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ABSTRACT

Multi-view graph clustering is a powerful technique for learning discrimina-
tive node representations by integrating complementary information from diverse
views. However, existing methods often suffer from rigid fusion schemes, ignore
sample difficulty during training, and struggle to capture both global semantics
and local structures through graph-based regularization. To address these issues,
we propose SPEAG, a novel framework for Self-Paced Encoding with Adaptive
Graph Regularization. SPEAG combines view-specific graph autoencoders with a
unified learning objective that incorporates self-paced training, adaptive view fu-
sion, and structure-aware regularization. Specifically, a self-paced neighborhood
expansion strategy is introduced, where the k-nearest neighbor graph is gradu-
ally densified to learn from easy instances first and hard ones later. Meanwhile,
each view’s embedding is adaptively weighted based on its importance, and a fu-
sion representation is formed for global consistency. To encourage distributional
alignment and enhance cluster compactness, SPEAG integrates a Maximum Mean
Discrepancy (MMD) loss across views and a self-supervised clustering objec-
tive based on soft assignment refinement. Extensive experiments on real-world
datasets demonstrate that SPEAG achieves superior clustering accuracy and ro-
bustness compared to existing multi-view graph clustering methods.

1 INTRODUCTION

Multi-view clustering (MVC) Liu et al. (2022); Fang et al. (2023) seeks to partition unlabeled data
by jointly exploiting all views, and recent deep MVC advances leverage powerful neural repre-
sentations. Representative methods include CoMSC Liu et al. (2021) (feature decomposition for
robust representation) and DUA-Nets Geng et al. (2021) (uncertainty-aware view weighting), while
CMRL Zheng et al. (2023) and SCMRL Zhou et al. (2023) further explore complementarity and
semantic consensus via low-rank tensors and attention. However, many approaches emphasize
view-specific features while underutilizing instance–instance relations that are crucial for cluster-
ing. Moreover, anchor-based methods reduce computation but often distort local structures, and
GNN-based models (e.g., MGCN, MVGRL Kang et al. (2020); Yang & Zhu (2024); Jiang et al.
(2025)) frequently fuse views heuristically (e.g., averaging) Chen et al. (2025b) and decouple repre-
sentation learning from clustering; they also depend on static kNN or precomputed similarities Chen
et al. (2025a) that are non-adaptive during training and sensitive to noise/outliers.

To address these challenges, we propose a novel Self-Paced and Enhanced Adaptive Graph encod-
ing framework, dubbed SPEAG, for unsupervised multi-view graph clustering. SPEAG introduces
several key innovations that are carefully integrated into a unified learning framework:

• Self-paced graph encoding with Laplacian regularization: Instead of a fixed k-NN graph,
SPEAG updates each view’s adjacency via an encoder–decoder; k increases during training
for stable warm-up then global structure, while Laplacian terms preserve local geometry.

• Self-weighted fusion with distribution alignment: Instance-level view weights are learned
jointly with embeddings; an MMD loss aligns fused and per-view representations, down-
weighting unreliable views and mitigating semantic drift across modalities for more robust
multi-view consistency.
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• Unified self-supervised clustering, end-to-end: A soft-label clustering loss tightens clusters
and feeds back to the encoder; fusion, embedding, and clustering are optimized jointly,
enabling mutual reinforcement, efficient cross-feedback, and extensibility within a single
training pipeline.

2 THE PROPOSED METHOD

In this section, we propose a novel multi-view clustering framework via Self-Paced Encoding with
Adaptive Graph regularization (SPEAG), whose crucial details are elaborated.

2.1 NOTATIONS

Given V views {X(v)}Vv=1 with X(v)∈RN×dv and K clusters, where N is the number of samples
and dv the dimension of view v, we aim to learn a unified embedding H ∈RN×dh . SPEAG com-
bines view-specific graph autoencoders with a unified objective featuring self-paced training, adap-
tive view fusion, and structure-aware regularization. For each view we obtain a latent Z(v)∈RN×dz ;
pairwise distances are D(v), similarities W (v), their symmetrized form A(v), and normalized Lapla-
cian L̂(v). We fuse the view latents into a global embedding H =

∑V
v=1 w

(v)Z(v), where w(v)

denotes the adaptive reliability weight of view v with w(v)≥ 0 and
∑

v w
(v) = 1.

2.2 WITHIN-VIEW RECONSTRUCTION

Graph Embedding Autoencoder We employ a graph convolutional autoencoder (GCAE) that
ingests the feature matrix and a similarity graph per view. For view v, we assume a row-stochastic
similarity matrix W̃ (v) has been constructed (see Section 2.2) and symmetrize it as

A(v) =
1

2

(
W̃ (v) + (W̃ (v))⊤

)
. (1)

The corresponding degree matrix and (unnormalized) Laplacian are D
(v)
ii =

∑
j A

(v)
ij and L(v) =

D(v) −A(v), respectively. We further compute the normalized Laplacian

L̂(v) = I − (D(v))−1/2A(v)(D(v))−1/2 (2)

to stabilize message passing in the GCAE.

Feeding X(v) and L̂(v) into the encoder yields the latent representation

Z(v) = L̂(v) ϕ
(
L̂(v)X(v)W

(v)
1

)
W

(v)
2 , (3)

where W
(v)
1 ,W

(v)
2 are layer parameters and ϕ(·) is a nonlinearity. We then reconstruct a row-

stochastic similarity from latent distances D̂(v)
ij = ∥Z(v)

i − Z
(v)
j ∥22 using a per-row softmax

W̄
(v)
ij =

exp(−D̂
(v)
ij )∑N

j′=1 exp(−D̂
(v)
ij′ )

. (4)

Reconstruction fidelity is measured by the KL divergence

L(v)
rec = DKL

(
W̃ (v)∥W̄ (v)

)
=

1

N

N∑
i,j=1

W̃
(v)
ij log

W̃
(v)
ij

W̄
(v)
ij

, (5)

which encourages Z(v) to encode the view’s graph structure.

Graph Laplacian Regularization In our approach, we incorporate not only the graph structural
information but also complementary feature information derived directly from the samples. Under
the manifold assumption, if two data points are close in the original high-dimensional space Cai
et al. (2008); Wen et al. (2018), their corresponding representations in the learned low-dimensional

2
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Figure 1: SPEAG adaptively constructs self-paced graphs, encodes with GCN, reconstructs affini-
ties, and fuses multi-view features to enhance clustering via multiple losses.

latent space should also remain close. Concretely, the consensus similarity among different views
should be preserved after dimensionality reduction.

To enforce this, we introduce a graph regularization term formulated as follows:

L
(v)
lap =

N∑
i,j=1

Av
ij∥zvi − zvj ∥22 = tr

(
(Zv)⊤LvZv

)
, (6)

where Av
ij denotes the similarity between samples i and j in the original space of the v-th view, zvi

is the latent representation of sample i in view v, and Lv = Dv −Av is the graph Laplacian matrix
for view v, with Dv being the corresponding degree matrix. Here, tr(·) denotes the trace operator,
summing the diagonal elements of a matrix. We combine the reconstruction and Laplacian terms as

L
(v)
graph = L(v)

rec + λ1L
(v)
lap . (7)

Intuitively, when Av
ij is large—implying high similarity between samples i and j—the regularization

penalizes large distances ∥zvi − zvj ∥22 in the latent space. This encourages similar samples to stay
close, preserving local structure and guiding the model to learn embeddings that reflect both feature
content and intrinsic neighborhood relationships, thus maintaining the data’s manifold structure.

Self-paced adaptive graph construction Inspired by self-paced learning—progressing from easy
to hard—we construct the similarity graph progressively. Early training starts from a sparse kNN
backbone to stabilize optimization, and we gradually enlarge neighborhoods to enrich structure and
learn more discriminative representations.

For each view v, we maintain a neighborhood size kt at pre-training epoch t, which is increased
according to

kt = min
(
k0 + t ·∆k, kmax

)
, (8)

where we use k0 = 5, ∆k = 2, and kmax = 20 in all experiments. At t = 0 we compute
pairwise distances D(v)

ij = ∥X(v)
i − X

(v)
j ∥22 on the original features; after each pre-training epoch

we recompute distances from the current embeddings Z(v) as

D
(v)
ij = ∥Z(v)

i − Z
(v)
j ∥22. (9)

For a given epoch t, we keep, for each sample i, only its kt nearest neighbors. Non-neighbors have
zero similarity, while neighbors use margin-based edge weights

W̃
(v)
ij =

D
(v)
i,kt+1 −D

(v)
ij∑kt

m=1

(
D

(v)
i,kt+1 −D

(v)
im

) , 1 ≤ j ≤ kt, (10)

3
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where D(v)
i,m denotes the distance between sample i and its m-th nearest neighbor. This yields a row-

stochastic similarity matrix W̃ (v) that serves as supervision for the graph autoencoder (Equation 5)
and as the basis for the Laplacian regularizer.

The schedule in Equation 8 implements a self-paced densification of the graph: when kt is small,
each node is only connected to its most similar neighbors, which correspond to “easy” and highly
confident local relationships. As training proceeds and kt increases, more distant neighbors with
higher uncertainty are gradually incorporated into the graph. In this way, the model first focuses on
reliable local structures and then progressively absorbs harder connections, which stabilizes training
and improves robustness to noisy views.

2.3 MULTI-VIEW FUSION AND CONSISTENCY

Representational Consistency Constraint Given that various perspectives of an object inherently
possess consistent characteristics, we enforce this consistency across views through a mechanism
referred to as the representational consistency constraint. This constraint promotes alignment among
the representations derived from different views, thereby minimizing redundancy and enhancing
overall consistency:

Lrcc =
∑

vi,vj

∥∥Z(vi) − Z(vj)
∥∥2
F
. (11)

This term is only used in the fine-tuning stage and is weighted by λ4 in the overall objective.

Global feature generation To integrate complementary information across views and obtain a
compact clustering-friendly representation, we aggregate the per-view embeddings {Z(v)}Vv=1 using
learnable reliability weights.

Specifically, we maintain a parameter vector a ∈ RV and define normalized weights by a softmax

w(v) =
exp(av)∑V
u=1 exp(au)

, v = 1, . . . , V. (12)

The fused global embedding is then computed as a weighted sum

H =

V∑
v=1

w(v)Z(v) ∈ RN×dz , (13)

which directly serves as the consensus representation for clustering.

Self-weighted Contrastive Learning Multi-view contrastive learning has demonstrated strong
potential in aligning complementary information from different views. However, conventional meth-
ods typically treat all views equally, using uniform weights when computing contrastive losses. For-
mally, they adopt a view-invariant formulation such as:

LCL =
∑
m,n

Lm,n
CL (Z(m), Z(n)), (14)

where Z(m) and Z(n) denote the representations of views m and n, respectively. While this sym-
metric formulation facilitates consistency across views, it can undesirably amplify the influence of
low-quality or noisy views by forcing them to align equally with high-quality ones. This uniform
treatment may lead to representational degeneration and hinder effective feature fusion.

To address this limitation, we propose an inter-view self-weighted contrastive learning strategy that
adaptively modulates the contribution of each view based on its semantic alignment with a shared
global representation. The core idea is to prioritize reliable, informative views in the contrastive
process while suppressing the impact of unreliable ones. Specifically, we reformulate the contrastive
loss as:

Lsw =

V∑
v=1

w(v) L(v)
sw (Z(v), H), (15)

where Z(v) denotes the view-specific representation, H is the fused global representation, and w(v)

is the adaptive weight reflecting the relative reliability of the v-th view.
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Since labels are unavailable in unsupervised settings, directly evaluating the quality of a view is
challenging. To estimate the semantic relevance of each view, we assess the distributional discrep-
ancy between Z(v) and H . A lower discrepancy implies a higher alignment with global semantics
and thus a more trustworthy view. This discrepancy is denoted as:

D(v) = D
(
Z(v), H

)
, (16)

where D(·, ·) is a distance metric based on Maximum Mean Discrepancy (MMD) Wu et al. (2024),
a non-parametric criterion that measures the distance between two distributions in a reproducing
kernel Hilbert space (RKHS). Given two feature sets Xs = {xs

i}
ns
i=1 and Yt = {ytj}

nt
j=1, the squared

MMD is defined as:

MMD2(Xs, Yt) =
1

n2
s

ns∑
i,j=1

k(xs
i , x

s
j) +

1

n2
t

nt∑
i,j=1

k(yti , y
t
j)−

2

nsnt

ns∑
i=1

nt∑
j=1

k(xs
i , y

t
j), (17)

where k(·, ·) is a kernel function. In our case, we employ a linear kernel k(x, y) = x⊤y, which
avoids the need for hyperparameter tuning and suits high-dimensional representations. Given that
Z(v) and H share the same dimensions, the discrepancy for each view is computed as:

MMD2(Z(v), H) =
1

N2

N∑
i,j=1

k(Z
(v)
i , Z

(v)
j ) +

1

N2

N∑
i,j=1

k(Hi, Hj)−
2

N2

N∑
i,j=1

k(Z
(v)
i , Hj), (18)

where N denotes the total number of samples. Based on these discrepancies, we define a normalized
weight allocation function to adaptively determine the importance of each view:

w(v) = P
(
D(v)

)
= softmax

(
−D(v)

)
. (19)

The use of the negative discrepancy ensures that views more consistent with global semantics receive
higher weights. This adaptive weighting mechanism promotes semantically aligned views and ef-
fectively suppresses noisy or misleading ones, thereby enhancing the robustness and expressiveness
of the learned global representations.

2.4 SELF-SUPERVISED CLUSTERING MODULE

In unsupervised learning, we refine the unified representation H by integrating multi-view informa-
tion that captures shared and complementary patterns. Since H may not be immediately clustering-
friendly, we further enhance it with a self-supervised clustering objective.

Clustering Loss via KL Divergence We adopt a Kullback–Leibler divergence between a target
distribution P and a soft assignment Q:

Lcl = DKL(P∥Q) =
∑
i

∑
j

pij log
pij
qij

. (20)

Here, Q is the soft label distribution and P is the sharpened target; the KL term measures information
loss when approximating P by Q.

Soft Label Distribution Q We compute qij via a Student-t kernel between feature hi and centroid
µj :

qij =

(
1 + ∥hi − µj∥2/σ2

)−(α+1)/2∑
f

(
1 + ∥hi − µf∥2/σ2

)−(α+1)/2
, (21)

where σ controls the kernel scale.

Target Distribution P To emphasize confident assignments and balance clusters, we set

pij =
q2ij/fj∑
f q

2
if/ff

, fj =
∑
i

qij , (22)

5
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Table 1: Datasets Descriptions

Dataset Clusters Samples Dimensionality

COIL20 20 1140 [1024, 3304, 6750]
Handwritten 10 2000 [240, 76, 216, 47, 64, 6]
HW1256 10 2000 [76, 216, 47, 6]
Caltech 7 1400 [40, 254, 1984, 512, 928]
MNIST-USPS 10 5000 [784, 256]
Fashion 10 10000 [784, 784, 784]

so that larger qij contributes more while normalizing by cluster frequency.

The final label for node vi is
si = argmax

j
qij . (23)

This self-supervised head aligns H with clustering by sharpening confident assignments, mitigating
unreliable signals, and improving separability without external labels.

2.5 TRAINING

The training procedure is divided into two main phases: pre-training and subsequent fine-tuning.

Pre-training stage. In the pre-training phase, we start from a small neighborhood size k0 and in-
crease it according to Equation equation 8 after each epoch, rebuilding the self-paced kt-NN graphs
on the current embeddings. During this stage we only optimize the within-view reconstruction loss
and the Laplacian regularizer. Denoting

Lrc =

V∑
v=1

L(v)
rec , Lgls =

V∑
v=1

L
(v)
lap ,

the preliminary training loss is given by:

Lpre = Lrc + λ1Lgls. (24)

Fine-tuning stage. In the fine-tuning phase, the self-paced graphs are held fixed, and we enforce
inter-view consistency and clustering-friendliness. The model is refined by minimizing the following
loss:

Lfine = Lrc + λ1Lgls + λ2Lrcc + λ3Lsw + λ4Lcl. (25)

Here, λ1, λ2, λ3 and λ4 are coefficients that regulate the impact of the graph-based smooth-
ness (Lgls), representational consistency (Lrcc), self-weighted contrastive learning (Lsw), and self-
supervised clustering (Lcl) terms within the total loss function, respectively. Ultimately, we apply
the Self-supervised Clustering Module to the consolidated representation H to derive the clustering
outcomes.

3 EXPERIMENTS

3.1 DATASETS

COIL20 comprises grayscale images of 20 objects across 360° poses. Handwritten and HW1256
are multi-view handwritten digits (differing in the number of views). Caltech contains multi-feature
object/scene images. MNIST-USPS mixes two digit sources to form a cross-domain benchmark.
Fashion consists of clothing images with multiple attributes/views. Cluster counts, sample sizes,
and view dimensionalities are in Table1.

6
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Table 2: Clustering Results on COIL20, Handwritten, HW1256 and MNIST-USPS Datasets

Dataset COIL20 Handwritten HW1256 Caltech MNIST-USPS Fashion

ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

DUA-Nets 0.7228 0.8272 0.6585 0.5924 0.7425 0.7933 0.5461 0.0154 0.9136 0.8359 0.7747 0.8145
SGFCC 0.2590 0.4381 0.3870 0.5501 0.3840 0.5118 0.4817 0.5262 0.9526 0.9412 0.9286 0.9180
CoMSC 0.5482 0.7382 0.5881 0.4914 0.7320 0.6793 0.4105 0.4830 0.7252 0.7025 0.6050 0.7158
CMRL 0.6264 0.7575 0.5439 0.4865 0.8947 0.8168 0.4082 0.3399 0.9308 0.8690 0.5483 0.6134
ASR-ETR 0.6611 0.7940 0.7580 0.6930 0.7290 0.6487 0.5096 0.5133 0.7580 0.6930 0.7186 0.7351
RCAGL 0.6701 0.8127 0.8775 0.8061 0.9305 0.8623 0.6341 0.4871 0.8925 0.7316 0.7924 0.8097
HFMVC 0.4558 0.5956 0.9080 0.8341 0.8785 0.7927 0.5863 0.3280 0.9010 0.8431 0.9110 0.9008
GCFAgg 0.3458 0.4886 0.8085 0.7752 0.8005 0.7664 0.3813 0.4321 0.9300 0.8896 0.8982 0.8714
SCMVC 0.5153 0.6451 0.8945 0.8168 0.7945 0.7047 0.4905 0.4390 0.9576 0.9505 0.9229 0.9213
DCMVC 0.7340 0.8162 0.8995 0.8718 0.7580 0.7620 0.3161 0.2460 0.8920 0.9059 0.7836 0.8745
DDMVC 0.9016 0.9515 0.8840 0.7727 0.9318 0.8938 0.5814 0.4752 0.9324 0.9190 0.9112 0.9032
RTGD-MVC 0.8765 0.9090 0.8863 0.8100 0.9324 0.8981 0.6551 0.4718 0.9515 0.9422 0.9124 0.8930
Ours 0.9153 0.9651 0.9115 0.8467 0.9560 0.9145 0.6679 0.5345 0.9628 0.9515 0.9328 0.8935

3.2 COMPARATIVE ALGORITHMS

Baselines fall into three groups: (i) adaptive weighting/uncertainty (DUA-Nets Geng et al. (2021),
RCAGL Liu et al. (2024), SCMVC Wu et al. (2024)), which modulate view contributions by relia-
bility; (ii) subspace/anchor representations (CoMSC Liu et al. (2021), CMRL Zheng et al. (2023),
AER-ETR Ji & Feng (2023)) to reduce redundancy via compact bases; and (iii) contrastive/struc-
tural constraints (HFMVC Jiang et al. (2024), DCMVC Cui et al. (2024), GCFAgg Yan et al. (2023),
SGFCC Shu et al. (2024)), DDMVC Xu et al. (2025), RTGD-MVC Zou et al. (2025) to enforce
cross-view consistency and cluster structure. Most do not jointly leverage graph-structural guid-
ance with contrastive consistency; SPEAG unifies both.

3.3 COMPLEXITY AND EFFICIENCY

We briefly analyze the computational complexity of SPEAG. Let N be the number of samples, V
the number of views, d the embedding dimension and kt the neighborhood size at epoch t.

Figure 2: T-SNE visualization on the datasets handwritten and HW125

Time complexity. Constructing the kt-NN graph for view v requires computing pairwise dis-
tances between N samples and selecting the kt nearest neighbors for each sample. With a naive
implementation, this takes O(V N2d) time per graph update, which is further reduced in practice by
mini-batch processing and efficient kNN routines. Given the self-paced schedule in Eq. equation 8,
we update the graph only once per pre-training epoch.

The forward and backward passes of the GCAE layers scale as O(V Nktd) since each node aggre-
gates messages from at most kt neighbors. The MMD-based weighting and contrastive loss operate
on the embeddings and have time complexity O(V N2) in the worst case, but can be implemented
in a mini-batch fashion.

7
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Table 3: Training time comparison (in seconds) on representative datasets. ’Pre’ and ’Fine’ denote
the pre-training and fine-tuning stages, respectively.

Dataset Method Pre ep. Pre time/ep. Fine ep. Fine time/ep. Total time

HW1256
DDMVC 100 1.444 200 2.381 620.689

RTGD-MVC 100 1.398 200 2.378 615.453
SPEAG 200 2.365 200 3.454 927.186

MNIST-USPS
DDMVC 100 1.895 200 3.064 802.328

RTGD-MVC 100 2.368 200 3.420 920.838
SPEAG 200 2.900 200 4.067 1103.372

Memory complexity. The main memory cost of SPEAG comes from storing the multi-view em-
beddings {Z(v)}Vv=1 and the sparse kt-NN graphs. The space complexity is O(V Nd + V Nkt),
which is comparable to other graph-based deep clustering methods.

To further quantify the efficiency of SPEAG, we report the wall-clock training time on representative
datasets in Table 3.

3.4 MODEL ANALYSIS

Figure 3: Clustering performance with increasing iteration on COIL20 and HW1256

Figure 4: ACC sensitivity on Caltech: left—λ1, λ2; right—λ3, λ4.

Performance Evaluation We evaluate on six benchmarks using ACC/NMI (Table 3). Findings:
(1) SPEAG achieves best or second-best results on most datasets, driven by self-paced graph con-
struction and structure-aware contrastive learning; (2) versus shallow/hybrid methods (KMeans,
CoMSC, ASR-ETR, RCAGL), SPEAG better captures nonlinear cross-view relations—particularly
strong on image datasets (MNIST-USPS, Fashion); (3) compared with deep baselines (DUA-Nets,
CMRL, HFMVC, SCMVC, DCMVC, GCFAgg, SGFCC), SPEAG augments contrastive alignment
with explicit graph supervision, yielding more clustering-friendly embeddings than methods that
emphasize only consistency or only contrast.

8
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Table 4: Ablation study of each loss term on three datasets.

Loss terms COIL20 HW1256 MNIST-USPS
Lgls Lrcc Lsw Lcl ACC NMI ARI ACC NMI ARI ACC NMI ARI

✓ ✓ ✓ 81.01 87.63 77.38 83.85 78.37 71.49 – – –
✓ ✓ ✓ 87.57 94.55 86.23 77.35 74.86 67.72 68.14 62.92 53.34
✓ ✓ ✓ 81.04 87.32 75.86 76.85 73.91 66.87 62.82 55.50 43.49

✓ ✓ ✓ 81.04 87.32 75.86 76.75 74.51 67.36 68.44 63.09 53.39
✓ ✓ ✓ ✓ 91.53 96.51 90.87 95.60 91.45 90.37 96.28 95.15 90.39

Table 5: Impact of fixed k (number of neighbor) and increased k on clustering results for four
datasets. For each dataset, we select eight values equidistantly between 0 and kmax as fixed k. We
report the ACC metric.

COIL20 Handwritten HW1256 MNIST-USPS

k ACC k ACC k ACC k ACC

2 69.30 ± 1.01 5 91.15 ± 1.15 5 52.58 ± 4.96 10 89.38 ± 1.03
4 84.84 ± 1.19 10 88.83 ± 1.27 10 79.72 ± 3.12 20 92.18 ± 1.15
6 87.11 ± 1.29 15 87.05 ± 0.13 15 78.27 ± 4.04 30 93.63 ± 0.87
8 89.82 ± 1.37 20 81.17 ± 1.04 20 76.57 ± 4.13 40 93.91 ± 0.79
10 90.84 ± 1.11 25 78.39 ± 0.86 25 91.51 ± 0.63 50 95.24 ± 0.68
12 91.53 ± 1.09 30 78.28 ± 0.66 30 95.60 ± 4.21 60 96.28 ± 0.55
14 88.70 ± 0.73 35 77.72 ± 0.82 35 88.59 ± 1.63 70 94.30 ± 0.48
16 86.36 ± 1.06 40 77.23 ± 1.10 40 92.57 ± 2.54 80 94.12 ± 0.42

Ablation Study We study four losses on COIL20: graph regularization Lgls, cross-view consis-
tency Lrcc, self-weighted contrastive Lsw, and self-supervised clustering Lcl. Results show Lgls

notably improves clustering; removing any fine-tuning loss degrades performance—most severely
without Lcl (weaker instance discrimination). Dropping Lsw harms cross-view distribution align-
ment, and dropping Lrcc weakens structural consistency. The full SPEAG model is best.

Parameters and Convergence Analysis As iterations increase (Fig. 3), ACC/NMI rise and the
loss decreases, indicating stable convergence and continuous improvement. Fig. 2 shows hyperpa-
rameter sensitivity: λ1 and λ3 have stronger effects; within reasonable ranges, larger values gener-
ally yield more robust gains.

4 CONCLUSION

In this work, we have presented SPEAG, a novel self-paced exemplar-aware graph learning frame-
work for multi-view clustering. By integrating an exemplar-guided attention mechanism with a
self-paced training strategy, SPEAG effectively balances the exploration of consistent and comple-
mentary information across views while progressively mitigating the impact of noisy or low-quality
samples. Moreover, the joint learning of view-specific and consensus representations within a uni-
fied anchor graph structure allows for more robust clustering performance. Extensive experiments
on multiple benchmark datasets demonstrate that our method achieves competitive or superior re-
sults compared to state-of-the-art approaches. In future work, we plan to extend SPEAG to handle
streaming or dynamically evolving multi-view data, and explore its potential in semi-supervised and
federated clustering scenarios.
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