
Automating Enterprise Data Engineering with LLMs

Jan-Micha Bodensohn∗

DFKI & Technische Universität
Darmstadt

Ulf Brackmann∗

SAP SE & DFKI
Liane Vogel∗

Technische Universität Darmstadt

Anupam Sanghi
Technische Universität Darmstadt

Carsten Binnig
Technische Universität Darmstadt

& DFKI

Abstract

The automation of data engineering tasks is invaluable for enterprises to increase
efficiency and reduce the manual effort associated with handling large amounts of
data. Large Language Models (LLMs) have recently shown promising results in
enabling this automation. However, data engineering tasks in real-world enterprise
scenarios are often more complex than their typical formulations in the scientific
community. In this paper, we study the challenges that arise when automating
real-world enterprise data engineering tasks with LLMs. As part of the paper, we
perform a case study on the task of matching incoming payments to open invoices,
an instance of the entity matching problem. We also release a hand-crafted dataset
based on the actual enterprise scenario to enable the research community to study
the complexity of such enterprise tasks.1

1 Introduction

LLMs have shown promise for data engineering. Large Language Models (LLMs) have shown
great potential to support the automation of a broad spectrum of data engineering tasks, such as
column type annotation and entity matching [5, 8, 10]. Since LLMs are easy to use via prompting,
they can render data engineering accessible to many practitioners. Therefore, they are a promising
avenue for enterprises to automate processes without needing expensive, specialized solutions [17, 12].
However, recent work has shown that LLMs often do not work well out-of-the-box on enterprise data,
as its characteristics differ vastly from the public datasets that LLMs are usually trained on [1, 15].

Data engineering in enterprises looks different. Apart from the distinctive characteristics of
enterprise data, a second overlooked challenge is that the tasks in enterprise scenarios also differ from
those formulated in the scientific community. Data engineering in enterprises is typically approached
with broader business objectives in mind. One challenge, therefore, is that enterprises often work
with business entities represented by multiple items in different tables. Moreover, enterprise tasks are
often compounds of many individual steps. For example, since business objects are often spread over
multiple tables, the first step is usually to define a view before the actual task (e.g., entity matching)
can be executed. With this paper, we want to draw attention to the fact that data engineering tasks in
real-world enterprise scenarios are, thus, typically much more challenging. To showcase this problem,
we provide experiments from an initial case study demonstrating how these difficulties affect the
performance of LLMs when used for such tasks.

Case study: Entity matching in enterprises. In this paper, we work on a real-world instance of the
entity matching problem based on a scenario of the enterprise software company SAP. As illustrated

*Authors with equal contribution, alphabetical ordering.
1https://github.com/DataManagementLab/llmeval-trl24

Table Representation Learning Workshop at NeurIPS 2024

https://github.com/DataManagementLab/llmeval-trl24

ID customer name country …
103452 Azul Technologies NZ …
100234 Silver Systems SA …
100041 Mint Industries DE …
100203 Emerald Corp. JP …
104312 Greeny Inc. US …
… … … …

billing no. customer amount date …
2360187300 103452 347.00 USD 2024-09-02 …
3023928912 100041 500.00 EUR 2023-12-01 …
3002395010 100234 43.63 USD 2020-06-05 …
7039230507 100234 145.22 USD 2020-03-17 …

… … … … …

items in multiple connected tables

Bank Statement A

Account: XA34129882

Business partner: Mint

Amount: 499.95 EUR

Posting date: 01.01.2024

…

Bank Statement B

Account: PQ34510234

Business partner:
Silver Sys

Amount: 188.85 EUR

Posting date: 01.07.2020 1:N matching (one payment
pays multiple invoices)

1:1 matching

open invoices bank statements from incoming payments?

Figure 1: Real-world enterprise entity matching use case: matching incoming bank statements to open
invoices. The task is complex due to the data being represented by multiple tables, the occurrence of
1:N matches, as well as human errors and small discrepancies in the transferred amounts.

in Figure 1, we use a scenario where incoming payments must be matched to open invoices, a task
many companies face that is still solved with high manual efforts. This task is an example of a
challenging enterprise problem where invoices and bank transfers are not of the same type, as is often
the case in enterprise entity matching. Moreover, the data also presents challenges. For example, the
memo lines of incoming bank statements are not standardized, and thus, human errors occur regularly,
making automatic matching difficult.

Contributions. We make the following contributions: (1) We describe common complexities of
data engineering tasks in enterprise scenarios. (2) We perform a case study on matching incoming
payments to open invoices with the help of LLMs and pinpoint where the difficulties of enterprise
tasks are. (3) We release our hand-crafted dataset for the payment-to-invoice matching task, which
aims to resemble the data from the actual enterprise software system we have access to and mirrors
some of the challenges to foster further research on enterprise data and tasks.

2 Data Engineering Tasks in Enterprise Scenarios

In real-world enterprise scenarios, data engineering tasks are often more complex than their typical
formulations in the scientific community. In this section, we highlight general challenges we see in
enterprise tasks and point out task-specific challenges specifically for entity matching in enterprises.

Compound tasks. While data engineering tasks in research are usually addressed as isolated
problems, such as de-duplication [9] and missing value imputation [7], tasks in enterprise contexts
are typically approached on a more holistic level concerning broader business objectives. Instead of
focusing on individual tasks, enterprises aim to solve end-to-end workflows. One example beyond
matching payments to invoices is tariff classification, which determines the correct commodity code
when importing and exporting goods to ensure compliance with customs regulations. This process
includes multiple separate steps: (1) Collecting and integrating structured and unstructured product
information (materials, country of origin, etc.) from various sources (ERP systems, catalogs, product
databases), as well as finding previous classifications of similar products. (2) Data cleaning and
normalization, such as considering units of measurement. (3) Matching the products to the correct
commodity code. While these steps can be executed sequentially, errors often propagate and amplify
in later steps. As such, analyzing steps in isolation does not reveal the overall quality of the task.

Task-specific views. Data in enterprise systems often takes the shape of business objects represented
by multiple rows stored in different tables. For example, a product might be represented by a
table containing basic product information like weight and size. However, the used materials and
information on how many products are in storage is stored in separate connected tables. For data
engineering tasks, one must either (manually) construct views that extract the fields relevant to the
task into a single table, or approaches have to deal directly with the complex 1:N and N:M table
structures that form a business entity.

Matching between different types of entities. In public entity matching datasets, the entities
to be matched are usually of the same type, like e-commerce products, restaurants, and scholarly
articles [4, 11]. Meanwhile, enterprise scenarios often require matching between entities of different
types, like payments to invoices or products to commodity codes, which might have overlapping but
different sets of attributes, as shown in Figure 1.

Multi-matches. An additional challenge in enterprise scenarios is that the matches are often not
1:1 matches as in the literature, but can also be 1:N, N:1, or even N:M, making the problem much
more difficult. In our payment-to-invoice matching scenario, it is quite common for a customer to pay

2

Table 1: F1 scores when matching payments to invoices. We incrementally increase the difficulty of
the task by adding errors, multi-match cases, and representing invoices by multiple connected tables.

model initial data + errors + multi-matches + multiple tables
GPT-3.5-Turbo-1106 0.97 ± 0.02 0.96 ± 0.01 0.88 ± 0.01 0.44 ± 0.02
GPT-4o-Mini-2024-07-18 0.98 ± 0.01 0.58 ± 0.04 0.52 ± 0.03 0.51 ± 0.02
GPT-4o-2024-08-06 0.98 ± 0.01 0.79 ± 0.03 0.66 ± 0.02 0.58 ± 0.02

multiple invoices with only one payment (1:N) or for one invoice to be paid by multiple payments
(N:1), such as in the case of down payments or by holding back money due to quality issues with the
product. Even a combination of both cases is conceivable (N:M).

Data complexity. The characteristics of enterprise data differ vastly from many publicly available
datasets from the web [1]. Tables often have many more rows and columns and a higher sparsity.
Furthermore, table names, attribute names, and cell values are often not descriptive and require
domain-specific background knowledge to understand [3, 13]. Thus, the characteristics of enterprise
data again amplify the difficulty of enterprise tasks.

Human errors and discrepancies. Whereas some cases in the payment-to-invoice matching scenario
can be trivially solved using regular expressions, the fact that the memo lines of bank statements are
not standardized often leads to errors that require more elaborate approaches to solve. For example,
our analysis has shown that the way customers fill out bank statements differs considerably between
regions. Moreover, human input often contains errors, such as missing zeros in reference numbers like
80000012345. Besides these genuine mistakes, more sophisticated approaches must also deal with
intentional discrepancies. For example, customers occasionally pay less than the invoice requires,
which companies sometimes accept due to cost reasons if the amount is minimal. However, for larger
differences, the matching must also work but has to emit an additional payment notification, further
complicating the automatic comparison of amounts.

Extra context is required. Data engineering tasks in enterprise settings often require additional
context information. For example, in the payment-to-invoice matching scenario, customers sometimes
send so-called payment advices in an unstructured form, such as PDF documents or e-mails, that
explain which invoices the customer intends to pay with a single payment. It is particularly challenging
to detect if a specific incoming payment requires considering an additional payment advice. Today,
many of these cases still require manual work.

3 Case Study: Matching Payments to Invoices

To empirically examine the challenges that arise when automating enterprise data engineering tasks
with LLMs, we conduct a small case study on the payment-to-invoice matching task using a hand-
crafted dataset. We design a process that generates invoices and payments following the characteristics
of the actual data from an enterprise software system and mirroring some of the challenges described
above. The full dataset contains 15, 521 invoices and 12, 332 payments, and we experiment on 790
matching pairs and 1, 210 pairs that do not match. To start, we formulate the entity matching task as
a binary classification similar to existing literature [8, 10], prompting the LLM to decide if two table
rows (one payment and one invoice) match. We additionally include one positive and one negative
example in the prompt. Afterward, we make the task incrementally more complex. We compare the
performance of three different GPT models from OpenAI [2], as shown in Table 1.

Experiment 1: Matching payments to invoices. In our first experiment, we incrementally increase
the difficulty of matching payments to invoices based on scenarios we observe in actual enterprise
data. In the following, we explain the different scenarios; the results are shown in Table 1:

1. (initial data) First, we run the models on clean 1:1 matches, where the payment memo line
includes the correct reference numbers, the payment amount is exactly as stated in the invoice, and
the customer name is also identical. All three models reach very high F1 scores in this setup.

2. (+ errors) Next, we add small errors and discrepancies to the data that typically occur in real-world
data, such as missing or additional digits in the reference numbers or small discrepancies in the paid
amount, which already lead to a drop in accuracy.

3

Figure 2: Precision and recall for the (+ multi-
matches) scenario from Table 1. The GPT-4o
models show lower recalls, resulting in lower F1
scores than GPT-3.5-Turbo.

Figure 3: F1 scores for typical error categories
in isolation using GPT-4o. Discrepancies in busi-
ness partner names between invoices and bank
statements are especially challenging.

3. (+ multi-matches) Next, we focus on multi-match cases, where either one payment pays multiple
invoices or multiple payments together pay one invoice. As shown in Table 1, this vastly increases
the task’s difficulty. We further investigate the precision and recall to understand the high deviation
in F1 scores between models (see Figure 2). We find that whereas all models achieve a very high
precision, the differences in F1 scores are primarily due to differences in recall.

4. (+ multiple tables) Finally, we represent invoices using multiple connected tables instead of a
single flat table. Our goal is to investigate if LLMs can work directly on these complex schemas
instead of first creating a view. While metadata about each invoice document is stored in one table,
specific information like the amount and due date are stored in a second table, and information about
customers is stored in another separate customer table. In this scenario, GPT-4o and GPT-3.5-Turbo
see large performance decreases compared to the previous experiments, indicating that the models
have difficulties working with the complex data structures often used in enterprises.

Experiment 2: Typical real-world error categories. Our second experiment analyzes the different
error types observed during payment-to-invoice matching on real-world data. Figure 3 compares
the F1 scores for the initial clean data to each error type in isolation. The results show that each
error type causes a decrease in performance, indicating that even minor discrepancies can introduce
challenges for the LLM. However, the greatest performance drop is due to discrepancies in business
partner names between invoices and bank statements. This may suggest that the model relies more
heavily on textual data rather than numerical data and identifiers to perform the matching.

4 Discussion and Road Ahead

Our experiments with LLMs on the task of matching incoming payments to open invoices reveal a
noticeable drop of about 40% in F1 score when transitioning from simple data to data that incorporates
enterprise-specific challenges. Even when comparing manually created views, the F1 scores remain
too low to eliminate the need for manually reviewing the matched instances. Furthermore, given the
typical volume of thousands of transactions per day, performing pair-wise matching is not viable
from both cost and performance perspectives. Our hand-crafted dataset includes only mild forms of
errors and simple table structures with up to three tables. By contrast, the challenges are even more
pronounced in real enterprise settings, suggesting that the drop in an actual enterprise setting could
be significantly more severe.

To address these challenges, we argue that more robust LLMs tailored for enterprise tasks and data will
make a significant impact. For example, we argue that LLMs are required which natively understand
structured data more effectively, especially data which is represented as table structures of multiple
tables [14]. Additionally, models must improve their handling of numerical data and demonstrate
stronger reasoning capabilities to enable tasks that are composed of multiple steps. Future work thus
involves trying out a more step-wise approach (chain-of-thought [16], etc.), where the necessary
information is automatically extracted to a view before matching. Furthermore, techniques like
retrieval-augmented generation (RAG) [6] could help to retrieve necessary context information, for
example from internal documentation or e-mails. With these enhancements, we argue that the gap
between model accuracy as well as the need for manual verification could be reduced significantly,
thereby improving the overall efficiency of enterprise tasks.

4

Acknowledgments and Disclosure of Funding

This work has been supported by the BMBF and the state of Hesse as part of the NHR Program and
the HMWK cluster project 3AI. It was also partially funded by the LOEWE Spitzenprofessur of the
state of Hesse. We also thank DFKI Darmstadt and hessian.AI as well as Atreya Biswas from SAP
for their support.

References
[1] Jan-Micha Bodensohn, Ulf Brackmann, Liane Vogel, Matthias Urban, Anupam Sanghi, and

Carsten Binnig. Llms for data engineering on enterprise data. In Joint Proceedings of Workshops
at the 50th International Conference on Very Large Data Bases (VLDB 2024), Guangzhou,
China, August 26 - August 29, 2024, Tabular Data Analysis (TaDA) Workshop Proceedings,
2024.

[2] OpenAI et al. GPT-4 Technical Report, March 2024. arXiv:2303.08774 [cs].

[3] Jaewoo Kang and Jeffrey F. Naughton. On schema matching with opaque column names and data
values. In Proceedings of the 2003 ACM SIGMOD international conference on Management
of data, SIGMOD ’03, pages 205–216, New York, NY, USA, June 2003. Association for
Computing Machinery.

[4] Pradap Konda, Sanjib Das, Paul Suganthan G. C., AnHai Doan, Adel Ardalan, Jeffrey R. Ballard,
Han Li, Fatemah Panahi, Haojun Zhang, Jeffrey F. Naughton, Shishir Prasad, Ganesh Krishnan,
Rohit Deep, and Vijay Raghavendra. Magellan: Toward building entity matching management
systems. Proc. VLDB Endow., 9(12):1197–1208, 2016.

[5] Keti Korini and Christian Bizer. Column type annotation using chatgpt. In Joint Proceedings of
Workshops at the 49th International Conference on Very Large Data Bases (VLDB 2023), Van-
couver, Canada, August 28 - September 1, 2023, volume 3462 of CEUR Workshop Proceedings.
CEUR-WS.org, 2023.

[6] Patrick S. H. Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and
Douwe Kiela. Retrieval-augmented generation for knowledge-intensive NLP tasks. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,
editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[7] Yinan Mei, Shaoxu Song, Chenguang Fang, Haifeng Yang, Jingyun Fang, and Jiang Long.
Capturing Semantics for Imputation with Pre-trained Language Models. In 2021 IEEE 37th
International Conference on Data Engineering (ICDE), pages 61–72, Chania, Greece, April
2021. IEEE.

[8] Avanika Narayan, Ines Chami, Laurel Orr, and Christopher Ré. Can Foundation Models
Wrangle Your Data? Proceedings of the VLDB Endowment, 16(4):738–746, December 2022.

[9] Thorsten Papenbrock, Arvid Heise, and Felix Naumann. Progressive Duplicate Detection. IEEE
Transactions on Knowledge and Data Engineering, 27(5):1316–1329, May 2015.

[10] Ralph Peeters and Christian Bizer. Using chatgpt for entity matching. In New Trends in
Database and Information Systems - ADBIS 2023 Short Papers, Doctoral Consortium and
Workshops: AIDMA, DOING, K-Gals, MADEISD, PeRS, Barcelona, Spain, September 4-7,
2023, Proceedings, volume 1850 of Communications in Computer and Information Science,
pages 221–230. Springer, 2023.

[11] Ralph Peeters, Reng Chiz Der, and Christian Bizer. WDC products: A multi-dimensional
entity matching benchmark. In Letizia Tanca, Qiong Luo, Giuseppe Polese, Loredana Caruccio,
Xavier Oriol, and Donatella Firmani, editors, Proceedings 27th International Conference on
Extending Database Technology, EDBT 2024, Paestum, Italy, March 25 - March 28, pages
22–33. OpenProceedings.org, 2024.

5

[12] Yara Rizk, Praveen Venkateswaran, Vatche Isahagian, Austin Narcomey, and Vinod Muthusamy.
A case for business process-specific foundation models. In Jochen De Weerdt and Luise
Pufahl, editors, Business Process Management Workshops - BPM 2023 International Workshops,
Utrecht, The Netherlands, September 11-15, 2023, Revised Selected Papers, volume 492 of
Lecture Notes in Business Information Processing, pages 44–56. Springer, 2023.

[13] Alexandra Savelieva, Andreas Mueller, Avrilia Floratou, Carlo Curino, Hiren Patel, Jordan
Henkel, Joyce Cahoon, Markus Weimer, Nellie Gustafsson, Richard Wydrowski, Roman
Batoukov, Shaleen Deep, and Venkatesh Emani. The Need for Tabular Representation Learning:
An Industry Perspective. Table Representation Learning Workshop at NeurIPS 2022, 2022.

[14] Liane Vogel, Benjamin Hilprecht, and Carsten Binnig. Towards Foundation Models for Rela-
tional Databases [Vision Paper]. Table Representation Learning Workshop at NeurIPS 2022,
page 6, 2022.

[15] Adrian Vogelsgesang, Michael Haubenschild, Jan Finis, Alfons Kemper, Viktor Leis, Tobias
Muehlbauer, Thomas Neumann, and Manuel Then. Get Real: How Benchmarks Fail to
Represent the Real World. In Proceedings of the Workshop on Testing Database Systems, pages
1–6, Houston TX USA, June 2018. ACM.

[16] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh,
editors, Advances in Neural Information Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 -
December 9, 2022, 2022.

[17] Michael Wornow, Avanika Narayan, Krista Opsahl-Ong, Quinn McIntyre, Nigam Shah, and
Christopher Ré. Automating the enterprise with foundation models. Proc. VLDB Endow.,
17(11):2805–2812, 2024.

6

	Introduction
	Data Engineering Tasks in Enterprise Scenarios
	Case Study: Matching Payments to Invoices
	Discussion and Road Ahead

