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Abstract. We are interested in the following questions. Given a finite data setS ,
with neither labels nor side information, and an unsupervised learning algorithm
A, can the generalization ofA be assessed onS? Similarly, given two unsuper-
vised learning algorithms,A1 andA2, for the same learning task, can one assess
whether one will generalize “better” on future data drawn from the same source
asS? In this paper, we develop a general approach to answering these questions
in a reliable and efficient manner using mild assumptions onA. We first propose
a concrete generalization criterion for unsupervised learning that is analogous to
prediction error in supervised learning. Then, we develop acomputationally ef-
ficient procedure that realizes the generalization criterion on finite data sets, and
propose and extension for comparing the generalization of two algorithms on the
same data set. We validate the overall framework on algorithms for clustering and
dimensionality reduction (linear and nonlinear).

1 Introduction

The goal of unsupervised learning is to autonomously capture and model latent rela-
tions among the variables of a data set. Such latent relations are usually in the form of
regularities and statistical dependencies known asthe underlying structure of the data
distribution. Unlike supervised learning, there are no desired target answers to guide
and correct the learning process. However, similar to supervised learning, unsupervised
learning algorithms generate estimates that are functionsof sample data drawn from an
unknown distributionP. As such, it is natural to ask questions related to the generaliza-
tion capability of these estimates, as well as questions on the choice of these estimates
(model selection) [11].

In supervised learning, questions of generalization have been scrutinized, equally, in
theory and in practice; see for instance [8, 15, 22, 9, 14, 5, 6, 17, 20, 24]. In unsupervised
learning, however, few efforts have acknowledged and addressed the problem in gen-
eral. For instance, [11] approximates the expected loss of finite parametric models such
as principle component analysis (PCA) andk-Means clustering based on asymptotic
analysis and central limit results.

One possible reason for the scarcity of such efforts is the subjective nature of unsu-
pervised learning, the diversity of tasks covered (such as clustering, density estimation,
dimensionality reduction, feature learning, etc.), and the lack of a unified framework
that incorporates a significant subset of these tasks. Another reason is that the principles
underlying supervised learning are often distinct from those underlying unsupervised



learning. In supervised learning, the final result of a learning algorithm is a functionf∗

that minimizes the expected loss (possibly plus a regularizer) under the unknown true
distributionP, which can be applied to new points not included during training. Since
P is unknown, the learning algorithm selectsf∗ that minimizes an empirical average
of the loss as a surrogate for the expected loss. Therefore, since the loss measures the
difference between the estimated and expected outputs, itsaverage provides an indi-
cator of generalization error. The validity of this mechanism, however, rests on (i) the
existence of target outputs, and (ii ) consistency of the empirical average of the loss [22].

In the unsupervised learning, the characterization is different. First, the target output
is not available. Second, an unsupervised learning algorithmA produces an output that
is a re-representation of the input; hence loss functions inthis setting usually assess a
reconstruction error between the output and input [25]. Third, there are various unsuper-
vised learning algorithms that do not minimize a reconstruction error yet still produce
an output that is a re-representation of the input: see for example the recent literature on
moments-based methods for latent variable models and finiteautomata [12, 21, 2, 1].

These observations motivate us to deal with unsupervised learning algorithms in an
abstract form. In particular, we consider an unsupervised learning algorithmA as an
abstract function – a black box – that maps an inputx to an outputy. The advantage of
this view is that (i) it is independent of the learning task, and (ii ) it provides a simple
unified view for these algorithms without being overly dependent on internal details.

Based on this perspective, we propose a general definition for generalization of an
unsupervised learning algorithm on a data setS. The framework is based on a general
loss functionℓ that measures the reconstruction error between the input and output ofA,
which is not necessarily the loss minimized byA (if any). To study the generalization of
A under the black box assumption and an external lossℓ, we will assume thatA satisfies
a certain notion of algorithmic stability under some mild assumptions onℓ. Given this
notion of stability, we derive a finite useful upper bound onA’s expected loss, which
naturally lends itself to a generalization criterion for unsupervised learning. As a second
contribution, we develop an efficient procedure to realize this generalization criterion
on finite data sets, which can be extended to comparing the generalization of two dif-
ferent unsupervised learning algorithms on a common data source. Finally, we apply
this generalization analysis framework and evaluation procedure to two unsupervised
learning problems; clustering and dimensionality reduction.

1.1 Preliminaries and Setup

Let X ⊆ R
d andY ⊆ R

k be the input and output spaces, respectively.1 Let S ∈ Xn

be a training set of sizen drawn IID from an unknown distributionPx defined on a
measurable space(X , Σ) with domainX andσ-algebraΣ. We denote this asS ∼ Px

whereS = {xi}
n
i=1. For eachxi ∈ S there is a corresponding outputyi, 1 ≤ i ≤ n,

with appropriate dimensionk. For convenience,S can be represented as a matrixXn×d,
while the output can also be represented as a matrixYn×k.

1 Notation: Lower case lettersx,m, i denote scalars and indices. Upper case lettersX,Y denote
random variables. Bold lower case lettersx,y denote vectors. Bold upper case lettersA,B are
matrices. DistributionsP,G will be written in script. Calligraphic lettersX ,Y denote sets.



An unsupervised learning algorithmA is a mapping fromXn to the class of func-
tionsF s.t. forf ∈ F , f : X → Y. Thus,A takes as inputS, selects a particularf∗

fromF , and estimates ann× k output matrixŶ ≡ AS(X), or ŷ ≡ AS(x), 2 whereAS

denotes the output ofA (i.e. f∗ ∈ F ) after training onS. The algorithmA could also
have certain parameters, denotedθA, that the user can tune to optimize its performance.
We assume thatA and its output functions inF are all measurable maps.

2 A General Learning Framework

The problem of unsupervised learning is that of selecting a functionf∗ ∈ F that trans-
forms inputx into an output̂y ≡ AS(x) in some desired way. Here we assume thatA is
a black box that takesS and produces a mapf∗ fromx to ŷ. Since we are ignoringA’s
internal details, assessing its generalization requires us to consider an additiveexternal
lossfunctionℓ : X ×Y → R

+ that measures the reconstruction error betweenx andŷ.
Thus, the expected loss forAS with respect toℓ is defined as:

R(AS) ≡ E [ℓ(x,AS(x)] =

∫
ℓ(x,AS(x))dPx. (1)

UnfortunatelyR(AS) cannot be computed sincePx is unknown, and thus it has to be
estimated fromS ∈ Xn. A simple estimator forR(AS) is the empirical estimate:

R̂EMP(AS) =
1

n

n∑

i=1

ℓ(xi,AS(xi)). (2)

To obtain a practical assessment of the generalization ofA, we need to derive an upper
bound for the quantitŷREMP(AS) − R(AS). Given the generality of this setting, one
needs to resort to worst case bounds. However, this cannot bedone without introducing
additional assumptions about the behaviour ofA. For example, if one assumes that
A chooses its output from a class of functionsF such that the class of loss random
variablesΛ : X ×Y → R+ induced byF , i.e.Λ = ℓ ◦ F , is uniformly upper bounded
by c < ∞ and VCdim(Λ) = h < ∞, then with probability at least1 − η there is a
uniform concentration of̂REMP(AS) aroundR(AS):

R(AS) ≤ R̂EMP(AS) +
τc

2


1 +

√

1 +
4R̂EMP(AS)

τc


 , (3)

whereτ = 4n−1 [h(ln 2n/h+ 1)− ln η] [22, 23]. Rademacher or Gaussian complexi-
ties can also be used to obtain similar concentration inequalities [3]. The caveat is that
such an analysis is worst case and the resulting bounds, suchas (3), are too loose to
be useful in practice. This suggests that we need to make stronger assumptions onA to
achieve more useful bounds on the quantityR̂EMP(AS)−R(AS).

2 For example, ink-Means clustering, the elements ofŶ could be the corresponding cluster
centers assigned to eachxi from a set ofk such centers. In nonlinear dimensionality reduction,
the output could be then×n low rank matrixŶ. In density estimation using a mixture model,
A could output then× 1 matrixY with the density value of eachxi.



2.1 Generalization and Stability

To achieve a more practical criterion and assessment procedure, we need to introduce
some form of additional assumptions onA without sacrificing too much generality. To
this end, we investigate an assumption thatA satisfies a particular notion of algorithmic
stability that allows us to derive a more useful and a tighterupper bound on̂REMP(AS)−
R(AS). Algorithmic stability has been successfully applied in learning theory to derive
generalization bounds for supervised learning algorithms, but has yet to be formally
applied to unsupervised learning. Among the different notions of stability, the uniform
stability of [5] is considered to be the strongest since it implies other notions of stability
such as: hypothesis stability, error stability, point–wise hypothesis stability, everywhere
stability, CVLOO stability, etc. [8, 14, 16, 17, 20].

To define uniform stability forA in the unsupervised learning context, we require the
following definitions. For anyS ∈ Xn, we define∀i, 1 ≤ i ≤ n, the modified training
setS\i by removing fromS thei-th element:S\i = {x1, . . . ,xi−1,xi+1, . . . ,xn}. We
assume thatA is symmetric with respect toS; i.e. it does not depend on the elements’
order inS. Further, we require that the external lossℓ be “well behaved” with respect
to slight changes inS; i.e. if ε = ℓ(x,AS(x)), ε′ = ℓ(x,AS′(x)), andS ′ is slightly
different fromS such thatAS(x) ≈ AS′(x), then the difference betweenε and ε′

should be small. The notion of “well behaved” is formally imposed by requiring thatℓ
is Lipschitz continuous, and thatA is uniformlyβ–stable with respect toℓ. This uniform
β–stability is defined as follows:

Definition 1 (Uniform β–Stability). An algorithmA is uniformlyβ–stable with re-
spect to the loss functionℓ if for anyx ∈ X , the following holds:

∀ S ∈ Xn, max
i=1,...,n

|ℓ(x,AS(x))− ℓ(x,AS\i(x))| ≤ β.

Note thatβ is a function ofn and we assume that stability is non-increasing as a function
of n. Hence, in the following,β can be denoted byβn.

Definition 2 (Stable Algorithm). AlgorithmA is stable ifβn ∝ 1

n
.3

The analogy between our definition of uniformβ–stability and the uniformβ–stability
in supervised learning can be explained as follows. The uniform β–stability in [5] is
in terms ofℓ(AS , z) andℓ(AS\i , z), wherez = (x, y), x is the input vector, andy is
its expected output (or true label). Note thatℓ(AS , z) can be written asℓ(fS(x), y),
wherefS is the hypothesis learned byA using the training setS. Similarly, ℓ(AS\i , z)
can be written asℓ(fS\i(x), y). Observe that the difference betweenℓ(fS(x), y) and
ℓ(fS\i(x), y) is in the hypothesesfS andfS\i. Note also that in supervised learning,
the lossℓ measures the discrepancy between the expected outputy and the estimated
output ŷ = fS(x). In our unsupervised learning setting, the expected outputis not
available, and the lossℓ measures the reconstruction error betweenx andŷ ≡ AS(x).
Hence, we replaceℓ(AS , z) by ℓ(x,AS(x)), andℓ(AS\i , z) by ℓ(x,AS\i(x)) to finally
obtain Definition 1.

3 βn ∝
1

n
=⇒ βn = κ

n
, for some constantκ > 0.



Note that the uniformβ–stability ofA with respect toℓ is complimentary to the
continuous Lipschitz condition onℓ. If A is uniformlyβ–stable, then a slight change in
the input will result in a slight change in the output, resulting in a change in the loss
bounded byβ. The following corollary upper bounds the quantityR̂EMP(AS)−R(AS)
using the uniformβ–stability ofA.

Corollary 1. Let A be a uniformlyβ–stable algorithm with respect toℓ, ∀ x ∈ X ,
and∀ S ∈ Xn. Then, for anyn ≥ 1, and anyδ ∈ (0, 1), the following bounds hold
(separately) with probability at least1− δ over anyS ∼ Px:

(i) R(AS) ≤ R̂EMP(AS) + 2β + (4nβ + c)

√
log(1/δ)

2n
, (4)

(ii) R(AS) ≤ R̂LOO(AS) + β + (4nβ + c)

√
log(1/δ)

2n
, where (5)

R̂LOO(AS) =
1

n

∑n

i=1
ℓ(xi,AS\i(xi)), is the leave-one-out (LOO) error estimate.

Discussion.The generalization bounds in (4) and (5) directly follow from Theorem
12 in [5] for the regression case. The reason we considerA under the regression frame-
work is due to our characterization of unsupervised learning algorithms in which we
consider the output̂y ∈ R

k is a re-representation of the inputx ∈ R
d. This, in turn,

defined the form of the external lossℓ asℓ : X ×Y → R
+. This characterization is very

similar to the multivariate regression setting, and hence our reliance on Theorem 12 in
[5]. Note that ifβ ∝ 1

n
, then the bounds in (4) and (5) will be tight.

Corollary 1 is interesting in our context for a few reasons. First, it defines a gen-
eralization criterion for unsupervised learning algorithms in general: ifA is uniformly
β–stable with respect toℓ on S, then the bounds in (4) and (5) hold with high proba-
bility. Note that the bound in (4) is tighter than the one in (3). Second, the bounds for
R̂EMP and R̂LOO are very similar. Various works have reported thatR̂EMP is an opti-
mistically biased estimate forR, while R̂LOO is almost an unbiased estimate [8, 14, 5].4

Therefore, an advantage of uniformβ–stability is that this discrepancy is mitigated.
This also shows that stability based bounds are more suitable for studying algorithms
whose empirical error remains close to the LOO error.

Second, this result also shows that to be uniformly stable, alearning algorithm needs
to significantly depart from the empirical risk minimization principle that emphasizes
the minimization ofR̂EMP. That is, a stable algorithmA might exhibit a larger error dur-
ing training but this would be compensated by a decrease in complexity of the learned
function. This characteristic is exactly what defines the effects of regularization. There-
fore, the choice for uniform stability allows one to consider a large class of unsuper-
vised learning algorithms, including those formulated as regularized minimization of
an internal loss.

4 The LOO error estimate overn samples,̂RLOOn , is an unbiased estimate for̂RLOOn−1
. Since

in most interesting caseŝRLOOn converges with probability one, the difference betweenR̂LOOn

andR̂LOOn−1
becomes negligible for largen [7, Ch. 24].



3 Empirical Generalization Analysis

Although the previous section defines a general criterion for generalization in unsu-
pervised learning, in practice this criterion requires assessing the uniform stability of
A on a finite data setS. The quantity of interest in the uniform stability criterion is
|ℓ(x,AS(x)) − ℓ(x,AS\i(x))|, which is the amount of change in the loss with respect
to the exclusion of one data pointxi from S. Taking expectations with respect toPx

and replacing the expected loss with the empirical estimator, we have that:

∀ S ∈ Xn max
i=1,...,n

|R̂EMP(AS)− R̂EMP(AS\i)| ≤ βn. (6)

This states that for a uniformlyβn–stable algorithm with respect toℓ onS, the change
in the empirical loss due to the exclusion of one sample fromS is at mostβn. In the
finite sample setting, this will be:

max
i=1,...,n

∣∣∣∣∣∣∣

1

n

n∑

j=1

ℓ(xj ,AS(xj))−
1

n− 1

n∑

j=1
j 6=i

ℓ(xj ,AS\i(xj))

∣∣∣∣∣∣∣
≤ βn. (7)

Inequality (7) contains an unknown parameterβn which cannot be upper bounded with-
out any further knowledge onA. In fact, given the black box assumption onA and the
absence of information onPx, we cannot obtain a uniform upper bound onβn. This
suggests thatβn needs to be estimated from the data setS. Also, recall from Defini-
tions 1 and 2 that ifβn ∝ 1/n, then the generalization bounds in (4) and (5) will hold
with high probability. These two requirements raise the need for two procedures; one
to estimateβn at increasing values ofn, and another one to model the relation between
the estimatedβn’s and the values ofn. However, to consider these two procedures for
assessingA’s generalization, we need to introduce a further mild assumption onA. In
particular, we need to assume thatA does not change its learning mechanism as the
sample size is increasing fromn to n + 1 for anyn ≥ 1. Note that ifA changes its
learning mechanism based on the sample size, thenA can have inconsistent trends of
βn with respect ton which makes it unfeasible to obtain consistent confidence bounds
for R̂EMP(AS)− R(AS). Therefore, we believe that our assumption is an intuitive one,
and is naturally satisfied by most learning algorithms.

3.1 Estimatingβn From a Finite Data Set

Inequality (7) might suggest a simple procedure for estimating βn: (i) ComputeŶ =
AS(X). (ii ) SetX′ = X, hold out samplexi from X′, and computêY′ = AS\i(X′),
and setBi = |n−1ℓ(X, Ŷ) − (n − 1)−1ℓ(X′, Ŷ′)|. (iii ) Repeat step (ii ) n times to
obtain{B1 . . . , Bn}, and then set set̂βn = max{B1 . . . , Bn}. The problem with this
procedure is three–fold. First, note that in the finite sample setting, Inequality (7) cannot
be evaluated for∀S ∈ Xn as required in Inequality (6). Note also that the sample maxi-
mum is a noisy estimate, and hence is not reliable. Second, the LOO estimate suggested
above is computationally expensive since it requires invokingA for n times. Third, us-
ing all X to learnŶ will not reflectA’s sensitivity to the randomness in the data. IfA



Algorithm 1 Generalization Analysis for AlgorithmA.

1: Require: Algorithm A and its input parametersθA, data setS , loss functionℓ, number of
subsamplesm, and the sizes of subsamples,nt s.t.n1 < n2 < n3 < · · · < nτ .

2: for t = 1 to τ do
3: for j = 1 tom do
4: Xj ← drawnt samples uniformly fromS
5: Ŷj ← AS(Xj ;θA)
6: Φ← hold out one random samples fromXj

7: X′
j ← Xj \Φ

8: Ŷ′
j ← A

S\i(X′
j ;θA)

9: Rj ←
1

n1

ℓ(Xj , Ŷj)

10: R′
j ←

1

n1−1
ℓ(X′

j , Ŷ
′
j)

11: Bj = |Rj −R′

j |
12: end for
13: β̂nt = median{B1, . . . , Bj , . . . , Bm}
14: end for
15: Return: B = {β̂n1

, . . . , β̂nt , . . . , β̂nτ }

easily gets stuck in local minima, orA has tendency to overfit the data, learning using
all X will obscure such traits.

Our proposed procedure for estimatingβn, depicted in Algorithm 1, addresses the
above issues in the following ways. First it is based on repeated random subsampling
(with replacement) from the original data setS, similar in spirit to bootstrapping [10].
Second, for each subsample of sizent, the procedure obtains an estimate for the empir-
ical loss before and after holding out one random sample. After repeating this subsam-
pling processm times,m ≪ n, the procedure obtains one estimate forβn, denoted by
β̂nt

, for sample sizent. Note thatβ̂nt
is the median ofBj ’s to increase the robustness

of the estimate. This process is repeatedτ times and the final output of Algorithm 1 is
the set ofβ̂nt

’s for the increasing values ofnt.

The proposed procedure is computationally intensive, yet it is efficient, scalable,
and provides control over the accuracy of the estimates. First, note that the proposed
procedure is not affected by the fact thatA is an unsupervised learning algorithm. If
A is a supervised learning algorithm, then assessing its generalization through uniform
β–stability results will still require2τm calls forA, as it is the case for the unsupervised
setting discussed here. Thus, the procedure does not imposea computational overhead
given the absence of the expected output, and the black box assumption onA. Second,
considering scalability for large data sets, the procedurecan be fully parallelized on
multiple core architectures and computing clusters [13]. Note that in each iterationj
the processing steps for each subsample are independent from all other iterations, and
hence allm subsamples can be processed in an embarrassingly parallel manner. Note
also that in each iteration,AS(Xj) andAS\i(X′

j) can also be executed in parallel.

Parametersm and size of the subsamples,n1, n2, . . . ,nτ , control the tradeoff be-
tween computational efficiency and estimation accuracy. These parameters are user–
specified and they depend on the data and problem in hand, its sizen, A’s complexity,
and the available computational resources. Parameterm needs to be sufficient to reduce
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Fig. 1. Left: Two synthetic data sets, (a) two normally distributed clouds of points with equal
variance and equal priors, and (d) two moons data points withequal priors.Middle: The esti-
matedβ̂n (blue circles) from Algorithm 1 fork–Means clustering on the two synthetic data sets.
The fitted stability lines are shown in magenta. The slope of the stability lines is indicated byw.
Right: The estimated̂βn and stability lines for PCA on the two synthetic data sets. The dispersion
of β̂n’s around the stability line is reflected in the norm of the residuals for the stability line (not
displayed). Note the difference in the dispersion of pointsaround the stability line fork–Means
and PCA. Note also that the more structure in the two moons data set is reflected in a smallerw
(compared tow for the tow Gaussians) for both algorithms.

the variance in{R1, . . . , Rm} and{R′
1, . . . , R

′
m}. However, increasingm beyond a

certain value will not increase the accuracy of the estimated empirical loss. Reducing
the variance in{R1, . . . , Rm} and {R′

1, . . . , R
′
m}, in turn, encourages reducing the

variance in{B1, . . . , Bm}. Note that for any random variableZ with meanµ, median
ν, and varianceσ2, then|µ − ν| ≤ σ with probability one. Therefore, in practice, in-
creasingm encourages reducing the variance inBj ’s thereby reducing the difference
|β̂nt

−E(Bj)|. Observe that the operatormaxi=1,...,nt
defined∀S ∈ Xnt in (6) is now

replaced with the estimatêβnt
.

3.2 The Trend ofβ̂n and The Stability Line

The output of Algorithm 1 is the setB of estimated̂βnt
’s for the increasing values of

nt. In order to assess the stability ofA, we need to observe whetherβ̂nt
= κ

nt
, for some



constantκ > 0. As an example, Figure 1 shows the trend ofβ̂n for k–Means clustering
and principal component analysis (PCA) on two synthetic toydata sets. The blue circles
in the middle and right figures are the estimatedβ̂n from Algorithm 1.5 Observe that
β̂n is decreasing asn is increasing.

To formally detect and quantify this decrease, a line is fitted to the estimated̂βn

(shown in magenta); i.e.β(nt) = wnt + ζ, wherew is the slope of the line, andζ is the
intercept. We call this line, theStability Line. The slope of the stability line indicates
its steepness which is an esimtate for the decreasing rate ofβn. For stable algorithms,
w < 0, and|w| indicates the stability degree of the algorithm. Note thatw = tan θ,
whereθ is the angle between the stability line and the abscissa, and−π

2
< θ < π

2
.

For 0 ≤ θ < π
2

, A is not stable. For−π
2
< θ < 0, if θ is approaching 0, thenA is a

less stable algorithm, while ifθ is approaching−π
2

, thenA is a more stable algorithm.
Observe that in this setting,β is a function ofn andw, and hence it can be denoted by
β(n,w). Pluggingβ(n,w) in the inequalities of Corollary 1, we get that:

(i) R(AS) ≤ R̂EMP(AS) + 2(wn+ ζ) + [4n(wn+ ζ) + c]

√
log(1/δ)

2n
, (8)

(ii) R(AS) ≤ R̂LOO(AS) + (wn + ζ) + [4n(wn+ ζ) + c]

√
log(1/δ)

2n
. (9)

That is, the steeper is the stability line (w < 0), the more tight is the confidence bound.
Figure 2 shows other examples for stability lines on the synthetic data sets (Gaussians
and Moons) using Laplacian eigenmaps (LEM) [4], and Local Linear Embedding (LLE)
[19]. The generalization assessment is based on the Laplacian matrixL for LEM, and
the weighted affinity matrixW for LLE. In particular, the loss for LEM isℓ = tr(LL⊤),
while for LLE, ℓ = tr(WW⊤).

3.3 Comparing Two Algorithms: A1 vs.A2

The previous generalization assessment procedure only considered one algorithm. Here
we propose an extension for the above procedure to compare the generalization of two
unsupervised learning algorithms,A1 andA2, under the same lossℓ, on a given data
source. More specifically, the comparative setting addresses the following questions: if
A1 is stable with respect toℓ onS (according to Definition 2), and ifA2 is stable with
respect toℓ onS (according to Definition 2), which algorithm has better generalization
onS? The following definition gives a formal answer to these questions.

Definition 3 (Comparing A1 vs.A2 ). LetA1 be a stable algorithm with respect toℓ
onS with slopew1 < 0 for its stability line. LetA2 be a stable algorithm with respect
to ℓ onS with slopew2 < 0 for its stability line. We say that:

1. A1 is similar toA2, denotedA1 = A2, if w1 ≈ w2.6

5 In these experiments,m = 100, andn1, n2, . . . , nτ were set to0.5n, 0.51n, . . . , 0.99n, n.
The lossℓ for k–Means is the sum ofL1 distances between each point and its nearest centre,
and for PCA,ℓ = tr(C), whereC is the data’s sample covariance matrix.

6 This is done using hypothesis testing for the equality of slopes – See Appendix for details.
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Fig. 2. First Column: Generalization assessment for LEM on two Gaussians (a,c) and two moons
(e,g), with different number of nearest neighbours (nn) for constructing the data’s neighbourhood
graph. Compare the slopes (w) for the stability lines and the dispersion of points aroundit, and
note the sensitivity of LEM to the number ofnn. The same follows for the two moons case (e,g).
Note also the difference in the stability lines (slope, and dispersion of estimated̂βn’s) for LEM
and PCA on the same data sets.Second Column:Generalization assessment for LLE on two
Gaussians (b,d) and two moons (f,h) data sets, with different number ofnn.
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Fig. 3. Generalization assessment fork–Means clustering using stability analysis on four real
data sets: (a) Faces AR, (b) Faces CMUPIE, (c) Coil20, and (d)UCI MFeat.

2. A1 is better thanA2, denoted byA1 ≻ A2, if w1 < w2.
3. A1 is worse thanA2, denotedA1 ≺ A2, if w1 > w2.

To develop a formal procedure for such an assessment we proceed by letting Algorithm
1 invoke the two algorithmsA1 andA2 on the same subsamples{X1, . . . ,Xm} and
{X′

1, . . . ,X
′
m}. The final output of Algorithm 1 will be two setsB1 = {β̂1

n1
, . . . , β̂1

nτ
},

andB2 = {β̂2
n1
, . . . , β̂2

nτ
}. The analysis then proceeds by fitting the stability line for

each algorithm, plotting the curves shown in Figures 1 and 2,and then comparing the
slopes of both algorithms. Formal comparison for the slopesw1 andw2 is done using
hypothesis testing for the equality of slopes:

H0 : w1 = w2 vs. H1 : w1 6= w2.

If H0 is rejected at a significance levelα (usually0.05 or 0.01), then deciding which
algorithm has better generalization can be done using rules2 and 3 in the above defi-
nition. If H0 cannot be rejected at the desired significance level, then both algorithms
have a similar generalization capability. Further insightcan be gained through the norm
of the residuals, and the spread of the estimatedβ̂n’s around the stability line.

4 Empirical Validation on Real Data Sets

We have conducted some initial validation tests for the proposed generalization as-
sessment framework. In these experiments, we considered two different unsupervised



learning problems: clustering and dimensionality reduction (linear and nonlinear). In
particular, we considered the following algorithms:k–Means for clustering, PCA for
linear dimensionality reduction, and LEM and LLE for nonlinear dimensionality reduc-
tion (NLDR). The four algorithms were run on four data sets from different domains:
(i) two faces data sets, AR and CMUPIE with (samples× features)3236× 2900, and
2509× 2900, respectively. (ii ) two image features data sets, Coil20 and Multiple Fea-
tures (MFeat) with (samples× features)1440 × 1024, and2000 × 649, respectively,
from the UCI Repository for Machine Learning [18].7 In all these experiments, the
number of bootstrapsm was set to100, and the values forn1, n2, . . . , nτ were set to
0.5n, 0.51n, 0.52n, . . . , 0.99n, n, wheren is the original size of the data set.

To apply the proposed generalization assessment, an external lossℓ needs to be
defined for each problem.k–Means minimizes the sum ofL2 distances between each
point and its nearest cluster centre. Thus, a suitable loss can be the sum ofL1 distances.
Note that the number of clustersk is assumed to be known. Note also that in this setting,
for each iterationj in Algorithm 1, the initialk centres are randomly chosen and they
remain unchanged after holding out the random sample. That is,k–Means starts from
the same initial centres before and after holding out one sample.

For PCA, LEM and LLE, the loss functions are chosen as follows: ℓ = tr(C) for
PCA, ℓ = tr(LL⊤) for LEM, and ℓ = tr(WW⊤) for LLE, whereC is the data’s
sample covariance matrix,L is the Laplacian matrix defined by LEM, andW is the
weighted affinity matrix defined by LLE. The number of nearestneighbours for con-
structing the neighbourhood graph for LEM and LLE was fixed to30 to ensure that the
neighbourhood graph is connected. Note that we did not perform any model selection
for the number of nearest neighbours to simplify the experiments and the demonstra-
tions.

4.1 Generalization Assessment ofk–Means Clustering

Figure 3 shows the stability lines fork–Means clustering on the four real data sets
used in our experiments. For both faces data sets, AR and CMUPIE, the stability lines
have similar slopes despite the different sample size. However, the dispersion of points
around the stability line is bigger for CMUPIE than it is for AR. Hypothesis testing for
the equality of slopes (at significance levelα = 0.05) did not rejectH0 (p–value = 0.92).
For Coil20 and UCI Mfeat, the slopes of stability lines differ by one order of magnitude
(despite the different sample size). Indeed, the hypothesis test in this case rejectedH0

with a very smallp–value. Note that the estimated̂βn’s for the four data sets do not
show a clear trend as is the case for the two Gaussians and the two moons data sets in
Figure 1. This behaviour is expected fromk–Means on real high dimensional data sets,
and is in agreement with what is known about its sensitivity to the initial centres and
its convergence to local minima. For a better comparison, observe the stability lines for
PCA on the same data sets in Figures 4 and 5.

7 The AR and CMUPIE face data sets were obtained from
http://www.face-rec.org/databases/.
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Fig. 4. Generalization assessment for PCA, LEM and LLE using stability analysis on two faces
data sets: AR (a,b,c), and CMUPIE (d,e,f).

4.2 Generalization Assessment of PCA, LEM, and LLE

Figures 4 and 5 show the stability lines for the three dimensionality reduction algo-
rithms; PCA, LEM and LLE, on the four real data sets used in ourexperiments. Note
that the magnitude ofw for these experiments should not be surprising given the scale
of n andβ̂nt

. It can be seen that PCA shows a better trend of the estimatedβ̂n’s than
LEM and LLE (for our choice of fixed neighbourhood size). Thistrend shows that PCA
has better stability (and hence better generalization) than LEM and LLE on these data
sets. Note that in this setting, the slope for PCA stability line cannot be compared to
that of LEM (nor LLE) since the loss functions are different.However, we can compare
the slopes for each algorithm stability lines (separately)on the face data sets and on the
features data sets.

Hypothesis testing (α = 0.05) for PCA stability lines on AR and CMUPIE rejects
H0 in favour ofH1 with a p–value= 0.0124. For Coil20 and UCI Mfeat, the test did
not rejectH0 and thep–value= 0.9. For LEM, the test did not rejectH0 for the slopes
of AR and CMUPIE, while it did rejectH0 in favour ofH1 for Coil20 and UCI MFeat.
A similar behaviour was observed for LLE.

In these experiments and the previous ones onk–Means clustering, note that no
comparison of two algorithms were carried on the same data set. In these illustrative
examples, the generalization of one algorithm was assessedon two different data sets,
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Fig. 5. Generalization assessment for PCA, LEM and LLE using stability analysis on Coil20
(a,b,c), and UCI MFeat (d,e,f).

following the examples on the synthetic data sets in Figures1. Note that this scenario is
different from the one described in§ 3.3. In the above experiments, the trend ofβ̂nt

, the
stability line, the slopew, and the scatter of points around the stability line, provided
a quantitative and a qualitative evaluation for the generalization capability ofk–Means
and PCA. However, our experience suggests that when analyzing the generalization
of one algorithm on two different data sets, hypothesis testing can give more accurate
insight if the sample sizesnt are equal for both data sets sinceβn is known to decrease
asκ/n, andκ > 0.

5 Concluding Remarks

In this paper we proposed a general criterion for generalization in unsupervised learn-
ing that is analogous to the prediction error in supervised learning. We also proposed a
computationally intensive, yet efficient procedure to realize this criterion on finite data
sets, and extended it for comparing two different algorithms on a common data source.
Our preliminary experiments showed that, for algorithms from three different unsuper-
vised learning problems, the proposed framework provided aunified mechanism and a
unified interface to assess their generalization capability. This type of analysis suggests
further rigorous assessment of these algorithms, and is encouraging to conduct similar
analysis for other unsupervised learning problems such as density estimation, subspace



clustering, feature learning, and layer wise analysis of deep architectures. Further, our
framework can be extended to answer model selection questions for unsupervised learn-
ing, or it can be complimentary to exiting methods for model selection.
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Appendix

Hypothesis testing for the equality of slopesw1 andw2 for two regression linesY1 =
w1X1+ζ1 andY2 = w2X2+ζ2, respectively, proceeds as follows. LetS1 = {(xi

1, y
i
1)}

n1

i=1

andS2 = {(xj
2
, yj

2
)}n2

j=1
, be the two data sets to be used for estimating the lines defined

byw1 andw2, respectively. Let{ŷ11, . . . , ŷ
n1

1 } and{ŷ12 , . . . , ŷ
n2

2 } be the estimated pre-
dictions from each regression line. The null and alternative hypotheses of the test are:

H0 : w1 = w2 vs. H1 : w1 6= w2.

That is,H0 : w1 − w2 = 0. If H0 is true, thenw1 − w2 ∼ G (0, sw1w2
), wheresw1w2

is the pooled error variance. Using at test, we construct the statistict:

t =
w1 − w2

sw1w2

∼ Tr ,

whereTr is the Student’st distribution withr degrees of freedom, andr = n1+n2−4.
The pooled error variance is defined as:

sw1w2
=

√
s2w1

+ s2w2
,

where

s2wk
=

ek
σ2
k(nk − 1)

,

ek =
∑nk

i=1
(yik − ŷik)

2/(nk − 2), andσ2
k = Var(Xk), which can be replaced by the

sample variance. For significance levelα, we compute the probability of observing the
statistict from Tr given thatH0 is true; this is theP value of the test. IfP > α, then
H0 cannot be rejected. Otherwise, rejectH0 in favour ofH1.
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