×d′×h×h.

w the coefficients for random features. b the intercepts for random features.

A2 RELATED WORKS

Causal Discovery. In general, there are mainly three categories of methods for causal discovery
(CD) from observed data (Spirtes & Zhang, 2016): constraint-based methods, score-based meth-
ods and function-based methods. Constraint-based methods utilize the conditional independence
test (CIT) to learn a skeleton of the directed acyclic graph (DAG), and then orient the edges upon
the skeleton. Such methods contain Peter-Clark (PC) algorithm (Spirtes & Zhang, 2016) and Fast
Causal Inference (FCI) algorithm (Spirtes, 2001). Some typical CIT methods include kernel-based
independent conditional test (Zhang et al., 2012) and approximate kernel-based conditional indepen-
dent test (Strobl et al., 2019). Score-based methods use a score function and a greedy search method
to learn a DAG with the highest score by searching all possible DAGs from the data, such as Greedy
Equivalent Search (GES) (Chickering, 2002). Within the score-based category, there is a continu-
ous optimization-base subcategory attracting increasing attention. NOTEARS (Zheng et al., 2018)
firstly reformulates the DAG learning process as a continuous optimization problem and solves it
using gradient-based method. NOTEARS is designed under the assumption of the linear relations
between variables. Subsequent works have extended NOTEARS to handle nonlinear cases via deep
neural networks, such as DAG-GNN (Yu et al., 2019) and DAG-NoCurl (Yu et al., 2021). ENCO
(Lippe et al., 2022) presents an efficient DAG discovery method for directed acyclic causal graphs
utilizing both observational and interventional data. AVCI (Lorch et al., 2022) infers causal struc-
ture by performing amortized variational inference over an arbitrary data-generating distribution.
These continuous-optimization-based methods might suffer from various technical issues, including
convergence (Wei et al., 2020; Ng et al., 2022), nonconvexity (Ng et al., 2023), and sensitivity to
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data standardization (Reisach et al., 2021). Function-based methods rely on the causal asymmetry
property, including the linear non-Gaussion model (LiNGAM) (Shimizu et al., 2006), the additive
noise model (Hoyer et al., 2008), and the post-nonlinear causal model (Zhang & Hyvarinen, 2012).

Causal Discovery from Heterogeneous Data. Most of the causal discovery methods mentioned
above usually assume that the data is independently and identically distributed (i.i.d.). However, in
practical scenarios, distribution shift is possibly occurring across datasets, which can be changing
across different domains or over time, as featured by heterogeneous or non-stationary data (Huang
et al., 2020). To tackle the issue of changing causal models, one may try to find causal models on
sliding windows for non-stationary data (Calhoun et al., 2014), and then compare them. Improved
versions include the regime aware learning algorithm to learn a sequence of Bayesian networks that
model a system with regime changes (Bendtsen, 2016). Such methods may suffer from high esti-
mation variance due to sample scarcity, large type II errors, and a large number of statistical tests.
Some methods aim to estimate the time-varying causal model by making use of certain types of
smoothness of the change (Huang et al., 2015), but they do not explicitly locate the changing causal
modules. Several methods aim to model time-varying time-delayed causal relations (Xing et al.,
2010), which can be reduced to online parameter learning because the direction of the causal rela-
tions is given (i.e., the past influences the future). Moreover, most of these methods assume linear
causal models, limiting their applicability to complex problems with nonlinear causal relations. In
particular, a nonparametric constraint-based method to tackle this causal discovery problem from
non-stationary or heterogeneous data, called CD-NOD (Huang et al., 2020), was recently proposed,
where the surrogate variable was introduced, written as smooth functions of time or domain index.
The first model-based method was proposed for heterogeneous data in the presence of cyclic causal-
ity and confounders, named CHOD (Zhou et al., 2022). Saeed et al. (Saeed et al., 2020) provided a
graphical representation via the mixture DAG of distributions that arise as mixtures of causal DAGs.

Federated Causal Discovery. A two-step procedure was adopted (Gou et al., 2007) to learn a DAG
from horizontally partitioned data, which firstly estimated the structures independently using each
client’s local dataset, and secondly applied further conditional independence test. Instead of us-
ing statistical test in the second step, a voting scheme was used to pick those edges identified by
more than half of the clients (Na & Yang, 2010). These methods leverage only the final graphs
independently estimated from each local dataset, which may lead to suboptimal performance as
the information exchange may be rather limited. Furthermore, (Samet & Miri, 2009) developed a
privacy-preserving method based on secure multiparty computation, but was limited to the discrete
case. For vertically partitioned data, (Yang et al., 2019) constructed an approximation to the score
function in the discrete case and adopted secure multiparty computation. (Chen et al., 2003) devel-
oped a four-step procedure that involves transmitting a subset of samples from each client to a central
site, which may lead to privacy concern. NOTEARS-ADMM (Ng & Zhang, 2022) and Fed-DAG
(Gao et al., 2022) were proposed for the federated causal discovery (FCD) based on continuous opti-
mization methods. Fed-PC (Huang et al., 2022) was developed as a federated version of classical PC
algorithm, however, it was developed for homogeneous data, which may lead to poor performance on
heterogeneous data. DARLIS (Ye et al., 2022) utilizes the distributed annealing (Arshad & Silaghi,
2004) strategy to search for the optimal graph, while PERI (Mian et al., 2023) aggregates the results
of the local greedy equivalent search (GES) (Chickering, 2002) and chooses the worst-case regret
for each iteration. Fed-CD (Abyaneh et al., 2022) was proposed for both observational and inter-
ventional data based on continuous optimization. FEDC2SL (Wang et al., 2023) extended χ2 test
to the federated version, however, this method is restrictive on discrete variables and therefore not
applicable for any continuous variables. Notice that most of these above-mentioned methods heav-
ily rely on either identifiable functional causal models or homogeneous data distributions. These
assumptions may be overly restrictive and difficult to be satisfied in real-world scenarios, limiting
their diverse applicability.

A3 DETAILS ABOUT THE CHARACTERIZATION

A3.1 CHARACTERIZATION OF CONDITIONAL INDEPENDENCE

In this section, we will provide more details about the interpretation of ΣẌY |Z as formulated in Eq.
13, the definition of characteristic kernel as shown in Lemma 9, which is helpful to understand the
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Lemma 1 in the main paper. We then provide the uncorrelatedness-based characterization of CI in
Lemma 10.

First of all, for the random vector (X,Y ) on X × Y , the cross-covariance operator fromHY toHX
is defined by the relation

⟨f,ΣXY g⟩HX = EXY [f(X)g(Y )]− EX [f(X)]EY [g(Y )], (11)

for all f ∈ HX and g ∈ HY . Furthermore, we define the partial cross-covariance operator as

ΣXY |Z = ΣXY − ΣXZΣ
−1
ZZΣZY . (12)

If ΣZZ is not invertible, use the right inverse instead of the inverse. We can intuitively interpret
the operator ΣXY |Z as the partial cross-covariance between {f(X),∀f∈HX } and {g(Y ),∀g∈HY}
given {q(Z),∀q∈HZ}.
Lemma 9 (Characteristic Kernel (Fukumizu et al., 2007)). A kernel KX is characteristic, if the
condition EX∼PX

[f(X)]=EX∼QX
[f(X)] (∀f∈HX ) implies PX=QX , where PX and QX are two

probability distributions of X . Gaussian kernel and Laplacian kernel are characteristic kernels.

As shown in Lemma 1, if we use characteristic kernel and define Ẍ ≜ (X,Z), the characterization
of CI could be related to the partial cross-covariance as ΣẌY |Z = 0 ⇐⇒ X ⊥⊥ Y |Z, where

ΣẌY |Z = ΣẌY − ΣẌZΣ
−1
ZZΣZY . (13)

Similarly, we can intuitively interpret the operator ΣẌY |Z as the partial cross-covariance between
{f(Ẍ),∀f∈HẌ } and {g(Y ),∀g∈HY} given {q(Z),∀q∈HZ}.
Based on Lemma 1, we further consider a different characterization of CI which enforces the
uncorrelatedness of functions in suitable spaces, which may be intuitively more appealing. De-
note the probability distribution of X as PX and the joint distribution of (X,Y ) as PXY . Let
L2
X be the space of square integrable functions of X and L2

XY be that of (X,Y ). Specifically,
L2
X = {f(X)|E(f2) <∞}, and likewise for L2

XY . Particularly, consider the following constrained
L2 spaces:

SẌ ≜ {f ∈ L2
Ẍ
| E(f |Z) = 0},

SŸ ≜ {g ∈ L2
Ÿ
| E(g|Z) = 0},

S ′Y |Z ≜ {g′ | g′ = g(Y )− E(g|Z), g ∈ L2
Y }.

(14)

They can be constructed from the corresponding L2 spaces via nonlinear regression. From example,
for any function f ∈ L2

XZ , the corresponding function f ′ is given by:

f ′(Ẍ) = f(Ẍ)− E(f |Z) = f(Ẍ)− β∗
f (Z), (15)

where β∗
f (Z) ∈ L2

Z is the regression function of f(Ẍ) on Z. Then, we can then relate the different
characterization of CI from Lemma 1 to the uncorrelatedness in the following lemma.
Lemma 10 (Characterization of CI based on Partial Association (Daudin, 1980)). Each of the fol-
lowing conditions are equivalent to X ⊥⊥ Y |Z

(i.) E(fg) = 0,∀f ∈ SẌ and ∀g ∈ SŸ ,
(ii.) E(fg′) = 0,∀f ∈ SẌ and ∀g′ ∈ S ′Y |Z ,

(iii.) E(fg̃) = 0,∀f ∈ SẌ and ∀g̃ ∈ L2
Ÿ
,

(iv.) E(fg̃′) = 0,∀f ∈ SẌ and ∀g̃′ ∈ L2
Y .

(16)

When (X,Y, Z) are jointly Gaussian, the independence is equivalent to the uncorrelatedness, in other
words, X ⊥⊥ Y |Z is equivalent to the vanishing of the partial correlation coefficient ρXY |Z . We can
regard the Lemma 10 as as a generalization of the partial correlation based characterization of CI.
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For example, condition (i) means that any ”residual” function of (X,Z) given Z is uncorrelated with
that of (Y,Z) given Z. Here we can observe the similarity between Lemma 1 and Lemma 10, except
the only difference that Lemma 10 considers all functions in L2 spaces, while Lemma 1 exploits the
spaces corresponding to some characteristic kernels. If we restrict the function f and g′ in condition
(ii) to the spacesHẌ andHY , respectively, Lemma 10 is then reduced to Lemma 1.

Based on the two lemmas mentioned above plus the Lemma 1, we could further derive Lemma 3 in
our main paper.

A3.2 CHARACTERIZATION OF INDEPENDENT CHANGE

In Lemma 2 of the main paper, we provide the independent change principle (ICP) to evaluate the
dependence between two changing causal models. Here, we give more details about the definition
and the assigned value of normalized HSIC. A smaller value means being more independent.
Definition 1 (Normalized HSIC (Fukumizu et al., 2007)). Given variables U and V , HSIC provides
a measure for testing their statistical independence. An estimator of normalized HSIC is given as

HSICN
UV =

tr(M̃UM̃V )

tr(M̃U ) tr(M̃V )
, (17)

where M̃U and M̃V are the centralized Gram matrices, M̃U ≜ HMUH , M̃V ≜ HMVH ,
H = I − 1

n11
T , I is n × n identity matrix and 1 is vector of n ones. How to construct MU

andMV will be explained in the corresponding cases below. To check whether two causal modules
change independently across different domains, the dependence between P(X) and P(Y |X) and the
dependence between P(Y ) and P(X|Y ) on the given data can be given by

△X→Y =
tr(M̃XM̃Y |X)

tr(M̃X) tr(M̃Y |X)
, △Y→X =

tr(M̃Y M̃X|Y )

tr(M̃Y ) tr(M̃X|Y )
. (18)

According to CD-NOD (Huang et al., 2020), instead of working with conditional distribution
P(X|Y ) and P(Y |X), we could use the ”joint distribution” P(X,Y ), which is simpler, for esti-
mation. Here we use Y instead of Y to emphasize that in this constructed distribution X and Y are
not symmetric. Then, the dependence values listed in Eq. 18 could be estimated by

△̂X→Y =
tr(M̃XM̃Y X)

tr(M̃X) tr(M̃Y X)
, △̂Y→X =

tr(M̃Y M̃XY )

tr(M̃Y ) tr(M̃XY )
, (19)

where M̃X ≜HMXH ,MX ≜ µ̂X|℧·µ̂T
X|℧. Similarly, we define M̃Y ,MY and µ̂Y |℧. According

to (Huang et al., 2020), we have

µ̂X|℧ ≜ ϕ(℧)(C℧℧ + γI)−1C℧X , (20)

where µ̂X|℧ ≜ ϕ(℧)(C℧℧ + γI)−1C℧X , µ̂X|℧, ϕ(℧) ∈ Rn×h, γ is a small ridge parameter, ϕ
represents the feature map, and ℧ is the surrogate variable indicating different domains or clients.
Similarly, we define M̃Y ,MY and µ̂Y |℧.

µ̂Y |℧ ≜ ϕ(℧)(C℧℧ + γI)−1C℧Y . (21)

Moreover, M̃Y X ≜HMY XH ,MY X ≜ µ̂Y X|℧ · µ̂T
Y X|℧. Similarly, we define M̃XY ,MXY and

µ̂XY .

µ̂Y X|℧ ≜ ϕ(℧)(C℧℧ + γI)−1C℧,(Y,X)

µ̂XY |℧ ≜ ϕ(℧)(C℧℧ + γI)−1C℧,(X,Y ),
(22)

Eq. 19 as formulated above is helpful to further derive Theorem 5 in our main paper.

A4 PROOFS

Here, we provide the proofs of the theorems and lemmas, including Lemma 3, Theorem 4, Theorem
5, Theorem 6, Lemma 7, and Theorem 8 in our main paper.
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A4.1 PROOF OF LEMMA 3

Proof: We define the covariance matrix in the null hypothesis as CẌY |Z = 1
n

∑n
i=1[(Äi −

E(Ä|Z))T (Bi−E(B|Z))] which corresponds to the partial cross-covariance matrix with n samples,
CẌY |Z∈Rh×h, Ä=f(Ẍ)∈Rn×h, B=g(Y )∈Rn×h, {f j(Ẍ)|hj=1}∈FẌ , {gj(Y )|hj=1}∈FY . Notice
that FẌ and FY are function spaces. n and h denote the number of total samples of all clients and
the number of hidden features or mapping functions, respectively.

Notice that E(Ä|Z) and E(B|Z) could be non-linear functions of Z which may be difficult to
estimate. therefore, we would like to approximate them with linear functions. Let q(Z)∈Rn×h,
{qj(Z)|hj=1}∈FZ . We could estimate E(f j |Z) with the ridge regression output uTj q(Z) under the
mild conditions given below.
Lemma 11. (Sutherland & Schneider, 2015) Consider performing ridge regression of f j on Z.
Assume that (i)

∑n
i=1 f

j
i = 0, f j is defined on the domain of Ẍ; (ii) the empirical kernel matrix

of Z, denoted by KZ , only has finite entries (i.e., ∥KZ∥∞ < ∞); (iii) the range of Z is compact,
Z ⊂ RdZ . Then we have

P
[
|Ê(f j |Z)− uTj q(Z)| ≥ ϵ

]
≤ c0
ϵ2
e−hϵ2c1 , (23)

where Ê(f j |Z) is the estimate of E(f j |Z) by ridge regression, c0 and c1 are both constants that do
not depend on the sample size n or the number of hidden dimensions or mapping functions h.

The exponential rate with respect to h in the above lemma suggests we can approximate the output
of ridge regression with a small number of hidden features. Moreover, we could similarly estimate
E(gj |Z) with vTj q(Z), because we could guarantee that P

[
|Ê(gj |Z)− vTj q(Z)| ≥ ϵ

]
→ 0 for any

fixed ϵ > 0 at an exponential rate with respect to h.

Similar to the L2 spaces in condition (ii) of Lemma 10, we can consider the following condition to
approximate conditional independence:

E(f̃ g̃) = 0,∀f̃ ∈ F̃Ẍ|Z and ∀g̃ ∈ F̃Y |Z , where

F̃Ẍ|Z = {f̃ | f̃ j = f j − E(f j |Z), f j ∈ FẌ},

F̃Y |Z = {g̃ | g̃j = gj − E(gj |Z), gj ∈ FY }.

(24)

According to Eq. 23, we could estimate E(f j |Z) and E(gj |Z) by uTj q(Z) and vTj q(Z), respectively.
Thus, we can reformulate the function spaces as

F̃Ẍ|Z = {f̃ | f̃ j = f j − uTj q(Z), f j ∈ FẌ},

F̃Y |Z = {g̃ | g̃j = gj − vTj q(Z), gj ∈ FY }.
(25)

Proof ends.

A4.2 PROOF OF THEOREM 4
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Figure A1: Given that X ⊥⊥ Y |Z, we could
introduce the independence between RẌ|Z
and RY |Z .

Proof: Assume that there are n i.i.d. samples for
X,Y, Z. Let K̃Ẍ|Z be the centralized kernel matrix,
given by K̃Ẍ|Z≜R̃Ẍ|ZR̃

T
Ẍ|Z=HRẌ|ZR

T
Ẍ|ZH ,

where RẌ|Z≜f̃(Ẍ)=f(Ẍ)−uT q(Z) which
can be seen as the residual after ridge
regression. Similarly, We could define
K̃Y |Z≜R̃Y |ZR̃

T
Y |Z=HRY |ZR

T
Y |ZH and

RY |Z≜g̃(Y )=g(Y )−vT q(Z). Accordingly,
we let K̃ẌY |Z≜R̃Ẍ|ZR̃

T
Y |Z=HRẌ|ZR

T
Y |ZH . We

set the test statistic as TCI=n∥CẌY |Z∥2F , where
CẌY |Z≜R̃

T
Ẍ|ZR̃Y |Z=

1
nR

T
Ẍ|ZHHRY |Z .
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Let λẌ|Z and λY |Z be the eigenvalues of K̃Ẍ|Z and
K̃Y |Z , respectively. Furthermore, we define the EVD decomposition K̃Ẍ|Z = VẌ|ZΛẌ|ZV

T
Ẍ|Z ,

where ΛẌ|Z is the diagonal matrix containing non-negative eigenvalues λẌ|Z,i. Similarly, we define
K̃Y |Z = VY |ZΛY |ZV

T
Y |Z with eigenvalues λY |Z,i. Let ψẌ|Z = [ψẌ|Z,1, ψẌ|Z,2, . . . , ψẌ|Z,n] ≜

VY |ZΛ
1/2
Y |Z and ϕY |Z = [ϕY |Z,1, ϕY |Z,2, . . . , ϕY |Z,n] ≜ VY |ZΛ

1/2
Y |Z .

On the other hand, consider eigenvalues λ∗
Ẍ|Z,i

and eigenfunctions uẌ|Z,i of the kernel kẌ|Z

w.r.t. the probablity measure with the density P(ẍ), i.e., λ∗
Ẍ|Z,i

and uẌ|Z,i satisfy
∫
kẌ|Z(ẍ, ẍ

′) ·
uẌ|Z,i(ẍ) · P(ẍ)dẍ = λ∗

Ẍ|Z,i
· uẌ|Z,i(ẍ

′), where we assume that uẌ|Z,i have unit variance, i.e.,

E[u2
Ẍ|Z,i

(Ẍ)] = 1. Similarly, we define kY |Z , λ∗Y |Z,i, and u∗Y |Z,i. Let {α1, . . . , αn2} denote i.i.d.

standard Gaussian variables, and thus {α2
1, . . . , α

2
n2} denote i.i.d. χ2

1 variables.
Lemma 12 (Kernel-based Conditional Independence Test (Zhang et al., 2012)). Under the null
hypothesis that X and Y are conditional independent given Z, we have that the test statistic TCI ≜
1
n tr(K̃Ẍ|ZK̃Y |Z) have the same asymptotic distribution as T̂CI ≜ 1

n

∑n2

k=1 λ̃k · α2
k, where λ̃k

are eigenvalues of wwT , w = [w1, . . . ,wn], with the vector wt obtained by stacking Mt =

[ψẌ|Z,1(Ẍt), ψẌ|Z,2(Ẍt), . . . , ψẌ|Z,n(Ẍt)]
T · [ϕY |Z,1(Yt), ϕY |Z,2(Yt), . . . , ϕY |Z,n(Yt)].

In the above lemma, their test statistic is equivalent to ours, due to the fact that
1

n
tr(K̃Ẍ|ZK̃Y |Z) =

1

n
tr(R̃Ẍ|Z(R̃

T
Ẍ|ZR̃Y |ZR̃

T
Y |Z))

=
1

n
tr((R̃T

Ẍ|ZR̃Y |ZR̃
T
Y |Z)R̃Ẍ|Z)

=
1

n
∥R̃T

Ẍ|ZR̃Y |Z∥2F

=
1

n
∥nCẌY |Z∥

2
F

= n∥CẌY |Z∥
2
F .

(26)

However, their asymptotic distribution is different from ours. Based on their asymptotic distribution,
we could go further. The first two rows of Eq. 26 hold true because of the commutative property of
trace, namely, tr(AB) = BA, refer to Lemma 6 for more details. According to the formulation of
R̃Ẍ|Z and R̃Y |Z , we have {

f(Ẍ) = uT q(Z) +RẌ|Z
g(Y ) = vT q(Z) +RY |Z .

(27)

Based on the above formulations, we could easily draw the causal graph as shown in Fig. A1.
In particular, considering that X and Y are conditionally independent given Z, we could further
determine that RẌ|Z and RY |Z are independent, namely, we have

X ⊥⊥ Y |Z ⇐⇒ RẌ|Z ⊥⊥ RY |Z . (28)

As f(Ẍ) and g(Y ) are uncorrelated, then E(wt) = 0. Furthermore, the covariance is Σ =
C ov(wt) = E(wtw

T
t ), where w is defined in the same way as in Lemma 12. If RẌ|Z ⊥⊥ RY |Z ,

for k ̸= i or l ̸= j, we denote the non-diagonal (ND) entries of Σ as eND, where

eND = E[
√
λ∗
Ẍ|Z,i

λ∗Y |Z,jλ
∗
Ẍ|Z,k

λ∗Y |Z,luẌ|Z,iuY |Z,juẌ|Z,kuY |Z,l]

=
√
λ∗
Ẍ|Z,i

λ∗Y |Z,jλ
∗
Ẍ|Z,k

λ∗Y |Z,lE[uẌ|Z,iuẌ|Z,k]E[uY |Z,juY |Z,l]

= 0.

(29)

We then denote the diagonal entries of Σ as eD, where
eD = λ∗

Ẍ|Z,i
λ∗Y |Z,jE[u

2
Ẍ|Z,i

]E[u2Y |Z,j ]

= λ∗
Ẍ|Z,i

λ∗Y |Z,j ,
(30)
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which are eigenvalues of Σ. According to (Zhang et al., 2012), 1
nλẌ|Z,i converge in probability

λ∗
Ẍ|Z . Substituting all the results into the asymptotic distribution in Lemma 12, we can get the

updated asymptotic distribution

T̂CI ≜
1

n2

β∑
i,j=1

λẌ|Z,iλY |Z,jα
2
ij as β = n→∞. (31)

where β is the number of nonzero eigenvalues λẌ|Z of the kernel matrices K̃Ẍ|Z .

Consequently, TCI and T̂CI have the same asymptotic distribution. Proof ends.

A4.3 PROOF OF THEOREM 5

Proof: First of all, since α2
ij follow the χ2 distribution with one degree of freedom, thus we have

E(α2
ij) = 1 and Var(α2

ij) = 2. According to the asymptotic distribution in Theorem 4 and the
derivation of Lemma 7, we have

E(T̂CI |D) =
1

n2

∑
i,j

λẌ|Z,iλY |Z,j

=
1

n2

∑
i

λẌ|Z,i

∑
j

λY |Z,j

=
1

n2
tr(K̃Ẍ|Z) tr(K̃Y |Z)

=
1

n2
tr(R̃Ẍ|ZR̃

T
Ẍ|Z) tr(R̃Y |ZR̃

T
Y |Z)

=
1

n2
tr(n · CẌ|Z) tr(n · CY |Z)

= tr(CẌ|Z) tr(CY |Z),

(32)

where R̃Ẍ|Z and R̃Y |Z are defined in the proof of Theorem 3 above. Therefore, E(T̂CI |D) =

tr(CẌ|Z) tr(CY |Z).

Furthermore, α2
ij are independent variables across i and j, and notice that tr(K̃2

Ẍ|Z) =
∑

i λ
2
Ẍ|Z,i

,

and similarly tr(K̃2
Y |Z) =

∑
i λ

2
Y |Z,i. Based on the asymptotic distribution in Theorem 4, we have

Var(T̂CI |D) =
1

n4

∑
i,j

λ2
Ẍ|Z,i

λ2Y |Z,jVar(α
2
ij)

=
2

n4

∑
i

λ2
Ẍ|Z,i

∑
j

λ2Y |Z,j

=
2

n4
tr(K̃2

Ẍ|Z) tr(K̃
2
Y |Z).

(33)

Additionally, according to the similar rule as in Eq. 26, we have

tr(K̃2
Ẍ|Z) = tr(R̃Ẍ|ZR̃

T
Ẍ|ZR̃Ẍ|ZR̃

T
Ẍ|Z)

= tr(R̃T
Ẍ|ZR̃Ẍ|ZR̃

T
Ẍ|ZR̃Ẍ|Z)

= ∥R̃T
Ẍ|ZR̃Ẍ|Z∥

2
F

= ∥n · CẌ|Z∥
2
F

= n2∥CẌ|Z∥
2
F .

(34)
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Similarly, we have tr(K̃2
Y |Z) = n2∥CY |Z∥2F . Substituting the results into the above formula-

tion about variance, we have 2
n4 tr(K̃

2
Ẍ|Z) tr(K̃

2
Y |Z) = 2

n4 · n2∥CẌ|Z∥2F · n2∥CY |Z∥2F . Thus,

Var(T̂CI |D) = 2 · ∥CẌ|Z∥2F · ∥CY |Z∥2F . Proof ends.

A4.4 PROOF OF THEOREM 6

Proof: According to the above-mentioned formulations, we have M̃X ≜ HMXH = ˜̂µX|℧ ·
˜̂µT
X|℧,

˜̂µX|℧ ≜ H · µ̂X|℧. Based on the rules of estimating covariance matrix from kernel matrix
in Lemma 6, we have

tr(M̃X) = tr(˜̂µX|℧ · ˜̂µT
X|℧)

= tr(˜̂µT
X|℧ · ˜̂µX|℧) (35)

= tr((Hϕ(℧)(C℧℧ + γI)−1C℧X)T (Hϕ(℧)(C℧℧ + γI)−1C℧X)) (36)

= tr(CX℧(C℧℧ + γI)−1ϕ(℧)TH ·Hϕ(℧)(C℧℧ + γI)−1C℧X))

=
1

n
tr(CX℧(C℧℧ + γI)−1C℧℧(C℧℧ + γI)−1C℧X) (37)

=
1

n
tr(C∗X). (38)

Eq. 35 is obtained due to the trace property of the product of the matrices, as shown in Lemma 6.
Eq. 36 is substituting from Eq. 20. Here we use Eq. 38 for simple notation. We can see that it can
be represented with some combinations of different covariance matrices. Similarly, we have

tr(M̃Y ) =
1

n
tr(CY℧(C℧℧ + γI)−1C℧℧(C℧℧ + γI)−1C℧Y ) =

1

n
tr(C∗Y ). (39)

Regarding the centralized Gram matrices for joint distribution, similarly we have

tr(M̃Y X) =
1

n
tr(C(Y,X),℧(C℧℧ + γI)−1C℧℧(C℧℧ + γI)−1C℧,(Y,X)) =

1

n
tr(C∗

Ỹ
),

tr(M̃XY ) =
1

n
tr(C(X,Y ),℧(C℧℧ + γI)−1C℧℧(C℧℧ + γI)−1C℧,(X,Y )) =

1

n
tr(C∗

X̃
),

(40)

where tr(M̃Y X) = tr(M̃XY ). Furthermore, based on Lemma 6 and Eq. 22, we have

tr(M̃XM̃Y X) = tr(˜̂µX|℧ ˜̂µ
T
X|℧ · ˜̂µY X|℧ ˜̂µ

T
Y X|℧)

= tr(˜̂µT
X|℧

˜̂µY X|℧ ˜̂µ
T
Y X|℧ · ˜̂µX|℧) (41)

= ∥ ˜̂µT
X|℧

˜̂µY X|℧∥2F
= ∥(Hϕ(℧)(C℧℧ + γI)−1C℧X)T (Hϕ(℧)(C℧℧ + γI)−1C℧,(Y,X))∥2F (42)

= ∥CX℧(C℧℧ + γI)−1ϕ(℧)TH ·Hϕ(℧)(C℧℧ + γI)−1C℧,(Y,X)∥2F

= ∥ 1
n
CX℧(C℧℧ + γI)−1C℧℧(C℧℧ + γI)−1C℧,(Y,X)∥2F (43)

=
1

n2
∥C∗

X,Ỹ
∥2F . (44)

Eq. 41 is obtained due to the trace property of the product of the matrices, as shown in Lemma 6.
Eq. 41 is substituting from Eq. 20 and Eq. 22. Here we use Eq. 44 for simple notation. We can see
that it can be represented with some combinations of different covariance matrices. Similarly, we
have

tr(M̃Y M̃XY ) = ∥
1

n
CY℧(C℧℧ + γI)−1C℧℧(C℧℧ + γI)−1C℧,(X,Y )∥2F

=
1

n2
∥C∗

Y,X̃
∥2F .

(45)
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Substituting the equations above into Eq. 19, we have

△̂X→Y =
∥C∗

X,Ỹ
∥2F

tr(C∗X) · tr(C∗
Ỹ
)
, △̂Y→X =

∥C∗
Y,X̃
∥2F

tr(C∗Y ) · tr(C∗X̃)
. (46)

Proof ends.

A4.5 PROOF OF LEMMA 7

Proof: First of all, we incorporate random Fourier features to approximate the kernels, because
they have shown competitive performances to approximate the continuous shift-invariant kernels.
Lemma 13 (Random Features (Rahimi & Recht, 2007)). For a continuous shift-invariant kernel
K(x, y) on R, we have:

K(x, y) =
∫
R
p(w)ejw(x−y)dw = Ew[ζw(x)ζw(y)], (47)

where ζw(x)ζw(y) is an unbiased estimate of K(x, y) when w is drawn from p(w).

Since both the probability distribution p(w) and the kernel entry K(x, y) are real, the integral in Eq.
47 converges when the complex exponentials are replaced with cosines. Therefore, we may get a
real-values mapping by:

K(x, y) ≈ ϕw(x)Tϕw(y),

ϕw(x) ≜

√
2

h
[cos(w1x+ b1), ..., cos(whx+ bh)]

T ,

ϕw(y) ≜

√
2

h
[cos(w1y + b1), ..., cos(why + bh)]

T ,

(48)

where w is drawn from p(w) and b is drawn uniformly from [0, 2π]. x, y, w, b ∈ R, and the random-
ized feature map ϕw : R → Rh. The precise form of p(w) relies on the type of the shift-invariant
kernel we would like to approximate. Here in this paper, we choose to approximate Gaussian kernel
as one of the characteristic kernels, and thus set the probability distribution p(w) to the Gaussian
one. Based on Eq. 48, we have

tr(K̃x,y) ≈ tr(ϕ̃w(x)ϕ̃w(y)
T ), (49)

where x,y∈Rn, K̃x,y∈Rn×n, ϕ̃w(x)∈Rn×h is the centralized random feature, ϕ̃w(x)=Hϕw(x).
Furthermore, benefiting from the commutative property of the trace of the product of two matrices,
we have

tr(ϕ̃w(x)ϕ̃w(y)
T ) = tr(ϕ̃w(y)

T ϕ̃w(x)), (50)

Since each random feature is centralized, meaning the zero mean for each feature, therefore, we
have:

tr(ϕ̃w(y)
T ϕ̃w(x)) = tr(

1

n
Cx,y) =

1

n
tr(Cx,y), (51)

where Cx,y is the covariance matrix for variable x and y, Cx,y ∈ Rh×h, h is the number of hidden
features.

For the second formulation, we have

tr(K̃xK̃y) = tr[ϕ̃w(x)ϕ̃w(x)
T ϕ̃w(y)ϕ̃w(y)

T ]

= tr[ϕ̃w(x)(ϕ̃w(x)
T ϕ̃w(y)ϕ̃w(y)

T )]

= tr[(ϕ̃w(x)
T ϕ̃w(y)ϕ̃w(y)

T )ϕ̃w(x)]

= tr[ϕ̃w(x)
T ϕ̃w(y)ϕ̃w(y)

T ϕ̃w(x)]

= ∥ϕ̃w(x)T ϕ̃w(y)∥2F
= ∥nCx,y∥2F
= n2∥Cx,y∥2F .

(52)
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Together with Eq. 49, Eq. 50, Eq. 51 and Eq. 52 formulated above, we could prove the Lemma 7 in
the main paper. Proof ends.

A4.6 PROOF OF THEOREM 8

Proof. The summary statistics contain two parts: total sample size n and covariance tensor CT ∈
Rd′×d′×h×h. Let CijT ∈ Rh×h be the (i, j)-th entry of the covariance tensor, which denotes the
covariance matrix of the i-th and the j-th variable.

With the summary statistics as a proxy, we can substitute the raw data at each client. During the
procedures of causal discovery, the needed statistics include TCI in Theorem 4, E(T̂CI |D) and
Var(T̂CI |D) in Theorem 5, and △̂X→Y and △̂Y→X in Theorem 6.

1) Based on the Eq. (7) in the main paper, we have

CẌY |Z = CẌY − CẌZ(CZZ + γI)−1CZY

= C(X,Z),Y − C(X,Z),Z(CZZ + γI)−1CZY (53)

= (CXY + CZY )− (CXZ + CZZ)(CZZ + γI)−1CZY

In this paper, we consider the scenarios where X and Y are single variables, and Z may be a single
variable, a set of variables, or empty. Assuming that Z contains L variables. We have

CZY =

L∑
i=1

CZiY , CXZ =

L∑
i=1

CXZi
, CZZ =

L∑
i=1

L∑
j=1

CZiZj
, (54)

where CXY , CZiY , CXZi
, and CZiZj

are the entries of the covariance tensor CT . According to Theo-
rem 3, TCI ≜ n∥CẌY |Z∥2F . Therefore, the summary statistics are sufficient to represent TCI .

2) Similar to Eq. 53, we have

CẌ|Z = (CXX + 2CXZ + CZZ)(CXZ + CZZ)(CZZ + γI)−1(CXZ + CZZ) (55)

CY |Z = CY Y − CY Z(CZZ + γI)−1CZY . (56)

Substituting Eq. 54 into Eq. 55 and Eq. 56, we can also conclude that the covariance tensor
is sufficient to represent CẌ|Z and CY |Z . In other words, the summary statistics are sufficient to

represent E(T̂CI |D) and Var(T̂CI |D).
3) As shown in section A4.3, we have

△̂X→Y =
∥C∗

X,Ỹ
∥2F

tr(C∗X) · tr(C∗
Ỹ
)
, △̂Y→X =

∥C∗
Y,X̃
∥2F

tr(C∗Y ) · tr(C∗X̃)
, (57)

where each components can be represented as some combinations of covariance matrices, as shown
in Eq. 37, Eq. 39, Eq. 40, Eq. 43, and Eq. 45. Therefore, the summary statistics are sufficient to
represent △̂X→Y and △̂Y→X .

4) To sum up, we could conclude that: The summary statistics, consisting of total sample size n
and covariance tensor CT , are sufficient to represent all the statistics needed for federated causal
discovery.

Proof ends.

A5 DETAILS ABOUT FEDERATED UNCONDITIONAL INDEPENDENCE TEST

Here, we provide more details about the federated unconditional independence test (FUIT), where
the conditioning set Z is empty. Generally, this method follows similar theorems for federated
conditional independent test (FCIT).
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A5.1 NULL HYPOTHESIS

Consider the null and alternative hypothesis

H0 : X ⊥⊥ Y, H1 : X ⊥̸⊥ Y. (58)

Similar to FCIT, we consider the squared Frobenius norm of the empirical covariance matrix as an
approximation, given as

H0 : ∥CẌY ∥
2
F = 0, H1 : ∥CẌY ∥

2
F > 0. (59)

In this unconditional case, we set the test statistics as TUI ≜ n∥CẌY ∥2F , and give the following
theorem.

Theorem 14 (Federated Unconditional Independent Test). Under the null hypothesisH0 (X and Y
are independent), the test statistic

TUI ≜ n∥CXY ∥2F , (60)

has the asymptotic distribution

T̂UI ≜
1

n2

L∑
i,j=1

λX,iλY,jα
2
ij ,

where λX and λY are the eigenvalues of K̃X and K̃Y , respectively. Here, the proof is similar to the
proof of Theorem 3, thus we refer the readers to section A4.2 for more details.

A5.2 NULL DISTRIBUTION APPROXIMATION

We also approximate the null distribution with a two-parameter Gamma distribution, which is related
to the mean and variance. Under the hypothesisH0 and given the sample D, the distribution of T̂CI

can be approximated by the Γ(κ, θ) distribution. Here we provide the theorem for null distribution
approximation.

Theorem 15 (Null Distribution Approximation). Under the null hypothesisH0 (X and Y are inde-
pendent), we have

E(T̂UI |D) = tr(CX) · tr(CY ),
Var(T̂UI |D) = 2∥CX∥2F · ∥CY ∥2F ,

(61)

Here, the proof is similar to the proof of Theorem 4, thus we refer the readers to section A4.3 for
more details.

A6 DETAILS ABOUT SKELETON DISCOVERY AND DIRECTION
DETERMINATION

In this section, we will introduce how we do the skeleton discovery and direction determination
during the process of federated causal discovery. All those steps are conducted on the server side.
Our steps are similar to the previous method, such as CD-NOD (Huang et al., 2020), the core dif-
ference are that we develop and utilize our proposed federated conditional independent test (FCIT)
and federated independent change principle (FICP).

A6.1 SKELETON DISCOVERY.

We first conduct skeleton discovery on the augmented graph. The extra surrogate variable is intro-
duced in order to deal with the data heterogeneity across different clients.

Lemma 16. Given the Assumptions 1, 2 and 3 in the main paper, for each Vi ∈ V , Vi and ℧ are not
adjacent in the graph if and only if they are independent conditional on some subset of {Vj |j ̸= i}.
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Proof. If Vi’s causal module is invariant, which means that P(Vi|PAi) remains the same for every
value of ℧, then Vi ⊥⊥ ℧|PAi. Thus, if Vi and ℧ are not independent conditional on any subset of
other variables, Vi’s module changes with ℧, which is represented by an edge between Vi and ℧.
Conversely, we assume that if Vi’s module changes, which entails that Vi and ℧ are not independent
given PAi, then Vi and ℧ are not independent given any other subset of V \{Vi}. Proof ends.

Lemma 17. Given the Assumptions 1, 2 and 3 in the main paper, for every Vi, Vj ∈ V , Vi and Vj
are not adjacent if and only if they are independent conditional on some subset of {Vl|l ̸= i, l ̸=
j} ∪ {℧}.

Proof. The ”if” direction shown based on the faithfulness assumption on Gaug and the fact that
{ψl(℧)}Ll=1 ∪ {θi(℧)}di=1 is a deterministic function of ℧. The ”only if” direction is proven by
making use of the weak union property of conditional independence repeatedly, the fact that all
{ψl(℧)}Ll=1 and {θi(℧)}di=1 are deterministic function of ℧, the above three assumptions, and the
properties of mutual information. Please refer to (Zhang et al., 2015) for more complete proof.

With the given three assumptions in the main paper, we can do skeleton discovery.

i) Augmented graph initialization. First of all, build a completely undirected graph on the
extended variable set V ∪{℧}, where V denotes the observed variables and ℧ is surrogate
variable.

ii) Changing module detection. For each edge ℧ − Vi, conduct the federated conditional
independence test or federated unconditional independent test. If they are conditionally
independent or independent, remove the edge between them. Otherwise, keep the edge and
orient ℧→ Vi.

iii) Skeleton discovery. Moreover, for each edge Vi − Vj , also conduct the federated indepen-
dence test or federated unconditional independent test. If they are conditionally indepen-
dent or independent, remove the edge between them.

In the procedures, how observed variables depend on surrogate variable ℧ is unknown and usually
nonlinear, thus it is crucial to use a general and non-parametric conditional independent test method,
which should also satisfy the federated learning constraints. Here, we utilize our proposed FCIT.

A6.2 DIRECTION DETERMINATION.

After obtaining the skeleton, we can go on with the causal direction determination. By introducing
the surrogate variable ℧, it does not only allow us to infer the skeleton, but also facilitate the direction
determinations. For each variable Vi whose causal module is changing (i.e., ℧− Vi), in some ways
we might determine the directions of every edge incident to Vi. Assume another variable Vj which
is adjacent to Vi, then we can determine the directions via the following rules.

i) Direction determination with one changing module. When Vj’s causal module is not
changing, we can see ℧ − Vi − Vj forms an unshielded triple. For practice purposes, we
can take the direction between ℧ and Vi as ℧→ Vi, since we let ℧ be the surrogate variable
to indicate whether this causal module is changing or not. Then we can use the standard
orientation rules (Spirtes et al., 2000) for unshielded triples to orient the edge between Vi
and Vj . (1) If ℧ and Vi are independent conditional on some subset of {Vl|l ̸= j} which is
excluding Vj , then the triple forms a V-structure, thus we have ℧→ Vi ← Vj . (2) If ℧ and
Vi are independent conditional on some subset of {Vl|l ̸= i} ∪ {Vj} which is including Vj ,
then we have ℧→ Vi → Vj . In the procedure, we apply our proposed FCIT.

ii) Direction determination with two changing modules. When Vj’s causal module is chang-
ing, we can see there is a special confounder ℧ between Vi − Vj . First of all, as mentioned
above, we can still orient ℧ → Vi and ℧ → Vj . Then, inspired by that P (cause) and
P (effect|cause) change independently, we can identify the direction between Vi and Vj
according to Lemma 1, and we apply our proposed FICP.
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(a) Precision and recall on linear Gaussian model.

(b) Precision and recall on general functional model.

Figure A2: Results of the synthetic dataset on (a) linear Gaussian model and (b) general functional
model. By rows in each subfigure, we evaluate varying number of variables d, varying number of
clients K, and varying number of samples nk. By columns in each subfigure, we evaluate Skeleton
Precision (↑), Skeleton Recall (↑), Direction Precision (↑) and Direction Recall (↑).
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A7 DETAILS ABOUT THE EXPERIMENTS ON SYNTHETIC DATASETS

More details about the synthetic datasets are explained in this section, including the implementation
details in section A7.1, the results analysis of F1 and SHD in section A7.2, the complete results of
precision and recall in section A7.3, the computational time analysis in section A7.4, the hyperpa-
rameter study on the number of hidden features h in section A7.5, the statistical significance test for
the results in section A7.6, and the evaluation on dense graph in section A7.7.

A7.1 IMPLEMENTATION DETAILS

We provide the implementation details of our method and other baseline methods.

• FedDAG (Gao et al., 2022): Codes are available at the author’s Github repository https:
//github.com/ErdunGAO/FedDAG. The hyperparameters are set by default.

• NOTEARS-ADMM and NOTEARS-MLP-ADMM (Ng & Zhang, 2022): Codes are
available at the author’s Github repository https://github.com/ignavierng/
notears-admm. The hyperparameters are set by default, e.g., we set the threshold level
to 0.1 for post-processing.

• FedPC (Huang et al., 2022): Although there is no public implementation provided by
the author, considering that it is the only constraint-based method among all the existing
works for federated causal discovery, we still compared with it. We reproduced it based on
the Causal-learn package https://github.com/py-why/causal-learn. Im-
portantly, we follow the paper, set the voting rate as 30% and set the significance level to
0.05.

• FedCDH (Ours): Our method is developed based on the CD-NOD (Huang et al., 2020)
and KCI (Zhang et al., 2012) which are publicly available in the Causal-learn package
https://github.com/py-why/causal-learn. We set the hyperparameter h to
5, and set the significance level for FCIT to 0.05. Our source code has been appended in
the Supplementary Materials.

For NOTEARS-ADMM, NOTEARS-MLP-ADMM, and FedDAG, the output is a directed acyclic
graph (DAG), while FedPC and our FedCDH may output a completed partially directed acyclic
graph (CPDAG). To ease comparisons, we use the simple orientation rules (Dor & Tarsi, 1992)
implemented by Causal-DAG (Chandler Squires, 2018) to convert a CPDAG into a DAG. We eval-
uate both the undirected skeleton and the directed graph, denoted by “Skeleton” and “Direction” as
shown in the Figures.

A7.2 ANALYSIS OF F1 AND SHD

We have provided the results of F1 and SHD in the main paper as shown in Figure 3 and Figure A3,
here we provide further discussions and analysis.

The results of linear Gaussian model are given in Figure 3 and those of general functional model
are provided in Figure A3. According to the results, we observe that our FedCDH method generally
outperforms all other baselines across different criteria and settings. According to the results of our
method on both of the two models, when d increases, the F1 score decreases and the SHD increases
for skeletons and directions, indicating that FCD with more variables might be more challenging.
On the contrary, when K and nk increase, the F1 score grows and the SHD reduces, suggesting that
more joint clients or samples could contribute to better performances for FCD.

In linear Gaussian model, NOTEARS-ADMM and FedPC generally outperform FedDAG. The rea-
son may be that the front two methods were proposed for linear model while the latter one was
specially proposed for nonlinear model. In general functional model, FedPC obtained the worst per-
formance compared to other methods in direction F1 score, possibly due to its strong assumptions on
linear model and homogeneous data. FedDAG and NOTEARS-MLP-ADMM revealed poor results
regarding SHD, the reasons may be two-fold: they assume nonlinear identifiable model, which may
not well handle the general functional model; and both of them are continuous-optimization-based
methods, which might suffer from various issues such as convergence and nonconvexity.
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Figure A3: Results of synthetic dataset on general functional model. By rows, we evaluate vary-
ing number of variables d, varying number of clients K, and varying number of samples nk. By
columns, we evaluate Skeleton F1 (↑), Skeleton SHD (↓), Direction F1 (↑) and Direction SHD (↓).

A7.3 RESULTS OF PRECISION AND RECALL

In the main paper, we have only provided the results of F1 score and SHD, due to the space limit.
Here, we provide more results and analysis of the precision and the recall. The results of average
and standard deviation are exhibited in Figure A2. According to the results, we could observe that
our FedCDH method generally outperformed all other baseline methods, regarding the precision of
both skeleton and direction.

Moreover, in the linear Gaussian model, NOTEARS-ADMM generally achieved the best perfor-
mance regarding the recall although it performed poorly in precision, the reason might be that
NOTEARS-ADMM assumed homogeneous data distribution, which might face challenges in the
scenarios with heterogeneous data. In the general functional model, when evaluating varying num-
bers of clients K and samples nk, FedDAG performed the best with respect to the recall, however,
neither FedDAG nor NOTEARS-MLP-ADMM obtained satisfactory results in the precision, the rea-
son might be that both of them are continuous-optimization-based methods, which might potentially
suffer from various issues such as convergence and nonconvexity.

A7.4 RESULTS OF COMPUTATIONAL TIME

Existing works about federated causal discovery rarely evaluate the computational time when con-
ducting experiments. Actually, it is usually difficult to measure the exact computational time in real
life, because of some facts, such as the paralleled computation for clients, the communication time
costs between the clients and the server, and so on. However, the computational time is a signif-
icant factor to measure the effectiveness of a federated causal discovery method to be utilized in
practical scenarios. Therefore, in this section, for making fair comparisons, we evaluate the com-
putational time for each method, assuming that there is no paralleled computation (meaning that we
record the computational time at each client and server and then simply add them up) and no extra
communication cost (indicating zero time cost for communication).

We evaluate different settings as mentioned above, including varying number of variables d, varying
number of clients K, and varying number of samples nk. We generate data according to linear
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Table A2: Results of computational time for varying number of variables d, varying number of
clients K, and varying number of samples nk. We report the average and standard deviation over 10
runs. This is the synthetic dataset based on linear Gaussian model.

Data Sizes Methods
d K nk FedPC NOTEARS-ADMM FedDAG FedCDH (Ours)

6

10 100

3.87 ± 1.97s 14.10 ± 1.89s 136.92 ± 21.50s 8.14 ± 2.47s
12 32.01 ± 3.54s 28.33 ± 2.46s 321.84 ± 65.94s 62.69 ± 7.77s
18 39.58 ± 4.75s 35.13 ± 2.89s 398.27 ± 149.51s 98.57 ± 9.23s
24 84.05 ± 7.64s 40.01 ± 2.94s 715.80 ± 268.93s 172.11 ± 18.18s
30 94.03 ± 9.48s 56.35 ± 3.91s 1441.13 ± 519.04s 232.35 ± 26.67s

6

2

100

0.72 ± 0.24s 7.04 ± 0.64s 50.38 ± 11.29s 3.88 ± 1.49s
4 2.07 ± 0.73s 9.07 ± 0.77s 85.08 ± 15.68s 5.24 ± 1.74s
8 3.64 ± 1.54s 10.80 ± 0.78s 114.81 ± 29.67s 8.01 ± 2.32s

16 5.79 ± 2.59s 19.40 ± 2.51s 342.34 ± 62.28s 12.60 ± 2.98s
32 14.08 ± 4.44s 30.56 ± 2.88s 714.06 ± 137.31s 20.30 ± 4.37s

6 10

25 0.48 ± 0.10s 13.06 ± 1.91s 125.77 ± 20.64s 3.75 ± 1.29s
50 1.47 ± 0.64s 13.75 ± 2.51s 127.25 ± 20.38s 5.74 ± 1.61s
100 3.87 ± 1.97s 14.10 ± 1.89s 136.92 ± 21.50s 8.14 ± 2.47s
200 16.52 ± 3.63s 14.68 ± 2.23s 138.67 ± 31.91s 13.78 ± 3.75s
400 51.10 ± 6.87s 15.90 ± 2.54s 140.37 ± 34.42s 22.86 ± 4.55s

Gaussian model. For each setting, we run 10 instances, report the average and the standard deviation
of the computational time. The results are exhibited in Table A2.

According to the results, we could observe that among the four FCD methods, FedDAG is the least
efficient method with the largest time cost, because it uses a two-level structure to handle the het-
erogeneous data: the first level learns the edges and directions of the graph and communicates with
the server to get the model information from other clients, while the second level approximates the
mechanism among variables and personally updates on its own data to accommodate the data hetero-
geneity. Meanwhile, FedPC, NOTEARS-ADMM and our FedCDH are comparable. In the setting
of varying variables, our method exhibited unsatisfactory performance among the three methods,
because the other two methods, FedPC and NOTEARS-ADMM, are mainly for homogeneous data.
However, in the case of varying variables, NOTEARS-ADMM is the most ineffective method, be-
cause with the increasing of clients, more parameters (one client corresponds to one sub adjacency
matrix which needs to be updated) should get involved in the optimization process, therefore, the
total processing time can also increase by a large margin. In the scenario of varying samples, FedPC
is the slowest one among the three methods.

A7.5 HYPERPARAMETER STUDY

We conduct experiments on the hyperparameter, such as the number of mapping functions or hidden
features h. Regarding the experiments in the main paper, we set h to 5 by default. Here in this sec-
tion, we set h ∈ {5, 10, 15, 20, 25, 30}, d = 6, K = 10, nk = 100 and evaluate the performances.
We generate data according to linear Gaussian model. We use the F1 score, the precision, the recall
and the SHD for both skeleton and direction. We also report the runtime. We run 10 instances and
report the average values. The experimental results are given in Table A3.

According to the results, we could observe that with the number of hidden features h increasing, the
performance of the direction is obviously getting better, while the performance of the skeleton may
fluctuate a little bit.

Theoretically, the more hidden features or a larger h we consider, the better performance of how
closely the random features approximate the kernels should be. When the number of hidden features
approaches infinity, the performance of random features and that of kernels should be almost the
same. And the empirical results seem to be consistent with the theory, where a large h can lead to a
higher F1 score and precision for the directed graph.
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Table A3: Hyperparameter study on the number of hidden features h. We evaluate the F1 score,
precision, recall, and SHD of both skeleton and direction. We report the average over 10 runs. This
is the synthetic dataset based on linear Gaussian model.

h
Metrics Skeleton Direction Time↓

F1 ↑ Precision↑ Recall↑ SHD↓ F1 ↑ Precision↑ Recall↑ SHD↓
5 0.916 0.980 0.867 0.9 0.721 0.765 0.683 2.0 8.14s

10 0.916 0.980 0.867 0.9 0.747 0.810 0.700 2.0 8.87s
15 0.907 0.980 0.850 1.0 0.762 0.818 0.717 1.8 10.57s
20 0.889 0.980 0.833 1.2 0.767 0.833 0.717 1.8 12.72s
25 0.896 0.980 0.833 1.1 0.789 0.838 0.750 1.6 20.93s
30 0.896 0.980 0.833 1.1 0.825 0.873 0.783 1.4 37.60s

Table A4: Test result of statistical significance of our FedCDH method compared with other base-
line methods. We report the p values via Wilcoxon signed-rank test (Woolson, 2007). This is the
synthetic dataset based on linear Gaussian model.

Parameters [FedCDH vs. FedPC] [FedCDH vs. NOTEARS-ADMM] [FedCDH vs. FedDAG]

d k n S-F1 S-SHD D-F1 D-SHD S-F1 S-SHD D-F1 D-SHD S-F1 S-SHD D-F1 D-SHD

6 10 100 0.00 0.05 0.01 0.12 0.00 0.01 0.11 0.10 0.00 0.01 0.01 0.01
12 10 100 0.00 0.01 0.01 0.01 0.00 0.00 0.15 0.00 0.00 0.00 0.11 0.00
18 10 100 0.00 0.01 0.00 0.01 0.00 0.00 0.03 0.00 0.00 0.00 0.02 0.00
24 10 100 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.00
30 10 100 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
6 2 100 0.00 0.00 0.01 0.01 0.01 0.00 0.21 0.01 0.00 0.00 0.03 0.00
6 4 100 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.00
6 8 100 0.00 0.00 0.01 0.02 0.02 0.01 0.03 0.02 0.00 0.00 0.09 0.00
6 16 100 0.00 0.01 0.01 0.02 0.00 0.00 0.10 0.03 0.00 0.00 0.07 0.00
6 32 100 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.01 0.00 0.00 0.03 0.00
6 10 25 0.00 0.00 0.01 0.01 0.01 0.01 0.26 0.02 0.00 0.00 0.03 0.00
6 10 50 0.00 0.01 0.01 0.00 0.01 0.00 0.99 0.03 0.00 0.00 0.02 0.00
6 10 200 0.00 0.01 0.01 0.02 0.00 0.00 0.03 0.02 0.00 0.00 0.11 0.01
6 10 400 0.00 0.01 0.01 0.01 0.01 0.00 0.03 0.01 0.00 0.01 0.01 0.00

Moreover, the computational time is also increasing. When h is smaller than 20, the runtime in-
creases steadily. When h is greater than 20, the runtime goes up rapidly. Importantly, we could see
that even when h is small, such as h = 5, the general performance of our method is still robust and
competitive.

A7.6 STATISTICAL SIGNIFICANCE TEST

In order to show the statistical significance of our method compared with other baseline methods on
the synthetic linear Gaussian model, we report the p values via Wilcoxon signed-rank test (Woolson,
2007), as shown in Table A4. For each baseline method, we evaluate four criteria: Skeleton F1 (S-
F1), Skeleton SHD (S-SHD), Direction F1 (D-F1), and Direction SHD (D-SHD).

We set the significance level to 0.05. Those p values higher than 0.05 are underlined. From the re-
sults, we can see that the improvements of our method are statistically significant at 5% significance
level in general.

A7.7 EVALUATION ON DENSE GRAPH

As shown in Figure 3 in the main paper, the true DAGs are simulated using the Erdös–Rényi model
(Erdős et al., 1960) with the number of edges equal to the number of variables. Here we consider a
more dense graph with the number of edges are two times the number of variables.

we evaluate on synthetic linear Gaussian model and general functional model, and record the F1

score and SHD for both skeleton and directed graphs. All other settings are following the previous
ones by default.
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Figure A4: We evaluate on synthetic linear Gaussian model (Top Row) and general functional model
(Bottom Row) when the number of edges are two times the number of variables. By columns, we
evaluate Skeleton F1 (↑), Skeleton SHD (↓), Direction F1 (↑) and Direction SHD (↓).

According to the results as shown in Figure A4, we can see that our methods still outperformed other
baselines in varying number of variables. Interestingly, when the generated graph is more dense, the
performance of FedPC will obviously go down for various number of variables.

A7.8 EVALUATION ON THE POWER OF CONDITIONAL INDEPENDENCE TEST

Here we added a new set of experiments to compare the power of our proposed federated conditional
independence test and the centralized conditional independence test (i.e., kernel-based conditional
independence test (Zhang et al., 2012)).

We followed the previous paper (Zhang et al., 2012) and used the post-nonlinear model (Zhang
& Hyvarinen, 2012) to generate data. Assume there are four variables W,X, Y , and Z. X =

ĝ(f̂(W ) + ϵX), Y = ĝ(f̂(W ) + ϵY ), and Z is independent from both X and Y . f̂ and ĝ are
functions randomly chosen from linear, square, sin and tan functions. ϵX , ϵY ,W and Z are sampled
from either uniform distribution U(−0.5, 0.5) or Gaussian distribution N (0, 1). ϵX and ϵY are
random noises. In this case, X and Y are dependent due to the shared component of W . Since Z is
independent from both X and Y , therefore, we have X ⊥̸⊥ Y |Z. Here we set the significance level
to 0.05, and the total sample size varies from 200, 400, 600, 800 to 1000. For federated CIT, we set
the number of clients to 10, therefore, each client has 20, 40, 60, 80, or 100 samples. We run 1000
simulations and record the power of the two tests. From the result in Figure A5, we can see that
the power of our federated CIT is almost similar to that of centralized CIT. Particularly, when the
sample size reaches 1000, both of the two tests achieve power with more than 95%.

A7.9 EVALUATION ON THE ORDER OF DOMAIN INDICES

In this section, we aim to find out whether the order of domain indices will impact the results.
Theoretically, there should be no impact on the results when it takes different values because this
domain index ℧ is essentially a discrete variable (more specifically, a categorical variable, with no
numerical order among different values), a common approach to deal with such discrete variable is
to use delta kernel (based on Kronecker delta function), and therefore it is reasonable to use random
features to approximate the delta kernel for discrete variables.

Empirically, we have added one new set of experiments to evaluate whether the order of domain
indices will impact the results. We have one set of domain indices and run our FedCDH on the syn-
thetic linear Gaussian model with varying number variables d ∈ {6, 12, 18, 24, 30} while keeping
K = 10 and nk = 100, other settings are the same as those in our main paper. Then, we randomly
shuffle the indices for different domains, denoted by “FedCDH+Shuffle”.
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Figure A5: Comparison regarding the power of test between federate conditional independence test
and the centralized conditional independence test.
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Figure A6: Evaluation on the order of domain indices on linear Gaussian model. We evaluate vary-
ing number of variables d. By columns, we evaluate Skeleton F1 (↑), Skeleton SHD (↓), Direction
F1 (↑) and Direction SHD (↓).

As shown in Figure A6, the results turned out that: the performances between the two sets of dif-
ferent domain indices are quite similar, and we may conclude that it has no obvious impact on the
results when the domain indices take different values.

A8 DETAILS ABOUT THE EXPERIMENTS ON REAL-WORLD DATASET

A8.1 DETAILS ABOUT FMRI HIPPOCAMPUS DATASET

We evaluate our method and the baselines on fMRI Hippocampus (Poldrack et al., 2015). The direc-
tions of anatomical ground truth are: PHC→ ERC, PRC→ ERC, ERC→ DG, DG→ CA1, CA1
→ Sub, Sub→ ERC and ERC→ CA1. Generally, we follow a similar setting as the experiments on
synthetic datasets. For each of them, we use the structural Hamming distance (SHD), the F1 score
as evaluation criteria. We measure both the undirected skeleton and the directed graph. Here, we
consider varying number of clients K and varying number of samples in each client nk.

The results of F1 score and SHD is given in Figure A7. According to the results, we could ob-
serve that our FedCDH method generally outperformed all other baseline methods, across all the
criteria listed. The reason could be that our method is specifically designed for heterogeneous data
while some baseline methods assume homogeneity like FedPC and NOTEARS-MLP-ADMM, fur-
thermore, our method can handle arbitrary functional causal models, different from some baseline
methods that assume linearity such as FedPC. Compared with our method, FedDAG performed
much worse, the reason might be its nature of the continuous optimization, which might suffer from
various issues such as convergence and nonconvexity.
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Figure A7: Results of real-world dataset fMRI Hippocampus (Poldrack et al., 2015). By rows, we
evaluate varying number of clients K and varying number of samples nk. By columns, we evaluate
Skeleton F1 (↑), Skeleton SHD (↓), Direction F1 (↑) and Direction SHD (↓).
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Figure A8: Results of real-world dataset HK Stock Market (Huang et al., 2020). We evaluate varying
number of clients K, and we evaluate Skeleton F1 (↑), Skeleton SHD (↓), Direction F1 (↑) and
Direction SHD (↓).

A8.2 DETAILS ABOUT HK STOCK MARKET DATASET

We also evaluate on HK stock market dataset (Huang et al., 2020) (See Page 41 for more details
about the dataset). The HK stock dataset contains 10 major stocks, which are daily closing prices
from 10/09/2006 to 08/09/2010. The 10 stocks are Cheung Kong Holdings (1), Wharf (Holdings)
Limited (2), HSBC Holdings plc (3), Hong Kong Electric Holdings Limited (4), Hang Seng Bank
Ltd (5), Henderson Land Development Co. Limited (6), Sun Hung Kai Properties Limited (7),
Swire Group (8), Cathay Pacific Airways Ltd (9), and Bank of China Hong Kong (Holdings) Ltd
(10). Among these stocks, 3, 5, and 10 belong to Hang Seng Finance Sub-index (HSF), 1, 8, and 9
belong to Hang Seng Commerce and Industry Sub-index (HSC), 2, 6, and 7 belong to Hang Seng
Properties Sub-index (HSP), and 4 belongs to Hang Seng Utilities Sub-index (HSU).

Here one day can be also seen as one domain. We set the number of clients to be K∈{2, 4, 6, 8, 10}
while randomly select nk=100 samples for each client. All other settings are following previous
ones by default. The results are provided in Figure A8. According to the results, we can infer that our
FedCDH method also outperformed the other baseline methods, across the different criteria. Similar
to the analysis above, our method is tailored for heterogeneous data, in contrast to baseline methods
like FedPC and NOTEARS-MLP-ADMM, which assume homogeneity. Additionally, our approach
is capable of handling arbitrary functional causal models, setting it apart from baseline methods
like FedPC that assume linearity. When compared to our method, FedDAG exhibited significantly
poorer performance. This could be attributed to its reliance on continuous optimization, which may
encounter challenges such as convergence and nonconvexity.
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