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Abstract. We are interested in the following questions. Given a finit@adetS,
with neither labels nor side information, and an unsupervigarning algorithm
A, can the generalization & be assessed af? Similarly, given two unsuper-
vised learning algorithm#\; andA., for the same learning task, can one assess
whether one will generalize “better” on future data drawonirthe same source
asS? In this paper, we develop a general approach to answer@sg tuestions
in a reliable and efficient manner using mild assumptiongoWe first propose
a concrete generalization criterion for unsupervisediiearthat is analogous to
prediction error in supervised learning. Then, we develapraputationally ef-
ficient procedure that realizes the generalization cdtean finite data sets, and
propose and extension for comparing the generalizatiow@&igorithms on the
same data set. We validate the overall framework on algosttor clustering and
dimensionality reduction (linear and nonlinear).

1 Introduction

The goal of unsupervised learning is to autonomously cepnd model latent rela-
tions among the variables of a data set. Such latent refaionusually in the form of
regularities and statistical dependencies knowthasunderlying structure of the data
distribution Unlike supervised learning, there are no desired targavers to guide
and correct the learning process. However, similar to stged learning, unsupervised
learning algorithms generate estimates that are functibsample data drawn from an
unknown distribution?. As such, it is natural to ask questions related to the génara
tion capability of these estimates, as well as questionsemwhoice of these estimates
(model selection) [11].

In supervised learning, questions of generalization haealscrutinized, equally, in
theory and in practice; see for instance [8, 15, 22,9, 14,5 &0, 24]. In unsupervised
learning, however, few efforts have acknowledged and asé:the problem in gen-
eral. For instance, [11] approximates the expected lossité fparametric models such
as principle component analysis (PCA) alxdMeans clustering based on asymptotic
analysis and central limit results.

One possible reason for the scarcity of such efforts is thgestive nature of unsu-
pervised learning, the diversity of tasks covered (sucHuearing, density estimation,
dimensionality reduction, feature learning, etc.), anel ek of a unified framework
that incorporates a significant subset of these tasks. Anotlason is that the principles
underlying supervised learning are often distinct fromsghanderlying unsupervised



learning. In supervised learning, the final result of a lesg@algorithm is a functiorf*
that minimizes the expected loss (possibly plus a reg@griznder the unknown true
distribution#?, which can be applied to new points not included during tr@jnSince
Z is unknown, the learning algorithm selegtsthat minimizes an empirical average
of the loss as a surrogate for the expected loss. Therefaoe the loss measures the
difference between the estimated and expected outputayét®ge provides an indi-
cator of generalization error. The validity of this meclsanj however, rests om) the
existence of target outputs, ani consistency of the empirical average of the loss [22].
In the unsupervised learning, the characterization igchffit. First, the target output
is not available. Second, an unsupervised learning algoit produces an output that
is a re-representation of the input; hence loss functioriBisetting usually assess a
reconstruction error between the output and input [25]cd there are various unsuper-
vised learning algorithms that do not minimize a reconsiouncerror yet still produce
an output that is a re-representation of the input: see famge the recent literature on
moments-based methods for latent variable models and &inttemata [12, 21, 2, 1].
These observations motivate us to deal with unsupervisediteg algorithms in an
abstract form. In particular, we consider an unsupervigsagning algorithmA as an
abstract function — a black box — that maps an inptd an outputy. The advantage of
this view is that i) it is independent of the learning task, arid it provides a simple
unified view for these algorithms without being overly degient on internal details.
Based on this perspective, we propose a general definitiogefoeralization of an
unsupervised learning algorithm on a data&eThe framework is based on a general
loss functiory that measures the reconstruction error between the ingudwatput ofA,
which is not necessarily the loss minimizedAyif any). To study the generalization of
A under the black box assumption and an externaldpa® will assume thaA satisfies
a certain notion of algorithmic stability under some mild@sptions orf. Given this
notion of stability, we derive a finite useful upper boundAsa expected loss, which
naturally lends itself to a generalization criterion fosupervised learning. As a second
contribution, we develop an efficient procedure to realide generalization criterion
on finite data sets, which can be extended to comparing thergkeation of two dif-
ferent unsupervised learning algorithms on a common dateceoFinally, we apply
this generalization analysis framework and evaluatiorc@dore to two unsupervised
learning problems; clustering and dimensionality redhreti

1.1 Preliminaries and Setup

Let X C R? and)y C R* be the input and output spaces, respectivelet S ¢ A"
be a training set of size drawn 11D from an unknown distributio®?, defined on a
measurable spager’, ') with domainX’ ando-algebraX’. We denote this a8 ~ 22,
whereS = {x;} ,. For eachx; € S there is a corresponding outpyt, 1 < i < n,
with appropriate dimensioh. For convenience§ can be represented as a malXiy 4,
while the output can also be represented as a matyixy.

! Notation: Lower case letters m, i denote scalars and indices. Upper case lefeis denote
random variables. Bold lower case lettgrsy denote vectors. Bold upper case lettArsB are
matrices. Distributions?, ¢ will be written in script. Calligraphic letterd’, ) denote sets.



An unsupervised learning algorithfis a mapping fromX™ to the class of func-
tionsFs.t.forf € F, f : X — ). Thus,A takes as inpuf, selects a particulaf*
from F, and estimates am x k& output matrixY = As(X), ory = As(x), > whereAs
denotes the output df (i.e. f* € F) after training onS. The algorithmA could also
have certain parameters, denofd that the user can tune to optimize its performance.
We assume thak and its output functions ifF are all measurable maps.

2 A General Learning Framework

The problem of unsupervised learning is that of selectingnation f/* € F that trans-
forms inputx into an outpu§ = As(x) in some desired way. Here we assume thiat
a black box that takeS and produces a mafy fromx toy. Since we are ignoring’s
internal details, assessing its generalization requisée sonsider an additivexternal
lossfunction? : X x Y — R* that measures the reconstruction error betweandy.
Thus, the expected loss féis with respect td is defined as:

R(As) =E [l(x,As(x)] = /é(x, As(x))dPx. 1)

UnfortunatelyR(As) cannot be computed sine#y is unknown, and thus it has to be
estimated frons € X™. A simple estimator foR(As) is the empirical estimate:

n

Remp(As) = % Z 0(xi,As(x)). )

i=1

To obtain a practical assessment of the generalizatidy ofe need to derive an upper
bound for the quantityRemp(As) — R(As). Given the generality of this setting, one
needs to resort to worst case bounds. However, this canmmirisewithout introducing
additional assumptions about the behaviourAofFor example, if one assumes that
A chooses its output from a class of functiafissuch that the class of loss random
variablesA : X x Y — R+ induced byF, i.e. A = ¢ o F, is uniformly upper bounded
by ¢ < oo and VCdim{A) = h < oo, then with probability at least — 7 there is a
uniform concentration oReyp(As) aroundR(As):

ARemp(A
+ EMP( S)

R(As) < Rewp(As) + 141
2 TC

; 3)

wherer = 4n~! [h(In2n/h + 1) — Inn] [22, 23]. Rademacher or Gaussian complexi-
ties can also be used to obtain similar concentration inéms3]. The caveat is that
such an analysis is worst case and the resulting bounds,asu3), are too loose to
be useful in practice. This suggests that we need to makeggrassumptions ok to
achieve more useful bounds on the quanBiup(As) — R(As).

2 For example, ink-Means clustering, the elements ¥f could be the corresponding cluster
centers assigned to eaghfrom a set ofc such centers. In nonlinear dimensionality reduction,
the output could be the x n low rank matrixY . In density estimation using a mixture model,
A could output then x 1 matrix’Y with the density value of eack.



2.1 Generalization and Stability

To achieve a more practical criterion and assessment puoegde need to introduce
some form of additional assumptions Arwithout sacrificing too much generality. To
this end, we investigate an assumption thaatisfies a particular notion of algorithmic
stability that allows us to derive a more useful and a tighpgrer bound olRemp(As) —
R(As). Algorithmic stability has been successfully applied iarteng theory to derive
generalization bounds for supervised learning algorithoos has yet to be formally
applied to unsupervised learning. Among the differentordiof stability, the uniform
stability of [5] is considered to be the strongest since ftlies other notions of stability
such as: hypothesis stability, error stability, point-entiyypothesis stability, everywhere
stability, CVLOO stability, etc. [8, 14,16, 17, 20].

To define uniform stability foA in the unsupervised learning context, we require the
following definitions. For anys € X", we definevi, 1 < i < n, the modified training
setS\’ by removing fromsS thei-th elementS\! = {x;,...,%;_1,Xi1,...,X,}. We
assume thad is symmetric with respect t§; i.e. it does not depend on the elements’
order inS. Further, we require that the external Idsise “well behavetiwith respect
to slight changes if; i.e. if ¢ = 4(x,As(x)), ¢’ = {(x,As/(x)), andS’ is slightly
different from S such thatAs(x) =~ As/(x), then the difference betweenand e’
should be small. The notion ofWell behavetlis formally imposed by requiring that
is Lipschitz continuous, and thatis uniformly 5—stable with respect t@ This uniform
[B—stability is defined as follows:

Definition 1 (Uniform S—Stability). An algorithmA is uniformly 5—stable with re-
spect to the loss functiohif for anyx € X, the following holds:

vSear, _Inax [0(x, As(x)) — U(x,As\: (%)) < .
Note that5 is a function of» and we assume that stability is non-increasing as a function
of n. Hence, in the followingp can be denoted by,, .

Definition 2 (Stable Algorithm). AlgorithmA is stable if3,, oc £ .2

The analogy between our definition of unifoprstability and the uniforng—stability
in supervised learning can be explained as follows. Theoumif5—stability in [5] is
in terms of¢(As, z) and{(As\i, z), wherez = (x,y), x is the input vector, ang is
its expected output (or true label). Note tH@hs, z) can be written ag(fs(x),y),
wherefs is the hypothesis learned iy using the training se§. Similarly, ¢/(Ag\:, z)
can be written ag(fs\:(x),y). Observe that the difference betweéifs(x),y) and
£(fs\i(x),y) is in the hypothesegs and fs\.. Note also that in supervised learning,
the loss? measures the discrepancy between the expected apgnd the estimated
outputy = fs(x). In our unsupervised learning setting, the expected ougpubt
available, and the logsmeasures the reconstruction error betweemdy = As(x).
Hence, we replacAs, z) by £(x, As(x)), andf(Ag\:, z) by £(x, Ag\: (x)) to finally
obtain Definition 1.

¥ Bp ox L = B, = £, for some constant > 0.



Note that the unifornp—stability of A with respect tof is complimentary to the
continuous Lipschitz condition of If A is uniformly S—stable, then a slight change in
the input will result in a slight change in the output, reigitin a change in the loss
bounded bys. The following corollary upper bounds the quantRgmp(As) — R(As)
using the unifornmB—stability of A.

Corollary 1. Let A be a uniformlyg—stable algorithm with respect th V x € X,
andv S € X". Then, for any» > 1, and anys € (0, 1), the following bounds hold
(separately) with probability at least— 6 over anyS ~ Z:

() R(As) < RewplAs) + 25 + (4 + o)y [ @
(i) R(As) < Rioo(As) + 8+ (4ng+ o)/ B upere (s)

ﬁLoo(As) = %2?21 £(xi,As\i(x;)), is the leave-one-out (LOO) error estimate.

DiscussionThe generalization bounds in (4) and (5) directly followfrdheorem
12 in [5] for the regression case. The reason we congidarder the regression frame-
work is due to our characterization of unsupervised legrilgorithms in which we
consider the outpuj € R* is a re-representation of the inpute R<. This, in turn,
defined the form of the external loéas? : X x Y — R*. This characterization is very
similar to the multivariate regression setting, and hengereliance on Theorem 12 in
[5]. Note that if 5 o % then the bounds in (4) and (5) will be tight.

Corollary 1 is interesting in our context for a few reasonisstFit defines a gen-
eralization criterion for unsupervised learning algamhin general: ifA is uniformly
[S—stable with respect tbon S, then the bounds in (4) and (5) hold with high proba-
bility. Note that the bound in (4) is tighter than the one i) Second, the bounds for
Remp and Roo are very similar. Various works have reported tiidve is an opti-
mistically biased estimate fdk, while R oo is almost an unbiased estimate [8, 1445].
Therefore, an advantage of uniforfa-stability is that this discrepancy is mitigated.
This also shows that stability based bounds are more seifabistudying algorithms
whose empirical error remains close to the LOO error.

Second, this result also shows that to be uniformly staliégraing algorithm needs
to significantly depart from the empirical risk minimizatiprinciple that emphasizes
the minimization ofRgyp. Thatis, a stable algorith# might exhibit a larger error dur-
ing training but this would be compensated by a decreasemptaxity of the learned
function. This characteristic is exactly what defines tHeat$ of regularization. There-
fore, the choice for uniform stability allows one to considearge class of unsuper-
vised learning algorithms, including those formulated egutarized minimization of
an internal loss.

4 The LOO error estimate over samplesELoon, is an unbiased estimate f&rLoonH. Since

in most interesting CaSé/%LOOn converges with probability one, the difference betw&aon
andRioo,,_, becomes negligible for large[7, Ch. 24].



3 Empirical Generalization Analysis

Although the previous section defines a general criteriorgémeralization in unsu-
pervised learning, in practice this criterion requireseasig the uniform stability of
A on a finite data sef. The quantity of interest in the uniform stability critemids
[¢(x,As(x)) — £(x,Ags\i(x))], which is the amount of change in the loss with respect
to the exclusion of one data poirt from S. Taking expectations with respect £,
and replacing the expected loss with the empirical estimat® have that:

vSex™ Elllaxn |Remp(As) — Remp(Ag\i)| < Ba. (6)

1=1,...

This states that for a uniformlg,,—stable algorithm with respect foon S, the change
in the empirical loss due to the exclusion of one sample f&is at mosts,,. In the
finite sample setting, this will be:

mas | LS U, Asg)) - 1 Dl Asu ()| < Ba ()
, 2
J#i

Inequality (7) contains an unknown parametgmhich cannot be upper bounded with-
out any further knowledge oA. In fact, given the black box assumption Arand the
absence of information o, we cannot obtain a uniform upper bound @n This
suggests thas,, needs to be estimated from the dataSeAlso, recall from Defini-
tions 1 and 2 that if5,, < 1/n, then the generalization bounds in (4) and (5) will hold
with high probability. These two requirements raise thednfee two procedures; one
to estimates,, at increasing values of, and another one to model the relation between
the estimated,,’s and the values ofi. However, to consider these two procedures for
assessing\'s generalization, we need to introduce a further mild agsion onA. In
particular, we need to assume thfatdoes not change its learning mechanism as the
sample size is increasing fromto n + 1 for anyn > 1. Note that ifA changes its
learning mechanism based on the sample size, Ahean have inconsistent trends of
Bn With respect to: which makes it unfeasible to obtain consistent confidencete

for Remp(As) — R(As). Therefore, we believe that our assumption is an intuitive, o
and is naturally satisfied by most learning algorithms.

3.1 Estimating3,, From a Finite Data Set

Inequality (7) might suggest a simple procedure for esiimgas,, : (i)ACompute? =
As(X). (i) SetX’ = X, hold out samplex; from X', and computé&’” = Ag\:(X'),
and setB; = |[n~ (X, Y) — (n — 1)"2(X’,Y")|. (i) Repeat stepii( n times to
obtain{B; ..., B,}, and then set Sé\n = max{B; ..., B,}. The problem with this
procedure is three—fold. First, note that in the finite sasptting, Inequality (7) cannot
be evaluated fovS € X™ as required in Inequality (6). Note also that the sample maxi
mum is a noisy estimate, and hence is not reliable. Secoad @® estimate suggested
above is computationally expensive since it requires i@k for » times. Third, us-
ing all X to learn’Y will not reflect A’s sensitivity to the randomness in the dataAlf



Algorithm 1 Generalization Analysis for Algorithm.

1: Require: Algorithm A and its input paramete®a, data setS, loss function¢, number of
subsamplesn, and the sizes of subsamples,s.t.niy < ns <ng < --- < nr.

2: fort=1tordo

3: forj=1tomdo

4: X, « drawn; samples uniformly fron&
5: Y, < As(X;;0a)

6: @ < hold out one random samples fraxy
7 X X;\ @

8 Y Agvi (X5 0n)

o: Rj « L é(x],? )

10: R ™ — (X, Y’)

11: B; = |R — R}

12:  end for

13:  Bn, = mediaqBi,...,Bj,...,Bn}

14: end for

15: Return: B:{ﬁnl,...,ﬁnt,...,ﬁm}

easily gets stuck in local minima, @ has tendency to overfit the data, learning using
all X will obscure such traits.

Our proposed procedure for estimatifig, depicted in Algorithm 1, addresses the
above issues in the following ways. First it is based on reggeeandom subsampling
(with replacement) from the original data s&tsimilar in spirit to bootstrapping [10].
Second, for each subsample of sigzethe procedure obtains an estimate for the empir-
ical loss before and after holding out one random samplerAéipeating this subsam-
pI|ng processn times,m < n, the procedure obtains one estimateAgr denoted by
ﬂnt, for sample size:;. Note thatﬁnt is the median of3;’s to increase the robustness
of the estimate. This process is repeatdines and the final output of Algorithm 1 is
the set ofﬁnt’s for the increasing values of;.

The proposed procedure is computationally intensive, tyist éfficient, scalable,
and provides control over the accuracy of the estimatest, Fiote that the proposed
procedure is not affected by the fact tifais an unsupervised learning algorithm. If
A is a supervised learning algorithm, then assessing itsrgkration through uniform
[S—stability results will still requir@rm calls forA, as itis the case for the unsupervised
setting discussed here. Thus, the procedure does not imapasaputational overhead
given the absence of the expected output, and the black Isoxmtion orA. Second,
considering scalability for large data sets, the procedarebe fully parallelized on
multiple core architectures and computing clusters [13jte\that in each iteration
the processing steps for each subsample are independenalirother iterations, and
hence allm subsamples can be processed in an embarrassingly paratelem Note
also that in each iteratiols (X ;) andAg\: (X’;) can also be executed in parallel.

Parametersn and size of the subsamples,, no, .. .,n., control the tradeoff be-
tween computational efficiency and estimation accuracgs€hparameters are user—
specified and they depend on the data and problem in hanizéts,sA’'s complexity,
and the available computational resources. Parametereds to be sufficient to reduce
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Fig. 1. Left: Two synthetic data sets, (a) two normally distributed ckowod points with equal
variance and equal priors, and (d) two moons data points e¢jttal priorsMiddle: The esti-
matedg,, (blue circles) from Algorithm 1 fok—Means clustering on the two synthetic data sets.
The fitted stability lines are shown in magenta. The slop&efstability lines is indicated by.
Right: The estimated, and stability lines for PCA on the two synthetic data set® dispersion

of 8,,’s around the stability line is reflected in the norm of thedeals for the stability line (not
displayed). Note the difference in the dispersion of poartsund the stability line fok—Means
and PCA. Note also that the more structure in the two moores kitis reflected in a smaller
(compared tavfor the tow Gaussians) for both algorithms.

the variance i{Ry,..., R, } and{R},..., R, }. However, increasing: beyond a
certain value will not increase the accuracy of the estichatapirical loss. Reducing
the variance in{Ry,..., R, } and{R},..., R}, }, in turn, encourages reducing the
variance in{ By, . .., B, }. Note that for any random variabl with meany, median
v, and variance?, then|u — v| < o with probability one. Therefore, in practice, in-
creasingm encourages reducing the varianceHi's thereby reducing the difference
|Bnt — E(Bj)|. Observe that the operatorax;—1 ... », definedvS € X" in (6) is now
replaced with the estimaﬁ}%.

3.2 The Trend ofﬁn and The Stability Line

The output of Algorithm 1 is the sét of estimated@nt’s for the increasing values of
n¢. In order to assess the stability &f we need to observe wheth@&y, = ni, for some



constant > 0. As an example, Figure 1 shows the trenqﬁgﬁor k—Means clustering
and principal component analysis (PCA) on two synthetidaia sets. The blue circles
in the middle and right figures are the estima&ldfrom Algorithm 15 Observe that
En is decreasing as is increasing.

To formally detect and quantify this decrease, a line isdit the estimateqﬁl
(shown in magenta); i.¢l(n;) = wn; + ¢, wherew is the slope of the line, andis the
intercept. We call this line, th8tability Line The slope of the stability line indicates
its steepness which is an esimtate for the decreasing rdig. &for stable algorithms,
w < 0, and|w]| indicates the stability degree of the algorithm. Note that tan 4,
whered is the angle between the stability line and the abscissa,-ghd ¢ < 7.
For0 < 0 < 3, Alis not stable. For-3 < 6 < 0, if 6 is approaching 0, theA is a
less stable algorithm, while i is approaching- 7, thenA is a more stable algorithm.
Observe that in this setting, is a function ofn andw, and hence it can be denoted by
B(n,w). Pluggings(n, w) in the inequalities of Corollary 1, we get that:

log(1/6)

(i) R(As) < Remp(As) +2(wn + ¢) + [4n(wn + ) + ¢ —5n @
(i) R(As) < Rioo(As) + (wn + ) + [nfwn + ¢) + /B (q)

That is, the steeper is the stability line & 0), the more tight is the confidence bound.
Figure 2 shows other examples for stability lines on thelsgtit data sets (Gaussians
and Moons) using Laplacian eigenmaps (LEM) [4], and Locatlair Embedding (LLE)
[19]. The generalization assessment is based on the LaplatatrixL for LEM, and
the weighted affinity matri¥V for LLE. In particular, the loss for LEM i = tr(LL "),
while for LLE, ¢ = tr((WW ).

3.3 Comparing Two Algorithms: A; vs. A,

The previous generalization assessment procedure ondjd=yad one algorithm. Here
we propose an extension for the above procedure to compagetieralization of two
unsupervised learning algorithm&; andA,, under the same logs on a given data
source. More specifically, the comparative setting adéseti® following questions: if
A, is stable with respect tbon S (according to Definition 2), and i is stable with
respect t on S (according to Definition 2), which algorithm has better gatization
on S? The following definition gives a formal answer to these tjoes.

Definition 3 (Comparing A; vs. Ay ). Let A; be a stable algorithm with respect to
on S with slopew; < 0 for its stability line. LetA; be a stable algorithm with respect
to £ on S with slopew, < 0 for its stability line. We say that:

1. A is similar toA,, denotedd; = A, if wq &~ wo.8

5 In these experimentsp = 100, andni, n, . .., n, were set td).5n, 0.51n, ..., 0.99n, n.
The loss? for k—Means is the sum af; distances between each point and its nearest centre,
and for PCA/( = tr(C), whereC is the data’s sample covariance matrix.

8 This is done using hypothesis testing for the equality gbeto- See Appendix for details.
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Fig. 2. First Column: Generalization assessment for LEM on two Gaussians (ajdyanmoons
(e,9), with different number of nearest neighboums) for constructing the data’s neighbourhood
graph. Compare the slopes)(for the stability lines and the dispersion of points aroitndnd
note the sensitivity of LEM to the number oh. The same follows for the two moons case (g,9).
Note also the difference in the stability lines (slope, aigpersion of estimated,,’s) for LEM
and PCA on the same data seB&cond Column:Generalization assessment for LLE on two
Gaussians (b,d) and two moons (f,h) data sets, with differember ofnn.
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Fig. 3. Generalization assessment ferMeans clustering using stability analysis on four real
data sets: (a) Faces AR, (b) Faces CMUPIE, (c) Coil20, and @)MFeat.

2. Ay is better thamA,, denoted byA; = Ao, if w; < ws.
3. A; is worse tham\,, denotedd; < Ao, if wy > ws.

To develop a formal procedure for such an assessment weqatbgdetting Algorithm
1 invoke the two algorithm#; and A, on the same subsampl¢X,,...,X,,} and

{X},..., X! }. The final output of Algorithm 1 will be two se8! = {3} ..., 3} },
andB? = {Bfn, . ,Bﬁf}. The analysis then proceeds by fitting the stability line for

each algorithm, plotting the curves shown in Figures 1 arah@,then comparing the
slopes of both algorithms. Formal comparison for the slapeandw, is done using
hypothesis testing for the equality of slopes:

Hy:wp = wo vs. Hpi:un }é wa.

If Hy is rejected at a significance lewel(usually0.05 or 0.01), then deciding which
algorithm has better generalization can be done using fubesd 3 in the above defi-
nition. If Hy cannot be rejected at the desired significance level, théndigorithms
have a similar generalization capability. Further insicgrt be gained through the norm
of the residuals, and the spread of the estimétesl around the stability line.

4 Empirical Validation on Real Data Sets

We have conducted some initial validation tests for the psed generalization as-
sessment framework. In these experiments, we consideedifferent unsupervised



learning problems: clustering and dimensionality rechrc{ilinear and nonlinear). In
particular, we considered the following algorithnis:Means for clustering, PCA for
linear dimensionality reduction, and LEM and LLE for nodar dimensionality reduc-
tion (NLDR). The four algorithms were run on four data setarirdifferent domains:

(i) two faces data sets, AR and CMUPIE with (samplefeatures236 x 2900, and
2509 x 2900, respectively.i() two image features data sets, Coil20 and Multiple Fea-
tures (MFeat) with (samples features)1440 x 1024, and2000 x 649, respectively,
from the UCI Repository for Machine Learning [18]In all these experiments, the
number of bootstraps: was set tol 00, and the values fony, no, ..., n, were set to
0.5n,0.51n,0.52n, . ..,0.99n, n, wheren is the original size of the data set.

To apply the proposed generalization assessment, an aktess ¢ needs to be
defined for each problemt—Means minimizes the sum @f, distances between each
point and its nearest cluster centre. Thus, a suitable bosbe the sum af; distances.
Note that the number of clustetss assumed to be known. Note also that in this setting,
for each iteratiory in Algorithm 1, the initialk centres are randomly chosen and they
remain unchanged after holding out the random sample. EhatMeans starts from
the same initial centres before and after holding out ongogam

For PCA, LEM and LLE, the loss functions are chosen as folldivs tr(C) for
PCA, ¢ = tr(LLT) for LEM, and/ = tr(WW ") for LLE, whereC is the data’s
sample covariance matrii, is the Laplacian matrix defined by LEM, alW is the
weighted affinity matrix defined by LLE. The number of neamsighbours for con-
structing the neighbourhood graph for LEM and LLE was fixed(do ensure that the
neighbourhood graph is connected. Note that we did not parémy model selection
for the number of nearest neighbours to simplify the expents and the demonstra-
tions.

4.1 Generalization Assessment dé—Means Clustering

Figure 3 shows the stability lines fd—Means clustering on the four real data sets
used in our experiments. For both faces data sets, AR and T/l stability lines
have similar slopes despite the different sample size. Mewyéhe dispersion of points
around the stability line is bigger for CMUPIE than it is foRAHypothesis testing for
the equality of slopes (at significance lewek 0.05) did not rejectd, (p—value = 0.92).
For Coil20 and UCI Mfeat, the slopes of stability lines diffsy one order of magnitude
(despite the different sample size). Indeed, the hypdittest in this case rejectddl,
with a very smallp—value. Note that the estimaté;t’s for the four data sets do not
show a clear trend as is the case for the two Gaussians angdhadons data sets in
Figure 1. This behaviour is expected frégmMeans on real high dimensional data sets,
and is in agreement with what is known about its sensitivatyhie initial centres and
its convergence to local minima. For a better comparisosenie the stability lines for
PCA on the same data sets in Figures 4 and 5.

"The AR and CMUPIE face data sets were obtained from
http://ww. face-rec. or g/ dat abases/.
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Fig. 4. Generalization assessment for PCA, LEM and LLE using stalzihalysis on two faces
data sets: AR (a,b,c), and CMUPIE (d,e,f).

4.2 Generalization Assessment of PCA, LEM, and LLE

Figures 4 and 5 show the stability lines for the three dinmmmsity reduction algo-
rithms; PCA, LEM and LLE, on the four real data sets used ineogmeriments. Note
that the magnitude ab for these experiments should not be surprising given thie sca
ofn andBnt. It can be seen that PCA shows a better trend of the estinﬁﬁtedhan
LEM and LLE (for our choice of fixed neighbourhood size). Tiend shows that PCA
has better stability (and hence better generalization) LM and LLE on these data
sets. Note that in this setting, the slope for PCA stabilitye lcannot be compared to
that of LEM (nor LLE) since the loss functions are differditwever, we can compare
the slopes for each algorithm stability lines (separatety)he face data sets and on the
features data sets.

Hypothesis testingol = 0.05) for PCA stability lines on AR and CMUPIE rejects
Hy in favour of H; with a p—value= 0.0124. For Coil20 and UCI Mfeat, the test did
not rejectH, and thep—value= 0.9. For LEM, the test did not rejedt, for the slopes
of AR and CMUPIE, while it did reject in favour of H; for Coil20 and UCI MFeat.
A similar behaviour was observed for LLE.

In these experiments and the previous ones:elleans clustering, note that no
comparison of two algorithms were carried on the same datdrsthese illustrative
examples, the generalization of one algorithm was assesseso different data sets,
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Fig. 5. Generalization assessment for PCA, LEM and LLE using staldhalysis on Coil20
(a,b,c), and UCI MFeat (d,e,f).

following the examples on the synthetic data sets in Figlr&®te that this scenario is
different from the one described §8.3. In the above experiments, the trend?gj, the
stability line, the slopeav, and the scatter of points around the stability line, predid
a quantitative and a qualitative evaluation for the getmatibn capability ofk—Means
and PCA. However, our experience suggests that when anglyize generalization
of one algorithm on two different data sets, hypothesigrtgstan give more accurate
insight if the sample sizes; are equal for both data sets singeis known to decrease
ask/n, ands > 0.

5 Concluding Remarks

In this paper we proposed a general criterion for genet#izén unsupervised learn-
ing that is analogous to the prediction error in supervisedring. We also proposed a
computationally intensive, yet efficient procedure toimsathis criterion on finite data
sets, and extended it for comparing two different algorglon a common data source.
Our preliminary experiments showed that, for algorithnasrfithree different unsuper-
vised learning problems, the proposed framework providedifed mechanism and a
unified interface to assess their generalization capgbilitis type of analysis suggests
further rigorous assessment of these algorithms, and sueaging to conduct similar
analysis for other unsupervised learning problems sucleasity estimation, subspace



clustering, feature learning, and layer wise analysis epd&rchitectures. Further, our
framework can be extended to answer model selection qusstiounsupervised learn-
ing, or it can be complimentary to exiting methods for modgéstion.
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Appendix

Hypothesis testing for the equality of slopes andw, for two regression line¥; =

w1 X1+¢ andYs = we Xo+(o, respectively, proceeds as follows. l&t= {(z}, y7)}:,
andsS; = {(:c-%, yg) ?il, be the two data sets to be used for estimating the lines define
by w; andw,, respectively. Le{yi, ..., 77} and{73,...,75*} be the estimated pre-
dictions from each regression line. The null and altermstiypotheses of the test are:

Hy:wy=ws VS. Hyj:wy 75 wo.

Thatis,Hp : w1 —wy = 0. If Hy is true, thernw; — we ~ 4(0, Sw,w, ), WhEresq, w,
is the pooled error variance. Using gest, we construct the statistic
pm e g
Swlwg
where.Z,. is the Student’s distribution withr degrees of freedom, and= n; +ns —4.
The pooled error variance is defined as:

— ]2 2
Sw1w2 - Swl + Swg’

where

52 = 7616
" (e — 1)
exr = it (yh — i)/ (ni — 2), ando? = Var(Xy), which can be replaced by the
sample variance. For significance leuglwe compute the probability of observing the
statistict from .7, given thatH is true; this is theP value of the test. IfP > «, then
Hj cannot be rejected. Otherwise, rejégf in favour of H;.
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