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Abstract

Retrosynthesis planning aims to decompose target molecules into available building
blocks, forming a synthetic tree where each internal node represents an intermediate
compound and each leaf ideally corresponds to a purchasable reactant. However,
this tree becomes invalid if any leaf node is not a valid building block, making
the planning process vulnerable to the “weakest link” in the synthetic route. Ex-
isting methods often optimise for average performance across branches, failing to
account for this worst-case sensitivity. In this paper, we reframe retrosynthesis as a
worst-path optimisation problem within tree-structured Markov Decision Processes
(MDPs). We prove that this formulation admits a unique optimal solution and pro-
vides monotonic improvement guarantees. Building on this insight, we introduce
Interactive Retrosynthesis Planning (InterRetro), a method that interacts with the
tree MDP, learns a value function for worst-path outcomes, and improves its policy
through self-imitation, preferentially reinforcing past decisions with high estimated
advantage. Empirically, InterRetro achieves state-of-the-art results – solving 100%
of targets on the Retro*-190 benchmark, shortening synthetic routes by 4.9%, and
achieving promising performance using only 10% of the training data.

1 Introduction

Retrosynthesis aims to identify the reactants needed to synthesise a target molecule with desired
properties. As a fundamental task in computer-aided molecular design, retrosynthesis underpins
progress in drug discovery and materials science [4, 39]. A key challenge in retrosynthesis is
single-step prediction, which involves predicting the reactants for a given product (illustrated in
Figure 1). While recent approaches using supervised learning have achieved human-level accuracy
in this task [2, 38], their practical applicability is limited, as the suggested reactants are often
commercially unavailable. Unlike single-step prediction, multi-step planning recursively decomposes
the target into simpler intermediates, aiming to construct a synthetic route whose leaf nodes are
purchasable compounds. This process naturally forms a sequential decision-making problem, where
early decisions influence future steps and the overall outcome [7, 21].

Most methods tackle this decision-making problem using heuristic search, with Monte Carlo Tree
Search (MCTS) being widely adopted for its ability to balance exploration and exploitation [17, 23].
In this framework, a single-step retrosynthesis model suggests candidate reactions and predicts the
most likely reactants for a given product. During simulations, MCTS selects reactions by weighing
their estimated value against their exploration potential. After simulating a complete synthetic route,
the values of the decisions made along the path are updated to guide future searches more effectively.
Building on this foundation, recent studies have proposed various enhancements to improve the
exploration–exploitation trade-off or to stabilise value estimation [1, 7, 31, 37]. However, these
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methods heavily rely on time-consuming real-time search, requiring hundreds of model calls for each
molecule, limiting their practical utility in large-scale molecular design scenarios.

To improve search efficiency, recent work fine-tunes pre-trained single-step models by imitating
decisions made during successful heuristic search trajectories [9, 10, 34]. The key insight is that
reaction choices selected after look-ahead planning are often more reliable than those proposed by
the original model [22, 28]. By training on these improved decisions, the resulting policies can
propose more plausible reactions and accelerate the search for viable synthetic routes. However,
this fine-tuning process adapts the model to the distribution of molecules encountered during search,
rather than those seen in direct inference. As a result, the model may perform well when used within
the search loop but struggle to construct full synthetic routes independently, limiting its utility in
settings where fast, search-free planning is desired.

Figure 1: Single-step prediction decom-
poses a molecule into reactants, whereas
multi-step planning searches for a syn-
thetic route, aiming to reach purchasable
building blocks.

In this paper, we propose a novel perspective: reframing
retrosynthesis planning as a worst-path optimisation prob-
lem in tree-structured Markov Decision Processes (tree
MDPs). We observe that existing approaches typically
optimise for average or cumulative rewards across all root-
to-leaf paths in the synthetic tree [10, 21], overlooking a
critical insight: a synthetic route is only valid if every root-
to-leaf path terminates at a purchasable compound. Even
a single unsuccessful path invalidates the entire synthetic
route, making the worst-performing path the limiting fac-
tor in overall performance. This observation leads us to
introduce a new “worst-path” objective that focuses ex-
plicitly on improving the most challenging path in the
synthetic route.

Building on this novel formulation, we develop Interac-
tive Retrosynthesis Planning (InterRetro) — a framework
for multi-step retrosynthesis that learns to generate com-
plete synthetic routes without search at inference time.
InterRetro treats a single-step model as an agent operating
within the tree MDP, recursively decomposing molecules
into reactants through environment interactions. The agent
is improved via weighted self-imitation of its past suc-
cessful decisions to encourage shallow synthetic trees,
effectively bootstrapping its performance. In particular,
InterRetro operates in three key steps. Firstly, the agent in-
teracts with the tree MDP to construct complete synthetic
routes. Secondly, it identifies successful subtrees whose
leaf nodes correspond to commercially available compounds. Finally, it fine-tunes the policy to
imitate decisions from these subtrees, with theoretical guarantees of monotonic improvement and
convergence to a unique optimal value function. This iterative self-improvement allows InterRetro to
eliminate the need for real-time search while maintaining high planning quality.

This paper makes four key contributions: (1) we introduce the novel worst-path optimisation frame-
work for tree-structured MDPs, specifically designed for problems where the weakest component
determines the overall success; (2) we develop a weighted self-imitation learning algorithm with
monotonic improvement guarantees for optimising this worst-path objective, proving the existence
of a unique optimal solution through Bellman optimality analysis; (3) we apply this framework
to retrosynthesis through InterRetro, a search-free approach to multi-step planning; and (4) we
empirically demonstrate that InterRetro outperforms state-of-the-art (SOTA) methods in terms of
success rate (achieving up to 100% on benchmark datasets), route length (reducing steps by 4.9%),
and sample efficiency (reaching 92% of full performance with only 10% of training data).

2 Related Work

Single-step Prediction. The fundamental task in retrosynthesis is single-step prediction, which
identifies the reactants that produce a given target molecule. Early approaches are template-based,
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where reaction templates are extracted from patents and literature data [20], and a model selects
the most appropriate template to decompose a molecule [2, 3]. Later methods propose template-
free strategies, directly mapping the SMILES string of the target molecule to that of the reactants
without relying on predefined transformation patterns [8, 26]. Recent studies introduce semi-template-
based approaches, which combine both paradigms by first identifying intermediate structures and
then completing them into full reactants — either by generating leaving groups [25], SMILES
tokens [5, 32], or graph edits [30, 38]. While these single-step methods achieve high accuracy in
predicting known reactions, they typically optimise for likelihood of historical reactions rather than
synthesisability from commercially available compounds. In contrast, our approach explicitly favours
reactions that lead to purchasable building blocks, enhancing downstream planning efficiency and
practical applicability.

Multi-step Planning. Multi-step planning aims to construct a synthetic tree rooted at the target
molecule, expanded by a single-step model, and terminating at commercially available compounds.
Existing methods rely on heuristic search to find viable synthetic routes. For example, [6] formulates
the retrosynthesis problem as an AND/OR tree search and adopts proof-number search to find the
optimal solution; Retro* [1] explores the AND/OR tree using A* search and proposes value estimation
methods in this setting; To improve exploration, [23] and [37] adopt MCTS, which better balances
exploitation and exploration compared to A*. These search-based approaches, however, require
extensive computation at inference time, often necessitating hundreds of model calls per molecule.
Recent efforts such as [9] and [10] address this limitation by fine-tuning the single-step model using
successful trajectories collected during the planning phase, reducing search iterations and improving
synthesis success rates. Yet, these methods still ultimately rely on search during inference, merely
reducing rather than eliminating this computational burden.

Self-imitation Learning. Self-imitation learning improves policy performance by encouraging the
agent to replicate its own high-return past behaviours [15, 16]. A central aspect of self-imitation is the
use of support constraints — the learned policy is regularised to remain close to the data-generating
policy, which stabilises training and mitigates distributional shift [16, 29]. This principle has been
effectively applied in offline and offline-to-online reinforcement learning [14, 24, 27], where self-
imitation facilitates safe policy improvement without extensive exploration. In our work, we apply
self-imitation to retrosynthesis planning by initialising the single-step model to generate reactions
from the dataset and refining it through its past successful decisions, ensuring that its proposed
reactions remain chemically plausible throughout training while progressively favouring those that
lead to commercially available building blocks.

3 Retrosynthesis via Worst-path Optimisation in Tree MDPs

Prior work in multi-step retrosynthesis typically minimises the total cost of a synthetic route by
optimising cumulative rewards across all root-to-leaf paths in the synthetic tree. In contrast, our
worst-path objective targets the weakest path, ensuring viability by requiring all paths to terminate at
purchasable compounds. To efficiently optimise this criterion, we propose a weighted self-imitation
algorithm that leverages successful trajectories while prioritising improvement on failure-prone paths.

3.1 Tree-structured MDPs

We formalise the retrosynthesis problem as a tree-structured Markov Decision Process (tree MDP),
denoted by ⟨S,A, T , r,Sbb⟩. Each state s ∈ S represents a molecule, and each action a ∈ A
corresponds to a chemical reaction. Unlike standard MDPs, where each transition leads to a single
successor state, a chemical reaction may decompose a molecule into multiple reactants. To capture
this branching structure, we define the power set of all possible molecules as 2S and introduce a
branching transition function T : S ×A → 2S , which maps a product molecule s and a reaction a to
a set of reactants. These reactants become the children of s in the synthetic tree. The reward function
r : S → R assigns a numerical value to each molecule, and Sbb ⊂ S denotes the set of commercially
available building blocks. A synthetic tree is considered successful only if all of its leaf nodes belong
to Sbb. A policy π : S × A → [0, 1] defines a probability distribution over feasible reactions for a
molecule s, thereby determining how the synthetic tree expands. Throughout this paper, we denote a
complete synthetic tree by τ , and let P (τ) represent the set of all root-to-leaf paths within τ . The
tree MDP formulation is illustrated in Figure 3.
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Figure 3: Examples illustrating the tree MDP formulation. Each non-leaf node represents a molecule
that is decomposed into one or more reactants. Left tree: A successful synthetic route for target
molecule A. It contains 4 root-to-leaf paths: P (τ) = {ABD,ABEF,ABEGH,AC}. Since all
leaf nodes are building blocks, each path receives a value of γT , where T is the path length. The
tree’s overall value is minp∈P (τ){γ2, γ3, γ4, γ} = γ4, determined by the longest path. Right tree:
A failed synthesis attempt for molecule A. One of its paths, ABEG, terminates at G, which
is not a building block. This gives path ABEG a value of 0, making the tree’s overall value
minp∈P (τ){γ2, γ3, 0, γ} = 0, illustrating why a single failing path invalidates the entire route.

3.2 Worst-path Objective

Figure 2: Distribution of reactant counts
in the USPTO-50k dataset.

The width of synthetic trees is naturally bounded, as most
molecules can be synthesised from only a few reactants.
As shown in Figure 2, 98.6% of reactions in the USPTO-
50k dataset involve three or fewer reactants. This suggests
that the quality of a synthetic route is primarily determined
by its depth rather than its branching factor. Accordingly,
we evaluate each synthetic tree by the length of its longest
root-to-leaf path. Figure 3 illustrates this concept: the left
tree successfully synthesises molecule A, with its value
determined by the longest path, whereas the right tree
fails due to an unsynthesisable intermediate G, yielding
a return of 0.

Formally, we define the reward function as

r(s) =

{
1, if s ∈ Sbb,
0, otherwise.

(1)

This assigns a reward of 1 to commercially available building blocks and 0 otherwise. Since the
reward is non-zero only at terminal states (i.e., leaf nodes), the return of any root-to-leaf path
p = (s0, a0, s1, . . . , sT ) is

T∑
t=0

γtr(st) = γT r(sT ), (2)

where γ ∈ (0, 1) is the discount factor. Hence, a successful path with r(sT ) = 1 receives value γT ,
penalising deeper decompositions, while dead-end paths with r(sT ) = 0 yield zero return. We then
define the worst-path objective as

J(π) = Eτ∼π

[
min

p∈P (τ)

T∑
t=0

γtr(st)

]
. (3)

This objective captures the intuition that a synthetic route is only as viable as its weakest link: if any
path leads to a dead-end, the entire tree’s value becomes zero. Maximising the worst-path return
therefore encourages the policy to ensure that every branch terminates at building blocks through the
shortest possible routes.
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3.3 Advantage Estimation

To optimise the worst-path objective, the agent interacts with the tree-structured MDP and learns
to reproduce its past advantageous decisions. In this section, we formally define the advantage to
quantify how beneficial a reaction is relative to the policy’s average behaviour. We then propose
to estimate this advantage using a value function learned from interaction experiences. Finally, we
analyse its theoretical properties and establish the existence of an optimal policy that maximises the
worst-path objective.

Given a molecule s as the root node, a Q-function estimates the expected worst-path return when first
expanding s with reaction a and subsequently following policy π:

Qπ(s, a) = Eτ∼π

[
min

p∈P (τ)

T∑
t=0

γtr(st)
∣∣∣ s0 = s, a0 = a

]
. (4)

Here, s0 and a0 denote the root molecule and the initial reaction, respectively. Similarly, the value
function V π(s) represents the expected worst-path return when all subsequent reactions follow policy
π:

V π(s) = Eτ∼π

[
min

p∈P (τ)

T∑
t=0

γtr(st)
∣∣∣ s0 = s

]
. (5)

With these definitions in place, we can express the advantage function, which quantifies the relative
benefit of applying reaction a to molecule s compared to following the policy:

Aπ(s, a) = Qπ(s, a)− V π(s). (6)

A positive advantage indicates that reaction a leads to better outcomes than the policy’s average
behaviour. Proposition 1 establishes a relationship between Qπ(s, a) and V π(s):
Proposition 1. The Q-function Qπ(s, a) equals its immediate reward plus the discounted value of its
next states:

Qπ(s, a) = r(s) + γ(1− r(s)) min
s′∈T (s,a)

V π(s′). (7)

The proof is provided in Appendix B.1.

Thus, we can estimate the advantage as:

Aπ(s, a) = r(s) + γ(1− r(s)) min
s′∈T (s,a)

V π(s′)− V π(s). (8)

Next, we derive a recursive form of the value function, which forms the foundation for learning a
parameterised value function.
Proposition 2. The value function V π(s) satisfies the recursion:

V π(s) = r(s) + γ(1− r(s))
∑
a∈A

π(a | s) min
s′∈T (s,a)

V π(s′). (9)

The proof is provided in Appendix B.2.

Beyond the value functions for a given policy, we can define the optimal worst-path value function,
V ∗, which represents the maximum possible worst-path return achievable from any state.
Proposition 3. This optimal value function V ∗ uniquely satisfies the Bellman optimality equation for
the worst-path objective:

V ∗(s) = r(s) + γ(1− r(s))max
a∈A

[
min

s′∈T (s,a)
V ∗(s′)

]
, (10)

The proof is provided in Appendix B.3.

In the proof, we show that the corresponding Bellman optimality operator is a contraction mapping,
which guarantees the existence and uniqueness of V ∗ and the convergence of value iteration to V ∗.
Furthermore, there exists at least one deterministic stationary policy π∗ that is greedy with respect to
V ∗ and is therefore an optimal policy.
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3.4 Self-imitation Learning for Retrosynthesis

A key challenge in retrosynthesis is ensuring that the learned policy proposes chemically valid
reactions at each step. To address this, we constrain policy learning within the support of a pre-
trained single-step model, which can empirically capture high-fidelity chemical transformations.
Specifically, we leverage a pre-trained single-step model π0, trained to reflect expert or empirical
reaction knowledge from the dataset [38], and define the constrained policy set:

Π = {π | π(a | s) = 0 whenever π0(a | s) = 0}. (11)

By restricting π to actions that π0 assigns non-zero probability, we eliminate the risk of generating
unrealistic reactions while allowing flexibility to re-weight feasible actions based on their effectiveness
for multi-step planning.

Our objective is to find a policy π ∈ Π that maximises the worst-path objective. We achieve this
through an iterative procedure: in each iteration i, we aim to find an improved policy πi+1 by
imitating advantageous state-action pairs (s, a) experienced under policy πi. The advantage Aπi

(s, a)
quantifies this, and the learning objective for πi+1 is formulated as:

J(πi+1) = Es∼dπi (·),a∼πi(·|s)

[
exp

(
βAπi

(s, a)
)
log πi+1(a | s)

]
, (12)

where β > 0 is the advantage coefficient controlling the strength of advantage weighting, and dπi is
the state distribution induced by policy πi [29]. In this case, reactions with higher advantages receive
higher weights, guiding the policy toward better-than-average reactions.

Since each new policy πi+1 is derived by re-weighting πi, and the initial policy π0 restricts the
support, the entire policy sequence {πi}i≥0 remains within the feasible set Π [12]. This ensures that
all proposed reactions throughout training remain chemically valid.
Proposition 4. Let πi+1 be the policy obtained by optimising the objective in Eq.12. Then, the
updated policy is guaranteed to perform at least as well as the previous policy for all states:

V πi+1

(s) ≥ V πi

(s),∀s ∈ S. (13)

The proof is provided in Appendix B.4.

Proposition 4 guarantees monotonic improvement under the exact policy update:

πi+1(a | s) ∝ πi(a | s) exp
(
βAπi

(s, a)
)
, (14)

which re-weights the previous policy by the exponentiated advantages, thereby increasing the proba-
bility of actions that yield higher returns than the current expectation.

For policy optimisation, we use the current policy πi to interact with the retrosynthesis environment
and collect data to learn the next iteration’s policy πi+1. Through iterative weighted imitation, the
policy increasingly favours high-quality reactions that lead to successful synthetic routes with shorter
paths, while maintaining chemical plausibility by respecting the support of the pre-trained model.

4 The InterRetro Algorithm

We now present our algorithm InterRetro for retrosynthesis planning. Section 4.1 introduces how the
single-step model interacts with the tree MDP and collects trajectories. Section 4.2 describes how
to learn a value function on the worst-path objective and how to fine-tune the policy to reproduce
advantageous decisions. Finally, Section 4.3 provides more implementation details for reproducibility.

4.1 Environment Interactions

The EXPLORE procedure in Algorithm 1 shows how InterRetro constructs a synthetic tree by
interacting with the tree MDP. Starting from a target molecule m, the single-step model proposes a
reaction a to decompose the molecule into a set of reactants Sr. These reactants will be attached to
the parent node m in the synthetic tree. Among them, the non-building blocks are then placed in a
collection (e.g., a queue) for further expansion. Each subsequent round pops a molecule from the
collection to continue the decomposition process. The interaction terminates when the collection
becomes empty (meaning all leaf nodes are building blocks) or when a predefined maximum number
of steps is reached.
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Algorithm 1 Interactive retrosynthesis planning (InterRetro).

Input: pre-trained one-step policy πθ, value
function Vϕ, training set D, replay buffer B.

def EXPLORE(πθ, m):
1: tree← Tree(root = m)
2: q← {m}
3: step← 0
4: while q ̸= ∅ and step < max_steps do
5: s← q.pop()
6: a,Sr ← πθ.get_reactants(s)
7: tree.add_branch(s, a,Sr)
8:
9: # Add non-building blocks

10: q← q ∪ { s′ ∈ Sr | s′ /∈ Sbb }
11:
12: step← step+ 1
13: end while
14: return tree

def INTERRETRO(πθ, m):
1: for i = 1, . . . , I do
2: while D is not empty do
3: m← D.pop()
4: tree← EXPLORE(πθ,m)
5: brs← {}
6: for each subtree τ ∈ tree do
7: if τ is successful then
8: brs← brs ∪ ALLBRANCHES(τ)
9: end if

10: end for
11: B.append(brs)
12: branches← B.sample()
13: Vϕ.update(branches) ▷ Eq. 15
14: πθ.update(Vϕ, branches) ▷ Eq. 16
15: end while
16: end for

4.2 Value Function and Policy Learning

The EXPLORE procedure constructs synthetic trees by interacting with the tree MDP. We extract all
branches (s, a,Sr) within successful subtrees and store them in a first-in first-out replay buffer B for
value function and policy learning (see INTERRETRO in Algorithm 1).

To learn the value function network Vϕ with parameter ϕ, we minimise the mean squared error
between the predicted value Vϕ(s) and its Bellman target derived from Proposition 2:

L(ϕ) = E(s,a,Sr)∼B[(Vϕ(s)− (r(s) + γ(1− r(s)) min
s′∈Sr

Vϕ−(s′)))2], (15)

where Vϕ− is a target network updated slowly for stability.

The policy network πθ with pre-trained parameter θ is updated using the weighted imitation learning
objective from Eq. 12, implemented as the following loss function:

L(θ) = −E(s,a,Sr)∼B[expclip(βAϕ(s, a)) log πθ(a | s)], (16)
where β > 0 is the advantage coefficient which controls the imitation strength on the past successful
experience, and expclip(·) is the exponential function with a clipped output range (0, C] for numerical
stability. The advantage is estimated by the value function network, according to Eq. 8:

Aϕ(s, a) = r(s) + γ(1− r(s)) min
s′∈T (s,a)

Vϕ(s
′)− Vϕ(s). (17)

This joint optimisation of the value and policy networks enables InterRetro to fine-tune the single-step
model, increasing the probability of reproducing high-advantage past decisions as indicated by the
value function.

4.3 Implementation Details

We choose Graph2Edits as the single-step model due to its strong performance and flexibility in
single-step retrosynthesis prediction [38]. Graph2Edits represents a molecule through a graph and
predicts a sequence of graph edits to transform it to reactants. These graph edits can delete bonds,
modify bond types, alter atoms, or attach leaving groups (see Appendix C for more details). The
single-step model and our proposed value function encode the molecule using a message passing
neural network [33] and forward the latent code into linear layers with ReLU as the activation
function. For training, we run 6 parallel exploration processes and collect 36 synthetic trees per
iteration. The networks are updated 5 times per iteration using data from a compact replay buffer
of maximal 20, 000 branches, chosen to reduce CPU memory usage and maintain close alignment
between the data-collecting policy πi and the updated policy πi+1. Our models are trained on a single
NVIDIA RTX A5000 GPU and, without pre-training the single-step model, require approximately 48
hours to fully converge. The code has been open-sourced1.

1GitHub repository: https://github.com/MianchuWang/InterRetro.
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Table 1: Performance evaluation on three benchmarks. The evaluation metrics include the success
rate under different test molecules with different budgets of model calls, which are direct generation
(DG), 100, 200 and 500 model calls. The DG columns are single-step model’s results without search.

Retro∗-190 ChEMBL-1000 GDB17-1000

Single-step Search DG 100 200 500 DG 100 200 500 DG 100 200 500

Template MCTS 20.00 43.68 47.37 62.63 32.00 45.60 68.80 71.90 3.00 3.20 3.70 4.50
Template Retro* 20.00 38.42 58.42 75.26 32.00 69.10 72.00 74.70 3.00 5.40 6.60 7.50

LocalRetro MCTS 22.10 44.21 57.36 62.10 47.30 62.70 69.10 75.00 4.60 14.00 16.70 20.30
LocalRetro Retro* 22.10 58.94 64.73 73.68 47.30 74.80 80.40 82.40 4.60 18.90 22.20 28.80
MEGAN Retro* 8.42 60.52 62.10 73.15 38.00 71.70 75.40 79.00 6.20 37.60 45.70 57.20

Graph2Edits Retro* 16.84 41.05 50.00 56.31 47.10 68.70 78.80 80.70 5.90 18.20 24.00 32.20
Self-improve Retro* − 67.37 83.16 94.74 − − − 81.10 − − − 15.00

PDVN Retro* − 93.68 97.37 98.95 − − − 83.50 − − − 26.90
RetroCaptioner Retro* 5.26 68.94 72.63 85.26 3.90 72.60 76.50 78.70 3.20 56.20 68.20 75.20

DreamRetroer 32.10 78.94 88.42 90.52 31.10 78.10 81.70 83.10 4.20 27.36 28.97 33.20

InterRetro MCTS 95.7895.7895.78 89.47 98.94 100.00100.00100.00 93.1093.1093.10 78.40 89.30 97.50 89.0089.0089.00 80.80 96.10 99.50
InterRetro Retro* 95.7895.7895.78 96.3196.3196.31 100.00100.00100.00 100.00100.00100.00 93.1093.1093.10 91.4091.4091.40 96.2096.2096.20 98.2098.2098.20 89.0089.0089.00 83.8083.8083.80 96.5096.5096.50 97.20

5 Experimental Results

In this section, we aim to answer the following questions: (1) What are the advantages of our proposed
method compared to the SOTA algorithms? (2) How does each component of the method contribute
to the performance? Additionally, we examine the real-world feasibility of the proposed synthetic
routes and present illustrative examples in Appendix A.

5.1 Benchmark Results

The proposed method is trained by creating synthetic routes for nearly 300k molecules in the USPTO-
50k dataset with commercially available building blocks from the eMolecules dataset2. We evaluate
performance on three benchmarks of increasing difficulty: Retro*-190 [1], ChEMBL-1000 [10, 35],
and GDB17-1000 [10, 18], where the suffix indicates the dataset size. We compare against established
retrosynthesis planning methods: MCTS, Retro* [1], Self-improve [9], PDVN [10], and GraphRetro
[31]. Additionally, we include two single-step methods, MEGAN [19] and Graph2Edits [38],
combined with Retro* as the search algorithm, and two recently proposed methods, DreamRetroer
[36] and RetroCaptioner [11]. Baseline results are produced from their official implementations or
the Syntheseus project [13].

Success Rate. Success rate measures the percentage of target molecules that can be successfully
decomposed into building blocks. In Table 1, we firstly compare methods under different model-call
budgets: 100, 200, and 500. Our proposed InterRetro significantly outperforms SOTA algorithms
across all three test sets. With 500 model calls, InterRetro achieves 100%, 98.2%, and 99.5% success
rates on Retro*-190, ChEMBL-1000, and GDB17-1000, respectively. All synthetic routes generated
by InterRetro on Retro*-190 using 500 model calls are provided in the supplementary materials.

Most notably, InterRetro maintains exceptional performance on the challenging GDB17-1000 bench-
mark, where prior approaches such as PDVN and Self-improve struggle (26.9% and 15.0% respec-
tively). This dramatic performance gap suggests that our worst-path objective effectively handles
complex molecules that require precise reaction planning.

Furthermore, InterRetro can directly generate high-quality synthetic routes without any search al-
gorithm, as shown in the Direct Generation (DG) columns. Our search-free performance (95.78%,
93.10%, and 89.00% across the three benchmarks) substantially exceeds even the search-based
performance of competing methods. This demonstrates that our self-imitation learning approach suc-
cessfully transfers planning capabilities to inference time, effectively eliminating the computational
bottleneck of real-time search.

Route Length. Route length is the number of reactions needed to synthesise a target molecule. Route
length could be a concern with our worst-path objective since it does not consider the width of the
tree and the total number of reactions required. In Table 2, we compare the route length with other
baselines on the 138 target molecules that all methods can resolve. Our method outperforms the
SOTA by 4.85%.

2eMolecules: https://downloads.emolecules.com/free/.
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(a) (b) (c)

Figure 4: Experimental figures. (a) Performance under different training data usage and computation
budgets. (b) Statistics on estimated depth of synthetic trees. (c) Ablations on the advantage coefficient.

Table 2: The average length of the routes
on the Retro*-190 test set.

Algorithm Average Length
Retro* 5.83

RetroGraph 5.63
PDVN 4.83

MEGAN 4.12
Graph2Edits 4.38

InterRetro 3.923.923.92

Sample Efficiency. Sample efficiency refers to the amount
of training data required to learn an effective policy. We
evaluate the policy using subsets of the training data at 1%,
2%, 5%, 10%, and 100%, corresponding to approximately
3k, 6k, 15k, 30k, and 300k molecules. As shown in Fig-
ure 4a, InterRetro achieves near SOTA performance (92%)
with just 10% of the training set when directly generating
synthetic trees, and reaches SOTA performance when com-
bined with 200 Retro* search iterations. Notably, when
trained on the full dataset, InterRetro outperforms most
existing methods in direct generation, achieving a suc-
cess rate of 95.78%. Similar trends are observed on the
ChEMBL-1000 and GDB17-1000 benchmarks.

5.2 Ablation Studies

Value Estimation. We proposed a value function to estimate the worst-path return. The worst-path
return indicates the estimated depth of the synthetic tree: depth(s) =

log Vϕ(s)
log γ . In Figure 4b, we

investigate the distribution of the estimated depth, corresponding to the real depth by direct generation.
We found that the value function can reflect the difficulties to synthesise the molecules, while it shows
better capability on the molecules that require a less deep synthetic route.

Advantage Coefficient. The hyperparameter β controls the imitation strength on the past successful
experience. A large β means a focused imitation on the action with a high advantage. Figure 4c
shows the learning curve on the Retro*-190 test set with β ∈ {0, 1, 2, 5, 10, 20}. The figure shows
that the DG performance increases from 16% to around 80% by uniformly imitating successful past
experiences. With the advantage weighting, the performance soars to a success rate of more than
90% when β increases to 2, and more than 95% with β ≥ 10.

6 Conclusions and Discussion

We introduced InterRetro, a novel approach that frames retrosynthesis planning as worst-path optimi-
sation in tree-structured MDPs. Our weighted self-imitation algorithm enables single-step models to
generate high-quality synthetic routes without search at inference time, achieving SOTA performance
in success rate, route length, and sample efficiency.

Further investigation can proceed in three main directions. First, the worst-path objective could be
extended to incorporate additional real-world constraints, such as reaction conditions and the cost of
building blocks. Second, and perhaps most importantly, our method and other contemporary work
assume that all proposed reactions are feasible in real-world settings — an assumption that does not
always hold. Although we mitigate this by imitating only actions supported by pre-trained models,
computational approaches cannot guarantee practical feasibility without experimental validation.
Future work can therefore focus on integrating reaction feasibility checks into InterRetro. Furthermore,
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the “weakest-link” principle underlying our method is broadly applicable beyond chemistry, extending
to sequential decision problems where overall success depends on the least reliable component — for
example, in robust project planning where delays in any critical task impact the entire timeline, or in
multi-agent systems where team performance is constrained by the least capable agent.

Broader Impacts. The retrosynthesis community has recently open-sourced many high-quality
models capable of suggesting synthetic routes for a vast number of molecules — including both
beneficial drugs and potentially harmful compounds. To promote safe and ethical research, we
propose that access to such models or their source code be governed by a Responsible Use License,
under which researchers acknowledge the responsible and lawful application of the technology.
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A Case Studies

Figure 5: Predicted synthetic routes on three randomly selected molecules in Retro*-190. The yellow
circles highlight the reaction centres.

In Figure 5, we randomly select three targets from the Retro*-190 benchmark and illustrate their
complete synthetic trees as directly generated by InterRetro in a single forward pass. (i) For the
sulfonylated chiral cyclohexanol derivative, InterRetro proposes a four-step route involving: a
sulfonylation of a chiral alcohol to introduce the sulfonate ester, an electrophilic bromination of
the diazine core, a C(sp3)–C(sp2) cross-coupling to build the fused triazolopyrimidine system, and
an N-arylation to complete the final structure. (ii) For the alkyne-substituted diazine, InterRetro
constructs the target via two steps: first an acylation of the brominated azine to give the N-formyl
intermediate, followed by an SN2 N-propargylation. (iii) For the complex triazolopyridine-fused
drug-like scaffold, InterRetro suggests a three-step route: a benzylic etherification that assembles the
protected piperidine core, a C(sp³)–C(sp²) cross-coupling to append the triazolopyridine fragment,
and an N-alkylation that installs the silyl-protected side chain. Across all three cases, InterRetro
applies feasible chemical transitions and terminates in commercially available building blocks. A full
list of the synthetic routes on Retro*-190 is attached in the supplementary materials.

B Proofs and Further Theory

B.1 Proof of Proposition 1

Proof. Recall that

Qπ(s, a) = Eτ∼π

[
min

p∈P (τ)

T∑
t=0

γt r
(
st
) ∣∣∣ s0 = s, a0 = a

]
.

Since the transition function T is deterministic, taking action a in s immediately leads to the set of
next states T (s, a). Observe that r(s) is 1 if and only if s is a building block (in which case no further
transitions occur), and 0 otherwise. We prove the desired equality by a simple case distinction:
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1. Case r(s) = 1 (i.e., s is a building block). In this case, once we reach s, the path terminates and
collects reward 1. Hence

Qπ(s, a) = r(s)︸︷︷︸
=1

= r(s) + γ
(
1− r(s)

)
min

s′∈T (s,a)
V π(s′) (since 1− r(s) = 0).

2. Case r(s) = 0 (i.e., s is not a building block). Any path extending from (s, a) must proceed
into one of the next states s′ ∈ T (s, a). Because we are taking a “worst-path” (minimum-return)
perspective, the worst-case continuation value from s under action a is

min
s′∈T (s,a)

V π(s′),

and each step is discounted by γ. Therefore,

Qπ(s, a) = r(s)︸︷︷︸
=0

+ γ min
s′∈T (s,a)

V π(s′) = r(s) + γ
(
1− r(s)

)
min

s′∈T (s,a)
V π(s′).

Combining both cases completes the proof:

Qπ(s, a) = r(s) + γ
(
1− r(s)

)
min

s′∈T (s,a)
V π(s′).

B.2 Proof of Proposition 2

Proof. Recall that

V π(s) = Eτ∼π

[
min

p∈P (τ)

T∑
t=0

γt r
(
st
) ∣∣∣ s0 = s

]
.

When we are in state s, the next action a is sampled from the policy π(· | s). Because the environment
is deterministic, taking (s, a) leads to the set of next states T (s, a). By the definition of the worst-path
criterion (the inner minimum), we have

Qπ(s, a) = r(s) + γ (1− r(s)) min
s′∈T (s,a)

V π(s′),

and
V π(s) =

∑
a∈A

π(a | s) Qπ(s, a).

Substitute Qπ(s, a) into the sum:

V π(s) =
∑
a∈A

π(a | s)
[
r(s) + γ (1− r(s)) min

s′∈T (s,a)
V π(s′)

]
.

Since
∑

a∈A π(a | s) = 1, we can factor out r(s) to obtain

V π(s) = r(s)
∑
a∈A

π(a | s)︸ ︷︷ ︸
=1

+ γ (1− r(s))
∑
a∈A

π(a | s) min
s′∈T (s,a)

V π(s′).

Hence,

V π(s) = r(s) + γ
(
1− r(s)

) ∑
a∈A

π(a | s) min
s′∈T (s,a)

V π(s′),

completing the proof.
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B.3 Proof of Proposition 3

We consider the space V of all bounded real-valued functions V : S → R defined over the state space
S. For any function V ∈ V , its L∞-norm (or max-norm) is given by ∥V ∥∞ = sups∈S |V (s)|. The
space (V, ∥ · ∥∞) is a complete metric space (a Banach space).

The Bellman optimality operator B∗ : V → V for the worst-path objective, with discount factor
γ ∈ (0, 1), is defined for any value function V ∈ V and any state s ∈ S as:

(B∗V )(s) = r(s) + γ(1− r(s))max
a∈A

[
min

s′∈T (s,a)
V (s′)

]
. (18)

Note that if s ∈ Sbb, then r(s) = 1, so 1 − r(s) = 0, and (B∗V )(s) = r(s). If s /∈ Sbb, then
r(s) = 0, so 1 − r(s) = 1, and (B∗V )(s) = γmaxa∈A

[
mins′∈T (s,a) V (s′)

]
. The optimal value

function V ∗ is the unique fixed point of this operator, i.e., V ∗ = B∗V ∗.
Proposition 5. The Bellman optimality operator B∗ defined in Eq. (18) is a γ-contraction mapping
with respect to the L∞-norm. That is, for any V1, V2 ∈ V:

∥B∗V1 −B∗V2∥∞ ≤ γ∥V1 − V2∥∞.

Proof. Let V1, V2 ∈ V be two arbitrary bounded value functions. We consider any state s ∈ S.

Case 1: s ∈ Sbb. In this scenario, (B∗V1)(s) = r(s) and (B∗V2)(s) = r(s), as the second term
in Eq. (18) (involving the maximisation) vanishes because 1 − r(s) = 0. Thus, |(B∗V1)(s) −
(B∗V2)(s)| = 0. The contraction inequality 0 ≤ γ∥V1 − V2∥∞ therefore holds trivially.

Case 2: s /∈ Sbb. In this case, r(s) = 0, so 1− r(s) = 1. Then,

(B∗V1)(s) = γmax
a∈A

[
min

s′∈T (s,a)
V1(s

′)

]
,

(B∗V2)(s) = γmax
a∈A

[
min

s′∈T (s,a)
V2(s

′)

]
.

Therefore,

|(B∗V1)(s)− (B∗V2)(s)| = γ

∣∣∣∣max
a∈A

[
min

s′∈T (s,a)
V1(s

′)

]
−max

a∈A

[
min

s′∈T (s,a)
V2(s

′)

]∣∣∣∣ .
Let fV (a) = mins′∈T (s,a) V (s′). The expression is γ|maxa fV1

(a) − maxa fV2
(a)|. Using the

property that for any functions g1, g2, |maxx g1(x)−maxx g2(x)| ≤ supx |g1(x)−g2(x)|, we have:∣∣∣∣max
a∈A

fV1
(a)−max

a∈A
fV2

(a)

∣∣∣∣ ≤ sup
a∈A
|fV1

(a)− fV2
(a)|

= sup
a∈A

∣∣∣∣ min
s′∈T (s,a)

V1(s
′)− min

s′∈T (s,a)
V2(s

′)

∣∣∣∣ .
Using the property that for any functions h1, h2, |miny h1(y)−miny h2(y)| ≤ supy |h1(y)−h2(y)|:∣∣∣∣ min

s′∈T (s,a)
V1(s

′)− min
s′∈T (s,a)

V2(s
′)

∣∣∣∣ ≤ sup
s′∈T (s,a)

|V1(s
′)− V2(s

′)|.

Combining these,

|(B∗V1)(s)− (B∗V2)(s)| ≤ γ sup
a∈A

[
sup

s′∈T (s,a)

|V1(s
′)− V2(s

′)|

]
≤ γ sup

s′′∈S
|V1(s

′′)− V2(s
′′)| (as T (s, a) ⊆ S and we take sup over a)

= γ∥V1 − V2∥∞.

This inequality holds for any s /∈ Sbb.

Combining Case 1 and Case 2, for all s ∈ S:

|(B∗V1)(s)− (B∗V2)(s)| ≤ γ∥V1 − V2∥∞.
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Taking the supremum over all s ∈ S on the left side:

∥B∗V1 −B∗V2∥∞ = sup
s∈S
|(B∗V1)(s)− (B∗V2)(s)| ≤ γ∥V1 − V2∥∞.

Since 0 < γ < 1, B∗ is a γ-contraction mapping in (V, ∥ · ∥∞). The space V of bounded real-valued
functions on S , equipped with the L∞-norm, is a complete metric space (a Banach space). Therefore,
by the Banach fixed-point theorem, B∗ has a unique fixed point V ∗ ∈ V such that V ∗ = B∗V ∗.
Furthermore, for any initial bounded value function V0 ∈ V , the sequence Vk+1 = B∗Vk (i.e.,
value iteration) converges to V ∗. The existence of a unique V ∗ implies the existence of at least one
stationary deterministic optimal policy π∗ such that for s /∈ Sbb:

π∗(s) ∈ argmax
a∈A

[
min

s′∈T (s,a)
V ∗(s′)

]
.

B.4 Proof of Proposition 4

Proof. We begin by recalling a standard identity from policy improvement theory, which relates the
value difference between two policies πi+1 and πi to the expected advantage under πi+1:

V πi+1

(s)− V πi

(s) = Ea∼πi+1(·|s)

[
Aπi

(s, a)
]
,

where Aπi

(s, a) = Qπi

(s, a)− V πi

(s) is the advantage function under the behaviour policy πi.

The update rule defined by the weighted imitation objective yields a new policy πi+1 that is propor-
tional to the exponentiated advantage:

πi+1(a | s) = πi(a | s) · exp(βAπi

(s, a))

Z(s)
,

where Z(s) =
∑

a′ πi(a′ | s) · exp(βAπi

(s, a′)) is a normalising constant. This update ensures that
πi+1 remains in the same support set as πi.

Substituting into the value difference identity, we get:

V πi+1

(s)− V πi

(s) =
∑
a

πi+1(a | s) ·Aπi

(s, a) =

∑
a π

i(a | s) · exp(βAπi

(s, a)) ·Aπi

(s, a)∑
a π

i(a | s) · exp(βAπi(s, a))
.

This expression is a weighted average of the advantages Aπi

(s, a), where the weights are strictly
positive and increasing in the advantage. Therefore, unless all advantages are exactly zero, the
expectation is strictly non-negative:

V πi+1

(s) ≥ V πi

(s), ∀s ∈ S.

C Graph2Edits as Single-step Model

Graph2Edits [38] considers one-step retrosynthesis as a graph-editing game. Starting from the product
molecule, the model autoregressively predicts a short sequence of primitive edits — Delete Bond,
Change Bond, Change Atom, Attach Leaving Group, and finally a Terminate token. At each step the
current intermediate graph is embedded by a directed message-passing neural network (D-MPNN),
whose atom- and bond-level embeddings are fed to three linear heads that score every possible bond
edit, atom edit and the termination symbol. The highest-scoring edit is applied to yield the next
intermediate, and the process repeats until Terminate is chosen, at which point the intermediates have
been fully converted to the predicted reactants. This edit vocabulary, mined from training data, covers
99.9% of USPTO-50k reactions and encodes stereochemistry as well as functional leaving groups.

Trained with teacher forcing, the system already achieves a 55% top-1 exact-match accuracy on
USPTO-50k and maintains high validity and diversity even for long or stereochemically rich reactions;
these strengths make it an ideal single-step model inside our multi-step InterRetro framework.
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paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction state four contributions — worst-path optimi-
sation framework, a self-imitation algorithm with monotonic improvement guarantees, a
search-free retrosynthesis approach, and SOTA empirical results — and every one of these
is delivered and substantiated in the main text and experiments.
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made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Justification: Section 6 explicitly notes that InterRetro and contemporary works assume the
suggested reactions are experimentally feasible. We recognise this may be violated, and
recommend adding feasibility filters in future work.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All propositions are stated with assumptions and conditions in the main text,
and formal proofs are provided in Appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper gives dataset names/sizes, model-call budgets, hyper-parameters,
and a code repository link that contains the full training and evaluation code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Code is provided and all datasets used (USPTO-50k, eMolecules, Retro*-190,
ChEMBL-1000, GDB17-1000) are public.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimiser, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The core details are provided in the main text and the full details can be found
in the attached code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We quantify the impact of stochasticity by repeating every experiment with
multiple random seeds. Figure 4c reports the mean performance (solid line) together with a
shaded band that marks the 95% confidence interval computed across 4 different seeds.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In the experiments, we state that InterRetro was trained over two days using
six parallel processes on an NVIDIA RTX A5000 GPU.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The work uses only public reaction datasets and releases code under an
anonymised repository during review phase; no personal data or sensitive content is involved.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The broad impact has been discussed in the main text.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pre-trained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The dataset and the code from others are properly cited. The license and terms
of use explicitly mentioned in the code and properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The newly released InterRetro codebase is documented in the repository,
including usage instructions and dependency list.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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