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ABSTRACT

Multi-view graph clustering is a powerful technique for learning discrimina-
tive node representations by integrating complementary information from diverse
views. However, existing methods often suffer from rigid fusion schemes, ignore
sample difficulty during training, and struggle to capture both global semantics
and local structures through graph-based regularization. To address these issues,
we propose SPEAG, a novel framework for Self-Paced Encoding with Adaptive
Graph Regularization. SPEAG combines view-specific graph autoencoders with a
unified learning objective that incorporates self-paced training, adaptive view fu-
sion, and structure-aware regularization. Specifically, a self-paced neighborhood
expansion strategy is introduced, where the k-nearest neighbor graph is gradu-
ally densified to learn from easy instances first and hard ones later. Meanwhile,
each view’s embedding is adaptively weighted based on its importance, and a fu-
sion representation is formed for global consistency. To encourage distributional
alignment and enhance cluster compactness, SPEAG integrates a Maximum Mean
Discrepancy (MMD) loss across views and a self-supervised clustering objec-
tive based on soft assignment refinement. Extensive experiments on real-world
datasets demonstrate that SPEAG achieves superior clustering accuracy and ro-
bustness compared to existing multi-view graph clustering methods.

1 INTRODUCTION

Multi-view clustering (MVC) Liu et al|(2022); [Fang et al.| (2023)) seeks to partition unlabeled data
by jointly exploiting all views, and recent deep MVC advances leverage powerful neural repre-
sentations. Representative methods include CoMSC |Liu et al| (2021) (feature decomposition for
robust representation) and DUA-Nets |Geng et al|(2021)) (uncertainty-aware view weighting), while
CMRL [Zheng et al. (2023)) and SCMRL Zhou et al.| (2023) further explore complementarity and
semantic consensus via low-rank tensors and attention. However, many approaches emphasize
view-specific features while underutilizing instance—instance relations that are crucial for cluster-
ing. Moreover, anchor-based methods reduce computation but often distort local structures, and
GNN-based models (e.g., MGCN, MVGRL Kang et al.| (2020); |Yang & Zhu| (2024); Jiang et al.
(2025)) frequently fuse views heuristically (e.g., averaging) /Chen et al.|(2025b)) and decouple repre-
sentation learning from clustering; they also depend on static kNN or precomputed similarities|Chen
et al.|(2025a) that are non-adaptive during training and sensitive to noise/outliers.

To address these challenges, we propose a novel Self-Paced and Enhanced Adaptive Graph encod-
ing framework, dubbed SPEAG, for unsupervised multi-view graph clustering. SPEAG introduces
several key innovations that are carefully integrated into a unified learning framework:

* Self-paced graph encoding with Laplacian regularization: Instead of a fixed k-NN graph,
SPEAG updates each view’s adjacency via an encoder—decoder; k increases during training
for stable warm-up then global structure, while Laplacian terms preserve local geometry.

* Self-weighted fusion with distribution alignment: Instance-level view weights are learned
jointly with embeddings; an MMD loss aligns fused and per-view representations, down-
weighting unreliable views and mitigating semantic drift across modalities for more robust
multi-view consistency.
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* Unified self-supervised clustering, end-to-end: A soft-label clustering loss tightens clusters
and feeds back to the encoder; fusion, embedding, and clustering are optimized jointly,
enabling mutual reinforcement, efficient cross-feedback, and extensibility within a single
training pipeline.

2 THE PROPOSED METHOD

In this section, we propose a novel multi-view clustering via Self-Paced Encoding with Adaptive
Graph regularization, whose crucial details are elaborated.

2.1 NOTATIONS

Given V views { X }V_, with X(*) ¢ RV*dv and K clusters, where N is the number of samples
and d,, the dimension of view v, we aim to learn a unified embedding H € RN*dn - SPEAG com-
bines view-specific graph autoencoders with a unified objective featuring self-paced training, adap-
tive view fusion, and structure-aware regularization. For each view we obtain a latent Z (V) c RN xdz .
pairwise distances are D) similarities W (¥ their symmetrized form A®™)  and normalized Lapla-
cian L(*). We fuse the view latents into a global feature R and produce the consensus embedding
H, with w(?) denoting the adaptive reliability weight of view v.

2.2  WITHIN-VIEW RECONSTRUCTION
2.2.1 GRAPH EMBEDDING AUTOENCODER

We employ a graph convolutional autoencoder (GCAE) that ingests the feature matrix and a
similarity graph per view. For view v, we first compute pairwise Euclidean distances DE;') =

1X; (v) -X; (v) ||3 and convert them to similarities via a Gaussian kernel W(*) = exp(—D®)/(20?)),
where o is the bandwidth controlling decay with distance. Before encoding, we symmetrize and

normalize the graph. AW = YW 4 W' ) and L) =1 — (D®)=1/2A0) (D)) =1/2 with
(U) Z A . This normalization preserves spectral properties and stabilizes message passing
in the GCAE

Feeding X (") and L(*) into the encoder yields the latent Z(*) = L(*) gb(f/(”)X(”)Wl(U)) WQ(U),

where Wl(’u), WQ(/U) are layer parameters and ¢ is the nonlinearity. We then reconstruct a row-

stochastic similarity from latent distances 151(;) = |z - Z](-”)Hg using a per-row softmax
WZ(JU) = exp(— / Z 71 exp( f)(v)) Finally, reconstruction fidelity is measured by the KL

divergence L. = DKL( WO w®) =L ZL =1 W(U) log(W(U)/Wg})), which encourages Z(*)
to encode the view’s graph structure.

2.2.2 GRAPH LAPLACIAN REGULARIZATION

In our approach, we incorporate not only the graph structural information but also complementary
feature information derived directly from the samples. Under the manifold assumption, if two data
points are close in the original high-dimensional space |Cai et al.| (2008)); Wen et al.| (2018)), their
corresponding representations in the learned low-dimensional latent space should also remain close.
Concretely, the consensus similarity among different views should be preserved after dimensionality
reduction.

To enforce this, we introduce a graph regularization term formulated as follows:

Lyis = Z AY|20 = 22013 = tr((2) " L° 27) (1)

1,j=1

where AY; denotes the similarity between samples 7 and j in the original space of the v-th view, z7
is the latent representation of sample 7 in view v, and LY = DV — A" is the graph Laplacian matrix
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Figure 1: SPEAG adaptively selects samples for graph construction, encodes with GCN, reconstructs
affinities, and fuses multi-view features to enhance clustering via multiple losses.

for view v, with D" being the corresponding degree matrix. Here, ¢r(-) denotes the trace operator,
summing the diagonal elements of a matrix.

Intuitively, when A;’j is large—implying high similarity between samples ¢ and j—the regularization
penalizes large distances ||z{ — 27||3 in the latent space. This encourages similar samples to stay
close, preserving local structure and guiding the model to learn embeddings that reflect both feature
content and intrinsic neighborhood relationships, thus maintaining the data’s manifold structure.

2.2.3 SELF-PACED ADAPTIVE GRAPH CONSTRUCTION

Inspired by self-paced learning—progressing from easy to hard—we construct the similarity graph

progressively: early training starts from a sparse k-NN backbone to stabilize optimization, and we

gradually enlarge neighborhoods to enrich structure and learn more discriminative representations.

Concretely, for view v we keep, for each sample 7, only its k nearest neighbors; non-neighbors have

zero similarity, while neighbors use edge weights Dl(vk) 1= DE;-J) (with Dz(;) the distance to the j-th
neighbor), followed by row-wise normalization over the & neighbors.

We = D;),kJrl -D

Z] B k v v
Yom=1Df k1 — D7)

where D7, denotes the distance between sample ¢ and its m-th nearest neighbors.

W 1<j<k, )

Moreover, we calculate the distances D" between samples based on the original data X only during
the initialization stage. Subsequently, D" are computed based on the learned representations Z*:
Dy =12} - Z3|3-

By progressively increasing k and updating the similarity matrix based on the learned representation,
our method can increasingly explore more reliable graph information and facilitate within-view
representation learning.

2.3 INTER-VIEW SELF-WEIGHT CONTRASTIVE LEARNING

2.3.1 REPRESENTATIONAL CONSISTENCY CONSTRAINT

Given that various perspectives of an object inherently possess consistent characteristics, we enforce
this consistency across views through a mechanism referred to as the representational consistency

constraint. This constraint promotes alignment among the representations derived from different
views, thereby minimizing redundancy and enhancing overall consistency.

Lice=y_ 1200 = 2|3 3)
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2.3.2 GLOBAL FEATURE GENERATION

To integrate complementary information across views and learn compact, discriminative representa-
tions for clustering, we design a global fusion module. Given latent embeddings 2!, Z2,...,Z"V €
R™*%v from V views, we concatenate them along the feature dimension to form the initial global

. v o .
representation Zeonew = (21, Z2,...,ZV] € R™X (2v=14v) | For multi-view relational structure, we
first compute symmetrically normalized Laplacians L" for each view and average them to obtain the

consolidated similarity matrix L= % Z:};l L”. Using this graph prior, we refine the concatenated

features by propagating with the consolidated Laplacian to get R = L Zeonear, Which enhances inter-
sample affinities and discriminability. Finally, we map R into a shared latent space with an MLP,

yielding the global representation H = Wy o(Wi R + by) + by € R™¥n,

2.3.3 SELF-WEIGHTED CONTRASTIVE LEARNING

Multi-view contrastive learning has demonstrated strong potential in aligning complementary in-
formation from different views. However, conventional methods typically treat all views equally,
using uniform weights when computing contrastive losses. Formally, they adopt a view-invariant
formulation such as:

Lep =Y LEH(Z™, 27, 4)

m,n

where Z™ and R" denote representations of views m and n, respectively. While this symmetric for-
mulation facilitates consistency across views, it can undesirably amplify the influence of low-quality
or noisy views by forcing them to align equally with high-quality ones. This uniform treatment may
lead to representational degeneration and hinder effective feature fusion.

To address this limitation, we propose an inter-view self-weighted contrastive learning strategy that
adaptively modulates the contribution of each view based on its semantic alignment with a shared
global representation. The core idea is to prioritize reliable, informative views in the contrastive
process while suppressing the impact of unreliable ones. Specifically, we reformulate the contrastive
loss as:

Zw SIS 2™ H)), 5)

where m is the number of views, Z¥ denotes the view-specific representation, H is the fused global
representation, and W is the adaptive weight reflecting the relative reliability of the v-th view.

Since labels are unavailable in unsupervised settings, directly evaluating the quality of a view is
challenging. To estimate the semantic relevance of each view, we assess the distributional discrep-
ancy between Z" and H. A lower discrepancy implies a higher alignment with global semantics and
thus a more trustworthy view. This discrepancy is denoted as:

DY =D(Z°, H), (6)

where D(+, -) is is a distance metric based on Maximum Mean Discrepancy (MMD)Wu et al.{(2024),
a non-parametric criterion that measures the distance between two distributions in a Reproducing

Kernel Hilbert Space (RKHS). Given two feature sets X, = {X/}7*, and ¥} = {yj = ‘., the
squared MMD is defined as:
MMD*(X,,Y;) = e Z k(X
v @)

Nt

1
ﬁ Z k(yL’yj
t

1,j=1 i=1 j=1

1,7y_]

where k(-,-) is a kernel function. In our case, we employ a linear kernel k(z,y) = zy, which
avoids the need for hyperparameter tuning and suits high-dimensional representations. Given that
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Z" and H share the same dimensions, the discrepancy for each view is computed as:

MMD*(Z° H) =+ Z k(ZY,Z))+
1,7=1
(®)
N2 Z k H“H Nz Z k
4,j=1 i,j=1

where N denotes the total number of samples. Based on these discrepancies, we define a normalized
weight allocation function to adaptively determine the importance of each view:

w’ = P(D’) = softmax(—D"). )

The use of the negative discrepancy ensures that views more consistent with global semantics receive
higher weights. This adaptive weighting mechanism promotes semantically aligned views and ef-
fectively suppresses noisy or misleading ones, thereby enhancing the robustness and expressiveness
of the learned global representations.

2.4 SELF-SUPERVISED CLUSTERING MODULE

In unsupervised learning, we refine the unified representation H by integrating multi-view informa-
tion that captures shared and complementary patterns. Since / may not be immediately clustering-
friendly, we further enhance it with a self-supervised clustering objective.

2.4.1 CLUSTERING L0SS viA KL DIVERGENCE

We adopt a Kullback—Leibler divergence between a target distribution P and a soft assignment Q):

Lo = Dxu(P||Q) = ZZ:% log (10)

Here, @ is the soft label distribution and P is the sharpened target; the KL term measures information
loss when approximating P by Q.

2.4.2 SOFT LABEL DISTRIBUTION @

We compute ¢;; via a Student-t kernel between feature h; and centroid f;:

(1 + [|hi — py||2/o?) =D/
q’L] - 7((14»1)/2 ) (11)
S5 (U + [l — usl[2/0?)

where o controls the kernel scale.

2.4.3 TARGET DISTRIBUTION P

To emphasize confident assignments and balance clusters, we set

qizj/fj
=S 2 | = E ij s 12
DPij fqgf/ff fj i qij (12)

so that larger g;; contributes more while normalizing by cluster frequency.

The final label for node v; is
§; = argmax g;;. (13)
J

This self-supervised head aligns H with clustering by sharpening confident assignments, mitigating
unreliable signals, and improving separability without external labels.
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Table 1: Datasets Descriptions

Dataset Clusters  Samples Dimensionality
COIL20 20 1140 [1024, 3304, 6750]
Handwritten 10 2000 [240, 76, 216, 47, 64, 6]
HW1256 10 2000 [76, 216, 47, 6]
Caltech 7 1400 [40, 254, 1984, 512, 928]
MNIST-USPS 10 5000 [784, 256]
Fashion 10 10000 [784, 784, 784]

Table 2: Clustering Results on COIL20, Handwritten, HW 1256 and MNIST-USPS Datasets

Dataset COIL20 Handwritten HW1256 Caltech MNIST-USPS Fashion
ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

K-means 0.4142 0.3895 0.5128 0.4827 0.6564 0.6799 0.2345 0.0274 0.5191 0.3609 0.4465 0.1934
DUA-Nets 0.7228 0.8272 0.6585 0.5924 0.7425 0.7933 0.5461 0.0154 0.9136 0.8359 0.7747 0.8145
SGFCC 0.2590 0.4381 0.3870 0.5501 0.3840 0.5118 0.4817 0.5262 0.9526 0.9412 0.9286 0.9180
CoMSC  0.5482 0.7382 0.5881 0.4914 0.7320 0.6793 0.4105 0.4830 0.7252 0.7025 0.6050 0.7158
CMRL 0.6264 0.7575 0.5439 0.4865 0.8947 0.8168 0.4082 0.3399 0.9308 0.8690 0.5483 0.6134
ASR-ETR 0.6611 0.7940 0.7580 0.6930 0.7290 0.6487 0.5096 0.5133 0.7580 0.6930 0.7186 0.7351
RCAGL  0.6701 0.8127 0.8775 0.8061 0.9305 0.8623 0.6341 0.4871 0.8925 0.7316 0.7924 0.8097
HFMVC  0.4558 0.5956 0.9080 0.8341 0.8785 0.7927 0.5863 0.3280 0.9010 0.8431 0.9110 0.9008
GCFAgg 0.3458 0.4886 0.8085 0.7752 0.8005 0.7664 0.3813 0.4321 0.9300 0.8896 0.8982 0.8714
SCMVC  0.5153 0.6451 0.8945 0.8168 0.7945 0.7047 0.4905 0.4390 0.9576 0.9525 0.9229 0.9213
DCMVC 0.7340 0.8162 0.8995 0.8718 0.7580 0.7620 0.3161 0.2460 0.8920 0.9059 0.7836 0.8745
Ours 0.9153 0.9651 0.9115 0.8467 0.9560 0.9145 0.6679 0.5345 0.9628 0.9515 0.9328 0.8935

2.5 TRAINING

The training procedure is divided into two main phases: preliminary training and subsequent fine-
tuning. During the preliminary training phase, the number of clusters k is incrementally increased
to its maximum value, and the model is trained by optimizing the objective function as described
in Equation (25). In the fine-tuning phase, k is held constant, and we enforce a consistency con-
straint on the representations. The model is then refined by minimizing the loss function presented
in Equation (26). Ultimately, we apply Self-supervised Clustering Module to the consolidated rep-
resentation H to derive the clustering outcomes. The entire workflow is depicted in Algorithm 1.

The preliminary training loss is given by:

Lpre =Ly + /\1Lgls~ (14)

The fine-tuning loss is defined as:
Lfine = ch + Angls + )\QLTCC + )\3st + A4Lcl- (15)

Here, A1, A2, A3 and \4 are coefficients that regulate the impact of the graph-based and consistency
terms within the total loss function, respectively.

3 EXPERIMENTS

3.1 DATASETS

COIL20 comprises grayscale images of 20 objects across 360° poses. Handwritten and HW 1256
are multi-view handwritten digits (differing in the number of views). Caltech contains multi-feature
object/scene images. MNIST-USPS mixes two digit sources to form a cross-domain benchmark.
Fashion consists of clothing images with multiple attributes/views. Cluster counts, sample sizes,
and view dimensionalities are in Tablel.
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3.2 COMPARATIVE ALGORITHMS

Baselines fall into three groups: (i) adaptive weighting/uncertainty (DUA-Nets (2021),
RCAGL (2024), sSCMVC (2024)), which modulate view contributions by relia-
bility; (ii) subspace/anchor representations (CoMSC (2021), CMRL [Zheng et al|(2023),
AER-ETR (2023)) to reduce redundancy via compact bases; and (iii) contrastive/struc-
tural constraints (HFMVC (2024), DCMVC (2024), GCFAgg (2023),
SGFCC (2024)) to enforce cross-view consistency and cluster structure. Most do not
jointly leverage graph-structural guidance with contrastive consistency; SPEAG unifies both.

3.3 MODEL ANALYSIS

Clustering Performance Clustering Performance

ACC
NMI

poafrrh o [VIWh AA A A ahdin Masman MK
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Iteration Iteration

Figure 2: Clustering performance with increasing iteration on COIL20 and HW 1256

Figure 3: ACC sensitivity on Caltech: left—A\;, Ao; right—Ag, A\4.

3.3.1 PERFORMANCE EVALUATION

We evaluate on six benchmarks using ACC/NMI (Table 3). Findings: (1) SPEAG achieves best
or second-best results on most datasets, driven by self-paced graph construction and structure-
aware contrastive learning; (2) versus shallow/hybrid methods (KMeans, CoMSC, ASR-ETR,
RCAGL), SPEAG better captures nonlinear cross-view relations—particularly strong on image
datasets (MNIST-USPS, Fashion); (3) compared with deep baselines (DUA-Nets, CMRL, HFMVC,
SCMVC, DCMVC, GCFAgg, SGFCC), SPEAG augments contrastive alignment with explicit graph
supervision, yielding more clustering-friendly embeddings than methods that emphasize only con-
sistency or only contrast.

3.3.2 ABLATION STUDY

We study four losses on COIL20: graph regularization L, cross-view consistency L., self-
weighted contrastive L, and self-supervised clustering L. Results show L4, notably im-
proves clustering; removing any fine-tuning loss degrades performance—most severely without £,
(weaker instance discrimination). Dropping L., harms cross-view distribution alignment, and drop-
ping L,... weakens structural consistency. The full SPEAG model is best.
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Table 3: Ablation Study on COIL20 dataset in terms of ACC (%), NMI (%) and ARI(%).

COIL20
Lgs Lree Lsw La ACC NMI  ARI
v 78.61 85.53 72.45
v 81.25 87.87 77.04
78.54 8590 73.47
v 80.07 86.26 7522
v v 81.01 87.63 77.38
v 87.57 9455 86.23
v v 81.04 87.32 7586
v v v 9153 96.51 90.87
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Figure 4: T-SNE visualization on the datasets handwritten and HW125

3.3.3 PARAMETERS AND CONVERGENCE ANALYSIS

As iterations increase (Fig. 3), ACC/NMI rise and the loss decreases, indicating stable convergence
and continuous improvement. Fig. 2 shows hyperparameter sensitivity: A; and A3 have stronger
effects; within reasonable ranges, larger values generally yield more robust gains.

4 CONCLUSION

In this work, we have presented SPEAG, a novel self-paced exemplar-aware graph learning frame-
work for multi-view clustering. By integrating an exemplar-guided attention mechanism with a
self-paced training strategy, SPEAG effectively balances the exploration of consistent and comple-
mentary information across views while progressively mitigating the impact of noisy or low-quality
samples. Moreover, the joint learning of view-specific and consensus representations within a uni-
fied anchor graph structure allows for more robust clustering performance. Extensive experiments
on multiple benchmark datasets demonstrate that our method achieves competitive or superior re-
sults compared to state-of-the-art approaches. In future work, we plan to extend SPEAG to handle
streaming or dynamically evolving multi-view data, and explore its potential in semi-supervised and
federated clustering scenarios.
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