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Abstract

Prompt tuning (PT) is a promising parameter-001
efficient method to utilize extremely large002
pre-trained language models (PLMs), which003
can achieve comparable performance to full-004
parameter fine-tuning by only tuning a few005
soft prompts. However, PT requires much006
more training time than fine-tuning. Intu-007
itively, knowledge transfer can help to improve008
the efficiency. To explore whether we can im-009
prove PT via prompt transfer, we empirically010
investigate the transferability of soft prompts011
across different downstream tasks and PLMs012
in this work. We find that (1) in zero-shot013
setting, trained soft prompts can effectively014
transfer to similar tasks on the same PLM and015
also to other PLMs with a cross-model pro-016
jector trained on similar tasks; (2) when used017
as initialization, trained soft prompts of simi-018
lar tasks and projected prompts of other PLMs019
can significantly accelerate training and also020
improve the performance of PT. Moreover, to021
explore what decides prompt transferability,022
we investigate various transferability indica-023
tors and find that the overlapping rate of ac-024
tivated neurons strongly reflects the transfer-025
ability, which suggests how the prompts stim-026
ulate PLMs is essential. Our findings show027
that prompt transfer is promising for improv-028
ing PT, and further research shall focus more029
on prompts’ stimulation to PLMs. The source030
code will be publicly released.031

1 Introduction032

Pre-trained language models (PLMs), such as033

BERT (Devlin et al., 2019) and GPT (Radford et al.,034

2018) have achieved great performance on various035

natural language processing (NLP) tasks (Han et al.,036

2021). Recently, after the success of GPT-3 (Brown037

et al., 2020), people have found that extremely large038

PLMs can achieve remarkable improvements, and039

various large PLMs are continually developed (Raf-040

fel et al., 2020; Zhang et al., 2021; Zeng et al.,041

2021; Wei et al., 2021; Sun et al., 2021), which042
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Figure 1: We explore prompt transferring across dif-
ferent tasks (cross-task) and PLMs (cross-model) with
directly reusing prompts and initializing prompt tuning.

contain up to hundreds of billions of parameters. 043

Considering the extremely large scale of these 044

state-of-the-art PLMs, conventional full-parameter 045

fine-tuning methods become extremely expensive. 046

Hence, various parameter-efficient tuning meth- 047

ods (Houlsby et al., 2019; Ben Zaken et al., 2021; 048

Lester et al., 2021; Li and Liang, 2021; Liu et al., 049

2021) are explored, among which prompt tuning 050

(PT) has attracted broad research attention. PT 051

prepends some soft prompts, which are essentially 052

learnable virtual tokens, into the input sequences 053

and only train them while keeping all the PLM’s 054

parameters fixed. The training objective is to gen- 055

erate desired outputs in the same way as the pre- 056

training tasks. PT can match the downstream task 057

performance of fine-tuning with only thousands of 058

tunable parameters (Lester et al., 2021) when the 059

PLM has billions of parameters. 060

Although PT is an effective approach to utilize 061

extremely large PLMs, it requires much more train- 062

ing time than fine-tuning to reach the convergence 063

as shown in Figure 2; hence, it is worthwhile to 064

explore how to improve the efficiency of PT. In this 065

work, we attempt to improve PT via prompt trans- 066

fer across different tasks and models. Knowledge 067
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Figure 2: Validation accuracies against training time of
fine-tuning and PT for RoBERTaLARGE on MNLI. PT
takes much more training time.

transfer across tasks (Vu et al., 2020) and mod-068

els (Qin et al., 2021) have been widely used to im-069

prove the efficiency and effectiveness of NLP sys-070

tems. Intuitively, soft prompts are the only tuned071

parameters in PT and thus shall concentrate the072

knowledge required to solve tasks conditioned on073

PLMs. Hence only transferring the trained prompts074

is promising to accelerate PT.075

As shown in Figure 1, we empirically ana-076

lyze the transferability of prompts across different077

tasks (cross-task transfer setting) and PLMs (cross-078

model transfer setting) in this paper. The empirical079

analysis is conducted on 17 NLP tasks of 6 types080

and two representative PLM series: RoBERTa (Liu081

et al., 2019b) and T5 (Raffel et al., 2020). In cross-082

task transfer, the prompt transfer can be done by di-083

rectly reusing the trained prompts of the source task084

on the target task. However, in cross-model trans-085

fer, directly reusing prompts is intractable since the086

semantic spaces of different PLMs are inconsistent;087

hence, we develop various prompt projectors to088

project the soft prompts trained on the source PLM089

to the semantic space of the target PLM. We con-090

duct two lines of experiments: (1) We investigate091

the zero-shot transfer performance and find that092

the transferability of prompts is influenced by task093

types. In cross-task transfer, the soft prompts can094

directly transfer to same-type tasks and achieve095

non-trivial performance, but poorly transfer to096

different-type tasks requiring different language097

skills. In cross-model transfer, we can successfully098

train a prompt projector with PT on a task, but the099

trained projector also only well generalizes to the100

same-type tasks of the projector-training task. (2)101

To accelerate PT, we propose to transfer prompts102

with initialization. In cross-task transfer, we start103

PT with the trained soft prompts of similar tasks104

as initialization. While in cross-model transfer, the105

initialization is the projected prompts of the same106

task trained on the source PLM. The two methods107

are dubbed as TPTTASK and TPTMODEL, respectively. 108

Experiments show that they can both significantly 109

accelerate PT and also achieve a certain perfor- 110

mance improvement. 111

Furthermore, we explore why can the prompts 112

transfer and what decides their transferability. To 113

this end, we design various prompt similarity met- 114

rics from different perspectives and examine how 115

well they can serve as transferability indicators, 116

i.e., how well they correlate with prompt trans- 117

fer performance. Experiments find that the em- 118

bedding distances of prompts do not well indicate 119

prompt transferability but the overlapping rate of 120

the prompts’ activated neurons in the feed-forward 121

layers can better reflect prompt transferability. This 122

suggests the prompts are essentially stimulating 123

PLM’s inner ability distributing among neurons to 124

do specific NLP tasks, and future prompt transfer 125

works should focus more on how the PLMs re- 126

spond to different prompts’ stimulation rather than 127

the prompts’ embedding properties. 128

To summarize, our contributions are three-fold: 129

(1) We thoroughly analyze the transferability of 130

prompts across different tasks and models, and 131

show that improving PT with prompt transfer is 132

possible and promising. (2) We propose to trans- 133

fer prompts with initialization, which enhances 134

both PT’s efficiency and effectiveness. (3) We 135

explore the effectiveness of various prompt sim- 136

ilarity metrics serving as transferability indicators 137

and demonstrate how the prompts stimulate PLMs 138

to decide the transferability, which may facilitate 139

further transferrable PT research. 140

2 Related Work 141

Prompt Tuning GPT-3 (Brown et al., 2020) 142

demonstrates remarkable few-shot performance by 143

prepending textual prompts before the inputs and 144

thus help the PLM to generate desired outputs 145

of NLP tasks directly. Motivated by this, many 146

works have tried to improve various NLP tasks 147

by creating manually-crafted (Schick and Schütze, 148

2021a,b; Mishra et al., 2021) or automatically- 149

searched (Jiang et al., 2020; Shin et al., 2020; 150

Gao et al., 2021) hard prompts, which are discrete 151

tokens but not necessarily human-readable. Fur- 152

thermore, soft prompts (Li and Liang, 2021; Ham- 153

bardzumyan et al., 2021; Zhong et al., 2021; Liu 154

et al., 2021) are proposed, which are tuneable em- 155

beddings rather than tokens in the vocabularies and 156

can be directly trained with task-specific supervi- 157
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sion. Lester et al. (2021) demonstrate that prompt158

tuning (PT) method can match the performance159

of full-parameter fine-tuning when the PLM has160

billions of parameters. This suggests that PT is161

promising to utilize extremely large PLMs. How-162

ever, the much more training time needed to reach163

the convergence makes PT inefficient. In this work,164

we show that prompt transfer can remedy, improve165

the effectiveness to some extent with knowledge166

transfer, and empirically analyze the transferability167

of prompts across tasks and PLMs.168

Knowledge Transfer Cross-task knowledge169

transfer (Ruder, 2017) has been a long-standing170

way to improve the effectiveness and efficiency of171

NLP systems. In the PLM era, some works pro-172

pose to tune the PLMs on intermediate tasks (Phang173

et al., 2018; Pruksachatkun et al., 2020; Gururan-174

gan et al., 2020; Wang et al., 2019a; Vu et al., 2020;175

Poth et al., 2021) before fine-tuning on specific176

target tasks to achieve certain benefits. Vu et al.177

(2020) empirically analyze the transferability be-178

tween tasks in this setting.179

These explorations are all for fine-tuning. Con-180

sidering the potential of PT, we believe the transfer-181

ability and knowledge transfer methods for PT are182

worth exploring. As a prior attempt, Lester et al.183

(2021) demonstrate that PT’s cross-domain transfer-184

ability is stronger than fine-tuning. Similar to our185

work, concurrent work (Vu et al., 2021) explores186

the cross-task transferability of PT and improves187

performance with transfer initialization. Differ-188

ently, we attempt to improve the efficiency of PT189

and further analyze what decides the prompt trans-190

ferability by exploring various transferability indi-191

cators. Additionally, we also attempt cross-model192

transfer, which is inspired by previous cross-model193

knowledge transfer works such as Net2Net (Chen194

et al., 2016), knowledge distillation (Hinton et al.,195

2015) and knowledge inheritance (Qin et al., 2021).196

3 Preliminary197

Here we introduce the basic knowledge about PT198

(§ 3.1) as well as the downstream tasks (§ 3.2) and199

models (§ 3.3) investigated in experiments.200

3.1 Prompt Tuning201

In this work, we study the PT method that is ca-202

pable of tuning large PLMs (Li and Liang, 2021;203

Lester et al., 2021; Liu et al., 2021), i.e., we only ex-204

plore the PT method freezing PLM parameters. PT205

prepends some virtual tokens, i.e., the soft prompts,206

into the inputs of the PLM to provide knowledge 207

about downstream tasks. The soft prompts are es- 208

sentially tunable embedding vectors, which are 209

trained with the objective enforcing the PLM to 210

generate desired outputs of the downstream task in 211

the same way of the pre-training objective. 212

Formally, given an input sequence with n to- 213

kens X = {x1, x2, . . . , xn}, we first prepend 214

l randomly initialized soft prompts P = 215

{p1,p2, . . . ,pl} before them, where pi ∈ Rd is 216

an embedding vector, and d is the input dimension 217

of the PLM. The training objective is to maximize 218

the likelihood of decoding the desired output y: 219

L = p(y|P, x1, . . . , xn), (1) 220

where only P is learnable. For the language under- 221

standing tasks, y is the label token corresponding 222

to the label of X . For the conditional generation 223

tasks, y is a sequence. Especially, for the models 224

pre-trained with the masked language modeling 225

objective like RoBERTa, we additionally prepend 226

a special [MASK] token before the prompts and 227

train the prompts to let the PLM fill y into it. 228

3.2 Investigated NLP Tasks 229

To comprehensively study the prompt transferabil- 230

ity across various NLP tasks, we involve 17 di- 231

verse tasks, which can be divided into 6 types: 232

(1) Sentiment Analysis (SA), including IMDB 233

(Maas et al., 2011), SST-2 (Socher et al., 2013), 234

laptop (Pontiki et al., 2014), restaurant 235

(Pontiki et al., 2014), Movie Rationales (Movie) 236

(Zaidan et al., 2008) and TweetEval (Tweet) (Bar- 237

bieri et al., 2020); (2) Natural Language In- 238

ference (NLI), including MNLI (Williams et al., 239

2018), QNLI (Wang et al., 2019b) and SNLI (Bow- 240

man et al., 2015); (3) Ethical Judgement (EJ), in- 241

cluding deontology (Hendrycks et al., 2021) 242

and justice (Hendrycks et al., 2021); (4) 243

Paraphrase Identification (PI), including QQP 244

(Sharma et al., 2019) and MRPC (Dolan and Brock- 245

ett, 2005); (5) Question Answering (QA), includ- 246

ing SQuAD (Rajpurkar et al., 2016) and NQ-Open 247

(Lee et al., 2019); (6) Summarization (SUM), in- 248

cluding Multi-News (Fabbri et al., 2019) and 249

SAMSum (Gliwa et al., 2019). Details for these 250

tasks, evaluation metrics, label tokens, implemen- 251

tations are in appendix A. 252

3.3 Investigated Models 253

We investigate prompt transferability for two series 254

of PLMs: RoBERTa (Liu et al., 2019b) and T5 (Raf- 255

3



IM
DB

SS
T-

2
la

pt
op

re
st

au
ra

nt
M

ov
ie

Tw
ee

t
M

NL
I

QN
LI

SN
LI

de
on

to
lo

gy
ju

st
ice QQ

P
M

RP
C

Target Task

IMDB
SST-2

laptop
restaurant

Movie
Tweet
MNLI
QNLI
SNLI

deontology
justice

QQP
MRPC

random prompt

So
ur

ce
 T

as
k

100 95 65 84 101 52 37 55 37 58 63 43 82
91 100 88 92 93 66 50 59 38 61 62 57 66
76 91 100 93 84 74 38 55 37 59 63 43 84
80 92 95 100 81 70 38 55 37 59 62 44 81
98 80 70 40 100 54 37 55 37 59 62 62 69
88 94 66 90 94 100 41 55 37 59 62 43 80
55 61 70 62 61 54 100 79 62 60 62 72 81
75 53 3 69 80 54 60 100 65 59 61 65 39
55 53 64 68 58 54 87 82 100 59 62 51 84
63 54 5 5 59 58 38 55 38 100 80 48 75
55 79 64 58 82 46 38 55 37 83 100 49 51
55 53 68 8 59 54 43 58 37 59 62 100 78
59 53 3 1 59 54 38 54 36 59 62 78 100
54 52 3 2 59 54 38 55 36 58 62 46 75

(a) RoBERTaLARGE

IM
DB

SS
T-

2
la

pt
op

re
st

au
ra

nt
M

ov
ie

Tw
ee

t
M

NL
I

QN
LI

SN
LI

de
on

to
lo

gy
ju

st
ice QQ

P
M

RP
C

SQ
uA

D
NQ

-O
pe

n
M

ul
ti-

Ne
ws

SA
M

Su
m

Target Task

IMDB
SST-2

laptop
restaurant

Movie
Tweet
MNLI
QNLI
SNLI

deontology
justice

QQP
MRPC

SQuAD
NQ-Open

Multi-News
SAMSum

random prompt

So
ur

ce
 T

as
k

100 96 79 87 98 65 36 52 34 58 54 67 39 0 1 0 0
84 100 88 88 67 69 35 55 35 58 56 45 67 0 0 0 0
90 86 99 90 83 76 36 53 36 57 54 41 63 0 0 0 0
90 92 101100 81 77 36 53 33 57 57 42 68 0 0 0 0
100 91 81 87 100 68 38 53 37 62 59 55 46 0 1 0 0
96 92 99 91 84 100 33 53 36 57 56 45 67 0 0 0 0
65 81 60 45 53 43 100 81 98 57 54 41 69 1 2 4 0
62 52 69 73 52 56 59 100 64 57 54 41 69 1 1 1 0
64 66 17 20 53 22 96 76 100 57 54 70 33 0 1 1 0
53 60 41 42 53 30 37 56 36 100 74 63 59 0 0 0 0
51 50 26 19 53 55 44 52 41 58 100 41 69 0 0 0 0
51 51 26 20 53 22 36 53 36 58 54 100 78 1 0 0 0
51 50 27 20 53 21 49 56 48 58 54 84 100 0 0 0 0
73 82 69 73 60 63 40 53 38 58 58 48 62 100 20 33 33
73 75 62 47 53 55 42 58 36 56 62 51 50 16 100 23 13
62 76 26 19 53 21 39 52 36 57 54 70 33 6 25 100 28
76 77 67 75 51 57 36 53 36 57 54 43 62 14 15 67 100
52 50 26 19 53 22 35 51 35 57 54 41 69 0 0 0 0

(b) T5XXL

Figure 3: Relative zero-shot transfer performance (zero-shot transfer performance / original PT performance) (%)
on the target tasks (columns) of the soft prompts trained on the source tasks (rows) for RoBERTaLARGE and T5XXL.
Colors of the task names indicate task types. Blue: SA. Green: NLI. Brown: EJ. Orange: PI. Purple: QA. Gray:
SUM. Random Prompt of the last row means the soft prompts are randomly generated without any training.

fel et al., 2020), which represent two mainstream256

pre-training types: masked language modeling and257

sequence-to-sequence pre-training. Considering258

RoBERTa can only predict a single token (or a259

fixed length of tokens), for the conditional gener-260

ation tasks (QA and SUM) that output multiple261

tokens, we only investigate T5. We mainly report262

results for the two largest versions of PLMs, i.e.,263

RoBERTaLARGE and T5XXL. The more detailed264

results for the other sizes are attached in appendix.265

4 Cross-Task Transfer266

We empirically study the cross-task transferability267

of soft prompts (§ 4.1) and try to improve the effec-268

tiveness and efficiency of PT with transfer (§ 4.2).269

4.1 Zero-shot Transfer Performance270

To study the cross-task transferability, we first ex-271

amine PT’s zero-shot transfer performance, i.e., we272

conduct PT on a source task, then directly reuse273

the trained prompts on other target tasks and eval-274

uate their performance. The results are shown in275

Figure 31, from which we can observe that: (1) For276

the tasks within the same type, transferring soft277

prompts between them can generally perform well278

and may even outperform vanilla PT on the target279

1More results on other PLMs are left in appendix B.1.

task, especially when the source task has more data 280

(the case of transferring from IMDB to Movie in 281

Figure 3 (a) and transferring from restaurant 282

to laptop in Figure 3 (b)), which demonstrates 283

that it is promising to improve PT’s effectiveness 284

and efficiency with knowledge transfer from sim- 285

ilar tasks. (2) For the tasks of different types, the 286

transferability of soft prompts among them is gen- 287

erally poor, and transferring soft prompts often 288

achieve similar performance to randomly initial- 289

ized prompts. (3) However, some tasks can transfer 290

to different-type tasks to some extent, such as the 291

QA and SUM tasks to SA tasks in Figure 3 (b). To 292

understand this, it is worthwhile to explore what 293

controls the transferability between prompts, and 294

we do some preliminary study in § 6. 295

4.2 Transfer with Initialization 296

To improve the effectiveness and efficiency of 297

PT with cross-task transfer, we explore a cross- 298

task transferable prompt tuning (TPTTASK) method, 299

which initializes soft prompts with well-trained 300

prompts of the most similar task and then starts PT. 301

For a target task, we start TPTTASK with trained 302

prompts of the source task achieving the best zero- 303

shot transfer performance in Figure 3. From the 304

results of the performance and training time com- 305
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Task Type SA NLI EJ PI QA SUM

Task IMDB SST-2 laptop restaurant Movie Tweet MNLI QNLI SNLI deontology justice QQP MRPC SQuADNQ-Open Multi-News SAMSum

Metric Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. F1 F1 ROUGE-L ROUGE-L

RoBERTaLARGE

Performance (PT) (%) 92.2 96.1 76.4 83.7 84.9 76.1 87.3 92.4 91.9 85.6 81.0 88.9 81.2 N/A N/A N/A N/A
Performance (TPTTASK) (%) 92.4 96.3 79.1 85.8 85.1 76.1 87.9 93.1 91.9 85.6 78.2 86.1 79.2 N/A N/A N/A N/A

Convergence Speedup 1.7 1.1 1.0 1.9 1.2 0.9 1.2 1.2 1.3 0.9 0.7 0.8 0.9 N/A N/A N/A N/A
Comparable-result Speedup 2.5 2.4 1.0 3.8 1.5 1.3 1.1 2.3 1.0 0.9 N/A N/A N/A N/A N/A N/A N/A

T5XXL

Performance (PT) (%) 96.5 97.4 76.6 90.1 97.9 76.2 90.5 95.2 93.4 87.0 92.5 90.0 86.3 86.3 20.8 29.2 45.8
Performance (TPTTASK) (%) 96.6 97.8 84.2 88.6 97.5 77.0 92.0 96.2 94.0 95.3 90.7 90.9 89.0 85.9 21.3 29.3 46.8

Convergence Speedup 1.2 49.7 2.2 1.1 3.9 1.4 12.5 24.9 49.9 29.8 1.5 1.0 3.3 1.1 1.0 2.0 2.0
Comparable-result Speedup 1.2 48.9 219.8 N/A N/A 1.5 12.5 29.9 49.9 29.9 N/A 1.0 5.0 N/A 1.0 2.0 2.5

Table 1: Performance on 17 NLP tasks of vanilla prompt tuning (PT) and prompt tuning with transferring inital-
ization (TPTTASK) as well as the convergence speedup (the quotient of the training steps of PT by the training time
of TPTTASK reaching convergence) and comparable-result speedup (the quotient of the training time of PT by the
training time of TPTTASK achieving comparable performance to PT). N/A represents the tasks that RoBERTaLARGE

cannot conduct, or we fail to speed up training with TPTTASK.

parisons2 in Table 1, we can see TPTTASK can306

mostly achieve better or comparable performance307

to vanilla PT starting from random initialization,308

and TPTTASK generally takes less training time.309

5 Cross-Model Transfer310

We further study the cross-model transferability of311

soft prompts. We investigate the feasibility of cross-312

model transfer on transferring from a source PLM313

(RoBERTaLARGE) to a larger and heterogeneous tar-314

get PLM (T5XXL), which shall be the most difficult315

setting. Appendix C shows the experimental re-316

sults of other settings. Directly reusing trained317

soft prompts between different PLMs is infeasible318

since their embedding spaces are different. Hence,319

we investigate how to do cross-model prompt pro-320

jection (§ 5.1) and see the transfer performance321

(§ 5.2). Furthermore, we explore to improve PT322

with cross-model transfer initialization (§ 5.3).323

5.1 Cross-Model Prompt Projection324

To project the trained soft prompts of a PLM to the325

semantic space of a different PLM, we train pro-326

jectors with various objectives and examine their327

effectiveness. A good way to train the cross-model328

projectors may need some task-specific supervi-329

sions, but the trained projector shall generalize to330

different tasks so that the efficiency for learning the331

new tasks on the target model could be improved.332

Formally, given the prompt of the source PLM333

P s = {ps
1, . . . ,p

s
l }, we concatenate the l virtual334

tokens into a unified vector Ps ∈ Rlds . The pro-335

jector Proj(·) is to project it to P̃s ∈ Rldt in the336

semantic space of the target PLM, where ds and dt337

2Training time comparisons are left in appendix B.3.

are the input embedding dimensions of the source 338

and target PLM, respectively. We parameterize the 339

projector with a two-layer perceptron as follows: 340

P̃s=Proj(Ps)=W2(σ(P
sW1+b1))+b2, (2) 341

where W1 ∈ Rdh×lds ,W2 ∈ Rldt×dh are train- 342

able matrices, b1 ∈ Rdh ,b2 ∈ Rldt are biases, σ 343

is a non-linear activation function. We investigate 344

two learning objectives to train the projector3: 345

Distance Minimizing We firstly try to learn 346

cross-model projections by minimizing the dis- 347

tance between the projected prompt and the paral- 348

lel prompt Pt originally trained on the target PLM 349

with the same task, i.e., the training objective is to 350

minimize their L2-distance ‖Proj(Ps)−Pt‖2. 351

Task Tuning We then try to train the cross-model 352

projector with task-specific supervision signals on 353

the target PLM. Specifically, we directly tune the 354

projected prompts on some tasks and back propa- 355

gate the supervision signals to train the projector. 356

These methods rely on some tasks (parallel 357

trained soft prompts or training data) to train the 358

projector. In the experiments, we select laptop 359

and MNLI for the projector learning. 360

5.2 Zero-shot Transfer Performance 361

The zero-shot transfer performance of various 362

projector-learning methods are shown in Table 24 363

(a). We can observe that: (1) Distance Minimizing 364

works well to transfer the prompts of the projector- 365

training task, but falls back to random performance 366

on the other unseen tasks, which is not practically 367

3More projector-training details are left in appendix C.1.
4More results on other PLMs are left in appendix C.2.
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Method SA NLI EJ PI
IMDB SST-2 laptop restaurant Movie Tweet MNLI QNLI SNLI deontology justice QQP MRPC

PT on T5XXL 96.5 97.4 76.6 88.1 97.9 72.5 90.5 95.2 93.4 87.0 92.5 90.0 86.3

Random Prompt 49.7 49.0 19.8 17.0 51.6 15.5 31.8 49.3 31.9 51.3 50.0 36.4 67.0

(a) Zero-shot Transfer Performance (%)

laptop
Distance Minimizing 49.6 49.0 76.6 17.5 51.5 14.4 31.8 48.1 32.8 53.3 49.9 36.8 66.6
Task Tuning 82.9 89.3 80.3 85.7 78.6 58.4 32.4 50.7 33.6 54.9 51.6 33.9 63.7

MNLI
Distance Minimizing 49.6 50.1 19.8 18.3 51.2 15.0 90.5 49.0 32.9 50.3 49.0 36.8 65.6
Task Tuning 49.7 48.8 19.8 17.0 51.6 16.0 89.8 82.7 88.2 49.7 50.0 36.8 67.7

(b) Transfer with Initialization (TPTMODEL)

laptop
Performance (%) 96.5 97.4 82.9 90.3 97.4 74.4 91.0 95.4 93.4 92.5 92.5 90.0 87.9
Convergence Speedup 1.1 1.7 1.9 1.3 0.6 1.3 0.9 0.9 1.0 1.0 0.7 1.1 1.1
Comparable-result Speedup 1.0 19.0 16.0 6.0 N/A 2.2 3.6 1.1 6.0 6.0 0.9 1.8 3.4

MNLI
Performance (%) 96.5 97.4 82.7 88.5 95.8 74.7 91.2 95.9 93.5 94.6 92.5 90.0 87.7
Convergence Speedup 1.0 1.6 1.8 0.9 0.4 1.3 1.0 1.1 1.4 2.0 1.7 0.9 0.9
Comparable-result Speedup 1.0 18.0 15.0 1.6 N/A 1.5 18.0 20.0 30.0 7.5 5.0 1.5 1.9

Table 2: Cross-model prompt transfer (RoBERTaLARGE to T5XXL) results, including non-transfer baselines (vanilla
PT and randomly generated prompts), zero-shot transfer performance of various projectors, and TPTMODEL results
(performance, convergence speedup, and comparable-result speedup similar to Table 1).

usable. This is consistent with our findings in § 6368

that the embedding distances do not strongly corre-369

late to prompt transferability. (2) Task Tuning370

performs better and successfully generalizes to371

same-type unseen tasks of the projector-training372

tasks (e.g. NLI tasks for the projectors trained373

with MNLI), which proves the feasibility of prac-374

tical cross-model prompt transfer. (3) The projec-375

tors trained with Task Tuning still cannot work376

for different-type tasks, which may be limited by377

the cross-task prompt transferability investigated378

in § 4.1. This urges further attention on developing379

universal cross-model projections.380

5.3 Transfer with Initialization381

Similar to § 4.2, we further study whether the pro-382

jected soft prompts can initialize PT on the target383

PLM and accelerate training as well as improve384

performance. We propose cross-model transfer-385

able prompt tuning, TPTMODEL, which adopts the386

Task Tuning projectors to project the soft prompts387

trained on the source PLM into the target PLM and388

initialize PT with the projected prompts.389

The performance and speedup are shown in Ta-390

ble 2 (b). We can see that, for the tasks within391

the same type of the projector-training task, com-392

pared to vanilla PT, TPTMODEL can mostly achieve393

comparable or better performance with much less394

training time, which demonstrates that practical395

cross-model prompt transfer is promising for im-396

proving the efficiency and effectiveness of PT.397

6 Exploring Transferability Indicator 398

Based on the positive results in cross-task and cross- 399

model transfer, we explore why the soft prompts 400

can transfer across tasks and what decides the trans- 401

ferability between them, which may shed light on 402

the mechanisms behind PT and help to design trans- 403

ferable PT methods. We explore various prompt 404

similarity metrics and examine how well do they 405

align with the zero-shot transfer performance. If 406

a similarity metric can well indicate transferabil- 407

ity, it suggests the factors considered in designing 408

this metric decide the prompt transferability. More- 409

over, the prompt similarity metrics can qualify task 410

similarities using the trained soft prompts as task 411

embeddings and may help in developing cross-task 412

transfer methods. As a straightforward example, if 413

we build a prompt warehouse containing prompts 414

of diverse tasks, we can retrieve prompts of similar 415

tasks for a new task with a certain similarity metric 416

and better improve PT with TPTTASK. 417

6.1 Prompt Similarity Metric 418

We explore the following two kinds of metrics: 419

Embedding Similarity We firstly regard the 420

trained soft prompts as only embeddings in the vec- 421

tor space and calculate their Euclidean similarity 422

and cosine similarity. 423

Given two groups of trained prompts contain- 424

ing l virtual tokens: P t1 = {pt1
1 , . . . ,p

t1
l } and 425

P t2 = {pt2
1 , . . . ,p

t2
l }, which correspond to tasks 426

t1 and t2. Firstly, we concatenate the l virtual to- 427

kens for each group and get two concatenation em- 428
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beddings Pt1 ,Pt2 ∈ Rld, then we compute Eu-429

clidean similarity and cosine similarity of them:430

431

Econcat(P
t1 , P t2) =

1

1 + ‖Pt1 −Pt2‖ ,

Cconcat(P
t1 , P t2) =

Pt1 ·Pt2

‖Pt1‖‖Pt2‖ .
(3)432

We further explore a simple way to make the433

metrics invariant to token positions. We compute434

Euclidean distances and cosine similarities for ev-435

ery virtual token pairs in the two groups and use436

the averaged results in the final similarity metrics:437

Eaverage(P
t1 , P t2) =

1

1 + 1
l2

l∑
i=1

l∑
j=1

‖pt1
i − pt2

j ‖
,

Caverage(P
t1 , P t2) =

1

l2

l∑
i=1

l∑
j=1

pt1
i · p

t2
j

‖pt1
i ‖‖p

t2
j ‖

.

(4)438

Model Stimulation Similarity In the second439

way, we depict their similarities based on how they440

stimulate the PLMs, i.e., we examine the similar-441

ities between the responses of PLMs to the two442

soft prompts. Motivated by Geva et al. (2021) and443

Dai et al. (2021), which both find that the activa-444

tion of the neurons in the feed-forward layers of445

Transformers (Vaswani et al., 2017) corresponds446

to specific model behaviors, we propose to use the447

overlapping rate of activated neurons as a simi-448

larity metric of prompts. Specifically, the feed-449

forward network FFN(·) in a Transformer layer is:450

451

FFN(x) = max(xW>
1 + b1,0)W2 + b2, (5)452

where x ∈ Rd is the input embedding, W1,W2 ∈453

Rdm×d are trainable matrices, and b1,b2 are bias454

vectors. The max(xW>
1 + b1,0) can be regarded455

as the non-negative activation values for dm hidden456

neurons (Geva et al., 2021). We then change all the457

positive elements of max(xW>
1 + b1,0) to 1 and458

get the one-hot activation state vector s.459

We feed an input sequence {P,<s>} into the460

PLMs, where <s> is the special token indicating461

the start of a sentence. For RoBERTa, a [MASK]462

is additional prepended. This sequence is in the463

format of PT inputs but without specific input sen-464

tences. We use the activation states of the posi-465

tions used to decode outputs, which shall be more466

task-specific. Specifically, for T5, we use the de-467

coder module’s activation states at the first posi-468

tion. For RoBERTa, we use the activation states469

of [MASK]. Finally, we concatenate the activation470

Model Metric Same
Task

Different
Tasks

RoBERTaLARGE

Econcat 9.4 6.8
Eaverage 41.6 37.6
Cconcat 47.6 31.7
Caverage 1.7 1.1
ON 39.4 21.4

T5XXL

Econcat 0.5 0.3
Eaverage 4.0 3.4
Cconcat 29.4 3.4
Caverage 4.0 2.1
ON 62.0 46.1

Table 3: The average values (%) of the 5 similarity met-
rics for prompt pairs of the same task (trained with 3
different random seeds) and different tasks.

Metric RoBERTaLARGE T5XXL

Econcat 22.6 12.9
Eaverage 2.8 −2.5
Cconcat 24.8 31.6
Caverage 44.7 33.5
ON 49.7 36.9

Table 4: The Spearman’s rank correlation scores (%)
between various similarity metrics and cross-task zero-
shot transfer performance of soft prompts.

states of PLM’s L layers to get the overall activa- 471

tion states: 472

AS(P ) = [s1; s2; ...; sL]. (6) 473

We can only retrieve the activation states of a 474

part of layers in the similarity computation. In 475

experiments, we find that the higher layers tend 476

to be more task-specific, which is consistent with 477

the probing results (Liu et al., 2019a). Hence we 478

use the activation states of the top 3 layers5 in ex- 479

periments below. We calculate the overlapping 480

rate of activated neurons ON(P t1 , P t2) between 481

the trained soft prompts of task t1 and t2 with the 482

cosine similarity: 483

ON(P t1 , P t2) =
AS(P t1) ·AS(P t2)

‖AS(P t1)‖‖AS(P t2)‖
. (7) 484

6.2 Experimental Results 485

To evaluate the effectiveness of the above similarity 486

metrics of soft prompts, we (i) test whether the sim- 487

ilarity metrics can distinguish the trained prompts 488

of the same tasks and different tasks, and (ii) exam- 489

ine whether these metrics align with the zero-shot 490

transfer performance. 491

5More results about the different layers’s performance are
left in appendix D.4.
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Figure 4: Spearman’s correlation scores of ON and
Caverage with cross-task zero-shot transfer perfor-
mance change along with the parameter size of T5.

Regarding (i), we compare the similarities of the492

investigated metrics for two trained prompts within493

the same task (trained with different random seeds)494

and between different tasks in Table 3. From the495

results, we can observe that all the metrics work496

well to distinguish the prompts of the same task497

and different tasks. This suggests that the trained498

soft prompts of different tasks form distinguishable499

clusters in the embedding space and also stimulate500

different abilities within the PLM.501

Moreover, to evaluate (ii), how well the sim-502

ilarity metrics align with the cross-task transfer503

performance, we quantify the correlations between504

the similarities and zero-shot transfer performance505

in Figure 3. Specifically, for each target task’s506

prompt, we rank various source tasks’ prompts507

with similarity scores and zero-shot transfer perfor-508

mance and then compute the Spearman’s rank cor-509

relation (Spearman, 1987) between the two ranks510

generated by these two ways. The overall results511

are shown in Table 46. We can see that: (1) The512

overlapping rate of activated neurons (ON) metric513

works better than all the embedding similarities,514

which suggests that model stimulation is more im-515

portant for prompt transferability than embedding516

distances. (2) ON works much worse on T5XXL517

(11B parameters) than on RoBERTaLARGE (330M518

parameters). We guess this is because larger PLMs519

have higher redundancy (Aghajanyan et al., 2021),520

which means prompts can activate different redun-521

dant neurons to do similar jobs and thus influence522

the sensitivity of ON metric. This is supported523

by the experiments showing that the Spearman’s524

correlation scores of ON drop with the increase525

of PLM scales (Figure 4). We encourage future526

work to explore how to overcome the PLM redun-527

dancy for better transferrable PT. As a preliminary528

6The detailed results by task types are left in appendix D.2.

Projector Task Caverage ON

Task Tuning
(laptop)

laptop 3.8 52.4
Same-Type Tasks 4.1 51.0
Different-Type Tasks 3.4 46.0

Task Tuning
(MNLI)

MNLI 2.7 70.7
Same-Type Tasks 2.7 56.7
Different-Type Tasks 4.1 53.4

Table 5: Similarities (%) between the prompts pro-
jected with Task Tuning projector and the original
prompts trained on T5XXL.

trial, we find that by taking the intersection of ac- 529

tivation states of 3 prompts trained with different 530

random seeds, ON’s correlation score on T5XXL 531

raises from 36.9% to 46.3%. 532

We further explore whether the prompt simi- 533

larity metrics also work in the cross-model trans- 534

fer setting by testing whether they work between 535

the projected prompts and original prompts of the 536

same task. In Table 5, we show the similarities of 537

prompts projected with Task Tuning projectors by 538

the two best metrics Caverage and ON. We can see: 539

(1) ON metric shows that the projected prompts 540

are highly similar to the original prompts within 541

the same type of projector-training tasks but are 542

not so similar to different-type tasks, which is quite 543

consistent with the cross-model zero-shot transfer 544

performance in Table 2. (2) However, Caverage can- 545

not reflect this phenomena, which shows that the 546

perspective of model stimulation is more promising 547

for understanding transferability again. 548

7 Conclusion 549

We empirically investigate the transferability of 550

prompts in this paper. In the cross-task setting, 551

we find that soft prompts can transfer to similar 552

tasks without training. In the cross-model setting, 553

we successfully project prompts into the space of 554

other PLMs. Further, we utilize trained prompts 555

of other tasks or other PLMs as initialization to 556

significantly accelerate training and improve effec- 557

tiveness. Moreover, we explore various prompt 558

transferability indicators and show that how the 559

prompts stimulate PLMs are important to trans- 560

ferability. We hope the empirical analyses and 561

the model stimulation idea can facilitate further 562

research on transferable and efficient PT. 563
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A Basic Setup for Various Tasks933

A.1 Dataset and Task934

Sentiment Analysis (SA) Given a sentence, a935

PLM will identify the opinions in this sentence.936

We choose IMDB (Maas et al., 2011), SST-2937

(Socher et al., 2013), SemEval/laptop (Pon-938

tiki et al., 2014), SemEval/restaurant (Pontiki939

et al., 2014), Movie Rationales (Movie) (Zaidan940

et al., 2008), and TweetEval (Tweet) (Barbieri941

et al., 2020) to analyze.942

Natural Language Inference (NLI) Given a943

premise and hypothesis pair, a PLM determines944

whether the hypothesis is entailed, contradict, or945

undetermined by the premise. We choose MNLI946

(Williams et al., 2018), QNLI (Wang et al., 2019b),947

and SNLI (Bowman et al., 2015) to analyze.948

Ethical Judgement (EJ) Given a sentence, a949

PLM judges whether it is ethically acceptable. We950

choose Ethics/deontology (Hendrycks et al.,951

2021) and Ethics/justice (Hendrycks et al.,952

2021) to analyze.953

Paraphrase Identification (PI) Given a pair of954

sentences, a PLM judges whether they are seman-955

tically identical. We choose QQP (Sharma et al.,956

2019) and MRPC (Dolan and Brockett, 2005) to957

analyze.958

Question Answering (QA) Given a question, a959

PLM answer the question. We choose SQuAD (Ra-960

jpurkar et al., 2016) and NQ-Open (Lee et al.,961

2019) to analyze. For SQuAD, a PLM finds the962

answer from the content. As for NQ-Open, a PLM963

directly generates the answer without the content.964

Summarization (SUM) Given an article, a PLM965

summarizes it. We choose Multi-News (Fabbri966

et al., 2019), and SAMSum (Gliwa et al., 2019) to967

analyze.968

A.2 Evaluation Metrics969

For SA, NLI, EJ, and PI tasks, we choose accuracy970

(Acc.) as their evaluation metric in the experiments.971

For QA and SUM tasks, we utilize F1 and ROUGE-972

L (Lin, 2004), respectively.973

A.3 Prompt Tuning Setting974

In the experiments, for all the investigated tasks,975

we use AdamW (Loshchilov and Hutter, 2019) as976

the optimizer and set the learning rate as 0.001. We977

set the length of soft prompts l as 100. All the soft978

prompts are randomly initialized and optimized 979

with Equation 1. In the inference stage, RoBERTa 980

predicts the label tokens at the [MASK] position and 981

T5 directly uses its decoder to do generation. 982

A.4 Label Tokens 983

The used label tokens for the classification tasks 984

(SA, NLI, EJ, PI) are shown in Table 6. For gener- 985

ation tasks (QA, SUM), the desired output is just 986

the annotated answers. 987

Task Label Tokens

Sentiment Analysis (SA)

IMDB positive, negative
SST-2 positive, negative
laptop positive, moderate, negative
restaurant positive, moderate, negative
Movie positive, negative
Tweet positive, moderate, negative

Natural Language Inference (NLI)

MNLI yes, neutral, no
QNLI yes, no
SNLI yes, neutral, no

Ethical Judgement (EJ)

deontology acceptable, un
justice acceptable, un

Paraphrase Identification (PI)

QQP true, false
MRPC true, false

Table 6: Label tokens of classification tasks.

B Cross-Task Transfer 988

B.1 More Zero-shot transfer performance 989

In § 4.1, we report the zero-shot transfer perfor- 990

mance (relative performance) on RoBERTaLARGE 991

and T5XXL. Here, we investigate the zero-shot 992

transfer performance on other sizes of RoBERTa 993

and T5, which are shown in Figure 5. According 994

to these results, we can find that the transferabil- 995

ity of soft prompts between the tasks of different 996

types is generally poor, which is consistent with 997

the conclusion in § 4.1. 998

B.2 Unifying Label Tokens 999

We hypothesize that the poor transferability be- 1000

tween different task types may result from the fact 1001

that different-type tasks usually use different label 1002

tokens, e.g., yes and no are for NLI tasks while 1003

positive and negative are for SA tasks. To 1004

verify whether this factor influences the transfer- 1005

ability, we unify the label tokens of different tasks 1006

into the same set of numbers (1, 2, . . .) and choose 1007
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100 96 84 90 101 56 70 66 58 79 87 86 60 0 0 0 0
94 100 87 93 92 63 85 84 77 77 86 87 57 0 0 0 0
82 86 100 94 79 82 48 64 44 82 86 64 63 0 0 0 0
88 88 86 100 76 77 47 70 44 82 86 82 50 0 0 0 0
90 88 74 84 100 46 63 62 53 81 87 90 66 0 0 0 0
87 86 91 93 88 100 45 56 44 83 86 61 73 0 0 0 0
77 84 79 84 72 46 100 85 89 83 86 68 81 0 0 0 0
77 84 4 2 71 56 73 100 72 83 86 56 89 1 0 0 0
69 69 64 63 71 26 97 84 100 83 86 100 70 0 0 0 0
60 52 30 24 67 26 45 56 44 100 89 54 88 0 0 0 0
74 62 61 60 73 29 45 56 44 91 100 52 86 0 0 0 0
59 52 33 26 69 24 45 56 44 83 86 96 42 0 0 0 0
59 56 48 42 69 24 45 56 44 83 86 90 100 0 0 0 0
78 82 68 67 81 62 47 56 44 77 84 64 69 100 16 49 29
75 81 65 40 79 64 45 56 44 82 86 64 61 8 100 60 45
59 54 28 27 68 36 45 56 44 83 86 75 51 7 32 100 48
74 76 61 67 76 53 45 56 44 81 87 70 57 9 21 71 100
83 68 66 72 81 52 45 56 44 83 86 61 65 7 0 61 22
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(c) RoBERTaBASE

IM
DB

SS
T-

2
la

pt
op

re
st

au
ra

nt
M

ov
ie

Tw
ee

t
M

NL
I

QN
LI

SN
LI

de
on

to
lo

gy
ju

st
ice QQ

P
M

RP
C

Target Task

IMDB
SST-2

laptop
restaurant

Movie
Tweet
MNLI
QNLI
SNLI

deontology
justice

QQP
MRPC

random prompt

So
ur

ce
 T

as
k

100 95 65 84 101 52 37 55 37 58 63 43 82
91 100 88 92 93 66 50 59 38 61 62 57 66
76 91 100 93 84 74 38 55 37 59 63 43 84
80 92 95 100 81 70 38 55 37 59 62 44 81
98 80 70 40 100 54 37 55 37 59 62 62 69
88 94 66 90 94 100 41 55 37 59 62 43 80
55 61 70 62 61 54 100 79 62 60 62 72 81
75 53 3 69 80 54 60 100 65 59 61 65 39
55 53 64 68 58 54 87 82 100 59 62 51 84
63 54 5 5 59 58 38 55 38 100 80 48 75
55 79 64 58 82 46 38 55 37 83 100 49 51
55 53 68 8 59 54 43 58 37 59 62 100 78
59 53 3 1 59 54 38 54 36 59 62 78 100
54 52 3 2 59 54 38 55 36 58 62 46 75

(d) RoBERTaLARGE

Figure 5: Relative performance (transferring zero-shot performance / original PT performance) (%) on the target
tasks (columns) of the soft prompts trained on the source tasks (rows), both of which demonstrate the relative
performance for zero-shot transfer of prompts of RoBERTa and T5. Colors of the tasks names indicate the task
types. Blue: sentiment analysis (SA). Green: natural language inference (NLI). Brown: ethical judgement (EJ).
Orange: paraphrase identification (PI). Purple: question answering (QA). Gray: summarization (SUM). Random
Prompt of the last row means the soft prompts are randomly generated without any training.
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(a) Directly transferring (RoBERTaBASE)
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(b) Unifying the label tokens (RoBERTaBASE)

Figure 6: To exclude The poor transferability, which may result from the fact that different-type tasks use different
label tokens, we unify the label tokens of different tasks into the same set of numbers (1, 2, . . .) and choose
RoBERTaBASE for the experiments. From the Figure (a) and (b), we observe that the transferability between
different-type tasks are still generally not improved in this way. This indicates that different-type tasks surely
require distinct abilities.

RoBERTaBASE for the experiments. In Figure 6,1008

we can observe that the transferability between1009

different-type tasks are generally not improved in1010

this way. This indicates that different-type tasks1011

surely require distinct abilities, which prohibits1012

reusing prompts between them.1013

B.3 Speedup Calculation1014

In this paper, we compute convergence speedup1015

and comparable-result speedup as follows:1016

Convergence Speedup(x) =
PT convergence time

TPT convergence time
,

Comparable-result Speedup(x) =
PT convergence time

time of TPT achieving comparable result to PT
.

(8)1017

We calculate the training loss and the evalua-1018

tion score per 100 steps during the training. When1019

the training loss stops dropping and the evaluation1020

score stops increasing for 300 steps, we set the1021

point as the convergence point. For the conver-1022

gence speedup in Equation 8, the PT convergence1023

time is divided by the TPT convergence time. As1024

for the comparable-result speedup in Equation 8,1025

the PT convergence time are divided by the time of1026

TPT achieving comparable performance to PT.1027

C Cross-Model Transfer 1028

C.1 Implementation Details of Projector 1029

As mentioned in § 5.1, we give the prompt of the 1030

source PLM, P s = {ps
1, . . . ,p

s
l }, and concatenate 1031

its l virtual tokens into a unified vector Ps ∈ Rlds , 1032

where ds is the hidden size of the source PLM. 1033

To transfer Ps to the target PLM whose hidden 1034

size is dt, we design a projection function Proj(·) 1035

parameterized by a two-layer perceptron as follows: 1036

1037

P̃s=Proj(Ps)=W2(σ(P
sW1+b1))+b2, (9) 1038

where W1 ∈ Rdh×lds ,W2 ∈ Rldt×dh are train- 1039

able matrices, b1 ∈ Rdh ,b2 ∈ Rldt are biases, σ 1040

is a non-linear activation function. We set the inner 1041

hidden size dh to 768. In this paper, we investigate 1042

cross-model transfer among various PLMs includ- 1043

ing BERTBASE, RoBERTaBASE, RoBERTaLARGE, 1044

T5SMALL, T5BASE, and T5XXL, whose hidden sizes 1045

are 768, 768, 1024, 512, 768, and 1024, respec- 1046

tively. Besides, for non-linear activation functions, 1047

we have tried tanh and LeakyReLU (Xu et al., 1048

2015), and find their performance on various PLMs 1049

are similar. The reported results are based on the 1050

LeakyReLU activation. 1051
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Method SA NLI EJ PI
IMDB SST-2 laptop restaurant Movie Tweet MNLI QNLI SNLI deontology justice QQP MRPC

From BERTBASE to RoBERTaBASE

PT on RoBERTaBASE 89.9 93.8 77.3 80.7 79.2 74.5 80.6 90.5 88.5 72.9 70.0 86.9 83.9

Random Prompt 50.6 50.8 2.3 1.2 50.5 40.5 32.8 50.5 33.3 50.4 50.2 36.8 68.0

IMDB, laptop
Distance Minimizing 89.7 53.1 75.6 18.3 54.2 24.0 31.2 50.0 33.3 50.6 50.0 36.8 67.2
Task Tuning 88.2 82.2 76.3 77.9 73.4 43.6 32.0 47.9 32.8 49.8 49.4 50.2 47.7

MNLI
Distance Minimizing 55.6 51.0 2.5 1.4 53.1 41.1 80.0 50.6 33.3 50.6 50.0 48.3 68.0
Task Tuning 50.9 52.0 11.9 13.1 45.8 18.2 80.0 74.9 80.0 50.4 49.9 36.8 68.1

From RoBERTaBASE to RoBERTaLARGE

PT on RoBERTaLARGE 91.8 96.0 78.1 81.7 81.7 76.6 88.5 93.4 90.7 85.6 81.1 89.0 82.7

Random Prompt 50.1 50.2 2.0 2.0 49.5 40.5 32.7 51.0 33.3 50.3 49.9 40.6 61.2

IMDB,laptop
Distance Minimizing 92.1 50.1 77.0 1.4 51.0 37.6 33.1 50.2 32.8 50.4 50.0 62.3 38.3
Task Tuning 90.4 76.2 64.2 69.5 79.7 45.0 33.3 50.5 33.1 50.3 50.0 38.5 79.7

MNLI
Distance Minimizing 50.3 51.2 5.2 5.9 51.0 40.6 88.5 49.1 33.2 50.3 50.0 45.1 66.4
Task Tuning 67.7 76.1 28.9 43.7 60.4 49.1 87.1 79.4 84.5 49.7 50.0 36.8 68.5

From T5BASE to T5XXL

PT on T5XXL 96.5 97.4 76.6 88.1 97.9 72.5 90.5 95.2 93.4 87.0 92.5 90.0 86.3

Random Prompt 49.7 49.0 19.8 17.0 51.6 15.5 31.8 49.3 31.9 51.3 50.0 36.4 67.0

laptop
Distance Minimizing 49.0 49.7 76.6 17.0 52.3 16.3 31.8 48.7 33.3 54.1 49.0 36.7 67.7
Task Tuning 77.2 86.2 80.3 83.5 64.6 55.2 31.9 49.9 32.9 48.7 52.8 50.7 53.1

MNLI
Distance Minimizing 49.7 49.0 19.8 17.1 51.6 15.5 90.5 49.3 34.8 52.3 50.0 36.8 67.7
Task Tuning 54.9 70.0 60.8 74.1 3.6 41.4 89.7 84.8 90.8 49.7 50.0 37.2 66.4

Table 7: We conduct experiments between various PLMs in different scales and heterogeneous frameworks: from
BERTBASE to RoBERTaBASE, from RoBERTaBASE to RoBERTaLARGE, and from T5BASE to T5XXL. Besides, we color
the non-trivial zero-shot performance (%) of the cross-model setting with bold.

C.2 More Zero-shot Transfer Performance1052

In § 5.2, we have introduced the zero-shot trans-1053

fer performance of various projector-learning1054

methods in the setting of transferring from1055

RoBERTaLARGE to T5XXL. We explore more cross-1056

model transfer settings here, which are transfer-1057

ring between various PLMs in different scales1058

and heterogeneous frameworks, including from1059

BERTBASE to RoBERTaBASE, from RoBERTaBASE1060

to RoBERTaLARGE, and from T5BASE to T5XXL.1061

Table 7 shows the experimental results. We can1062

see the phenomena and conclusions are all consis-1063

tent with § 5.2.1064

C.3 Technical Details of TPTMODEL (Transfer1065

with Initialization)1066

In § 5.3, we demonstrate cross-model transferrable1067

prompt tuning (TPTMODEL) can well improve per-1068

formance and reduce training time.1069

However, when we apply TPTMODEL to more1070

PLMs, we find that the projected prompts may1071

have quite different L2 norm values with the origi-1072

nal prompts, especially for the small-scale PLMs1073

(e.g., from BERTBASE to RoBERTaBASE). Specif-1074

ically, we obtain the projected prompts with the1075

trained Task Tuning projector, and find that the pro-1076

jected prompts are hard to optimize in some tasks 1077

as shown in Figure 7 [Without LayerNorm]. 1078

Thus, we attempt to add the layer normalization 1079

operation (Ba et al., 2016) LayerNorm into the 1080

projectors to regularize the norm of the projected 1081

prompt as follows: 1082

P̃s = LayerNorm(Proj(Ps)). (10) 1083

By the LayerNorm, the projected prompts can 1084

work well on TPTMODEL and achieve better per- 1085

formance and speedup as shown in Figure 7 1086

[With LayerNorm]. Interestingly, although 1087

prompts projected by the projectors [Without 1088

LayerNorm] are hard to be trained in TPTMODEL, 1089

they can achieve similar zero-shot transfer perfor- 1090

mance with the prompts projected by the projectors 1091

[With LayerNorm] in Table 8. 1092

D Transferability Indicator 1093

D.1 Effectiveness of Similarity Metrics 1094

We categorize all prompts into three groups: same 1095

tasks (prompts trained with different seeds on the 1096

same dataset), same-type tasks, and different-type 1097

tasks. Table 9 shows that all the similarity metrics 1098

successfully distinguish task types. 1099
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Figure 7: Transfer prompts of BERTBASE to RoBERTaBASE. The (—) represents vanilla PT, and (—) is TPTMODEL

that utilizes projected prompts as initizations to conduct PT. The projected prompts respectively come from two
different Task Tuning projectors ([Without LayerNorm] and [With LayerNorm]).

Method SA NLI EJ PI
IMDB SST-2 laptop restaurant Movie Tweet MNLI QNLI SNLI deontology justice QQP MRPC

PT on RoBERTaBASE 89.9 93.8 77.3 80.7 79.2 74.5 80.6 90.5 88.5 72.9 70.0 86.9 83.9

[Without LayerNorm]

Task Tuning (IMDB, laptop) 86.5 84.9 73.4 75.3 76.6 47.7 31.8 52.0 32.9 50.3 50.0 37.6 67.5
Task Tuning (MNLI) 66.6 70.4 53.0 43.8 57.8 47.9 82.4 74.9 78.1 50.4 49.9 45.3 70.1

[With LayerNorm]

Task Tuning (IMDB, laptop) 88.2 82.2 76.3 77.9 73.4 43.6 32.0 47.9 32.8 49.8 49.4 50.2 47.7
Task Tuning (MNLI) 50.9 52.0 11.9 13.1 45.8 18.2 80.0 74.9 80.0 50.4 49.9 36.8 68.1

Table 8: We compare the zero-shot performances of prompts projected by Task Tuning projectors ([With
LayerNorm] and [Without LayerNorm]) and find that their accuracies are close. Bold represents non-
trivial performance.

D.2 Correlation Between Prompt1100

Transferability and Prompt Similarity1101

In § 6, we provide the overall averaged Spearman’s1102

rank correlation scores (%) between various simi-1103

larity metrics and zero-shot transfer performance1104

of soft prompts for RoBERTaLARGE and T5XXL.1105

Here, we further show Spearman’s rank corre- 1106

lation scores grouped by the task types on more 1107

PLMs. The results are shown in Table 10 and Ta- 1108

ble 11. 1109
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Metric Same
Tasks

Same-type
Tasks

Different-type
Tasks

RoBERTaLARGE

Econcat 9.4 9.4 6.8
Eaverage 41.6 41.4 37.6
Cconcat 47.6 45.3 31.7
Caverage 1.7 1.3 1.1
ON (Bottom 3) 42.8 43.3 39.1
ON (Top 3) 39.4 28.2 21.4
ON (All 24) 40.0 35.8 29.6

T5XXL (Decoder Module)

Econcat 0.5 0.5 0.3
Eaverage 4.0 5.1 3.4
Cconcat 29.4 2.8 2.4
Caverage 4.0 2.6 2.1
ON (Bottom 3) 80.3 75.4 76.3
ON (Top 3) 62.0 52.7 46.1
ON (All 24) 60.8 54.0 49.2

Table 9: The average values (%) of the 5 similarity
metrics for prompt pairs within the same task (trained
with 3 different random seeds) and between differ-
ent tasks (of the same type and different types) on
RoBERTaLARGE and T5XXL.

Metric SA NLI EJ PI QA SUM All

T5SMALL (Decoder Module)

Econcat 10.1 19.6 31.3 5.3 27.3 38.0 21.9
Eaverage -6.8 -28.0 18.7 -2.6 29.1 42.9 8.9
Cconcat 34.6 63.6 26.6 19.3 -2.1 12.5 25.7
Caverage 64.3 65.1 30.7 15.7 27.7 19.2 37.1

ON (Bottom 3) 32.9 72.6 41.8 14.2 45.5 52.8 43.3
ON (Top 3) 50.6 74.8 51.4 2.6 60.3 78.8 52.5
ON (All 24) 44.8 79.7 44.5 6.3 59.7 67.9 50.5

T5BASE (Decoder Module)

Econcat 55.2 -17.0 10.2 21.5 5.9 -1.1 20.8
Eaverage 53.4 -42.3 -10.7 7.5 -27.7 -10.8 9.0
Cconcat 57.2 25.2 35.1 37.0 30.2 -20.5 28.4
Caverage 47.6 70.0 30.4 48.0 34.9 16.8 42.4

ON (Bottom 3) 34.7 29.8 40.8 16.9 24.2 72.2 36.0
ON (Top 3) 53.8 24.3 50.6 46.1 54.7 79.1 49.1
ON (All 24) 46.1 25.0 42.6 39.7 56.7 72.3 43.4

T5XXL (Decoder Module)

Econcat 40.8 -13.4 19.3 11.4 -4.3 -19.5 12.9
Eaverage 32.2 -42.6 9.7 -2.0 -27.7 -34.0 -2.5
Cconcat 21.4 40.9 42.6 24.6 30.2 45.6 31.6
Caverage 23.3 44.8 33.3 29.3 34.9 49.9 33.5

ON (Bottom 3) 9.1 20.7 14.8 18.3 24.2 -9.9 12.4
ON (Top 3) 42.7 33.6 39.1 30.3 54.7 11.1 36.9
ON (All 24) 31.0 23.6 37.7 34.2 56.7 15.4 32.0

ONI (Bottom 3) - - - - - - - - - - - - 25.3
ONI (Top 3) - - - - - - - - - - - - 46.3
ONI (All 24) - - - - - - - - - - - - 40.0

Table 10: Spearman’s rank correlation scores (%) be-
tween various similarity metrics and zero-shot transfer
performance of soft prompts for various scales of T5
and ONI as introduced in appendix D.3.

Metric SA NLI EJ PI All

RoBERTaBASE

Econcat 31.1 -5.9 30.5 16.2 20.2
Eaverage 17.2 -52.4 12.1 -13.5 -4.4
Cconcat 51.6 8.8 38.5 29.7 36.3
Caverage 65.8 55.9 26.1 28.9 51.7

ON (Bottom 3) 56.2 64.3 17.9 21.2 46.8
ON (Top 3) 77.9 74.2 43.4 32.7 64.8
ON (All 24) 71.2 70.5 33.6 25.0 58.1

RoBERTaLARGE

Econcat 42.5 -16.3 21.4 22.8 22.6
Eaverage 34.5 -55.1 -5.8 3.6 2.8
Cconcat 44.5 -11.7 23.6 22.0 24.8
Caverage 38.2 77.1 12.4 47.8 44.7

ON (Bottom 3) 32.0 34.8 44.5 30.3 34.3
ON (Top 3) 70.9 45.6 13.5 28.9 49.7
ON (All 24) 62.7 40.6 16.0 31.1 45.6

Table 11: Spearman’s rank correlation scores (%) be-
tween various similarity metrics and zero-shot trans-
fer performance of soft prompts for various scales of
RoBERTa.

D.3 PLMs’ Redundancy Influence Indicators 1110

From Table 10, we find that the correlation between 1111

prompt transferability and prompt similarity will 1112

drop with the increase of PLM size. 1113

We guess that this phenomena may result from 1114

PLMs’ high redundancy (Aghajanyan et al., 2021). 1115

To try to overcome this, we simultaneously uti- 1116

lize the prompts trained with three random seeds 1117

on the same dataset and take their intersection of 1118

activation states as the activated neurons into the 1119

similarity (ON) computation. This similarity is 1120

called ONI. By using it, the correlation score of 1121

ON can significantly raise as shown in Table 10. 1122

D.4 Overlapping Rate of Activated Neurons 1123

in Different Layers 1124

To further understand model stimulation in PLMs, 1125

we investigate ON in different layers of PLMs. 1126

Specifically, on RoBERTaBASE, we measure the 1127

similarity between different prompts with activa- 1128

tion states of from 1 to 3 layers (Figure 8), from 1129

4 to 6 layers (Figure 9), from 7 to 9 layers (Fig- 1130

ure 10), from 10 to 12 layers (Figure 11), and all 1131

12 layers (Figure 12), respectively. 1132

We find that the activated neurons are common in 1133

the bottom layers but tend to be more task-specific 1134

in top layers, which is consistent with the findings 1135

of previous works (Liu et al., 2019a). 1136
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Figure 8: ON in 1 - 3 layers of RoBERTaBASE.
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Figure 9: ON in 4 - 6 layers of RoBERTaBASE.
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Figure 10: ON in 7 - 9 layers of RoBERTaBASE.
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Figure 11: ON in 10 - 12 layers of RoBERTaBASE.
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Figure 12: ON in all 12 layers of RoBERTaBASE.
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