

PROPERTY-DRIVEN PROTEIN INVERSE FOLDING WITH MULTI-OBJECTIVE PREFERENCE ALIGNMENT

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Protein sequence design must balance designability, defined as the ability to re-
012 cover a target backbone, with multiple, often competing, developability properties
013 such as solubility, thermostability, and expression. Existing approaches address
014 these properties through post hoc mutation, inference-time biasing, or retraining
015 on property-specific subsets, yet they are target dependent and demand substantial
016 domain expertise or careful hyperparameter tuning. In this paper, we introduce Pro-
017 tAlign, a multi-objective preference alignment framework that fine-tunes pretrained
018 inverse folding models to satisfy diverse developability objectives while preserving
019 structural fidelity. ProtAlign employs a semi-online Direct Preference Optimization
020 strategy with a flexible preference margin to mitigate conflicts among competing
021 objectives and constructs preference pairs using *in silico* property predictors. Ap-
022 plied to the widely used ProteinMPNN backbone, the resulting model MoMPNN
023 enhances developability without compromising designability across tasks including
024 sequence design for CATH 4.3 crystal structures, *de novo* generated backbones,
025 and real-world binder design scenarios, making it an appealing framework for
026 practical protein sequence design.
027

1 INTRODUCTION

028 Inverse folding is a fundamental task in protein design, spanning applications from refining sequences
029 of natural proteins to generating sequences for *de novo* designed backbones (Yue & Dill, 1992;
030 Notin et al., 2024; Khakzad et al., 2023). Substantial progress has been made with models trained to
031 accurately recover sequences compatible with a target backbone, demonstrating strong capacity to
032 capture structure–sequence relationships (Gao et al., 2023; Qiu et al., 2024b; Xue et al., 2025), and
033 post-training approaches have been explored to further improve sequence quality (Widatalla et al.,
034 2024; Xue et al., 2025; Xu et al., 2025; Wang et al., 2025). However, real-world design pipelines
035 demand more than high sequence recovery: they typically require proteins that are both designable
036 and developable, exhibiting properties such as solubility, thermostability, and expression level, with
037 additional traits depending on specific design goals (Peterson et al., 2007; Salihu & Alam, 2015).
038

039 Several strategies have been explored to incorporate developability preferences into the generation
040 process. **(1) Post-hoc mutation:** generate sequences with existing tools and then introduce mu-
041 tations to improve properties. While simple, beneficial mutations are often sparse and difficult to
042 identify (Broom et al., 2017). **(2) Inference-time biasing:** adjust amino acid sampling probabili-
043 ties (Goverde et al., 2024) or use reward signals to guide sequence generation (Xiong et al., 2025).
044 These techniques can introduce instability and require careful hyperparameter tuning to balance
045 property optimization with sequence quality. **(3) Retraining on curated subsets:** construct datasets
046 filtered for desired properties and retrain the model to implicitly learn the bias (Goverde et al., 2024;
047 Ertelt et al., 2024). Although such methods have achieved wet-lab validated success, they rely on
048 carefully curated datasets and are difficult to generalize across diverse design objectives.

049 To address these challenges, we introduce ProtAlign, an optimization framework that aligns pretrained
050 inverse folding models with both designability and diverse developability objectives. ProtAlign em-
051 ploys a novel semi-online Direct Preference Optimization algorithm with a flexible preference margin
052 to balance competing goals (Figure 1). This strategy enables robust optimization for developability
053 without sacrificing sequence–structure fidelity, even though developability metrics do not directly
capture sequence-structure consistency. Training data are generated by annotating sequences with a

Figure 1: The ProtAlign framework. ProtAlign optimizes the policy model in a semi-online regime composed of alternating rollout and training stages. In the rollout stage, protein backbones are sampled from the training set, and the current policy model generates rollouts at a higher temperature. These rollouts are evaluated with property predictors, and pairwise preference datasets are constructed for each property. During training, pairwise entries are drawn evenly across the datasets, and an adaptive preference margin is introduced to resolve conflicts among multiple objectives.

suite of property predictors and forming pairwise preference sets for each property. During training, pairs are sampled evenly across properties, and the flexible margin in the DPO loss helps reconcile conflicting optimization directions. The overall training proceeds in a semi-online manner through iterative rollout, annotation, and updating, which avoids running property predictor models during training, thereby significantly reducing computational cost.

We instantiate our framework on ProteinMPNN (Dauparas et al., 2022), one of the most widely used inverse folding models, training it on the commonly adopted CATH dataset (Sillitoe et al., 2021) to obtain MoMPNN. We evaluate two key developability properties, i.e., solubility and thermostability, and show that MoMPNN outperforms subset-trained baselines such as SolubleMPNN (Goverde et al., 2024) and HyperMPNN (Ertelt et al., 2024), which are specifically designed for these properties. We comprehensively assess MoMPNN across redesigning sequences for crystal structures in the CATH 4.3 test set, designing sequences for *de novo* generated backbones, and applications to realistic binder design scenarios. MoMPNN shows superior performance across these diverse evaluation tasks, demonstrating the broad applicability and effectiveness of our alignment framework.

Our main contributions are:

- We propose a multi-objective alignment framework, ProtAlign, for optimizing protein inverse folding models towards arbitrary desired developability properties without compromising designability with semi-online multiple-objective preference optimization.
- Applying ProtAlign to ProteinMPNN, our resulting model MoMPNN achieves significant improvement on developability properties, outperforming existing baselines across crystal, *de novo* and real-scenario benchmarks.
- By adding *de novo* benchmarks and incorporating developability metrics into inverse folding evaluation, we offer a systematic framework for assessing model performance beyond recovery, thereby opening new avenues for future research.

2 RELATED WORK

Protein Inverse Folding. Protein inverse folding is to generate a protein’s amino acid sequences given its structure. Early work like GraphTrans (Carscadden et al., 2021), StructGNN (Chou et al., 2024) and Geometric Vector Perceptrons (GVPs) (Jing et al., 2020) utilize the graph neural network to design protein sequences. And, ProteinMPNN (Dauparas et al., 2022) extends GraphTrans by introducing more geometry features and random decoding. ESM-IF (Hsu et al., 2022) trains a large-scale inverse folding framework based. PiFold (Gao et al., 2022) accelerates sequence generation with a one-shot predicting strategy. FMIF (Nisonoff et al., 2024) explores applying flow matching to inverse folding. Additionally, LM-Design (Zheng et al., 2023), CarbonDesign (Ren et al., 2024) and InstructPLM (Qiu et al., 2024b) utilize protein language models in sequence design. **There are also emerging approaches that move beyond traditional inverse folding (Song et al., 2024; Tang et al.; Wu et al.) to design functional sequences by considering not only the backbone structure but also the broader biochemical context of the protein.** While ProteinMPNN is still the most widely used and wet-lab-verified model, we chose it as our backbone model during our evaluation.

Preference Optimization. Recently, many methods to align LLMs with human feedback have emerged. To better align these models with human preferences, these methods can be categorized into two classes: online and offline methods. Online methods (Shao et al., 2024), such as PPO (Schulman et al., 2017), are typically employed to optimize policy models through direct reward optimization. While effective, online RL methods are computationally intensive and potentially unstable (Gupta et al., 2025). Recently, offline methods DPO (Rafailov et al., 2023) and its variants (Azar et al., 2024; Meng et al., 2024) have been introduced. They can align models to pairwise preferences rather than an explicit reward model directly. To address the possible overfitting and collapse problems of offline DPO (Guo et al., 2024a), several online or semi-online variants (Guo et al., 2024a; Calandriello et al., 2024; Lanchantin et al., 2025) have been developed. Inspired by these works, we design a semi-online approach combining the benefits of self-evolving and computational efficiency by separating the rollout phase from training.

Preference optimization has been used on inverse folding models to improve their performance. ProteinDPO (Widatalla et al., 2024) leverages an experimentally derived stability preference dataset to enhance the stability of designed sequences. ResiDPO (Xue et al., 2025) uses a residue-level labeled dataset to improve sequence designability. InstructPLM-DPO (Xu et al., 2025) is fine-tuned on a TM-Score-constructed dataset (Zhang & Skolnick, 2005) to better align sequence outputs with target structures. ProteinZero (Wang et al., 2025) directly defines a composite reward function combining TM-Score and energy, and optimizes through online GRPO. These works mainly focus on improving designability and cannot extend to developability properties that may conflict with designability.

Multi-Objective Preference Alignment The multi-dimensional nature of human preferences (Vamplew et al., 2018; Bai et al., 2022) motivates various methods for handling multiple objectives (Wang et al., 2024). Early work explored parameter-merging approaches like rewarded soups (Jang et al., 2023; Lin et al., 2023; Rame et al., 2023; Wortsman et al., 2022), preference-conditioned prompting was introduced (Zhu et al., 2023; Basaklar et al., 2022; Guo et al., 2024b; Yang et al., 2024), enabling direct control over preference weightings (Zhou et al., 2023b). Beyond inference-time techniques, retraining-based strategies have emerged as a promising direction: MORLHF (Wu et al., 2023; Bai et al., 2022) incorporates multiple rewards through scalarization, and MODPO (Zhou et al., 2023a) integrates multi-objective optimization directly into reward learning, theoretically matching MORLHF yet practically offering greater stability and efficiency. We leverage similar techniques when optimizing inverse folding models towards multiple objectives.

3 PRELIMINARIES

ProteinMPNN. ProteinMPNN (Dauparas et al., 2022) aims to model the conditional distribution $P(\text{seq} | x)$ and generate sequences that are compatible with the target structure given a backbone structure x . It is an order-agnostic autoregressive model that generates sequences conditioned on a given backbone structure. For a backbone x with L residues, the probability of a sequence

162 $y = (y_1, \dots, y_L)$ is factorized as:
 163

$$164 \quad \pi_\theta(y \mid x, \sigma) = \prod_{i=1}^L \pi_\theta(y_{\sigma(i)} \mid x, y_{\sigma(<i)}), \quad (1)$$

166 where σ is a random permutation of residue indices that enforces order invariance.
 167

168 The model is trained on structure–sequence pairs from the Protein Data Bank (PDB) using cross-
 169 entropy loss with teacher forcing. At each step, a random permutation σ is sampled, and the loss is
 170 computed as

$$171 \quad \mathcal{L}_{\text{CE}}(\theta) = -\mathbb{E}_{(x,y) \sim \mathcal{D}} \mathbb{E}_\sigma \left[\sum_{i=1}^L \log \pi_\theta(y_{\sigma(i)} \mid x, y_{\sigma(<i)}) \right].$$

174 **Direct Preference Optimization.** Direct Preference Optimization (DPO) (Rafailov et al., 2023) is a
 175 recent framework for aligning generative models with human or task-specific preferences without
 176 requiring explicit reward modeling. The key idea is to learn from pairwise preference data: given a
 177 context x (e.g., a protein backbone) and two candidate outputs y_w (preferred) and y_l (less preferred),
 178 the preference model assumes

$$179 \quad P(y_w \succ y_l \mid x) = f(r(y_w), r(y_l)),$$

180 where $r(\cdot)$ is an implicit reward function and f is typically modeled as a logistic function over
 181 reward differences. Instead of explicitly estimating r from pairwise data, DPO derives a tractable
 182 training loss by enforcing that the conditional likelihood ratio between the fine-tuned policy π_θ and
 183 the reference policy π_{ref} matches the observed preference:
 184

$$185 \quad \mathcal{L}_{\text{DPO}}(\theta) = -\mathbb{E}_{(x,y_w,y_l)} \left[\log \sigma \left(\beta \log \frac{\pi_\theta(y_w \mid x)}{\pi_{\text{ref}}(y_w \mid x)} - \beta \log \frac{\pi_\theta(y_l \mid x)}{\pi_{\text{ref}}(y_l \mid x)} \right) \right],$$

186 where σ is the sigmoid function and β controls the strength of preference alignment. This objective
 187 directly optimizes the model to prefer y_w over y_l , while regularizing towards the reference model.
 188

190 4 METHOD

192 In this section, we present our multi-objective preference alignment framework ProtAlign. Firstly, we
 193 describe our method of multi-objective optimization in protein sequence design tasks in Section 4.2.
 194 Then, we outline our semi-online multi-objective training strategy for efficient exploration in Section
 195 4.3. Finally, Section 4.4 introduces the construction of preference pairs.
 196

197 4.1 NOTATIONS

199 Let x denote the input backbone structure, y a protein sequence, and θ the model parameters. We
 200 write π_θ for the sequence conditional distribution induced by θ , and π_{ref} for the reference model
 201 obtained prior to post-training. A superscript t indicates variables in the t -th stage of semi-online
 202 training, such as π^t or y^t . Let K be the number of properties, and let $\{M_k : (x, y) \rightarrow \mathbb{R}\}$ denote the
 203 corresponding *in silico* predictors. Finally, let $\mathcal{D} = [\mathcal{D}_1, \dots, \mathcal{D}_K]$ represent the pairwise datasets for
 204 each property, generated by the respective M_k .
 205

206 4.2 MULTI-OBJECTIVE OPTIMIZATION WITH FLEXIBLE PREFERENCE MARGIN

207 Our optimization process aligns a pretrained inverse folding model based on a series of pairwise
 208 datasets $\{\mathcal{D}_k\}$ for each target property k , annotated by *in silico* predictors M_k (Section 4.4). Theulti-
 209 mate goal is to simultaneously improve the model’s performance on all properties while maintaining
 210 limited divergence from the original model. Formally, we maximize the following objective:
 211

$$212 \quad \arg \max_{\theta} \mathcal{L}(\pi_\theta) = \mathbb{E}_{x \sim \mathcal{D}_x, y \sim \pi(\cdot \mid x)} \left[\sum_k w_k r_k(x, y) \right] - \beta \mathbb{D}_{\text{KL}}(\pi_\theta(y \mid x) \parallel \pi_{\text{ref}}(y \mid x)), \quad (2)$$

214 where \mathcal{D}_x is the distribution of possible protein backbones, r_k is the implicit reward function from
 215 \mathcal{D}_k and w_k is an adjustable weight.
 216

216 As in the original Direct Preference Optimization (DPO) derivation, we assume the preference
 217 relations follow the Bradley-Terry model:
 218

$$219 \quad p^*(y_1 \succ y_2 | x) = \frac{\exp(r(x, y_1))}{\exp(r(x, y_1)) + \exp(r(x, y_2))} = \sigma(r(x, y_1) - r(x, y_2)). \quad (3)$$

221 We integrate the multi-property policy objective in Eq. 2 with the pairwise preference model in Eq. 3
 222 (details in the Appendix B.1) (Zhou et al., 2023a), we derive a flexible-margin Direct Preference
 223 Optimization (DPO) loss, denoted $\mathcal{L}_{\text{MO}}(\theta; \mathcal{D}_k)$. It explicitly accounts for both multi-property rewards
 224 and adaptive preference margins. The intuition of adaptive preference margins is that if y_w performs
 225 worse than y_l on some auxiliary property, the required margin for this pair should be reduced,
 226 preventing conflicting optimization from overemphasizing a single property at the cost of others.
 227

$$228 \quad \mathcal{L}_{\text{MO}}(\theta; \mathcal{D}_k) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}_k} \left[\log \sigma \left(w_k \left(\beta \log \frac{\pi_\theta(y_w|x)}{\pi_{\text{ref}}(y_w|x)} - \beta \log \frac{\pi_\theta(y_l|x)}{\pi_{\text{ref}}(y_l|x)} - m_{\text{k}}(y_w, y_l) \right) \right) \right],$$

$$232 \quad m_{\text{k}}(y_w, y_l) = \lambda \sum_{k' \neq k} w_{k'} (r_{k'}(x, y_w) - r_{k'}(x, y_l)).$$

235 During training, we sample entries from the pairwise datasets \mathcal{D}_k evenly. The adaptive margin
 236 $m(y_w, y_l)$ is precomputed before training with our property predictors.
 237

238 Next, we describe the definition of ProteinMPNN’s probability term π_θ in the loss function \mathcal{L}_{MO} .
 239 Unlike LLMs, ProteinMPNN is not a left-to-right model but an order-agnostic autoregressive model.
 240 While π_θ can be easily calculated for left-to-right causal models, its exact estimation for order-
 241 agnostic models inherently requires extensive sampling across different decoding orders. We adopt an
 242 efficient approach for estimating the log-ratio in our loss function inspired by recent works on discrete
 243 diffusion-based LLMs (Zhu et al., 2025). The probabilities π_θ and π_{ref} of an order-agnostic inverse
 244 folding model by sampling multiple random residue orders. Crucially, both models are evaluated
 245 under the *same sampled orders*:

$$246 \quad \hat{p}_\theta(y | x) = \frac{1}{K} \sum_{k=1}^K \pi_\theta(y | x, \sigma_k), \quad \hat{p}_{\text{ref}}(y | x) = \frac{1}{K} \sum_{k=1}^K \pi_{\text{ref}}(y | x, \sigma_k), \quad (5)$$

250 where $\{\sigma_k\}_{k=1}^K$ are the same sampled permutations. This shared-order evaluation significantly
 251 reduces the variance of the estimated log-ratio, leading to more stable optimization.
 252

253 4.3 SEMI-ONLINE TRAINING FOR EFFICIENT EXPLORATION

254 It is widely acknowledged that online exploration plays an important role in RL alignment (Tang et al.,
 255 2024). However, such training regime requires significant resource and infrastructure engineering
 256 for rollout and evaluation during training. Fortunately, semi-online training has been shown to
 257 be as effective as pure online training (Lanchantin et al., 2025). Thus, we build a semi-online
 258 DPO framework to decouple rollout and evaluation from training, which allows for efficient batch
 259 computation and is easy to deploy.
 260

261 As detailed in Algorithm 1, the semi-online DPO framework proceeds in an iterative manner. At each
 262 iteration t , the current policy π_θ^t first generates rollout sequences under a rollout temperature τ , which
 263 is deliberately set higher than the evaluation temperature in order to promote diversity. These rollouts
 264 are subsequently evaluated by K property predictors, from which pairwise preference datasets $\{\mathcal{D}_k\}$
 265 are constructed. The model is then optimized on the newly generated preference data for several
 266 steps, yielding the updated policy π_θ^{t+1} . Overall, this paradigm integrates the advantages of both
 267 online and offline learning: the model alternates between online data generation and update across
 268 iterations, while the optimization within each iteration is performed in an offline mode. In addition,
 269 our approach requires no modification to the property predictors, ensuring strong compatibility with
 270 existing methods; it allows batch inference to maximize resource utilization; and each predictor can
 271 fully exploit the available computational capacity without introducing additional overhead.

270 **Algorithm 1** Iterative Training Algorithm for Semi-Online DPO

```

271 1: Input: Base model  $\pi_0$ , Preference predictors  $\{M_1, M_2, \dots, M_K\}$ , Preference weights
272    $\{w_1, w_2, \dots, w_K\}$ , Backbone dataset  $\mathcal{X}$ , Number of iterations  $T$ , Number of designed sequences
273   per backbone  $n$ , Sampling temperature  $\tau$ , Number of sampling backbones at each iteration  $N$ .
274 2: Initialize model  $\pi_\theta = \pi_0$ .
275 3: for  $t = 1$  to  $T$  do
276   4:   for  $i = 1$  to  $N$  do
277     5:       Sample backbone  $x \leftarrow \text{Sample}(\mathcal{X})$ .
278     6:       Generate  $n$  sequences per backbone  $S = \{s_i\}_{i=1}^n \sim \pi_\theta(\cdot | x, \tau)$ .
279     7:       Use reward models  $\{M_1, M_2, \dots, M_K\}$  to calculate rewards for each sample.
280     8:       for  $k = 1$  to  $K$  do
281       9:           Construct preference pairs for each reward  $D_k^t = \{(y_w, y_l)\}$ .
282     10:      end for
283   11:    end for
284   12:    Update model parameters  $\theta^t \leftarrow \theta^{t-1} - \alpha \nabla_\theta \left( \sum_{k=1}^K w_k \mathcal{L}_{\text{MO}}(\theta; \mathcal{D}_k) \right)$ .
285 13:  end for
286 14:  Output: Final optimized model  $\pi_\theta$ 

```

288 **4.4 CONSTRUCTION OF PREFERENCE DATASETS**

290 We leverage existing protein property predictors as proxy annotators to provide pairwise preferences, 291 building separate datasets for each property k . Given a backbone with N candidate sequences, each 292 sequence is scored with $M_k(y)$ and ranked accordingly. Following Xu et al. (2025), the i -th ranked 293 sequence is paired with the $(N/2 + i)$ -th ranked sequence ($i \leq N/2$), denoted y_w and y_l . A pair 294 (y_w, y_l) is included in the dataset \mathcal{D}_k only if the score gap satisfies $M_k(y_w) - M_k(y_l) > \delta_k$, where 295 δ_k is a property-specific threshold. This procedure filters out ambiguous comparisons and yields 296 consistent annotations from which DPO can learn implicit reward signals.

298 To capture diverse aspects of protein design, we categorize properties into two classes. **Designability** 299 **properties** measure structural consistency between designed sequences and the input backbone, such 300 as TM-score between a predicted structure and the target backbone or confidence metrics reported 301 by structure prediction models. These metrics reflect the fundamental ability of an inverse folding 302 model. **Developability properties**, in contrast, do not directly compare the designed sequence 303 to the backbone and are primarily concerned with whether the protein sequence can achieve the 304 intended purpose. We consider two main types: (1) General quality metrics, assessed for example 305 by pseudo-likelihood scores from protein language models such as ESM (Lin et al., 2022), which 306 correlate with evolutionary plausibility and often predict downstream outcomes such as solubility 307 or expression (Adaptyv Bio, 2024); and (2) Targeted quality metrics, which capture properties 308 directly related to whether the designed sequence can fulfill desired purposes, such as solubility and 309 thermostability. These are important for practical use and are typically approximated by *in silico* 310 predictors given the expense of wet-lab assays. Since developability properties does not consider 311 the consistency between sequence and input structure, we jointly optimize developability properties 312 together with designability properties in our multi-objective alignment framework to ensure structural 313 consistency while optimizing for desired developability.

314 **5 EXPERIMENTS**

315 We evaluate our framework by fine-tuning the widely adopted ProteinMPNN model toward two 316 critical functional properties, solubility and thermostability, thereby deriving the MoMPNN models. 317 Section 5.1 presents the details of model training and our evaluation setup. In Section 5.2, we assess 318 MoMPNN’s ability to redesign sequences for crystal structures in the CATH4.3 test set. Section 5.3 319 extends the evaluation to a more practical setting on *de novo* generated protein backbones. Finally, 320 Section 5.4 focuses on a more specific application, evaluating MoMPNN’s performance in designing 321 sequences for *de novo* binders against a set of challenging protein targets.

324
325

5.1 EXPERIMENTAL SETUP

326
327
328
329
330
331

Training and Testing. Our model is trained on the CATH 4.3 training set (Orengo et al., 1997) based on the train-test-validation split referenced in (Hsu et al., 2022). During training, we generate eight sequences at a temperature of 1.0 for each sampled structure to encourage diversity. We use a temperature of 0.1 during evaluation for ProteinMPNN-related models, while other baselines are evaluated at their recommended temperature. More details on the preparation of the training and testing datasets are provided in the Appendix C.

332
333
334
335
336
337
338
339

Baseline Methods. We compare our model against representative methods from three categories: (1) state-of-the-art inverse folding models, including ProteinMPNN (Dauparas et al., 2022), ESM-IF (Hsu et al., 2022), and InstructPLM (Qiu et al., 2024a); (2) **RL-based DPO method ProteinDPO** (Widatalla et al., 2024); (3) task-specific models trained on protein subsets, SolubleMPNN (Goverde et al., 2024) for solubility and HyperMPNN (Ertelt et al., 2024) for thermostability; and (4) guidance-based methods, where we use SolubleMPNN and HyperMPNN as conditional models to guide the original ProteinMPNN model, following the approach of Nisonoff et al. (2024), resulting in Guidance[*Sol*] and Guidance[*Thermo*]. Additional details are provided in the Appendix B.3.

340
341
342
343
344
345
346
347
348
349

Property Predictors. We employ several computational predictors as *in silico* proxies for protein properties. For designability, we use the TM-score (TM), computed between ESMFold-predicted (Lin et al., 2022) structures and reference structures, or alternatively the pTM score from AlphaFold2 (Jumper et al., 2021) using the Initial Guess (IG) (Bennett et al., 2023) approach. For developability, we adopt Protein-Sol (Hebditch et al., 2017) as a widely used proxy for solubility (*Sol*), TemBERTure (Rodella et al., 2024), a model trained on large-scale datasets, as a proxy for thermostability (*Thermo*), and the pseudo-likelihood score from the ESM-2 model (Lin et al., 2022) (**Evolutionary Perplexity**, EP) as an indicator of sequence quality. In our experiments, we systematically compare the benefits of training with different combinations of these properties. Additional details are provided in the Appendix B.4.

350
351

5.2 SEQUENCE REDESIGN FOR CATH4.3 CRYSTAL STRUCTURES

352
353
354
355
356

Table 1: Comparison of protein sequence design methods on the CATH 4.3 test set across various metrics. Results for our RL-based MoMPNN trained with different annotator combinations (TM, IG, EP, Sol, and Thermo) are shown. The best and second-best values are highlighted in **bold** and underlined, respectively.

Method	Designability Metrics			Developability Metrics			AAR \uparrow
	RMSD \downarrow	TM score \uparrow	PLDDT \uparrow	EP \downarrow	Sol \uparrow	Thermo \uparrow	
Test Dataset	3.97	0.761	80.8	5.80	0.620	0.246	1.000
ESM-IF	4.36	0.737	78.4	6.11	0.733	0.719	0.464
InstructPLM ¹ (default)	6.81	0.628	73.4	7.97	0.653	0.396	0.574
<u>InstructPLM (T=0.1)</u>	6.96	0.632	74.4	7.31	0.657	0.455	0.584
ProteinMPNN	4.30	0.740	79.1	6.70	0.719	0.769	0.389
ProteinDPO	5.49	0.667	72.0	10.50	0.629	0.357	0.388
SolubleMPNN	4.48	0.733	78.8	6.54	0.794	0.815	0.382
Guidance [Sol]	4.33	0.740	79.4	6.40	0.762	0.805	0.393
MoMPNN [Sol+TM]	4.37	0.738	79.3	6.27	0.884	0.747	0.384
MoMPNN [Sol+TM+EP]	4.38	0.739	79.5	6.18	0.852	0.790	0.387
MoMPNN [Sol+IG]	4.73	0.727	79.3	6.00	<u>0.883</u>	0.751	0.382
MoMPNN [Sol+IG+EP]	4.61	0.731	79.3	5.99	<u>0.856</u>	0.789	0.384
HyperMPNN	4.90	0.706	74.3	7.81	0.719	0.929	0.359
Guidance [Thermo]	4.30	0.737	77.6	6.88	0.735	0.901	0.386
MoMPNN [Thermo+TM]	4.30	0.739	78.4	6.24	0.704	0.947	0.386
MoMPNN [Thermo+TM+EP]	4.30	0.742	78.6	6.12	0.731	<u>0.946</u>	0.387
MoMPNN [Thermo+IG]	4.38	0.734	78.2	5.85	0.694	0.963	0.382
MoMPNN [Thermo+IG+EP]	4.37	0.737	78.5	<u>5.97</u>	0.723	<u>0.947</u>	0.385

375
376
377

We first evaluate our model on the CATH4.3 test set, a benchmark dataset commonly used for protein inverse folding models. CATH4.3 is a classification dataset of observed crystal structures, and

¹InstructPLM was trained on the 4.2 version of the CATH dataset.

378
 379 Table 2: Comparison of protein sequence design methods across different evaluation metrics on
 380 *de novo* backbone structures from RFDiffusion. The best results and the second-best results are
 381 marked **bold** and underlined. Note that AAR is not evaluated in this setting, as alignment to reference
 382 sequences is not applicable in *de novo* design.

Method	Designability Metrics			Developability Metrics		
	RMSD ↓	TM score ↑	PLDDT ↑	EP ↓	Sol ↑	Thermo ↑
ESM-IF	13.51	0.461	57.6	7.27	0.616	0.806
InstructPLM (default)	22.44	0.134	32.6	3.33	0.539	0.278
InstructPLM (T=0.1)	22.58	0.132	33.5	2.73	0.538	0.367
ProteinMPNN	6.86	0.718	70.0	8.32	0.731	0.978
ProteinDPO	16.77	0.296	43.5	14.70	0.596	0.145
SolubleMPNN	6.61	0.733	70.5	8.36	0.799	0.992
Guidance [Sol]	6.20	0.748	71.8	8.14	0.774	0.989
MoMPNN [Sol+TM]	6.59	0.734	70.9	7.42	0.869	0.987
MoMPNN [Sol+TM+EP]	6.40	0.742	71.3	7.47	0.843	0.993
MoMPNN [Sol+IG]	6.37	0.742	71.5	7.21	0.867	0.983
MoMPNN [Sol+IG+EP]	6.17	0.751	72.0	7.34	0.843	0.993
HyperMPNN	7.51	0.693	68.0	8.25	0.727	0.992
Guidance [Thermo]	6.34	0.743	71.5	7.88	0.757	0.993
MoMPNN [Thermo+TM]	6.29	0.744	70.8	7.75	0.704	0.997
MoMPNN [Thermo+TM+EP]	6.48	0.737	70.5	7.64	0.736	0.999
MoMPNN [Thermo+IG]	6.14	<u>0.748</u>	71.1	7.32	0.684	<u>0.998</u>
MoMPNN [Thermo+IG+EP]	6.20	<u>0.748</u>	71.2	7.44	0.723	<u>0.998</u>

401 performing inverse folding on these protein backbones reflects a model’s ability to redesign sequences
 402 based on experimentally determined crystal structures. It is also worth noting that some ground-truth
 403 sequences in CATH are not soluble, and most of them are not thermally stable, so the solubility and
 404 thermostability of ground-truth sequences are low.

405 As shown in Table 1, our MoMPNN preserves the designability level of ProteinMPNN while sig-
 406 nificantly enhancing developability, achieving the best solubility and thermostability by explicitly
 407 optimizing for multiple desired properties. ProteinMPNN and other inverse folding baselines show
 408 high designability and moderate developability. SolubleMPNN achieves strong solubility and main-
 409 tains reasonable structural quality. HyperMPNN could reach high thermostability but suffers from
 410 degraded designability, likely due to its smaller training data. Guidance-based methods partially
 411 address the trade-off by striking a balance between the property gains of subset-trained models and the
 412 designability of ProteinMPNN. We also find that higher amino acid recovery does not correlate with
 413 higher designability and developability, and in a practical perspective, we focus more on designability
 414 and developability rather than the amino acid recovery.

415 We further analyze the results to understand how different objectives shape model behavior. TM
 416 leads to higher TM-scores and thus slightly stronger structural consistency, while IG consistently
 417 yields lower evolutionary perplexity, since it evaluates not only whether a sequence can refold but
 418 also how confident AlphaFold is in that prediction. In addition, directly incorporating EP does not
 419 substantially improve evolutionary plausibility, but it consistently enhances non-targeted metrics,
 420 serving as a useful regularizer that complements both TM and IG. To assess whether MoMPNN
 421 effectively captures the underlying patterns of protein solubility and thermal stability, we conducted
 422 an in-depth statistical analysis of generation sequences in Appendix A.1. We also provide the early
 423 results comparing multi-objective optimizing strategies in Appendix A.2.

425 5.3 SEQUENCE DESIGN FOR *de novo* GENERATED BACKBONES

427 We next extend our evaluation to a setting that more closely reflects practical protein design workflows,
 428 where we generate sequences for *de novo* backbones produced by RFDiffusion. We designed 4
 429 unconditional backbones for each length in the range of [50, 500] with RFDiffusion as the input of
 430 the inverse folding models. This represents a more common application scenario for inverse folding
 431 models, serving as a tool to identify suitable sequences for newly designed protein backbones. Details
 of this *de novo* benchmark set are provided in Appendix C.2.

Figure 2: The result for ProteinMPNN, SolubleMPNN and MoMPNN on the binder design benchmark.

As shown in Table 2, MoMPNN demonstrates the strongest overall performance in this setting, even surpassing ProteinMPNN in structural consistency. ESM-IF and InstructPLM exhibit a substantial performance drop under *de novo* conditions, consistent with previous reports (Ren et al., 2024), whereas ProteinMPNN retains performance levels similar to those observed on crystal structures. SolubleMPNN achieves markedly better structural consistency than ProteinMPNN, but our models consistently outperform this baseline. In terms of training objectives, we observe that IG-based optimization yields higher structural consistency than TM in the *de novo* setting, while other phenomena remain consistent with the observations from CATH4.3.

5.4 SEQUENCE DESIGN FOR *de novo* BINDERS

In this section, we extend our evaluation to specific design tasks, in which inverse folding models are used to design sequences for *de novo* binders generated by RFDiffusion. These binders target a set of challenging proteins, providing a practical assessment of the model’s potential to support real-world applications. The inverse folding models gets 100 *de novo* backbones are designed for each binder as inputs and are required to generate 8 sequences for each backbone. A sequence is considered success if: binder sequence $p\text{LDDT} > 80$, inter-chain PAE < 10 , and overall $C\alpha$ RMSD $< 2 \text{ \AA}$. A backbone is considered success if the model generates at least one success sequence for it. Details of the evaluation pipeline are provided in Appendix C.3.

As illustrated in Figure 2, our soluble variant MoMPNN [Sol+IG+EP] exhibits slightly higher success rates in both sequence and backbone than ProteinMPNN. It also achieves substantial performance gains over ProteinMPNN across two developability properties: evolutionary plausibility and solubility. Besides, MoMPNN performs on par with SolubleMPNN on designability, with better evolutionary plausibility and solubility. These results collectively demonstrate that MoMPNN preserves the essential capacity for binder design despite being post-trained only on monomeric inputs, and that the improvements in developability translate into complex settings without sacrificing designability.

6 CONCLUSION

We presented ProtAlign, a multi-objective alignment framework that extends inverse folding models beyond sequence recovery to jointly optimize for designability and diverse developability properties.

486 By introducing a semi-online Direct Preference Optimization algorithm with a flexible preference
487 margin, our approach achieves robust improvements in solubility and thermostability without compro-
488 mising sequence-structure fidelity. Applied to ProteinMPNN, the resulting MoMPNN consistently
489 outperforms subset-trained baselines across crystal, *de novo*, and real-world design tasks, highlighting
490 the effectiveness and generality of our framework for practical protein engineering.

491 The limitations of MoMPNN primarily include the following two aspects. First, while our experiments
492 have validated the model’s effectiveness through various metrics, wet-lab experimental verification is
493 still lacking. Second, this study primarily focuses on protein monomer properties; although testing
494 was conducted on binders, no exploration was performed on complex-specific properties, which we
495 will further investigate in subsequent work.

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540 REPRODUCIBILITY STATEMENT
541

542 We provide a detailed description of our algorithm in the Method section, ensuring that all steps
543 of the approach are clearly explained. The hyperparameters used in our experiments are listed in
544 Appendix B.2. We will release the source code and pretrained checkpoints to the community upon
545 final release.

546
547 REFERENCES
548

549 Adaptyv Bio. Protein optimization 102: Lessons from the protein design competition. <https://www.adaptyvbio.com/blog/po102/>, October 2024.

550 Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland, Michal
551 Valko, and Daniele Calandriello. A general theoretical paradigm to understand learning from
552 human preferences. In *International Conference on Artificial Intelligence and Statistics*, pp.
553 4447–4455. PMLR, 2024.

554 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
555 Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
556 reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*, 2022.

557 Toygun Basaklar, Suat Gumussoy, and Umit Y Ogras. Pd-morl: Preference-driven multi-objective
558 reinforcement learning algorithm. *arXiv preprint arXiv:2208.07914*, 2022.

559 Nathaniel R Bennett, Brian Coventry, Inna Goreshnik, Buwei Huang, Aza Allen, Dionne Vafeados,
560 Ying Po Peng, Justas Dauparas, Minkyung Baek, Lance Stewart, et al. Improving de novo protein
561 binder design with deep learning. *Nature Communications*, 14(1):2625, 2023.

562 Aron Broom, Zachary Jacobi, Kyle Trainor, and Elizabeth M Meiering. Computational tools help
563 improve protein stability but with a solubility tradeoff. *Journal of Biological Chemistry*, 292(35):
564 14349–14361, 2017.

565 Daniele Calandriello, Daniel Guo, Remi Munos, Mark Rowland, Yunhao Tang, Bernardo Avila Pires,
566 Pierre Harvey Richemond, Charline Le Lan, Michal Valko, Tianqi Liu, et al. Human alignment of
567 large language models through online preference optimisation. *arXiv preprint arXiv:2403.08635*,
568 2024.

569 Henry L Carscadden, Lucas Machi, Chris J Kuhlman, Dustin Machi, and SS Ravi. Graphtrans: a
570 software system for network conversions for simulation, structural analysis, and graph operations.
571 In *2021 Winter simulation conference (WSC)*, pp. 1–12. IEEE, 2021.

572 Yuan-Tung Chou, Wei-Tze Chang, Jimmy G Jean, Kai-Hung Chang, Yin-Nan Huang, and Chuin-
573 Shan Chen. Structgnn: an efficient graph neural network framework for static structural analysis.
574 *Computers & Structures*, 299:107385, 2024.

575 Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J Ragotte, Lukas F Milles,
576 Basile IM Wicky, Alexis Courbet, Rob J de Haas, Neville Bethel, et al. Robust deep learning-based
577 protein sequence design using proteinmpnn. *Science*, 378(6615):49–56, 2022.

578 Moritz Ertelt, Phillip Schlegel, Max Beining, Leonard Kaysser, Jens Meiler, and Clara T Schoeder.
579 Hypermpnn—a general strategy to design thermostable proteins learned from hyperthermophiles.
580 *bioRxiv*, 2024.

581 Zhangyang Gao, Cheng Tan, Pablo Chacón, and Stan Z Li. Pifold: Toward effective and efficient
582 protein inverse folding. *arXiv preprint arXiv:2209.12643*, 2022.

583 Zhangyang Gao, Cheng Tan, Yijie Zhang, Xingran Chen, Lirong Wu, and Stan Z Li. Proteininvbench:
584 Benchmarking protein inverse folding on diverse tasks, models, and metrics. *Advances in Neural
585 Information Processing Systems*, 36:68207–68220, 2023.

586 Casper A Goverde, Martin Pacesa, Nicolas Goldbach, Lars J Dornfeld, Petra EM Balbi, Sandrine
587 Georgeon, Stéphane Rosset, Srajan Kapoor, Jagrity Choudhury, Justas Dauparas, et al. Computa-
588 tional design of soluble and functional membrane protein analogues. *Nature*, 631(8020):449–458,
589 2024.

- 594 Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu, Misha Khalman, Felipe Llinares, Alexandre
 595 Rame, Thomas Mesnard, Yao Zhao, Bilal Piot, et al. Direct language model alignment from online
 596 ai feedback. *arXiv preprint arXiv:2402.04792*, 2024a.
- 597
- 598 Yiju Guo, Ganqu Cui, Lifan Yuan, Ning Ding, Zexu Sun, Bowen Sun, Huimin Chen, Ruobing Xie, Jie
 599 Zhou, Yankai Lin, et al. Controllable preference optimization: Toward controllable multi-objective
 600 alignment. *arXiv preprint arXiv:2402.19085*, 2024b.
- 601 Raghad Gupta, Ryan Sullivan, Yunxuan Li, Samrat Phatale, and Abhinav Rastogi. Robust multi-
 602 objective preference alignment with online dpo. In *Proceedings of the AAAI Conference on
 603 Artificial Intelligence*, volume 39, pp. 27321–27329, 2025.
- 604
- 605 Max Hebditch, M Alejandro Carballo-Amador, Spyros Charonis, Robin Curtis, and Jim Warwicker.
 606 Protein–sol: a web tool for predicting protein solubility from sequence. *Bioinformatics*, 33(19):
 607 3098–3100, 2017.
- 608 Chloe Hsu, Robert Verkuil, Jason Liu, Zeming Lin, Brian Hie, Tom Sercu, Adam Lerer, and Alexander
 609 Rives. Learning inverse folding from millions of predicted structures. In *International conference
 610 on machine learning*, pp. 8946–8970. PMLR, 2022.
- 611
- 612 Joel Jang, Seungone Kim, Bill Yuchen Lin, Yizhong Wang, Jack Hessel, Luke Zettlemoyer, Hannaneh
 613 Hajishirzi, Yejin Choi, and Prithviraj Ammanabrolu. Personalized soups: Personalized large
 614 language model alignment via post-hoc parameter merging. *arXiv preprint arXiv:2310.11564*,
 2023.
- 615
- 616 Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael JL Townshend, and Ron Dror. Learning
 617 from protein structure with geometric vector perceptrons. *arXiv preprint arXiv:2009.01411*, 2020.
- 618
- 619 John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
 620 Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate
 621 protein structure prediction with alphafold. *nature*, 596(7873):583–589, 2021.
- 622
- 623 Pranav Kantroo, Günter P Wagner, and Benjamin B Machta. Pseudo-perplexity in one fell swoop for
 protein fitness estimation. *PRX Life*, 3(3):033014, 2025.
- 624
- 625 Hamed Khakzad, Ilia Igashov, Arne Schneuing, Casper Goverde, Michael Bronstein, and Bruno
 626 Correia. A new age in protein design empowered by deep learning. *Cell Systems*, 14(11):925–939,
 2023.
- 627
- 628 Jack Lanchantin, Angelica Chen, Janice Lan, Xian Li, Swarnadeep Saha, Tianlu Wang, Jing Xu, Ping
 629 Yu, Weizhe Yuan, Jason E Weston, et al. Bridging offline and online reinforcement learning for
 630 llms. *arXiv preprint arXiv:2506.21495*, 2025.
- 631
- 632 Yong Lin, Hangyu Lin, Wei Xiong, Shizhe Diao, Jianmeng Liu, Jipeng Zhang, Rui Pan, Haoxiang
 633 Wang, Wenbin Hu, Hanning Zhang, et al. Mitigating the alignment tax of rlhf. *arXiv preprint
 634 arXiv:2309.06256*, 2023.
- 635
- 636 Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin, Allan
 637 dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, et al. Language models of
 protein sequences at the scale of evolution enable accurate structure prediction. *bioRxiv*, 2022.
- 638
- 639 Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a reference-
 free reward. *Advances in Neural Information Processing Systems*, 37:124198–124235, 2024.
- 640
- 641 Hunter Nisonoff, Junhao Xiong, Stephan Allenspach, and Jennifer Listgarten. Unlocking guidance
 642 for discrete state-space diffusion and flow models. *arXiv preprint arXiv:2406.01572*, 2024.
- 643
- 644 Pascal Notin, Nathan Rollins, Yarin Gal, Chris Sander, and Debora Marks. Machine learning for
 645 functional protein design. *Nature biotechnology*, 42(2):216–228, 2024.
- 646
- 647 Christine A Orengo, Alex D Michie, Susan Jones, David T Jones, Mark B Swindells, and Janet M
 648 Thornton. Cath—a hierachic classification of protein domain structures. *Structure*, 5(8):1093–1109,
 1997.

- 648 Martin Pacesa, Lennart Nickel, Christian Schellhaas, Joseph Schmidt, Ekaterina Pyatova, Lucas
 649 Kissling, Patrick Barendse, Jagrity Choudhury, Srajan Kapoor, Ana Alcaraz-Serna, et al. Bindcraft:
 650 one-shot design of functional protein binders. *bioRxiv*, pp. 2024–09, 2024.
- 651 Michelle E Peterson, Roy M Daniel, Michael J Danson, and Robert Eisenthal. The dependence of
 652 enzyme activity on temperature: determination and validation of parameters. *Biochemical Journal*,
 653 402(2):331–337, 2007.
- 654 Jiezhang Qiu, Junde Xu, Jie Hu, Hanqun Cao, Liya Hou, Zijun Gao, Xinyi Zhou, Anni Li, Xiujuan
 655 Li, Bin Cui, Fei Yang, Shuang Peng, Ning Sun, Fangyu Wang, Aimin Pan, Jie Tang, Jieping Ye,
 656 Junyang Lin, Jin Tang, Xingxu Huang, Pheng Ann Heng, and Guangyong Chen. Instructplm:
 657 Aligning protein language models to follow protein structure instructions. *bioRxiv*, 2024a. doi: 10.
 658 1101/2024.04.17.589642. URL <https://www.biorxiv.org/content/early/2024/04/20/2024.04.17.589642>.
- 659 Jiezhang Qiu, Junde Xu, Jie Hu, Hanqun Cao, Liya Hou, Zijun Gao, Xinyi Zhou, Anni Li, Xiujuan
 660 Li, Bin Cui, et al. Instructplm: Aligning protein language models to follow protein structure
 661 instructions. *bioRxiv*, pp. 2024–04, 2024b.
- 662 Rafael Raffailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 663 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances
 664 in neural information processing systems*, 36:53728–53741, 2023.
- 665 Alexandre Rame, Guillaume Couairon, Corentin Dancette, Jean-Baptiste Gaya, Mustafa Shukor,
 666 Laure Soulier, and Matthieu Cord. Rewarded soups: towards pareto-optimal alignment by interpo-
 667 lating weights fine-tuned on diverse rewards. *Advances in Neural Information Processing Systems*,
 668 36:71095–71134, 2023.
- 669 Milong Ren, Chungong Yu, Dongbo Bu, and Haicang Zhang. Accurate and robust protein sequence
 670 design with carbondesign. *Nature Machine Intelligence*, 6(5):536–547, 2024.
- 671 Chiara Rodella, Symela Lazaridi, and Thomas Lemmin. Temberture: advancing protein thermosta-
 672 bility prediction with deep learning and attention mechanisms. *Bioinformatics Advances*, 4(1):
 673 vbae103, 2024.
- 674 Aliyu Salihu and Md Zahangir Alam. Solvent tolerant lipases: a review. *Process Biochemistry*, 50(1):
 675 86–96, 2015.
- 676 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 677 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.
- 678 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 679 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
 680 ical reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.
- 681 Ian Sillitoe, Nicola Bordin, Natalie Dawson, Vaishali P Waman, Paul Ashford, Harry M Scholes,
 682 Camilla SM Pang, Laurel Woodridge, Clemens Rauer, Neeladri Sen, et al. Cath: increased
 683 structural coverage of functional space. *Nucleic acids research*, 49(D1):D266–D273, 2021.
- 684 Zhenqiao Song, Tinglin Huang, Lei Li, and Wengong Jin. Surfpro: Functional protein design based
 685 on continuous surface. *arXiv preprint arXiv:2405.06693*, 2024.
- 686 Xiangru Tang, Xinwu Ye, Fang Wu, Daniel Shao, Dong Xu, and Mark Gerstein. Bc-design: A
 687 biochemistry-aware framework for highly accurate inverse protein folding. In *ICML 2025 Genera-
 688 tive AI and Biology (GenBio) Workshop*.
- 689 Yunhao Tang, Daniel Zhaoan Guo, Zeyu Zheng, Daniele Calandriello, Yuan Cao, Eugene Tarassov,
 690 Rémi Munos, Bernardo Ávila Pires, Michal Valko, Yong Cheng, et al. Understanding the perfor-
 691 mance gap between online and offline alignment algorithms. *arXiv preprint arXiv:2405.08448*,
 692 2024.
- 693 Peter Vamplew, Richard Dazeley, Cameron Foale, Sally Firmin, and Jane Mummary. Human-aligned
 694 artificial intelligence is a multiobjective problem. *Ethics and information technology*, 20(1):27–40,
 695 2018.

- 702 Kaiwen Wang, Rahul Kidambi, Ryan Sullivan, Alekh Agarwal, Christoph Dann, Andrea Michi,
 703 Marco Gelmi, Yunxuan Li, Raghav Gupta, Avinava Dubey, et al. Conditional language policy:
 704 A general framework for steerable multi-objective finetuning. *arXiv preprint arXiv:2407.15762*,
 705 2024.
- 706 Ziwen Wang, Jiajun Fan, Ruihan Guo, Thao Nguyen, Heng Ji, and Ge Liu. Proteinzero: Self-
 707 improving protein generation via online reinforcement learning. *arXiv preprint arXiv:2506.07459*,
 708 2025.
- 709 Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E Eisenach,
 710 Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo design of protein
 711 structure and function with rfdiffusion. *Nature*, 620(7976):1089–1100, 2023.
- 712 Talal Widatalla, Rafael Rafailev, and Brian Hie. Aligning protein generative models with experimental
 713 fitness via direct preference optimization. *bioRxiv*, pp. 2024–05, 2024.
- 714 Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
 715 Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
 716 soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
 717 inference time. In *International conference on machine learning*, pp. 23965–23998. PMLR, 2022.
- 718 Fang Wu, Shuting Jin, Jianmin Wang, Zerui Xu, Jinbo Xu, Brian Hie, et al. Surfdesign: Effective
 719 protein design on molecular surfaces.
- 720 Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane Suhr, Prithviraj Ammanabrolu, Noah A Smith,
 721 Mari Ostendorf, and Hannaneh Hajishirzi. Fine-grained human feedback gives better rewards for
 722 language model training. *Advances in Neural Information Processing Systems*, 36:59008–59033,
 723 2023.
- 724 Junhao Xiong, Hunter Nisonoff, Maria Lukarska, Ishan Gaur, Luke M Oltrogge, David F Savage,
 725 and Jennifer Listgarten. Guide your favorite protein sequence generative model. *arXiv preprint*
 726 *arXiv:2505.04823*, 2025.
- 727 Junde Xu, Zijun Gao, Xinyi Zhou, Jie Hu, Xingyi Cheng, Le Song, Guangyong Chen, Pheng-
 728 Ann Heng, and Jiezhong Qiu. Protein inverse folding from structure feedback. *arXiv preprint*
 729 *arXiv:2506.03028*, 2025.
- 730 Fanglei Xue, Andrew Kubaney, Zhichun Guo, Joseph K Min, Ge Liu, Yi Yang, and David Baker.
 731 Improving protein sequence design through designability preference optimization. *arXiv preprint*
 732 *arXiv:2506.00297*, 2025.
- 733 Rui Yang, Xiaoman Pan, Feng Luo, Shuang Qiu, Han Zhong, Dong Yu, and Jianshu Chen. Rewards-
 734 in-context: Multi-objective alignment of foundation models with dynamic preference adjustment.
 735 *arXiv preprint arXiv:2402.10207*, 2024.
- 736 Kaizhi Yue and Ken A Dill. Inverse protein folding problem: designing polymer sequences. *Proceed-
 737 ings of the National Academy of Sciences*, 89(9):4163–4167, 1992.
- 738 Vinicius Zambaldi, David La, Alexander E Chu, Harshnira Patani, Amy E Danson, Tristan OC Kwan,
 739 Thomas Frerix, Rosalia G Schneider, David Saxton, Ashok Thillaisundaram, et al. De novo design
 740 of high-affinity protein binders with alphaproteo. *arXiv preprint arXiv:2409.08022*, 2024.
- 741 Yang Zhang and Jeffrey Skolnick. Tm-align: a protein structure alignment algorithm based on the
 742 tm-score. *Nucleic acids research*, 33(7):2302–2309, 2005.
- 743 Zaixiang Zheng, Yifan Deng, Dongyu Xue, Yi Zhou, Fei Ye, and Quanquan Gu. Structure-informed
 744 language models are protein designers. In *International conference on machine learning*, pp.
 745 42317–42338. PMLR, 2023.
- 746 Zhanhui Zhou, Jie Liu, Chao Yang, Jing Shao, Yu Liu, Xiangyu Yue, Wanli Ouyang, and Yu Qiao.
 747 Beyond one-preference-for-all: Multi-objective direct preference optimization. 2023a.

756 Zhaoyi Zhou, Chunling Zhu, Runlong Zhou, Qiwen Cui, Abhishek Gupta, and Simon Shaolei Du. Free
757 from bellman completeness: Trajectory stitching via model-based return-conditioned supervised
758 learning. *arXiv preprint arXiv:2310.19308*, 2023b.

759
760 Baiting Zhu, Meihua Dang, and Aditya Grover. Scaling pareto-efficient decision making via offline
761 multi-objective rl. *arXiv preprint arXiv:2305.00567*, 2023.

762 Fengqi Zhu, Rongzhen Wang, Shen Nie, Xiaolu Zhang, Chunwei Wu, Jun Hu, Jun Zhou, Jianfei
763 Chen, Yankai Lin, Ji-Rong Wen, et al. Llada 1.5: Variance-reduced preference optimization for
764 large language diffusion models. *arXiv preprint arXiv:2505.19223*, 2025.

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

APPENDIX

A ADDITIONAL EXPERIMENTS RESULTS

A.1 IN-DEPTH ANALYSIS OF THE GENERATED SEQUENCES

Solubility. In order to systematically evaluate the solubility-related physical properties of the generated proteins, we calculated a series of quantitative indicators. These descriptors reflect different aspects of amino acid composition, surface exposure, and charge distribution, which together provide a comprehensive view of protein solubility and stability. The indicators include:

- **Overall Hydrophilic Residue Fraction:** the proportion of hydrophilic residues across the whole protein. A higher value indicates greater overall hydrophilicity and thus better solubility.
- **Surface Hydrophilic Residue Fraction and Surface Strong Hydrophilic Residue Fraction:** the fraction of hydrophilic residues (or strongly hydrophilic residues such as charged side chains) exposed on the protein surface. Higher fractions suggest stronger potential for hydrogen bonding or electrostatic interactions with water molecules.
- **Surface Hydrophilic SASA Fraction:** the proportion of solvent-accessible surface area (SASA) contributed by hydrophilic residues, directly reflecting whether these residues are exposed to solvent instead of buried within the protein core.
- **Surface Net Charge per 100 Residues:** the normalized net surface charge. Values farther from zero indicate stronger net charges, which promote electrostatic repulsion between protein molecules and reduce aggregation.
- **Surface Charge Distribution Uniformity:** a measure of how evenly charges are distributed across the protein surface. Higher uniformity implies a more balanced and ordered charge pattern, favoring stability in solution.
- **GRAVY Value (Grand Average of Hydropathy):** an overall measure of hydropathy. Lower GRAVY values correspond to higher hydrophilicity, typically associated with enhanced solubility.

Results of MoMPNN [Sol+IG+ESM], ProteinMPNN, and SolubleMPNN based on sequences generated in the CATH benchmark are shown in Figure 3. Across all these indicators, MoMPNN consistently outperformed SolubleMPNN, suggesting that the proteins generated by MoMPNN not only achieves high *in silico* score but also exhibit more favorable distributions of surface charge and hydrophilic residues. This highlights the ability of MoMPNN to design proteins with genuinely improved solubility.

Thermostability. Since thermostability is a more challenging property to evaluate purely from an *in silico* perspective, we followed the analysis strategy of Ertelt et al. (2024) and examined the amino acid distribution of MoMPNN [Thermo+IG+ESM], HyperMPNN, and ProteinMPNN in both surface and core regions. The results based on sequences generated in the CATH benchmark are shown in Figure 4. MoMPNN and HyperMPNN display almost identical redistribution patterns across residue categories, which differ systematically from ProteinMPNN.

- **Positively charged residues (Lys, Arg).** Both MoMPNN and HyperMPNN show a clear increase on the surface and in the core compared with ProteinMPNN. This enrichment of positively charged residues strengthens electrostatic interactions: on the surface it enhances solubility, while in the core it facilitates stabilizing salt-bridge formation, contributing to thermostability.
- **Negatively charged residues (Asp, Glu).** Slightly increased in both surface and core for MoMPNN and HyperMPNN relative to ProteinMPNN. This modest enrichment enhances polarity at the surface and contributes to a more balanced charge distribution, which helps stabilize the folded structure.
- **Polar residues (Asn, Gln, Ser, Thr).** Both models show a small increase on surface and in core compared to ProteinMPNN. These residues can form hydrogen bonds that stabilize secondary structures and packing, providing moderate contributions to thermostability.

Figure 3: Quantitative Analysis of ProteinMPNN, SolubleMPNN and MoMPNN generated sequences on hydrophilic-related metrics.

Figure 4: Differences in amino acid composition of proteins from ProteinMPNN, HyperMPNN and MoMPNN.

- 918
- **Apolar residues (Iso, Leu, Met, Phe, Trp, Tyr, Val).** In both MoMPNN and HyperMPNN, apolar residues are markedly decreased on the surface but strongly increased in the core. This redistribution is favorable: reduced hydrophobic exposure on the surface prevents aggregation, while enriched apolar residues in the core reinforce hydrophobic packing, a critical factor for thermostability.
 - **Other residues (Ala, Cys, Gly, His, Pro).** Both MoMPNN and HyperMPNN show a clear overall decrease. As residues in this category often introduce backbone flexibility, their reduction suggests a preference for more rigid and stable structural configurations.
- 923

927 Overall, the highly consistent residue redistribution patterns observed in MoMPNN and HyperMPNN, as compared with ProteinMPNN, indicate that MoMPNN inherits the stability-oriented features of HyperMPNN while maintaining a favorable balance between surface polarity and core hydrophobicity. These trends strongly support the ability of MoMPNN to design sequences with enhanced thermostability.

931

932 A.2 PRELIMINARY EXPERIMENT RESULTS

933

934 In the early stage of our development, we conducted a small scale test to verify whether the current choice of multi-objective modeling leads to better performance, comparing it to a naive weighted score method introduced in B.3. CATH4.3 was employed as the training set, which is the same as our main experiment. Evaluation results are calculated by generating 16 sequences for each backbone in a curated validation set of 100 structures. All models use the default temperature for sampling as described in the main text.

939

940 In this experiment, we choose the Initial Guess and Evo. ppl as the optimization objectives. We 941 also designed a baseline method, Weighted-score DPO, which aggregates multiple optimization 942 objectives into a single score using weights and then performs optimization following the standard 943 single-objective DPO framework. The weights used here are consistent with those of MoMPNN 944 [IG+ESM].

945

946 According to Table 3, Weighted-score DPO achieves the best performance in terms of Evo ppl., but its 947 performance on other metrics is inferior to that of the base model ProteinMPNN. MoMPNN achieve 948 significantly more balanced results in the small-scale test set.

949

950 Table 3: Comparison of protein sequence design methods across different evaluation metrics on *de* 951 *novo* backbone structures from RFDiffusion. The best results and the second-best results are marked 952 **bold** and bold.

953

954 Method	955 Designability Metrics			Evo. ppl ↓	AAR ↑
	RMSD ↓	TM score ↑	PLDDT ↑		
956 ESM-IF	4.033	0.805	80.55	6.538	50.94
957 InstructPLM	7.196	0.683	74.77	6.946	60.75
958 ProteinMPNN	3.658	0.823	82.09	6.843	44.12
959 Weighted-score DPO	3.783	0.811	80.74	5.843	40.98
960 MoMPNN [IG+ESM]	3.706	0.825	82.28	6.205	43.10

961

962 A.2.1 ANALYSIS OF ITERATIVE REFINEMENT

963

964 Subsequently, we evaluated the model’s capacity for iterative improvement using the small-scale 965 dataset. Specifically, we saved the model after each round of training. For each saved model, we 966 generated 16 sequences for every backbone in the dataset, then calculates the values of Initial Guess, 967 Evo. ppl, and AAR for each round’s model on the small-scale test set.

968

969 According to Figure 5, MoMPNN[IG+ESM] exhibits greater stability than Weighted-score DPO 970 across the three metrics (Initial Guess, Evo. ppl, and AAR) during the semi-online training process. 971 Moreover, as training rounds incrementally increase, the Weighted-score DPO model tends to 972 converge on a single metric. For instance, as shown in the Fig. 5, MoMPNN enables the joint 973 optimization of the two objectives (reaching values of 0.589 and 6.154, respectively) while only

972 causing a 1% decrease in AAR. In contrast, the optimization of Initial Guess for Weighted-score
 973 DPO exhibits fluctuations and starts to decline from the 6th round, with a more significant drop in
 974 AAR. This indicates that MoMPNN can effectively optimize multiple objectives simultaneously
 975 while minimizing deviations from the base model.
 976

986 Figure 5: Analysis of MoMPNN [IG+ESM] and Weighted-score DPO. Initial Guess, Evo. ppl and
 987 recover rate changes across each round of iterative refinement.
 988
 989

990 B IMPLEMENT DETAILS

992 B.1 MATHMATICAL DERIVATIONS

994 For the theoretical completeness, we provide some definitions, lemmas, theorems and proofs of all
 995 the formulas in the main text here (Zhou et al., 2023a; Rafailov et al., 2023).

996 Firstly, the multi-objective function is:

$$998 \arg \max_{\theta} \mathcal{L}(\pi_{\theta}) = \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi(y|x)} \left[\sum_K w_k r_k(x, y) \right] - \beta \mathbb{D}_{KL}(\pi_{\theta}(y|x) \| \pi_{\text{ref}}(y|x)). \quad (6)$$

1000 Then, we further derive the above equation.

$$1002 \max_{\pi} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi(y|x)} \left[\sum_K w_k r_k(x, y) \right] - \beta \mathbb{D}_{KL}(\pi(y|x) \| \pi_{\text{ref}}(y|x)) \\ 1003 = \max_{\pi} \mathbb{E}_{x \sim \mathcal{D}} \mathbb{E}_{y \sim \pi(y|x)} \left[\sum_K w_k r_k(x, y) \right] - \beta \sum_{x \sim \mathcal{D}, y \sim \pi(y|x)} \pi(y|x) \log \frac{\pi(y|x)}{\pi_{\text{ref}}(y|x)} \\ 1004 \\ 1005 = \min_{\pi} \mathbb{E}_{x \sim \mathcal{D}} \mathbb{E}_{y \sim \pi(y|x)} \left[\log \frac{\pi(y|x)}{\pi_{\text{ref}}(y|x)} - \frac{1}{\beta} \sum_K w_k r_k(x, y) \right] \\ 1006 \\ 1007 = \min_{\pi} \mathbb{E}_{x \sim \mathcal{D}} \mathbb{E}_{y \sim \pi(y|x)} \left[\log \frac{\pi(y|x)}{\frac{1}{Z(x)} \pi_{\text{ref}}(y|x) e^{\frac{1}{\beta} \sum_K w_k r_k(x, y)}} - \log Z(x) \right] \quad (7)$$

1014 Among them,

$$1015 Z(x) = \sum_y \pi_{\text{ref}}(y|x) e^{\frac{1}{\beta} \sum_K w_k r_k(x, y)} \quad (8)$$

1018 so, we can define that:

$$1019 \pi^*(y|x) = \frac{1}{Z(x)} \pi_{\text{ref}}(y|x) e^{\frac{1}{\beta} \sum_K w_k r_k(x, y)} \quad (9)$$

1021 Noting that $Z(x)$ and π are independent, Eq.7 is given as follows:

$$1022 \min_{\pi} \mathbb{E}_{x \sim \mathcal{D}} \mathbb{E}_{y \sim \pi(y|x)} \left[\log \frac{\pi(y|x)}{\frac{1}{Z(x)} \pi_{\text{ref}}(y|x) e^{\frac{1}{\beta} \sum_K w_k r_k(x, y)}} - \log Z(x) \right] \\ 1023 \\ 1024 = \min_{\pi} \mathbb{E}_{x \sim \mathcal{D}} [\mathbb{D}_{KL}(\pi(y|x) \| \pi^*(y|x)) - \log Z(x)] \quad (10)$$

1026 So, we get the minimum when:
 1027

$$\pi(y|x) = \pi^*(y|x) = \frac{1}{Z(x)} \pi_{\text{ref}}(y|x) e^{\frac{1}{\beta} \sum_K w_k r_k(x,y)} \quad (11)$$

1030 Then, we can get that:
 1031

$$\sum_K w_k r_k(x,y) = \beta \log \frac{\pi(y|x)}{\pi_{\text{ref}}(y|x)} + \beta \log Z(x) \quad (12)$$

1034 where k is the number of properties.
 1035

1036 Based on Eq. 3 and maximum likelihood estimation, for the k -th property we can get the reward loss:
 1037

$$\mathcal{L}_R(r_k, \mathcal{D}_k) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} [\log \sigma(r_k(x, y_w) - r_k(x, y_l))] \quad (13)$$

1039 where σ is the logistic function and $r_k(x, y)$ is the implicit reward model.
 1040

1041 It can be seen from Eqs. 12 and 13 that for the k -th properties:
 1042

$$\begin{aligned} r_k(x, y) &= \frac{1}{w_k} \left[\beta \log \frac{\pi_\theta(y|x)}{\pi_{\text{ref}}(y|x)} + \beta \log Z(x) - \sum_{\substack{K, \\ k' \neq k}} w_{k'} r_{k'}(x, y) \right] \\ \mathcal{L}_R(\theta; r_k; \mathcal{D}_k) &= -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}_k} \left[\log \sigma \left(\frac{1}{w_k} \left(\beta \log \frac{\pi_\theta(y_w|x)}{\pi_{\text{ref}}(y_w|x)} - \beta \log \frac{\pi_\theta(y_l|x)}{\pi_{\text{ref}}(y_l|x)} \right. \right. \right. \\ &\quad \left. \left. \left. - \sum_{\substack{K, \\ k' \neq k}} w_{k'} (r_{k'}(x, y_w) - r_{k'}(x, y_l)) \right) \right) \right], \end{aligned} \quad (14)$$

1054 Since there are K properties, the final multi-objective training objective is given by:
 1055

$$\begin{aligned} \mathcal{L}_{\text{MO}}(\theta; r; \mathcal{D}) &= -\sum_K w_k \mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}_k} \left[\log \sigma \left(\frac{1}{w_k} \left(\beta \log \frac{\pi_\theta(y_w|x)}{\pi_{\text{ref}}(y_w|x)} - \beta \log \frac{\pi_\theta(y_l|x)}{\pi_{\text{ref}}(y_l|x)} \right. \right. \right. \\ &\quad \left. \left. \left. - \sum_{\substack{K, \\ k' \neq k}} w_{k'} (r_{k'}(x, y_w) - r_{k'}(x, y_l)) \right) \right) \right], \end{aligned} \quad (15)$$

1063 B.2 HYPERPARAMETER SETTINGS

1064 Unless otherwise stated, all training runs utilized the Adam optimizer ($\beta_1 = 0.9$, $\beta_2 = 0.98$,
 1065 $\epsilon = 10^{-9}$) with a learning rate of 5e-6 for 20 rounds (600 training steps per rounds). Training was
 1066 distributed across eight NVIDIA 4090 GPUs, with a total batch size of 64. The β for the DPO loss is
 1067 set to 0.5. The weights for each objective are set as following: 0.6 for IG and TM, 0.4 for all other
 1068 objectives.
 1069

1071 B.3 BASELINES IMPLEMENTATION

1072 **ESM-IF.** We employed the test script provided in the ESM GitHub repository (https://github.com/facebookresearch/esm/tree/main/examples/inverse_folding), with the model `esm_if1_gvp4_t16_142M_UR50`. Aside from the parameters configured for our testing (detailed above to enable comparative evaluation), all remaining parameter settings followed the default configurations supplied in the repository. **The default sampling temperature is set as 0.1, which is the same as ProteinMPNN.**

1073 **InstructPLM.** We utilized the test script provided in the GitHub repository (<https://github.com/Eikor/InstructPLM>), with all other parameters following the default settings specified
 1074
 1075
 1076
 1077
 1078
 1079

1080 therein. It is noted the default temperature in experiments is default 0.8 and top p is 0.9. We also
 1081 report the results when adopting the same configuration as ProteinMPNN for a fair comparison, i.e.
 1082 temperature $T = 0.1$ without top p, which show similar performance.

1083 **ProteinMPNN.** ProteinMPNN provides multiple models based on distinct noise levels. For a
 1084 more comprehensive comparison, we adopted the default ProteinMPNN model with 0.2 Å noise.
 1085 We use the testing scripts of ProteinMPNN from the ProteinMPNN GitHub repository (<https://github.com/dauparas/ProteinMPNN>). All other settings are default.
 1086

1087 **ProteinDPO.** We implemented the testing scripts for ProteinDPO from the GitHub repository
 1088 (<https://github.com/evo-design/protein-dpo>). All other parameters followed the default settings
 1089 specified, with the temperature set to 0.1.

1090 **SolubleMPNN.** We implemented the testing scripts of ProteinMPNN from the ProteinMPNN
 1091 GitHub repository using the checkpoint of SolubleMPNN (<https://github.com/dauparas/ProteinMPNN>). As the same as ProteinMPNN, we choose the default model with 0.2 Å noise. All
 1092 other settings are default.

1093 **HyperMPNN.** We get the model weights for the different training settings (added backbone noise)
 1094 from the HyperMPNN GitHub repository (<https://github.com/meilerlab/HyperMPNN>)
 1095 and use the testing scripts of the original ProteinMPNN. Similar to ProteinMPNN, we choose the
 1096 default model with 0.2 Å noise.

1097 **Guidance Method.** We implemented a predictor-free guidance method following the approach in
 1098 (Nisonoff et al., 2024). The predictor-guided rates can alternatively obtained in terms of conditional
 1099 $\mathbf{R}_t(x, \tilde{x}|y)$ and unconditional $\mathbf{R}_t(x, \tilde{x})$, rates for $x \neq \tilde{x}$ in the form

$$\mathbf{R}_t^{(\gamma)}(x, \tilde{x}|y) = \mathbf{R}_t(x, \tilde{x}|y)^\gamma \mathbf{R}_t(x, \tilde{x})^{1-\gamma}, \quad (16)$$

1100 As shown in this equation, the guided rates $\mathbf{R}_t^{(\gamma)}(x, \tilde{x}|y)$ generalize both the conditional
 1101 $[\mathbf{R}_t^{(\gamma=1)}(x, \tilde{x}|y) = \mathbf{R}_t(x, \tilde{x}|y)]$ and unconditional $[\mathbf{R}_t^{(\gamma=0)}(x, \tilde{x}|y) = \mathbf{R}_t(x, \tilde{x})]$ rates. In our ex-
 1102 periments, we used the ProteinMPNN as the unconditional model and SolubleMPNN / Hyper-
 1103 MPNN as the conditional model. We set $\gamma = 0.5$, with all other settings consistent with used for
 1104 ProteinMPNN. We used the reference code provided in the paper (https://github.com/hnisonoff/discrete_guidance/).

1105 **Weighted-score DPO.** We directly train a DPO model by obtaining a final score from a weighted
 1106 combination of the ratings provided by different preference annotators. This aggregated score was
 1107 then used to construct training pairs, on which we applied the standard DPO training procedure. All
 1108 hyperparameters, including the importance weight w_r , were kept identical to those used in MoMPNN.

1109 B.4 PREFERENCE PREDICTORS

1110 **Structural Consistency.** We download the ESMFold model from [https://github.com/](https://github.com/facebookresearch/esm)
 1111 [facebookresearch/esm](https://github.com/facebookresearch/esm), and TMalign (<https://zhanggroup.org/TM-align/>) is
 1112 used for calculating the TM score between predicted structure and the input. For AlphaFold Initial
 1113 Guess, we use the implementation from [https://github.com/nrbennet/dl_binder_](https://github.com/nrbennet/dl_binder_design)
 1114 [design](https://github.com/nrbennet/dl_binder_design).

1115 **Evolutionary Plausibility.** We download the esm2_t33_650M_UR50D model from https://huggingface.co/facebook/esm2_t33_650M_UR50D, and calculate the sequence pseudo
 1116 perplexity following Kantroo et al. (2025).

1117 **Solubility.** We use download the Protein-Sol predictor from [https://protein-sol.](https://protein-sol.manchester.ac.uk/software)
 1118 [manchester.ac.uk/software](https://protein-sol.manchester.ac.uk/software). The predictor outputs a score ranging [0, 1] for each sequence.

1119 **Thermostability.** We download the TemBERTure model from [https://github.com/](https://github.com/ibmm-unibe-ch/TemBERTure)
 1120 [ibmm-unibe-ch/TemBERTure](https://github.com/ibmm-unibe-ch/TemBERTure) and use the temBERTure_CLS mode. The model outputs
 1121 a Thermophilic score ranging [0, 1] for each sequence.

1134
1135

C BENCHMARK DETAILS

1136
1137

C.1 CATH 4.3 BENCHMARK

1138
1139
1140
1141

Data. We download the CATH4.3 benchmark dataset from https://github.com/A4Bio/ProteinInvBench/releases/tag/dataset_release. The dataset is provided as a JSONL file and we convert it to PDB files by extracting the sequences and backbone atom coordinates.

1142
1143

Metrics. We evaluate the designed proteins using the following metrics:

1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161

- *RMSD* measures the average structural deviation between the designed and reference structures. The two structures are first aligned using the Kabsch algorithm, and the deviation is computed on $C\alpha$ atoms (for backbone). The designed structures are predicted by ESMFold.
- *TM score* quantifies the global structural similarity between the designed and reference structures. In our experiments, we used ESMFold to predict the 3D structure of the designed sequence, and then computed the TM-score against the reference crystal structure.
- *pLDDT* represents the average per-atom confidence score. The values are extracted from the B-factor column of the ESMFold output.
- *Evo ppl* evaluates the evolutionary plausibility of the designed amino acid sequence. Lower perplexity values indicate closer alignment with natural protein sequence patterns, thereby reducing risks of aggregation or misfolding (see Appendix B.4).
- *Sol* estimates the solubility of the designed sequence. The scores are predicted by Protein-Sol (see Appendix B.4).
- *Thermo* estimates the thermostability of the designed sequence. The scores are predicted by TemBERTure (see Appendix B.4).
- *AAR* measures the averaged amino acid recovery, i.e., the fraction of residues in the predicted sequence matching the original sequence:

$$AAR = \frac{1}{L} \sum_{i=1}^L \mathbf{1}(x_i = y_i), \quad (17)$$

1162

1163

1164

where L is the sequence length, x_i is the amino acid at position i in the predicted sequence, and y_i is the corresponding residue in the reference sequence.

1165

1163

1164

The metrics are reported as the average value across all generated sequences for the test set.

1169

1170

C.2 *De novo* DESIGN BENCHMARK

1171
1172
1173
1174
1175
1176
1177

Data. For the *de novo* design benchmark, we generated protein backbones with lengths ranging from 50 to 500 residues using RFDiffusion (Watson et al., 2023). Specifically, we generated four distinct backbones for each length within this range (i.e., 50, 51, 52, ..., 500 residues). All backbone generations were performed using the default parameters of RFDiffusion. There are total 1,824 backbones as *de novo* design benchmark dataset. These generated backbones were then used as inputs for subsequent modeling and evaluation in our experiments.

1178

Metrics. We use the same set of evaluation metrics as the CATH4.3 benchmark except AAR.

1179

1180

C.3 BINDER DESIGN BENCHMARK

1181
1182
1183
1184
1185
1186
1187
1188

Data. To further evaluate the performance of our model, we additionally adapted several challenging target proteins as benchmarks to validate our model (Pacesa et al., 2024; Zambaldi et al., 2024). There were six distinct protein targets, and binders were designed for each of these targets. Supplementary Table 4 provides detailed information for each target protein, including its PDB ID, relevant chain details, and the length range of the designed binders. The hotspot residues specify the desired interaction interface on the target protein. Following previous works, we used RFDiffusion to generate 100 unique backbones for each binder, guided by the defined hotspot residues and binder length range.

1188

Table 4: Input structures, hotspot settings and binder lengths for benchmarks.

1189

1190

Design Target	Input PDB	Target chain and residue numbers	Target Hotspot	Binder length(for benchmarks)
PD-L1	5O45	A18-132	A56, A115, A123	50-120
SC2RBD	6M0J	E333-526	E485, E489, E494, E500, E505	50-120
BHRF1	2WH6	A2-158	A65, A74, A77, A82, A85, A93	80-120
PD-1	AF2 prediction	A32-146	A64, A126, A129, A133	80-150
CLN1-14	AF2 prediction	A1-188	A31, A46, A55, A152	80-175

1191

1192

1193

1194

1195

1196

1197

Metrics. In binder design, we evaluate models by sequence success rate, backbone success rate, evolutionary perplexity, and solubility.

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

- *Inter-chain PAE* measures the predicted error in the relative alignment between the binder and target chains, with lower values indicating more precise and stable binding conformations.
- *Overall C α RMSD* measures the structural deviation of the designed binder’s backbone from a reference structure, with smaller values indicating greater conformational consistency and fold stability.
- *Binder pLDDT* measures the local confidence of each residue’s spatial arrangement in the binder, where values above 80 typically correspond to experimentally validated, thermodynamically stable regions.
- *Evolutionary Perplexity* measures the evolutionary plausibility of the binder’s amino acid sequence, with lower values indicating closer alignment with natural protein sequence patterns.
- *Solubility* measures the ability of the binder to dissolve in aqueous environments, an essential property for experimental manipulation and potential therapeutic applications.

1214

1215

1216

1217

1218

1219

The sequence success rate refers to the proportion of generated binders deemed successful, where a binder sequence is defined as successful if it meets three criteria: binder sequence pLDDT > 80, inter-chain PAE < 10, and overall C α RMSD < 2 Å. The backbone success rate refers to the proportion of successfully designed backbones among all generated binder backbones, where a binder backbone is considered successful if any one of its designed sequences meets the sequence success criteria. Together, these metrics confirm that the designed binder not only folds correctly but also maintains functional utility in practical scenarios.

1220

1221

D DISCUSSION ON DESIGN CHOICES

1222

1223

Our design choices were guided by computational limits, empirical observations, and the need to keep the multi-objective optimization stable. For rollout number and sampling temperature, early validation suggested that changes to these hyperparameters had only limited impact on final performance when the total number of training iterations was fixed in MoMPNN. This pattern allowed us to adopt a moderate configuration without extensive tuning. For property weights, we placed slightly more emphasis on the primary design objective than on auxiliary ones, since reducing the weight of the latter further slowed convergence and weakened results under the same training budget.

1224

1225

1226

1227

1228

1229

The adaptive margin used in the L_{MO} follows directly from the multi-objective function, and it depends only on the assigned weights and the property scores of the paired sequences. With both the dataset and the weights fixed, the margin for each pair can be precomputed. But we also could create dynamic versions of the adaptive margin, for instance, by changing the weights over time or using signals from recent optimization behavior. The dynamic variants could potentially allow the optimization to follow the Pareto front more closely. But, it makes the model training unstable, and it also requires careful control over how different objectives influence one another. Consequently, we employs fixed weights and precomputed margins, while adaptive margin schemes are left for future work.

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

For preference-pair construction, we sorted rollouts and paired the best half against the worst half, using a delta threshold to remove uncertain pairs. Since all properties are estimated by predictive models, small differences often reflect noise rather than clear preferences. Filtering these cases makes the training data more reliable, but it also means the data only focuses on clear differences. More

1242 sophisticated sampling strategies, such as hard-negative selection or uncertainty-aware sampling,
1243 could mitigate under sampling of the ambiguous region; however, implementing them requires careful
1244 consideration of prediction noise and uncertainty. These ideas remain interesting directions to pursue
1245 beyond the scope of the current work.

1247 E DISCUSSION ON FUNCTIONAL PROTEIN SEQUENCE DESIGN

1248 Recent explorations in protein sequence design have begun to extend beyond backbone-based
1249 specifications by introducing functional constraints that capture chemically relevant exterior features.
1250 Currently, advanced functional protein sequence design methodologies, such as SurfPro (Song
1251 et al., 2024), BC-Design (Tang et al.), and SurfDesign (Wu et al.), explicitly integrate critical
1252 chemical features of the exterior surface (e.g., hydrophobicity, charge activity) that govern interactions
1253 with the environment or ligands into the sequence design task. Our ProtAlign framework has the
1254 potential to further optimize these functional protein design models by not only handling explicit
1255 functional constraints but also guiding the design of sequences toward a broader spectrum of desirable
1256 physicochemical properties. Objectives such as binding affinity could be incorporated to enhance
1257 the designed protein’s interaction capability with the target ligand; likewise, adding objectives like
1258 stability would support feasibility in biological or industrial environments. Optimization from these
1259 two perspectives may enable the models to design multi-property functional proteins that are both
1260 high-affinity and practically viable.

1262 F LLM USAGE

1263 LLMs were only used as a general-purpose tool for language editing and polishing in the preparation
1264 of this manuscript. Specifically, their role was limited to optimizing the expression fluency, refining
1265 academic terminology consistency, and adjusting sentence structures of the text; they did not participate
1266 in any aspect of this research, including the conception of research ideas, design of experimental
1267 protocols, collection or analysis of experimental data, or derivation of research conclusions. All
1268 content modifications made by LLMs have been thoroughly reviewed and verified by the authors to
1269 ensure accuracy, consistency with the original research intent, and compliance with academic norms.
1270 The authors take full responsibility for the final content of this manuscript.