
START: Self-taught Reasoner with Tool

Anonymous ACL submission

Abstract

Large reasoning models (LRMs) like OpenAI-001
o1 and DeepSeek-R1 have demonstrated re-002
markable capabilities in complex reasoning003
tasks through the utilization of long Chain-004
of-thought (CoT). However, these models of-005
ten suffer from hallucinations and inefficien-006
cies due to their reliance solely on internal007
reasoning processes. In this paper, we in-008
troduce START (Self-Taught Reasoner with009
Tool), a novel tool-integrated long CoT rea-010
soning LLM that significantly enhances rea-011
soning capabilities by leveraging external tools.012
Through code execution, START is capable013
of performing complex computations , self-014
checking, exploring diverse methods, and self-015
debugging, thereby addressing limitations of016
LRMs. The core innovation of START lies in017
its self-learning framework, which comprises018
two key techniques: 1) Hint-infer: We demon-019
strate that inserting artificially designed hints020
(e.g., “Wait, maybe using Python here is a021
good idea.”) during the inference process of022
a LRM effectively stimulates its ability to uti-023
lize external tools without the need for any024
demonstration data. Hint-infer can also serve025
as a simple and effective sequential test-time026
scaling method; 2) Hint Rejection Sampling027
Fine-Tuning (Hint-RFT): Hint-RFT combines028
Hint-infer and RFT by scoring, filtering, and029
modifying the reasoning trajectories with tool030
invocation generated by a LRM via Hint-infer,031
followed by fine-tuning the LRM. Through this032
framework, we have fine-tuned the QwQ-32B033
model to achieve the START. On PhD-level034
science QA (GPQA), competition-level math035
benchmarks (AMC23, AIME24, AIME25),036
and the competition-level code benchmark037
(LiveCodeBench), START achieves accuracy038
rates of 63.6%, 95.0%, 66.7%, 47.8%, and039
47.3%, respectively. It significantly outper-040
forms the base QwQ-32B and achieves perfor-041
mance comparable to the state-of-the-art open-042
weight model R1-Distill-Qwen-32B and the043
proprietary model o1-Preview.044

1 Introduction 045

The evolution of reasoning capabilities in large lan- 046

guage models (LLMs) has followed a paradigm 047

shift marked by increasingly sophisticated think- 048

ing patterns. The chain-of-thought (CoT) ap- 049

proach (Wei et al., 2022) pioneers this progres- 050

sion by enabling models to decompose prob- 051

lems through explicit intermediate reasoning steps. 052

Then, the breakthrough comes with reinforce- 053

ment learning exemplified by OpenAI-o1 (OpenAI, 054

2024b) and DeepSeek-R1 (DeepSeek-AI, 2025), 055

establishing a new paradigm termed long CoT, 056

which emulates human-like cognitive strategies 057

including self-refine, self-reflection, multi-strategy 058

exploration and so on. Despite these advancements, 059

fundamental limitations persist in long Chain-of- 060

thought (CoT) approaches, such as hallucinations 061

when facing complex computations or simulations, 062

primarily due to their exclusive dependence on 063

internal reasoning mechanisms. Tool-integrated 064

reasoning (TIR) (Gou et al., 2024), another ap- 065

proach that improves traditional CoT through tool 066

invocation(typically code interpreter), can effec- 067

tively mitigate the issues that arise in Long CoT. 068

Therefore, a straightforward yet important question 069

arises: How can we synergistically combine long 070

CoT with TIR? 071

In this paper, we focus exclusively on Python 072

interpreter invocation, as it is both important and 073

representative of many reasoning tasks (Shao et al., 074

2024; Yang et al., 2024). The fundamental chal- 075

lenge lies in synthesizing data that includes calls to 076

a Python interpreter within Long Chain-of-thought 077

(CoT). We have tried using direct prompt, well- 078

designed prompt (Li et al., 2025), and in-context 079

prompt (Gou et al., 2024; Schick et al., 2023) on 080

AIME24 and LivecodeBench with QwQ (Qwen 081

Team, 2024) and DeepSeek-R1, but none were 082

successful in prompting the model to invoke the 083

Python tool during the long CoT(see more in Ap- 084

1

Figure 1: Training framework for START. Training Framework for START. START’s training involves two
phases: Hint-RFT followed by RFT. a) Hint-infer: code/math data is processed by QwQ, with responses truncated
at predefined terminators. Context-aware hints from a Hint-Library are injected at truncation points (including
endpoints), and QwQ resumes inference using a code interpreter for Python execution feedback. b) Hint-RFT:
Hint-infer outputs undergo rule-based scoring, filtering, and content modification to create Dseed . QwQ is then
fine-tuned on Dseed to produce START-0, enabling self-aware tool usage. c) RFT: START-0 generates self-distilled
trajectories to build DSTART (enhancing diversity/tool-use patterns), followed by fine-tuning to produce START.

pendix A.3). A possible reason is that large rea-085

soning models(LRMs) typically focus solely on086

problem-solving during training for complex rea-087

soning tasks, resulting in a loss of generalization088

in instruction following. Considering the nature089

of next-token prediction in LRMs (LLMs), we at-090

tempt to insert some hints directly during or at the091

end of the LRMs’ reasoning process, aiming to092

directly prompt the model to write code and in-093

voke code interpreter. We are surprised to discover094

that LLMs indeed possess the corresponding capa-095

bilities. For mathematical tasks, simply inserting096

basic hints along with Python identifiers enables097

the LLM to follow the hints and write the appropri-098

ate code. In contrast, for coding generation tasks,099

carefully designed hints and code templates are100

necessary to activate the model’s ability to exe-101

cute candidate code on test cases on its own during102

the long CoT. We refer to the paradigm of LRM103

inference aided by hints as Hint-infer.104

Based on above Hint-infer, we present START:105

Self-Taught Reasoner with Tool, a LRM that syn-106

ergizes Long CoT and TIR, which we refer to as107

Long TIR. The whole traing framework is illus-108

trated in Figure1. First, we design a set of hints 109

with different functionalities based on the cogni- 110

tive characteristics of LLMs, which we refer to 111

as the Hint-Library. Figure 3 presents some rep- 112

resentative hints from the Hint Library. Second, 113

these hints are randomly inserted after certain high- 114

frequency conjunctions, such as "Alternatively" 115

and "Wait" (see more in Figure 4), because these 116

words typically indicate that the model begins to 117

introspect or seek new solutions to the problem (Li 118

et al., 2025). Additionally, we also add hints be- 119

fore the stop token of long CoT, as this approach 120

provides the LRM with more time to think without 121

disrupting its original reasoning process. We find 122

it intriguing that when hints are added before the 123

stop token of Long Chain-of-thought (CoT), the 124

model exhibits a sequential test time scaling effect; 125

that is, as the thinking time increases, the success 126

rate of problem-solving also gets higher(see more 127

in 4.5.2). Through a series of data scoring, filtering, 128

modifications, and rejection sampling fine-tuning, 129

we eventually obtain our START from QwQ. We 130

do not choose the DeepSeek-R1-Distill-Qwen se- 131

ries as the input models, as we find that they seem 132

2

Figure 2: Comparison between the responses generated by QwQ and START. This is a question from Live-
CodeBench with a difficulty level of "hard". QwQ employs long-chain CoT with self-reflection and trying different
approaches, yet hallucinates during complex test case analysis, leading to flawed solutions. START retains QwQ’s
cognitive framework but integrates code execution: (1) Runs code via interpreter, (2) Detects output mismatch, (3)
Iteratively analyzes and debugs (2 cycles), and (4) Gives the final solution.

to be prone to generating repetitive outputs and133

not good as a base model(The output is easy to be134

produce repetitive content). From Figure 2, it can135

be seen that there is a comparison between the rea-136

soning of QwQ and START. When encountering137

a complex case analysis, QwQ-32 generates hal-138

lucinations and provides incorrect answers, while139

START utilizes a code interpreter to self-debug,140

delivering the correct answer.141

Empirical evaluations across a suite of bench-142

marks encompassing mathematical problem-143

solving, scientific inquiries, coding challenges,144

and GPQA tasks demonstrate that START-RL145

markedly surpasses existing tool-integrated and146

long CoT models, including QwQ, o1-mini, and o1-147

preview. These results underscore the efficacy of148

integrating external tools into the long CoT frame-149

work, highlighting START-RL as the first open-150

source tool-integrated long CoT reasoning model151

that sets a new standard for LLM performance in152

complex reasoning domains.153

In summary, our contributions are threefold:154

• We introduce Hint-infer, a simple and effec-155

tive sequential test-time scaling method for156

.157

• We introduce Hint-RFT, a self-training frame- 158

work that enables a large language model 159

(LRM) to teach itself how to utilize code in- 160

terpreter. 161

• We present START, the first open-source 162

LRM that utilizes long CoT and code inter- 163

preter to address complex reasoning tasks. 164

2 Related Work 165

Large Language Models have demonstrated re- 166

markable dominance across numerous Natural Lan- 167

guage Processing tasks. To enhance the complex 168

reasoning capabilities of LLMs, Wei et al. (2022) 169

introduce Chain-of-Thought (CoT), which incor- 170

porates multi-step intermediate reasoning before 171

arriving at final conclusions. CoT exhibits sig- 172

nificant advantages across multiple domains, in- 173

cluding mathematics, science, and programming. 174

Subsequently, OpenAI (2023) further explore CoT 175

and propose the Long Chain-of-Thought frame- 176

work. In Long CoT, LLMs demonstrate advanced 177

cognitive behaviors such as reflection, verification, 178

correction, and multi-path exploration, thereby 179

further enhancing their problem-solving capabili- 180

ties in complex reasoning tasks. Moreover, Long 181

3

Figure 3: Hint-Library. Code generation tasks: Debug hint guides test case review and local code validation. The
code template is in A.4. Math reasoning: Domain-specific hints (e.g., Complex Calculations, Self-Reflection, Logic
Check, Alternative Methods) steer code-aided reasoning behaviors.

Figure 4: Word cloud of conjunction frequency statis-
tics from QwQ infering on Dseed.

CoT exhibits excellent test-time scaling proper-182

ties, where increased computational resources cor-183

relate with improved reasoning outcomes. Mod-184

els like QwQ (Qwen Team, 2024), DeepSeek-185

R1 (DeepSeek-AI, 2025), and InternThinker (Cai186

et al., 2024) have successfully experimented with187

Long CoT for enhanced reasoning, combining fine-188

tuning and Reinforcement Learning to elevate the189

performance of open-source reasoning models to190

unprecedented levels. Notably, subsequent mod-191

els such as Open-R1 (Huggingface, 2025) and192

S1 (Muennighoff et al., 2025a) observes significant193

benefits from Long CoT even in smaller models194

through simple distillation.195

Nevertheless, significant challenges persist, par-196

ticularly in addressing hallucination phenomena197

and computational inaccuracies that impede op-198

timal performance. Drawing parallels with hu-199

man cognition, where external aids such as scratch 200

paper and calculators substantially mitigate com- 201

putational errors, LLMs can similarly benefit 202

from the integration of auxiliary tools. Research 203

by Shao et al. (2024) demonstrates that code- 204

based pre-training protocols significantly augment 205

LLMs’ mathematical reasoning proficiency. Vari- 206

ous works successfully implemente Python-based 207

computational tools to enhance model perfor- 208

mance (Chen et al., 2023; Gou et al., 2024; Liao 209

et al., 2024; Li et al., 2024). In the domain of math- 210

ematical proof verification, the incorporation of 211

Lean yield notable advancements (Xin et al., 2024; 212

Wu et al., 2024). 213

This study synthesizes the advantages of Python- 214

based tools and long CoT methodologies, advanc- 215

ing QwQ-type long CoT models through the inte- 216

gration of tool utilization capabilities. This inte- 217

grated approach yields improved performance met- 218

rics across mathematical and coding benchmarks. 219

3 Methodology 220

3.1 Training data 221

Our training data comprises two parts: one con- 222

sists of math data sourced from previous AIME 223

4

problems 1(before 2024), MATH (Hendrycks et al.,224

2021), and Numina-MATH (LI et al., 2024), while225

the other includes code data from Codeforces 2,226

code contests 3 and LiveCodeBench(before July227

2024) (Jain et al., 2024). We apply the same de-228

contamination method as described in (Yang et al.,229

2024) to the training set in order to minimize po-230

tential test data leakage risks. There are a total of231

40K math problems and 10K code problems, and232

the specific quantity distribution can be referred to233

in Appendix A.1.234

3.2 Hint-RFT235

Construct Hint we have designed a series of236

hints(Hint-Library) tailored to the various scenar-237

ios that may arise during LLM reasoning. Since238

mathematical reasoning with tools can be quite239

complex, we develop different hints focused on240

reflection, logical verification, exploring new meth-241

ods, and more. These diverse hints enable the242

model to adopt different strategies based on the243

specific situation it encounters. For coding tasks,244

we concentrate on designing hints that promote the245

model’s self-debugging capabilities. By encourag-246

ing the model to check its code against test cases,247

it can verify the correctness of its solutions and248

make necessary adjustments as needed. We find249

that adding code template to the hint can effectively250

prompt the model to generate desired debugging251

code. Figure 3 show the hints.252

Hint-infer For mathematical reasoning, we253

strategically insert hints after specific conjunction254

tokens, such as Alternatively and Wait as these255

tokens typically indicate that the model may be256

questioning its own reasoning or considering al-257

ternative approaches. It is important to note that258

after the hints are inserted, the model continues its259

reasoning process. The generated code is then sent260

to a Python interpreter for execution, and upon ob-261

taining the results, the model proceeds to generate262

further outputs based on that information. Simi-263

larly, we can insert hints before the stop token to264

encourage the model to engage in deeper reason-265

ing based on its existing reasoning. By inserting266

hints at these critical junctures at random, we en-267

courage the model to explore a broader reasoning268

space. For code reasoning, we primarily concen-269

1https://huggingface.co/datasets/gneubig/
aime-1983-2024

2https://codeforces.com/problemset
3https://github.com/google-deepmind/code_

contests

trate on code generation tasks. We insert hints 270

that prompt the model to test its own code right 271

before the model generates the final code solution. 272

This strategic placement encourages the model to 273

engage in self-assessment, thereby enhancing the 274

accuracy and reliability of the generated code. A 275

more intuitive description is in Figure 1. 276

Data process and model fine-tuning Inspired 277

by (Lightman et al., 2024), we adopt an active 278

learning method, where we perform greedy infer- 279

ence and hint inference using QwQ on all train- 280

ing data, and we recall data from reasoning tasks 281

where QwQ would not succeed without tools, but 282

succeeded with hint inference. This is incorporated 283

into our startup data Dseed with 10K math data and 284

2K code data. It is important to note that, in addi- 285

tion to scoring the generated reasoning trajectories 286

based on the rules, we also filter out responses that 287

contain repetitive patterns. Additionally, we mod- 288

ify the Python identifiers in the code data hints to 289

"Debug Code Template" and remove the output 290

placeholders. We fine-tune QwQ based on Dseed 291

to obtain START-0. The purpose of this fine-tuning 292

step is to enable the model to learn the response 293

paradigm for utilizing tools. 294

3.3 RFT 295

To further enhance the diversity and quantity of the 296

training data, as illustrated in Figure 1, we utilize 297

the obtained START-0 to perform rejection sam- 298

pling fine-tuning on all training data. Specifically, 299

we use sampling parameters of temperature 0.6 and 300

top-p 0.95 with START-0 to perform 16 rounds of 301

sampling. We score the sampled long TIR data, 302

filter out responses with repetitive patterns, and 303

manually modify any unreasonable content. We 304

retain a maximum of one response per question, 305

resulting in our dataset DSTART. Using the 40,000 306

math data entries and 10,000 code data entries from 307

DSTART, we fine-tune QwQ once again, resulting 308

in our final LRM named START. 309

4 Experiment 310

4.1 Benchmarks 311

In this work, we primarily focus on integrating 312

Python tools into long CoT reasoning. Given 313

Python’s effectiveness in enhancing computational 314

and programming aspects of reasoning, we select 315

several representative and challenging reasoning 316

benchmarks to validate our methodology. 317

5

https://huggingface.co/datasets/gneubig/aime-1983-2024
https://huggingface.co/datasets/gneubig/aime-1983-2024
https://codeforces.com/problemset
https://github.com/google-deepmind/code_contests
https://github.com/google-deepmind/code_contests

Table 1: Main results on challenging reasoning tasks, including PhD-level science QA, math, and code benchmarks.
We report Pass@1 metric for all tasks. For models with 32B parameters, the best results are in bold and the
second-best are underlined. Symbol “†” indicates results from their official releases.

Method GPQA MATH500 AMC23 AIME24 AIME25 LiveCodeBench

General LLMs

Qwen2.5-32B 46.4 75.8 57.5 23.3 - 22.3
Qwen2.5-Coder-32B 33.8 71.2 67.5 20.0 - 25.0
Llama3.3-70B 43.4 70.8 47.5 36.7 - 34.8
DeepSeek-V3-671B 59.1 90.2 - 39.2 - 40.5
GPT-4o† 50.6 60.3 - 9.3 - 33.4

Reasoning LLMs

API Only

o1-preview† 73.3 85.5 81.8 44.6 37.5 53.6
o1-mini† - 90.0 - 63.6 50.8 -
o1† 77.3 94.8 - 74.4 - 63.4
o3-mini(low)† 70.6 95.8 - 60.0 44.2 75.6

Open weights

R1-Distill-Qwen-32B† 62.1 94.3 93.8 72.6 46.7 57.2
s1-32B† 59.6 93.0 - 50.0 33.3 -
Search-o1-32B† 63.6 86.4 85.0 56.7 - 33.0
QwQ 58.1 90.6 80.0 50.0 40.0 41.4

START 63.6(+5.5) 94.4(+3.8) 95.0(+15.0) 66.7(+16.7) 47.8(+7.8) 47.3(+5.9)

GPQA: This benchmark comprises 448318

graduate-level multiple-choice questions authored319

by experts in biology, physics, and chemistry (Rein320

et al., 2023). These questions present significant321

challenges, as even domain experts achieved less322

than 75% accuracy in testing (OpenAI, 2024b).323

Math Benchmarks: Mathematical perfor-324

mance of LLMs remains a focal point for re-325

searchers. In the mathematical domain, we se-326

lect MATH500 (Lightman et al., 2024) at the327

high school level, along with competition-level328

AMC23 4, AIME24 5 and AIME25 6 as our evalu-329

ation datasets. These datasets encompass various330

mathematical question types, including algebra,331

calculus, number theory, probability, and geometry,332

enabling a comprehensive assessment of LLMs’333

mathematical problem-solving capabilities.334

LiveCodeBench: This benchmark evaluates335

LLMs’ programming capabilities, with test cases336

categorized into easy, medium, and difficult lev-337

els (Jain et al., 2024). We choose 112 problems338

from August 2024 to November 2024 as the code339

benchmark. These questions are categorized as340

4https://huggingface.co/datasets/AI-MO/
aimo-validation-amc

5https://huggingface.co/datasets/AI-MO/
aimo-validation-aime

6https://huggingface.co/datasets/TIGER-Lab/
AIME25

hard, medium, and easy based on difficulty. 341

4.2 Baselines 342

We evaluate our approach against the following 343

baseline methods: 344

General LLMs: These methods are gen- 345

eral LLMs without the long CoT reasoning. 346

The open-source models include Qwen2.5-32B- 347

Instruct (Yang et al., 2025), Qwen2.5-Coder- 348

32B-Instruct (Hui et al., 2024),DeepSeek-V3- 349

671B (DeepSeek-AI et al., 2024), Llama3.3-70B- 350

Instruct (Dubey et al., 2024) and GPT-4o (OpenAI, 351

2024a). 352

LRMs: These methods are equipped with long 353

CoT reasoning. (1) API only: These models 354

can only be accessed through the API, includ- 355

ing o1-series (OpenAI, 2024b) and o3-mini (Ope- 356

nAI, 2025). (2) Open weights: we compare with 357

some open weights LLMs, including DeepSeek-r1 358

series (DeepSeek-AI, 2025), QwQ (Qwen Team, 359

2024), s1 (Muennighoff et al., 2025b) and Search- 360

o1 (Li et al., 2025). 361

4.3 Implementation Details 362

Responses are generated using greedy decoding 363

with a maximum sequence length of 32,768 and 364

a limit of 6 maximum tool uses. Checkpoints are 365

not selected with early stops. The training pro- 366

6

https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://huggingface.co/datasets/TIGER-Lab/AIME25
https://huggingface.co/datasets/TIGER-Lab/AIME25

cess employs full-parameter fine-tuning with Deep-367

Speed ZeRO-3 (Rajbhandari et al., 2020) optimiza-368

tion and FlashAttention2 (Dao et al., 2022). For369

MATH500,GPQA and LiveCodeBench, we report370

the greedy accuracy. For AMC23, AIME24 and371

AIME25, we report the average accuracy with tem-372

perature 0.5, top-p 0.95 and sample time 16. The373

hardware setup involves 32 NVIDIA A100 GPUs.374

Table 2: Scores on GPQA in various subjects.

Model Physics Chemistry Biology

QwQ 73.8 41.9 68.4
Search-o1 77.9 47.3 78.9
START 80.0 47.3 68.4

Table 3: Scores on questions of different difficulty levels
on LiveCodeBench.

Model Easy Medium Hard

QwQ 92.3 46.0 10.2
START 92.3 84.6 12.2

4.4 Main Results375

Table 1 presents the evaluation results of START376

across various benchmarks, demonstrating its su-377

perior reasoning performance in scientific, math-378

ematical, and coding domains compared to other379

open-source models. Overall, general LLMs, even380

domain-specific LLMs, are difficult to compete381

with LRMs in complex tasks.382

PHD-level Science QA Performance It can383

be observed that on the ScienceQA benchmark,384

START demonstrates an absolute improvement385

of 5.5% over QwQ, achieving the same score as386

the state-of-the-art model, search-o1-32B. Table387

3 presents the scores of QwQ, Search-o1, and388

START across three subjects of GPQA: Physics,389

Chemistry, and Biology. Specifically, START390

achieves the highest score in Physics, while Search-391

o1 outperforms QwQ significantly in Biology.392

This discrepancy can be attributed to the fact that393

Physics often necessitate extensive computational394

reasoning, whereas Biology primarily relies on395

knowledge-based reasoning. Consequently, the396

utilization of Python-based tools(START) yields397

more pronounced efficacy in the former disciplines,398

while the utilization of internet knowledge(search-399

o1-32B) works better on the latter.400

MATH Benchmarks Performance On the 401

MATH benchmarks, START also demonstrates 402

considerable advantages over QwQ. Specifically, it 403

achieves absolute improvements of 3.8%, 15.0%, 404

16.7% and 7.8% on the MATH500, AMC23, 405

AIME24 and AIME25, respectively. The perfor- 406

mance of START is comparable to that of R1- 407

Distill-Qwen-32B, which is distilled from 671B 408

DeepSeek-R1, and overall it exceeds o1-preview. 409

These results highlight the significant role of 410

Python-based tools in enhancing mathematical rea- 411

soning capabilities. 412

LiveCodeBench Performace On the Live- 413

CodeBench, START, by equipping the model with 414

the capability to invoke debugging tools, achieves 415

an absolute improvement of 5.9% over QwQ. We 416

find that START improves the most compared to 417

QwQ on moderately difficult questions. The pos- 418

sible reason is that for easy questions, QwQ can 419

generate the correct answers with high probability 420

without debugging, and for hard questions, based 421

on the current capabilities of the model, a limited 422

number of debugs is also difficult to solve. 423

4.5 Analysis 424

4.5.1 Long CoT vs Long TIR 425

To ascertain whether our performance gains stem 426

from the additional training questions or from the 427

tool invocation capability, we conduct an experi- 428

ment using the same set of queries from DSTART 429

but only apply RFT with QwQ. For each query, we 430

sampled 32 responses with a temperature of 0.7 431

and a top-p value of 0.95. After filtering out incor- 432

rect responses and responses with repeating strings, 433

we retain at most one response per question and get 434

the long CoT dataset DRFT. Based on DRFT, we 435

fine-tune QwQ, yielding QwQ-RFT. This method- 436

ological approach allows us to isolate the impact of 437

tool invocation from that of the expanded training 438

dataset. 439

The results presented in Table 4 indicate that 440

the performance of QwQ-RFT is nearly on par 441

with that of QwQ. Therefore, the observed per- 442

formance advantage of START is likely predomi- 443

nantly driven by its tool invocation capability, sug- 444

gesting that this feature plays a critical role in en- 445

hancing its effectiveness. 446

4.5.2 Analysis of Hint-infer 447

Compare QwQ with Hint-infer and START 448

Through Hint-RFT, we discover that QwQ in- 449

7

Table 4: Compare long cot with long tir on challenging reasoning tasks, including PhD-level science QA, math, and
code benchmarks. We report Pass@1 metric for all tasks.

Method GPQA MATH500 AMC23 AIME24 AIME25 LiveCodeBench

QwQ 58.1 90.6 80.0 50.0 40.0 41.4
QWQ-RFT 58.5 91.8 82.5 53.3 33.3 42.1

START (Ours) 63.6(+5.5) 94.4(+3.8) 95.0(+15.0) 66.7(+16.7) 47.8(+7.8) 47.3(+5.9)

Figure 5: Test time scaling for QwQ and START on challenge math bench marks via Hint-infer.

herently possesses the potential to invoke tools,450

although this capability is challenging to elicit451

through prompting alone and instead requires ex-452

plicit hints to activate. START, which is fine-453

tuned from QwQ using Hint-RFT, allows us to454

directly compare the performance of QwQ with455

Hint-infer against that of START. To avoid inter-456

rupting QwQ’s reasoning process, we only insert457

hints before the stop token of QwQ(see more in Ap-458

pendix A.4). This comparison provides a basis for459

evaluating the necessity of fine-tuning, as it helps460

to determine whether the enhanced performance of461

START is primarily due to the fine-tuning process462

or can be sufficiently achieved through hint-based463

prompting alone.464

From Table 6, it is evident that incorporat-465

ing hints during the inference process of QwQ466

leads to improvements across all benchmarks.467

However, these improvements are relatively mod-468

est compared to the gains achieved by START.469

Consequently, START, through Hint-RFT, signifi-470

cantly enhances QwQ’s tool invocation capabilities,471

demonstrating the effectiveness of fine-tuning in472

unlocking the model’s latent potential.473

Test-time scaling via Hint By inserting hints at474

the end of QwQ’s inference process, we can simul-475

taneously increase both the model’s thinking time476

and its accuracy(see Figure 5) by multiple rounds477

of inserting hint before stop token. It indicates478

that Hint-infer is a simple yet effective method for479

achieving sequential test-time scaling. Unlike the480

strategy outlined in (Muennighoff et al., 2025b),481

which merely increases the number of "wait" to-482

kens, our method augments the number of tool in- 483

vocation. The use of Hint-infer for START, on the 484

other hand, does not work as well as on QwQ, and 485

the reason behind this may be that those hints we 486

inserted were already available during the reason- 487

ing process between STARTs, reducing the amount 488

of information in the added hints. More results and 489

analysis are list in A.2. 490

5 Conclusion 491

this paper presents START, a groundbreaking tool- 492

integrated long Chain-of-Thought reasoning model 493

that effectively mitigates the limitations of exist- 494

ing large reasoning models (LRMs) through the 495

innovative integration of external tools and self- 496

learning techniques. Our contributions, namely 497

Hint-infer and Hint-RFT, showcase a novel ap- 498

proach to enhance reasoning capabilities by en- 499

abling LRM to leverage coding interpreters for 500

complex computations and self-debugging. The 501

empirical results demonstrate significant improve- 502

ments in performance across a range of challeng- 503

ing benchmarks, establishing START as a lead- 504

ing open-source solution for advanced reasoning 505

tasks. By combining long CoT with tool integra- 506

tion, START sets a new standard for the future 507

development of LLMs, paving the way for more 508

reliable and efficient reasoning in higher-level cog- 509

nitive tasks. 510

8

6 Limitations511

While our work on START demonstrates signifi-512

cant advancements in tool-integrated long Chain-513

of-Thought reasoning, it is essential to acknowl-514

edge several limitations inherent in our approach.515

Firstly, our research exclusively focuses on the516

integration of a Python interpreter as the sole ex-517

ternal tool. Although this choice was made for518

its relevance to many reasoning tasks, we believe519

that incorporating a wider variety of tools—such520

as search engines, specialized libraries, or differ-521

ent computational resources—could potentially en-522

hance the model’s performance and versatility. Fu-523

ture work could explore how diverse toolsets might524

contribute to more robust reasoning across various525

domains.526

Secondly, the manual design of hints for inser-527

tion into the long CoT reasoning process may in-528

advertently disrupt the model’s original flow of529

thought. While we aimed to strategically position530

these hints to optimize performance, the effective-531

ness of hint positioning and selection could vary532

based on the specific task or context. More nu-533

anced criteria for determining the most effective534

types and placement of hints might result in further535

improvements in reasoning fluidity and accuracy.536

Additionally, our empirical evaluations were537

conducted on a limited set of benchmarks. Al-538

though results reported demonstrate promising out-539

comes, the generalizability of our findings remains540

to be established across broader and more diverse541

datasets. The performance of START may be sensi-542

tive to variations in task complexity, domain speci-543

ficity, and the characteristics of the input data.544

Lastly, potential risks associated with the mis-545

use of the technology must be considered. The546

ability of our model to generate code or suggest547

problem-solving strategies could be inadvertently548

leveraged for malicious purposes, such as crafting549

disinformation or automating harmful tasks. It is550

crucial to implement safeguards and establish ethi-551

cal guidelines to monitor and mitigate such risks.552

In summary, while our research provides a sig-553

nificant step forward, acknowledging these limi-554

tations is essential to paving the way for future555

improvements and ensuring the responsible devel-556

opment and application of tool-integrated reason-557

ing models.558

References 559

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, 560
Keyu Chen, Xin Chen, Xun Chen, Zehui Chen, Zhi 561
Chen, Pei Chu, Xiaoyi Dong, Haodong Duan, Qi Fan, 562
Zhaoye Fei, Yang Gao, Jiaye Ge, Chenya Gu, Yuzhe 563
Gu, Tao Gui, Aijia Guo, Qipeng Guo, Conghui He, 564
Yingfan Hu, Ting Huang, Tao Jiang, Penglong Jiao, 565
Zhenjiang Jin, Zhikai Lei, Jiaxing Li, Jingwen Li, 566
Linyang Li, Shuaibin Li, Wei Li, Yining Li, Hong- 567
wei Liu, Jiangning Liu, Jiawei Hong, Kaiwen Liu, 568
Kuikun Liu, Xiaoran Liu, Chengqi Lv, Haijun Lv, 569
Kai Lv, Li Ma, Runyuan Ma, Zerun Ma, Wenchang 570
Ning, Linke Ouyang, Jiantao Qiu, Yuan Qu, Fukai 571
Shang, Yunfan Shao, Demin Song, Zifan Song, Zhi- 572
hao Sui, Peng Sun, Yu Sun, Huanze Tang, Bin Wang, 573
Guoteng Wang, Jiaqi Wang, Jiayu Wang, Rui Wang, 574
Yudong Wang, Ziyi Wang, Xingjian Wei, Qizhen 575
Weng, Fan Wu, Yingtong Xiong, Chao Xu, Ruil- 576
iang Xu, Hang Yan, Yirong Yan, Xiaogui Yang, 577
Haochen Ye, Huaiyuan Ying, Jia Yu, Jing Yu, Yuhang 578
Zang, Chuyu Zhang, Li Zhang, Pan Zhang, Peng 579
Zhang, Ruijie Zhang, Shuo Zhang, Songyang Zhang, 580
Wenjian Zhang, Wenwei Zhang, Xingcheng Zhang, 581
Xinyue Zhang, Hui Zhao, Qian Zhao, Xiaomeng 582
Zhao, Fengzhe Zhou, Zaida Zhou, Jingming Zhuo, 583
Yicheng Zou, Xipeng Qiu, Yu Qiao, and Dahua 584
Lin. 2024. Internlm2 technical report. Preprint, 585
arXiv:2403.17297. 586

Wenhu Chen, Xueguang Ma, Xinyi Wang, and 587
William W. Cohen. 2023. Program of thoughts 588
prompting: Disentangling computation from rea- 589
soning for numerical reasoning tasks. Trans. Mach. 590
Learn. Res., 2023. 591

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, 592
and Christopher Ré. 2022. FlashAttention: Fast and 593
memory-efficient exact attention with io-awareness. 594
In NeurIPS. 595

DeepSeek-AI. 2025. Deepseek-r1: Incentivizing rea- 596
soning capability in llms via reinforcement learning. 597

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingx- 598
uan Wang, Bochao Wu, Chengda Lu, Chenggang 599
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, 600
Damai Dai, Daya Guo, Dejian Yang, Deli Chen, 601
Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, 602
Fuli Luo, Guangbo Hao, Guanting Chen, Guowei 603
Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng 604
Wang, Haowei Zhang, Honghui Ding, Huajian Xin, 605
Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, 606
Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jiawei Wang, 607
Jin Chen, Jingchang Chen, Jingyang Yuan, Jun- 608
jie Qiu, Junlong Li, Junxiao Song, Kai Dong, Kai 609
Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai 610
Yu, Lean Wang, Lecong Zhang, Lei Xu, Leyi Xia, 611
Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, 612
Miaojun Wang, Mingchuan Zhang, Minghua Zhang, 613
Minghui Tang, Mingming Li, Ning Tian, Panpan 614
Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, 615
Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, 616
R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, 617
Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi Chen, 618

9

https://arxiv.org/abs/2403.17297
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf
https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf
https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf

S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang619
Chen, Shaoqing Wu, Shengfeng Ye, Shengfeng Ye,620
Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping621
Yu, Shunfeng Zhou, Shuting Pan, T. Wang, Tao622
Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding623
Zeng, Wanjia Zhao, Wei An, Wen Liu, Wenfeng624
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang,625
X. Q. Li, Xiangyue Jin, Xianzu Wang, Xiao Bi,626
Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xi-627
aokang Chen, Xiaokang Zhang, Xiaosha Chen, Xiao-628
tao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng,629
Xin Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xin-630
nan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang,631
Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li,632
Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yan-633
hong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao634
Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu,635
Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong,636
Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yix-637
uan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo,638
Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue639
Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan640
Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxi-641
ang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z.642
Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu,643
Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan644
Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhi-645
gang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu,646
Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu,647
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi648
Gao, and Zizheng Pan. 2024. Deepseek-v3 technical649
report. Preprint, arXiv:2412.19437.650

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,651
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Let-652
man, Akhil Mathur, Alan Schelten, Amy Yang, An-653
gela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo654
Yang, Archi Mitra, Archie Sravankumar, Artem Ko-655
renev, Arthur Hinsvark, Arun Rao, Aston Zhang,656
Aurélien Rodriguez, Austen Gregerson, Ava Spataru,657
Baptiste Rozière, Bethany Biron, Binh Tang, Bob-658
bie Chern, Charlotte Caucheteux, Chaya Nayak,659
Chloe Bi, Chris Marra, Chris McConnell, Christian660
Keller, Christophe Touret, Chunyang Wu, Corinne661
Wong, Cristian Canton Ferrer, Cyrus Nikolaidis,662
Damien Allonsius, Daniel Song, Danielle Pintz,663
Danny Livshits, David Esiobu, Dhruv Choudhary,664
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,665
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy,666
Elina Lobanova, Emily Dinan, Eric Michael Smith,667
Filip Radenovic, Frank Zhang, Gabriel Synnaeve,668
Gabrielle Lee, Georgia Lewis Anderson, Graeme669
Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell,670
Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Tou-671
vron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M.672
Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet,673
Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park,674
Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,675
Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,676
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang,677
Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park,678
Joseph Rocca, Joshua Johnstun, Joshua Saxe, Jun-679
teng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani,680
Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone,681

and et al. 2024. The Llama 3 herd of models. CoRR, 682
abs/2407.21783. 683

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, 684
Yujiu Yang, Minlie Huang, Nan Duan, and Weizhu 685
Chen. 2024. Tora: A tool-integrated reasoning agent 686
for mathematical problem solving. In The Twelfth In- 687
ternational Conference on Learning Representations, 688
ICLR 2024, Vienna, Austria, May 7-11, 2024. 689

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 690
Arora, Steven Basart, Eric Tang, Dawn Song, and 691
Jacob Steinhardt. 2021. Measuring mathematical 692
problem solving with the MATH dataset. In NeurIPS 693
Datasets and Benchmarks. 694

Huggingface. 2025. Open r1. 695

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day- 696
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang, 697
Bowen Yu, Keming Lu, et al. 2024. Qwen2.5-Coder 698
technical report. CoRR, abs/2409.12186. 699

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia 700
Yan, Tianjun Zhang, Sida Wang, Armando Solar- 701
Lezama, Koushik Sen, and Ion Stoica. 2024. Live- 702
CodeBench: Holistic and contamination free eval- 703
uation of large language models for code. CoRR, 704
abs/2403.07974. 705

Chengpeng Li, Guanting Dong, Mingfeng Xue, 706
Ru Peng, Xiang Wang, and Dayiheng Liu. 2024. 707
Dotamath: Decomposition of thought with code as- 708
sistance and self-correction for mathematical reason- 709
ing. CoRR, abs/2407.04078. 710

Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin, 711
Roman Soletskyi, Shengyi Costa Huang, Kashif 712
Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan 713
Qin, Bin Dong, Li Zhou, Yann Fleureau, Guillaume 714
Lample, and Stanislas Polu. 2024. Numina- 715
math. [https://github.com/project-numina/ 716
aimo-progress-prize](https://github.com/ 717
project-numina/aimo-progress-prize/blob/ 718
main/report/numina_dataset.pdf). 719

Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, 720
Yujia Zhou, Yutao Zhu, Peitian Zhang, and Zhicheng 721
Dou. 2025. Search-o1: Agentic search-enhanced 722
large reasoning models. Preprint, arXiv:2501.05366. 723

Minpeng Liao, Chengxi Li, Wei Luo, Jing Wu, and 724
Kai Fan. 2024. MARIO: math reasoning with code 725
interpreter output - A reproducible pipeline. In ACL 726
(Findings), pages 905–924. Association for Compu- 727
tational Linguistics. 728

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri- 729
son Edwards, Bowen Baker, Teddy Lee, Jan Leike, 730
John Schulman, Ilya Sutskever, and Karl Cobbe. 731
2024. Let’s verify step by step. In The Twelfth In- 732
ternational Conference on Learning Representations, 733
ICLR 2024, Vienna, Austria, May 7-11, 2024. 734

10

https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://github.com/huggingface/open-r1
[https://github.com/project-numina/aimo-progress-prize](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://github.com/project-numina/aimo-progress-prize](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://github.com/project-numina/aimo-progress-prize](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://github.com/project-numina/aimo-progress-prize](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://github.com/project-numina/aimo-progress-prize](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://github.com/project-numina/aimo-progress-prize](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://github.com/project-numina/aimo-progress-prize](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
https://arxiv.org/abs/2501.05366
https://arxiv.org/abs/2501.05366
https://arxiv.org/abs/2501.05366

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-735
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke736
Zettlemoyer, Percy Liang, Emmanuel Candès, and737
Tatsunori Hashimoto. 2025a. s1: Simple test-time738
scaling. Preprint, arXiv:2501.19393.739

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-740
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke741
Zettlemoyer, Percy Liang, Emmanuel Candès, and742
Tatsunori Hashimoto. 2025b. s1: Simple test-time743
scaling.744

OpenAI. 2023. Learning to reason with llms.745

OpenAI. 2024a. Hello GPT-4o.746

OpenAI. 2024b. Learning to reason with LLMs.747

OpenAI. 2025. Openai o3-mini.748

Qwen Team. 2024. QwQ: Reflect deeply on the bound-749
aries of the unknown.750

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,751
and Yuxiong He. 2020. Zero: Memory optimizations752
toward training trillion parameter models.753

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-754
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju-755
lian Michael, and Samuel R. Bowman. 2023. GPQA:756
A graduate-level Google-proof Q&A benchmark.757
CoRR, abs/2311.12022.758

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta759
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola760
Cancedda, and Thomas Scialom. 2023. Toolformer:761
Language models can teach themselves to use tools.762
CoRR, abs/2302.04761.763

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,764
Junxiao Song, Mingchuan Zhang, Y. K. Li, Y. Wu,765
and Daya Guo. 2024. Deepseekmath: Pushing the766
limits of mathematical reasoning in open language767
models. CoRR, abs/2402.03300.768

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten769
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,770
et al. 2022. Chain-of-thought prompting elicits rea-771
soning in large language models. Advances in Neural772
Information Processing Systems, 35:24824–24837.773

Zijian Wu, Suozhi Huang, Zhejian Zhou, Huaiyuan774
Ying, Jiayu Wang, Dahua Lin, and Kai Chen. 2024.775
Internlm2.5-stepprover: Advancing automated theo-776
rem proving via expert iteration on large-scale LEAN777
problems. CoRR, abs/2410.15700.778

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren,779
Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li, and780
Xiaodan Liang. 2024. Deepseek-prover: Advancing781
theorem proving in llms through large-scale synthetic782
data. CoRR, abs/2405.14333.783

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,784
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,785
Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jian-786
hong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,787

Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, 788
Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng 789
Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tian- 790
hao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren, 791
Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, 792
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, 793
and Zihan Qiu. 2025. Qwen2.5 technical report. 794
Preprint, arXiv:2412.15115. 795

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, 796
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian- 797
hong Tu, Jingren Zhou, Junyang Lin, et al. 2024. 798
Qwen2.5-Math technical report: Toward mathemat- 799
ical expert model via self-improvement. CoRR, 800
abs/2409.12122. 801

11

https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/openai-o3-mini/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/2412.15115

A Appendix802

A.1 Training set of START803

A.2 More results about Hint-infer804

Building upon the observed trends, the detailed805

results in Table A.2 further underscore the efficacy806

of the QWQ-Hint-infer method across diverse chal-807

lenging reasoning tasks. Specifically, for datasets808

such as aime24, aime25, gpqa, amc23, MATH500,809

and LiveCodeBench, QWQ consistently demon-810

strates performance enhancements with each subse-811

quent round of hint insertion. For instance, aime24812

improves from 50.0% in Round 0 to 60.0% in813

Round 3, and MATH500 shows a marginal yet814

steady increase from 90.6% to 92.4% over the815

same rounds. This consistent upward trend high-816

lights the method’s ability to incrementally refine817

the model’s reasoning capabilities through iterative818

hint integration.819

In contrast, the START-Hint-infer approach ex-820

hibits a more varied performance across different821

datasets. While there are improvements in some822

areas, such as amc23, where the Pass@1 metric823

reaches 95.0% by Round 3, other datasets like gpqa824

and LiveCodeBench show relatively modest gains.825

Notably, LiveCodeBench sees an increase from826

41.4% to 50.0%, which, although positive, does827

not match the consistency observed with QWQ.828

This disparity suggests that the effectiveness of829

Hint-infer may be contingent on the inherent char-830

acteristics of the dataset and the nature of the rea-831

soning tasks involved.832

Moreover, the plateauing of performance in833

some START-Hint-infer scenarios indicates poten-834

tial limitations in the method’s applicability when835

certain types of information are already encapsu-836

lated within the model’s existing reasoning pro-837

cesses. As mentioned earlier, the redundancy of838

hints in the START framework could dilute the839

incremental benefits typically associated with ad-840

ditional hint layers.841

Overall, the comparative analysis affirms that842

while Hint-infer is a robust strategy for enhancing843

model performance in the QWQ framework, its844

benefits are less pronounced in the START frame-845

work. Future work may explore adaptive hint in-846

sertion strategies tailored to specific model archi-847

tectures or task types to optimize the advantages848

of Hint-infer across different reasoning paradigms.849

Additional insights and comprehensive evaluations850

are provided in Appendix A.2.851

A.3 Prompting Methods for Data annotation 852

We investigated three common methods to trigger 853

existing reasoning LLMs to generate long CoT 854

with Python tool calls in mathematical reason- 855

ing tasks. The first method is "direct prompt," 856

which instructs the model to directly use Python 857

tools during reasoning. The second method, "well- 858

designed prompt," is derived from search-o1 (Li 859

et al., 2025) and provides detailed instructions 860

on how to use the tools; this prompt successfully 861

triggers the model to generate special tokens for 862

browser calls in search-o1. The third method is 863

"in-context prompt," which leverages examples to 864

guide the model in generating data in the same 865

format. We do not use general LLMs, as they typi- 866

cally cannot produce long CoTs. For the O1 series, 867

we can only assess whether the summary includes 868

Python tool invocation. As a result, we found that 869

neither QwQ, DeepSeek-R1, nor o1-mini could 870

successfully generate long CoTs with tool calls 871

using the three prompt-based methods. In contrast, 872

the hint-infer method was able to trigger the model 873

to produce Python code with 100% success. 874

A.4 Hint-infer for test time scaling 875

The three rounds hints of GPQA and MATH for 876

Hint-infer are: Wait, I can use Python to check 877

if my approach is correct and refine it, if neces- 878

sary.“‘python, Wait, I need to utilize Python code 879

again to meticulously check to make sure I un- 880

derstand the question correctly as well as rea- 881

soning correctly.“‘python and Wait, I can think 882

more deeply about this problem through python 883

tools.“‘python. Hints of LivecodeBench is the 884

same in Hint-Library. For code problem with 885

starter code, the code template is 886

{startcoder} 887

Test the example inputs 888

solution = Solution() 889

Example input1 890

test_input1 = ... 891

Example input2 892

test_input2 = ... 893

Print output 894

print(solution.function_name(test_input1)) 895

print(solution.function_name(test_input2)) 896

Check the output 897

''' 898

'''output 899

[...] 900

''' 901

12

Table 5: Sources of Dataset D

Source Quantity

AIME problems (before 2024) 890
MATH (Hendrycks et al., 2021) 7500
Numina-MATH (LI et al., 2024) 28505

Code Data
Codeforces 7505
Code contests 2011
LiveCodeBench (before July 2024) (Jain et al., 2024) 558

Total 49969

Table 6: Comparison of QWQ-Hint-infer and START-Hint-infer on challenging reasoning tasks, including PhD-
level science QA, math, and code benchmarks. We report Pass@1 metric for all tasks.

Dataset QWQ START
Round
0

Round
1

Round
2

Round
3

Round
0

Round
1

Round
2

Round
3

aime24 50.0% 53.3% 56.7% 60.0% 66.7% 66.7% 66.7% 66.7%
aime25 40.0% 47.8% 47.8% 53.3% 47.8% 47.8% 60.0% 60.0%
gpqa 58.5% 58.6% 59.6% 59.6% 63.6% 61.6% 60.6% 61.6%
amc23 80.0% 85.0% 90.0% 92.5% 95.0% 92.5% 95.0% 95.0%
MATH500 90.6% 92.0% 92.0% 92.4% 94.4% 95.0% 95.6% 95.2%
LiveCodeBench 41.4% 42.0% 42.0% 42.0% 47.3% 48.2% 50.0% 50.0%

For code problem without starter code, the code902

template is903

def function_name(parameters):904

#Implementation\n905

Test the example inputs906

solution = Solution()907

Example input1908

test_input1 = ...909

Example input2910

test_input2 = ...911

Print output912

print(solution.function_name(test_input1))913

print(solution.function_name(test_input2))914

Check the output915

'''916

'''output917

[...]918

'''919

13

	Introduction
	Related Work
	Methodology
	Training data
	Hint-RFT
	RFT

	Experiment
	Benchmarks
	Baselines
	Implementation Details
	Main Results
	Analysis
	Long CoT vs Long TIR
	Analysis of Hint-infer

	Conclusion
	Limitations
	Appendix
	Training set of START
	More results about Hint-infer
	Prompting Methods for Data annotation
	Hint-infer for test time scaling

