

000 SELF-PACED ENCODING WITH ADAPTIVE GRAPH 001 REGULARIZATION FOR MULTI-VIEW CLUSTERING 002

003 **Anonymous authors**

004 Paper under double-blind review

005 ABSTRACT

006 Multi-view graph clustering is a powerful technique for learning discriminative
007 node representations by integrating complementary information from diverse
008 views. However, existing methods often suffer from rigid fusion schemes, ignore
009 sample difficulty during training, and struggle to capture both global semantics
010 and local structures through graph-based regularization. To address these issues,
011 we propose SPEAG, a novel framework for Self-Paced Encoding with Adaptive
012 Graph Regularization. SPEAG combines view-specific graph autoencoders with a
013 unified learning objective that incorporates self-paced training, adaptive view fusion,
014 and structure-aware regularization. Specifically, a self-paced neighborhood
015 expansion strategy is introduced, where the k -nearest neighbor graph is gradu-
016 ally densified to learn from easy instances first and hard ones later. Meanwhile,
017 each view’s embedding is adaptively weighted based on its importance, and a fu-
018 sion representation is formed for global consistency. To encourage distributional
019 alignment and enhance cluster compactness, SPEAG integrates a Maximum Mean
020 Discrepancy (MMD) loss across views and a self-supervised clustering objec-
021 tive based on soft assignment refinement. Extensive experiments on real-world
022 datasets demonstrate that SPEAG achieves superior clustering accuracy and ro-
023 bustness compared to existing multi-view graph clustering methods.

024 1 INTRODUCTION

025 Multi-view clustering (MVC) Liu et al. (2022); Fang et al. (2023) seeks to partition unlabeled data
026 by jointly exploiting all views, and recent deep MVC advances leverage powerful neural repre-
027 sentations. Representative methods include CoMSC Liu et al. (2021) (feature decomposition for
028 robust representation) and DUA-Nets Geng et al. (2021) (uncertainty-aware view weighting), while
029 CMRL Zheng et al. (2023) and SCMRL Zhou et al. (2023) further explore complementarity and
030 semantic consensus via low-rank tensors and attention. However, many approaches emphasize
031 view-specific features while underutilizing instance–instance relations that are crucial for cluster-
032 ing. Moreover, anchor-based methods reduce computation but often distort local structures, and
033 GNN-based models (e.g., MGNCN, MVGRL Kang et al. (2020); Yang & Zhu (2024); Jiang et al.
034 (2025)) frequently fuse views heuristically (e.g., averaging) Chen et al. (2025b) and decouple repre-
035 sentation learning from clustering; they also depend on static k NN or precomputed similarities Chen
036 et al. (2025a) that are non-adaptive during training and sensitive to noise/outliers.

037 To address these challenges, we propose a novel Self-Paced and Enhanced Adaptive Graph encod-
038 ing framework, dubbed SPEAG, for unsupervised multi-view graph clustering. SPEAG introduces
039 several key innovations that are carefully integrated into a unified learning framework:

- 040 • Self-paced graph encoding with Laplacian regularization: Instead of a fixed k -NN graph,
041 SPEAG updates each view’s adjacency via an encoder–decoder; k increases during training
042 for stable warm-up then global structure, while Laplacian terms preserve local geometry.
- 043 • Self-weighted fusion with distribution alignment: Instance-level view weights are learned
044 jointly with embeddings; an MMD loss aligns fused and per-view representations, down-
045 weighting unreliable views and mitigating semantic drift across modalities for more robust
046 multi-view consistency.

054 • Unified self-supervised clustering, end-to-end: A soft-label clustering loss tightens clusters
 055 and feeds back to the encoder; fusion, embedding, and clustering are optimized jointly,
 056 enabling mutual reinforcement, efficient cross-feedback, and extensibility within a single
 057 training pipeline.

059 2 THE PROPOSED METHOD

061 In this section, we propose a novel multi-view clustering framework via Self-Paced Encoding with
 062 Adaptive Graph regularization (SPEAG), whose crucial details are elaborated.

064 2.1 NOTATIONS

066 Given V views $\{X^{(v)}\}_{v=1}^V$ with $X^{(v)} \in \mathbb{R}^{N \times d_v}$ and K clusters, where N is the number of samples
 067 and d_v the dimension of view v , we aim to learn a unified embedding $H \in \mathbb{R}^{N \times d_h}$. SPEAG com-
 068 bines view-specific graph autoencoders with a unified objective featuring self-paced training, adap-
 069 tive view fusion, and structure-aware regularization. For each view we obtain a latent $Z^{(v)} \in \mathbb{R}^{N \times d_z}$;
 070 pairwise distances are $D^{(v)}$, similarities $W^{(v)}$, their symmetrized form $A^{(v)}$, and normalized Lapla-
 071 cian $\hat{L}^{(v)}$. We fuse the view latents into a global embedding $H = \sum_{v=1}^V w^{(v)} Z^{(v)}$, where $w^{(v)}$
 072 denotes the adaptive reliability weight of view v with $w^{(v)} \geq 0$ and $\sum_v w^{(v)} = 1$.

074 2.2 WITHIN-VIEW RECONSTRUCTION

076 **Graph Embedding Autoencoder** We employ a graph convolutional autoencoder (GCAE) that
 077 ingests the feature matrix and a similarity graph per view. For view v , we assume a row-stochastic
 078 similarity matrix $\widetilde{W}^{(v)}$ has been constructed (see Section 2.2) and symmetrize it as

$$A^{(v)} = \frac{1}{2}(\widetilde{W}^{(v)} + (\widetilde{W}^{(v)})^\top). \quad (1)$$

082 The corresponding degree matrix and (unnormalized) Laplacian are $D_{ii}^{(v)} = \sum_j A_{ij}^{(v)}$ and $L^{(v)} =$
 083 $D^{(v)} - A^{(v)}$, respectively. We further compute the normalized Laplacian

$$\hat{L}^{(v)} = I - (D^{(v)})^{-1/2} A^{(v)} (D^{(v)})^{-1/2} \quad (2)$$

086 to stabilize message passing in the GCAE.

088 Feeding $X^{(v)}$ and $\hat{L}^{(v)}$ into the encoder yields the latent representation

$$Z^{(v)} = \hat{L}^{(v)} \phi(\hat{L}^{(v)} X^{(v)} W_1^{(v)}) W_2^{(v)}, \quad (3)$$

091 where $W_1^{(v)}, W_2^{(v)}$ are layer parameters and $\phi(\cdot)$ is a nonlinearity. We then reconstruct a row-
 092 stochastic similarity from latent distances $\hat{D}_{ij}^{(v)} = \|Z_i^{(v)} - Z_j^{(v)}\|_2^2$ using a per-row softmax

$$\bar{W}_{ij}^{(v)} = \frac{\exp(-\hat{D}_{ij}^{(v)})}{\sum_{j'=1}^N \exp(-\hat{D}_{ij'}^{(v)})}. \quad (4)$$

098 Reconstruction fidelity is measured by the KL divergence

$$L_{\text{rec}}^{(v)} = D_{\text{KL}}(\widetilde{W}^{(v)} \parallel \bar{W}^{(v)}) = \frac{1}{N} \sum_{i,j=1}^N \bar{W}_{ij}^{(v)} \log \frac{\widetilde{W}_{ij}^{(v)}}{\bar{W}_{ij}^{(v)}}, \quad (5)$$

103 which encourages $Z^{(v)}$ to encode the view's graph structure.

105 **Graph Laplacian Regularization** In our approach, we incorporate not only the graph structural
 106 information but also complementary feature information derived directly from the samples. Under
 107 the manifold assumption, if two data points are close in the original high-dimensional space Cai
 et al. (2008); Wen et al. (2018), their corresponding representations in the learned low-dimensional

Figure 1: SPEAG adaptively constructs self-paced graphs, encodes with GCN, reconstructs affinities, and fuses multi-view features to enhance clustering via multiple losses.

latent space should also remain close. Concretely, the consensus similarity among different views should be preserved after dimensionality reduction.

To enforce this, we introduce a graph regularization term formulated as follows:

$$L_{\text{lap}}^{(v)} = \sum_{i,j=1}^N A_{ij}^v \|z_i^v - z_j^v\|_2^2 = \text{tr}((Z^v)^\top L^v Z^v), \quad (6)$$

where A_{ij}^v denotes the similarity between samples i and j in the original space of the v -th view, z_i^v is the latent representation of sample i in view v , and $L^v = D^v - A^v$ is the graph Laplacian matrix for view v , with D^v being the corresponding degree matrix. Here, $\text{tr}(\cdot)$ denotes the trace operator, summing the diagonal elements of a matrix. We combine the reconstruction and Laplacian terms as

$$L_{\text{graph}}^{(v)} = L_{\text{rec}}^{(v)} + \lambda_1 L_{\text{lap}}^{(v)}. \quad (7)$$

Intuitively, when A_{ij}^v is large—implying high similarity between samples i and j —the regularization penalizes large distances $\|z_i^v - z_j^v\|_2^2$ in the latent space. This encourages similar samples to stay close, preserving local structure and guiding the model to learn embeddings that reflect both feature content and intrinsic neighborhood relationships, thus maintaining the data’s manifold structure.

Self-paced adaptive graph construction Inspired by self-paced learning—progressing from easy to hard—we construct the similarity graph progressively. Early training starts from a sparse k NN backbone to stabilize optimization, and we gradually enlarge neighborhoods to enrich structure and learn more discriminative representations.

For each view v , we maintain a neighborhood size k_t at pre-training epoch t , which is increased according to

$$k_t = \min(k_0 + t \cdot \Delta k, k_{\max}), \quad (8)$$

where we use $k_0 = 5$, $\Delta k = 2$, and $k_{\max} = 20$ in all experiments. At $t = 0$ we compute pairwise distances $D_{ij}^{(v)} = \|X_i^{(v)} - X_j^{(v)}\|_2^2$ on the original features; after each pre-training epoch we recompute distances from the current embeddings $Z^{(v)}$ as

$$D_{ij}^{(v)} = \|Z_i^{(v)} - Z_j^{(v)}\|_2^2. \quad (9)$$

For a given epoch t , we keep, for each sample i , only its k_t nearest neighbors. Non-neighbors have zero similarity, while neighbors use margin-based edge weights

$$\widetilde{W}_{ij}^{(v)} = \frac{D_{i,k_t+1}^{(v)} - D_{ij}^{(v)}}{\sum_{m=1}^{k_t} (D_{i,k_t+1}^{(v)} - D_{im}^{(v)}), \quad 1 \leq j \leq k_t, \quad (10)}$$

162 where $D_{i,m}^{(v)}$ denotes the distance between sample i and its m -th nearest neighbor. This yields a row-
 163 stochastic similarity matrix $\widetilde{W}^{(v)}$ that serves as supervision for the graph autoencoder (Equation 5)
 164 and as the basis for the Laplacian regularizer.
 165

166 The schedule in Equation 8 implements a self-paced densification of the graph: when k_t is small,
 167 each node is only connected to its most similar neighbors, which correspond to “easy” and highly
 168 confident local relationships. As training proceeds and k_t increases, more distant neighbors with
 169 higher uncertainty are gradually incorporated into the graph. In this way, the model first focuses on
 170 reliable local structures and then progressively absorbs harder connections, which stabilizes training
 171 and improves robustness to noisy views.
 172

173 2.3 MULTI-VIEW FUSION AND CONSISTENCY

174 **Representational Consistency Constraint** Given that various perspectives of an object inherently
 175 possess consistent characteristics, we enforce this consistency across views through a mechanism
 176 referred to as the representational consistency constraint. This constraint promotes alignment among
 177 the representations derived from different views, thereby minimizing redundancy and enhancing
 178 overall consistency:
 179

$$L_{rcc} = \sum_{v_i, v_j} \|Z^{(v_i)} - Z^{(v_j)}\|_F^2. \quad (11)$$

180 This term is only used in the fine-tuning stage and is weighted by λ_4 in the overall objective.
 181

182 **Global feature generation** To integrate complementary information across views and obtain a
 183 compact clustering-friendly representation, we aggregate the per-view embeddings $\{Z^{(v)}\}_{v=1}^V$ using
 184 learnable reliability weights.
 185

186 Specifically, we maintain a parameter vector $\mathbf{a} \in \mathbb{R}^V$ and define normalized weights by a softmax
 187

$$w^{(v)} = \frac{\exp(a_v)}{\sum_{u=1}^V \exp(a_u)}, \quad v = 1, \dots, V. \quad (12)$$

188 The fused global embedding is then computed as a weighted sum
 189

$$H = \sum_{v=1}^V w^{(v)} Z^{(v)} \in \mathbb{R}^{N \times d_z}, \quad (13)$$

190 which directly serves as the consensus representation for clustering.
 191

192 **Self-weighted Contrastive Learning** Multi-view contrastive learning has demonstrated strong
 193 potential in aligning complementary information from different views. However, conventional meth-
 194 ods typically treat all views equally, using uniform weights when computing contrastive losses. For-
 195 mally, they adopt a view-invariant formulation such as:
 196

$$L_{CL} = \sum_{m,n} L_{CL}^{m,n}(Z^{(m)}, Z^{(n)}), \quad (14)$$

203 where $Z^{(m)}$ and $Z^{(n)}$ denote the representations of views m and n , respectively. While this sym-
 204 metric formulation facilitates consistency across views, it can undesirably amplify the influence of
 205 low-quality or noisy views by forcing them to align equally with high-quality ones. This uniform
 206 treatment may lead to representational degeneration and hinder effective feature fusion.
 207

208 To address this limitation, we propose an inter-view self-weighted contrastive learning strategy that
 209 adaptively modulates the contribution of each view based on its semantic alignment with a shared
 210 global representation. The core idea is to prioritize reliable, informative views in the contrastive
 211 process while suppressing the impact of unreliable ones. Specifically, we reformulate the contrastive
 212 loss as:
 213

$$L_{sw} = \sum_{v=1}^V w^{(v)} L_{sw}^{(v)}(Z^{(v)}, H), \quad (15)$$

214 where $Z^{(v)}$ denotes the view-specific representation, H is the fused global representation, and $w^{(v)}$
 215 is the adaptive weight reflecting the relative reliability of the v -th view.
 216

216 Since labels are unavailable in unsupervised settings, directly evaluating the quality of a view is
 217 challenging. To estimate the semantic relevance of each view, we assess the distributional discrepancy
 218 between $Z^{(v)}$ and H . A lower discrepancy implies a higher alignment with global semantics
 219 and thus a more trustworthy view. This discrepancy is denoted as:
 220

$$221 \quad \mathcal{D}^{(v)} = \mathcal{D}(Z^{(v)}, H), \quad (16)$$

222 where $\mathcal{D}(\cdot, \cdot)$ is a distance metric based on Maximum Mean Discrepancy (MMD) Wu et al. (2024),
 223 a non-parametric criterion that measures the distance between two distributions in a reproducing
 224 kernel Hilbert space (RKHS). Given two feature sets $X_s = \{x_i^s\}_{i=1}^{n_s}$ and $Y_t = \{y_j^t\}_{j=1}^{n_t}$, the squared
 225 MMD is defined as:
 226

$$227 \quad \text{MMD}^2(X_s, Y_t) = \frac{1}{n_s^2} \sum_{i,j=1}^{n_s} k(x_i^s, x_j^s) + \frac{1}{n_t^2} \sum_{i,j=1}^{n_t} k(y_i^t, y_j^t) - \frac{2}{n_s n_t} \sum_{i=1}^{n_s} \sum_{j=1}^{n_t} k(x_i^s, y_j^t), \quad (17)$$

230 where $k(\cdot, \cdot)$ is a kernel function. In our case, we employ a linear kernel $k(x, y) = x^\top y$, which
 231 avoids the need for hyperparameter tuning and suits high-dimensional representations. Given that
 232 $Z^{(v)}$ and H share the same dimensions, the discrepancy for each view is computed as:
 233

$$234 \quad \text{MMD}^2(Z^{(v)}, H) = \frac{1}{N^2} \sum_{i,j=1}^N k(Z_i^{(v)}, Z_j^{(v)}) + \frac{1}{N^2} \sum_{i,j=1}^N k(H_i, H_j) - \frac{2}{N^2} \sum_{i,j=1}^N k(Z_i^{(v)}, H_j), \quad (18)$$

236 where N denotes the total number of samples. Based on these discrepancies, we define a normalized
 237 weight allocation function to adaptively determine the importance of each view:
 238

$$239 \quad w^{(v)} = \mathcal{P}(\mathcal{D}^{(v)}) = \text{softmax}(-\mathcal{D}^{(v)}). \quad (19)$$

241 The use of the negative discrepancy ensures that views more consistent with global semantics receive
 242 higher weights. This adaptive weighting mechanism promotes semantically aligned views and ef-
 243 fectively suppresses noisy or misleading ones, thereby enhancing the robustness and expressiveness
 244 of the learned global representations.
 245

246 2.4 SELF-SUPERVISED CLUSTERING MODULE

248 In unsupervised learning, we refine the unified representation H by integrating multi-view information
 249 that captures shared and complementary patterns. Since H may not be immediately clustering-
 250 friendly, we further enhance it with a self-supervised clustering objective.
 251

252 **Clustering Loss via KL Divergence** We adopt a Kullback–Leibler divergence between a target
 253 distribution P and a soft assignment Q :

$$254 \quad L_{cl} = D_{\text{KL}}(P\|Q) = \sum_i \sum_j p_{ij} \log \frac{p_{ij}}{q_{ij}}. \quad (20)$$

257 Here, Q is the soft label distribution and P is the sharpened target; the KL term measures information
 258 loss when approximating P by Q .
 259

260 **Soft Label Distribution Q** We compute q_{ij} via a Student- t kernel between feature h_i and centroid
 261 μ_j :

$$262 \quad q_{ij} = \frac{(1 + \|h_i - \mu_j\|^2 / \sigma^2)^{-(\alpha+1)/2}}{\sum_f (1 + \|h_i - \mu_f\|^2 / \sigma^2)^{-(\alpha+1)/2}}, \quad (21)$$

265 where σ controls the kernel scale.
 266

267 **Target Distribution P** To emphasize confident assignments and balance clusters, we set
 268

$$269 \quad p_{ij} = \frac{q_{ij}^2 / f_j}{\sum_f q_{if}^2 / f_f}, \quad f_j = \sum_i q_{ij}, \quad (22)$$

270
271
272 Table 1: Datasets Descriptions
273
274
275
276
277
278
279

Dataset	Clusters	Samples	Dimensionality
COIL20	20	1140	[1024, 3304, 6750]
Handwritten	10	2000	[240, 76, 216, 47, 64, 6]
HW1256	10	2000	[76, 216, 47, 6]
Caltech	7	1400	[40, 254, 1984, 512, 928]
MNIST-USPS	10	5000	[784, 256]
Fashion	10	10000	[784, 784, 784]

280
281 so that larger q_{ij} contributes more while normalizing by cluster frequency.
282283 The final label for node v_i is

284
$$s_i = \arg \max_j q_{ij}. \quad (23)$$

285

286 This self-supervised head aligns H with clustering by sharpening confident assignments, mitigating
287 unreliable signals, and improving separability without external labels.
288289
290 2.5 TRAINING291 The training procedure is divided into two main phases: pre-training and subsequent fine-tuning.
292293
294 **Pre-training stage.** In the pre-training phase, we start from a small neighborhood size k_0 and in-
295 crease it according to Equation 8 after each epoch, rebuilding the self-paced k_t -NN graphs
296 on the current embeddings. During this stage we only optimize the within-view reconstruction loss
297 and the Laplacian regularizer. Denoting

298
$$L_{rc} = \sum_{v=1}^V L_{\text{rec}}^{(v)}, \quad L_{gls} = \sum_{v=1}^V L_{\text{lap}}^{(v)},$$

300

301 the preliminary training loss is given by:
302

303
$$L_{\text{pre}} = L_{rc} + \lambda_1 L_{gls}. \quad (24)$$

304

305
306 **Fine-tuning stage.** In the fine-tuning phase, the self-paced graphs are held fixed, and we enforce
307 inter-view consistency and clustering-friendliness. The model is refined by minimizing the following
308 loss:
309

310
$$L_{\text{fine}} = L_{rc} + \lambda_1 L_{gls} + \lambda_2 L_{rcc} + \lambda_3 L_{sw} + \lambda_4 L_{cl}. \quad (25)$$

311

312 Here, λ_1 , λ_2 , λ_3 and λ_4 are coefficients that regulate the impact of the graph-based smooth-
313 ness (L_{gls}), representational consistency (L_{rcc}), self-weighted contrastive learning (L_{sw}), and self-
314 supervised clustering (L_{cl}) terms within the total loss function, respectively. Ultimately, we apply
315 the Self-supervised Clustering Module to the consolidated representation H to derive the clustering
316 outcomes.317
318 3 EXPERIMENTS319
320 3.1 DATASETS321 COIL20 comprises grayscale images of 20 objects across 360° poses. Handwritten and HW1256
322 are multi-view handwritten digits (differing in the number of views). Caltech contains multi-feature
323 object/scene images. MNIST-USPS mixes two digit sources to form a cross-domain benchmark.
324 Fashion consists of clothing images with multiple attributes/views. Cluster counts, sample sizes,
325 and view dimensionalities are in Table 1.

324 Table 2: Clustering Results on COIL20, Handwritten, HW1256 and MNIST-USPS Datasets
325

326 Dataset	327 COIL20		328 Handwritten		329 HW1256		330 Caltech		331 MNIST-USPS		332 Fashion	
	333 ACC	334 NMI	335 ACC	336 NMI	337 ACC	338 NMI	339 ACC	340 NMI	341 ACC	342 NMI	343 ACC	344 NMI
DUA-Nets	0.7228	0.8272	0.6585	0.5924	0.7425	0.7933	0.5461	0.0154	0.9136	0.8359	0.7747	0.8145
SGFCC	0.2590	0.4381	0.3870	0.5501	0.3840	0.5118	0.4817	0.5262	0.9526	0.9412	0.9286	0.9180
CoMSC	0.5482	0.7382	0.5881	0.4914	0.7320	0.6793	0.4105	0.4830	0.7252	0.7025	0.6050	0.7158
CMRL	0.6264	0.7575	0.5439	0.4865	0.8947	0.8168	0.4082	0.3399	0.9308	0.8690	0.5483	0.6134
ASR-ETR	0.6611	0.7940	0.7580	0.6930	0.7290	0.6487	0.5096	0.5133	0.7580	0.6930	0.7186	0.7351
RCAGL	0.6701	0.8127	0.8775	0.8061	0.9305	0.8623	0.6341	0.4871	0.8925	0.7316	0.7924	0.8097
HFMVC	0.4558	0.5956	0.9080	0.8341	0.8785	0.7927	0.5863	0.3280	0.9010	0.8431	0.9110	0.9008
GCFAgg	0.3458	0.4886	0.8085	0.7752	0.8005	0.7664	0.3813	0.4321	0.9300	0.8896	0.8982	0.8714
SCMVC	0.5153	0.6451	0.8945	0.8168	0.7945	0.7047	0.4905	0.4390	0.9576	0.9505	0.9229	0.9213
DCMVC	0.7340	0.8162	0.8995	0.8718	0.7580	0.7620	0.3161	0.2460	0.8920	0.9059	0.7836	0.8745
DDMVC	0.9016	0.9515	0.8840	0.7727	0.9318	0.8938	0.5814	0.4752	0.9324	0.9190	0.9112	0.9032
RTGD-MVC	0.8765	0.9090	0.8863	0.8100	0.9324	0.8981	0.6551	0.4718	0.9515	0.9422	0.9124	0.8930
Ours	0.9153	0.9651	0.9115	0.8467	0.9560	0.9145	0.6679	0.5345	0.9628	0.9515	0.9328	0.8935

340
341 **3.2 COMPARATIVE ALGORITHMS**

342 Baselines fall into three groups: (i) *adaptive weighting/uncertainty* (DUA-Nets Geng et al. (2021),
343 RCAGL Liu et al. (2024), SCMVC Wu et al. (2024)), which modulate view contributions by reli-
344 ability; (ii) *subspace/anchor representations* (CoMSC Liu et al. (2021), CMRL Zheng et al. (2023),
345 AER-ETR Ji & Feng (2023)) to reduce redundancy via compact bases; and (iii) *contrastive/struc-
346 tural constraints* (HFMVC Jiang et al. (2024), DCMVC Cui et al. (2024), GCFAgg Yan et al. (2023),
347 SGFCC Shu et al. (2024)), DDMVC Xu et al. (2025), RTGD-MVC Zou et al. (2025) to enforce
348 cross-view consistency and cluster structure. Most do not jointly leverage **graph-structural guidance**
349 with **contrastive consistency**; SPEAG unifies both.

350
351 **3.3 COMPLEXITY AND EFFICIENCY**

352 We briefly analyze the computational complexity of SPEAG. Let N be the number of samples, V
353 the number of views, d the embedding dimension and k_t the neighborhood size at epoch t .

354
355 Figure 2: T-SNE visualization on the datasets handwritten and HW1256
356

357 **Time complexity.** Constructing the k_t -NN graph for view v requires computing pairwise dis-
358 tances between N samples and selecting the k_t nearest neighbors for each sample. With a naive
359 implementation, this takes $\mathcal{O}(VN^2d)$ time per graph update, which is further reduced in practice by
360 mini-batch processing and efficient kNN routines. Given the self-paced schedule in Eq. equation 8,
361 we update the graph only once per pre-training epoch.

362 The forward and backward passes of the GCAE layers scale as $\mathcal{O}(VNk_td)$ since each node aggre-
363 gates messages from at most k_t neighbors. The MMD-based weighting and contrastive loss operate
364 on the embeddings and have time complexity $\mathcal{O}(VN^2)$ in the worst case, but can be implemented
365 in a mini-batch fashion.

378
379 Table 3: Training time comparison (in seconds) on representative datasets. 'Pre' and 'Fine' denote
380 the pre-training and fine-tuning stages, respectively.

381	Dataset	Method	Pre ep.	Pre time/ep.	Fine ep.	Fine time/ep.	Total time
383	HW1256	DDMVC	100	1.444	200	2.381	620.689
		RTGD-MVC	100	1.398	200	2.378	615.453
		SPEAG	200	2.365	200	3.454	927.186
386	MNIST-USPS	DDMVC	100	1.895	200	3.064	802.328
		RTGD-MVC	100	2.368	200	3.420	920.838
		SPEAG	200	2.900	200	4.067	1103.372

389
390 **Memory complexity.** The main memory cost of SPEAG comes from storing the multi-view em-
391 beddings $\{Z^{(v)}\}_{v=1}^V$ and the sparse k_t -NN graphs. The space complexity is $\mathcal{O}(VNd + VNk_t)$,
392 which is comparable to other graph-based deep clustering methods.

393
394 To further quantify the efficiency of SPEAG, we report the wall-clock training time on representative
395 datasets in Table 3.

396 3.4 MODEL ANALYSIS

409
410 Figure 3: Clustering performance with increasing iteration on COIL20 and HW1256

422
423 Figure 4: ACC sensitivity on Caltech: left— λ_1, λ_2 ; right— λ_3, λ_4 .

424
425 **Performance Evaluation** We evaluate on six benchmarks using ACC/NMI (Table 3). Findings:
426 (1) SPEAG achieves best or second-best results on most datasets, driven by self-paced graph
427 construction and structure-aware contrastive learning; (2) versus shallow/hybrid methods (KMeans,
428 CoMSC, ASR-ETR, RCAGL), SPEAG better captures nonlinear cross-view relations—particularly
429 strong on image datasets (MNIST-USPS, Fashion); (3) compared with deep baselines (DUA-Nets,
430 CMRL, HFMVC, SCMVC, DCMVC, GCFAG, SGFCC), SPEAG augments contrastive alignment
431 with explicit graph supervision, yielding more clustering-friendly embeddings than methods that
emphasize only consistency or only contrast.

Table 4: Ablation study of each loss term on three datasets.

\mathcal{L}_{gls}	Loss terms				COIL20			HW1256			MNIST-USPS		
	\mathcal{L}_{rcc}	\mathcal{L}_{sw}	\mathcal{L}_{cl}		ACC	NMI	ARI	ACC	NMI	ARI	ACC	NMI	ARI
✓	✓	✓			81.01	87.63	77.38	83.85	78.37	71.49	—	—	—
✓	✓		✓		87.57	94.55	86.23	77.35	74.86	67.72	68.14	62.92	53.34
✓		✓	✓		81.04	87.32	75.86	76.85	73.91	66.87	62.82	55.50	43.49
	✓	✓	✓		81.04	87.32	75.86	76.75	74.51	67.36	68.44	63.09	53.39
✓	✓	✓	✓		91.53	96.51	90.87	95.60	91.45	90.37	96.28	95.15	90.39

Table 5: Impact of fixed k (number of neighbor) and increased k on clustering results for four datasets. For each dataset, we select eight values equidistantly between 0 and k_{\max} as fixed k . We report the ACC metric.

k	COIL20		Handwritten		HW1256		MNIST-USPS	
		ACC		ACC		ACC		ACC
2	69.30 ± 1.01	5	91.15 ± 1.15	5	52.58 ± 4.96	10	89.38 ± 1.03	
4	84.84 ± 1.19	10	88.83 ± 1.27	10	79.72 ± 3.12	20	92.18 ± 1.15	
6	87.11 ± 1.29	15	87.05 ± 0.13	15	78.27 ± 4.04	30	93.63 ± 0.87	
8	89.82 ± 1.37	20	81.17 ± 1.04	20	76.57 ± 4.13	40	93.91 ± 0.79	
10	90.84 ± 1.11	25	78.39 ± 0.86	25	91.51 ± 0.63	50	95.24 ± 0.68	
12	91.53 ± 1.09	30	78.28 ± 0.66	30	95.60 ± 4.21	60	96.28 ± 0.55	
14	88.70 ± 0.73	35	77.72 ± 0.82	35	88.59 ± 1.63	70	94.30 ± 0.48	
16	86.36 ± 1.06	40	77.23 ± 1.10	40	92.57 ± 2.54	80	94.12 ± 0.42	

Ablation Study We study four losses on COIL20: graph regularization \mathcal{L}_{gls} , cross-view consistency \mathcal{L}_{rcc} , self-weighted contrastive \mathcal{L}_{sw} , and self-supervised clustering \mathcal{L}_{cl} . Results show \mathcal{L}_{gls} notably improves clustering; removing any fine-tuning loss degrades performance—most severely without \mathcal{L}_{cl} (weaker instance discrimination). Dropping \mathcal{L}_{sw} harms cross-view distribution alignment, and dropping \mathcal{L}_{rcc} weakens structural consistency. The full SPEAG model is best.

Parameters and Convergence Analysis As iterations increase (Fig. 3), ACC/NMI rise and the loss decreases, indicating stable convergence and continuous improvement. Fig. 2 shows hyperparameter sensitivity: λ_1 and λ_3 have stronger effects; within reasonable ranges, larger values generally yield more robust gains.

4 CONCLUSION

In this work, we have presented SPEAG, a novel self-paced exemplar-aware graph learning framework for multi-view clustering. By integrating an exemplar-guided attention mechanism with a self-paced training strategy, SPEAG effectively balances the exploration of consistent and complementary information across views while progressively mitigating the impact of noisy or low-quality samples. Moreover, the joint learning of view-specific and consensus representations within a unified anchor graph structure allows for more robust clustering performance. Extensive experiments on multiple benchmark datasets demonstrate that our method achieves competitive or superior results compared to state-of-the-art approaches. In future work, we plan to extend SPEAG to handle streaming or dynamically evolving multi-view data, and explore its potential in semi-supervised and federated clustering scenarios.

REFERENCES

Deng Cai, Xiaofei He, Xiaoyun Wu, and Jiawei Han. Non-negative matrix factorization on manifold. In *2008 eighth IEEE international conference on data mining*, pp. 63–72. IEEE, 2008.

Zhe Chen, Xiao-Jun Wu, Tianyang Xu, Hui Li, and Josef Kittler. Deep discriminative multi-view clustering. *IEEE Transactions on Circuits and Systems for Video Technology*, 2025a.

486 Zhe Chen, Xiao-Jun Wu, Tianyang Xu, Hui Li, and Josef Kittler. Multi-layer multi-level compre-
 487 hensive learning for deep multi-view clustering. *Information Fusion*, 116:102785, 2025b.
 488

489 Jinrong Cui, Yuting Li, Han Huang, and Jie Wen. Dual contrast-driven deep multi-view clustering.
 490 *IEEE Transactions on Image Processing*, 2024.

491 Uno Fang, Man Li, Jianxin Li, Longxiang Gao, Tao Jia, and Yanchun Zhang. A comprehensive
 492 survey on multi-view clustering. *IEEE Transactions on Knowledge and Data Engineering*, 35
 493 (12):12350–12368, 2023.

494

495 Yu Geng, Zongbo Han, Changqing Zhang, and Qinghua Hu. Uncertainty-aware multi-view repre-
 496 sentation learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35,
 497 pp. 7545–7553, 2021.

498 Jintian Ji and Songhe Feng. Anchor structure regularization induced multi-view subspace clustering
 499 via enhanced tensor rank minimization. In *Proceedings of the IEEE/CVF international conference*
 500 *on computer vision*, pp. 19343–19352, 2023.

501

502 Bingbing Jiang, Chenglong Zhang, Xinyan Liang, Peng Zhou, Jie Yang, Xingyu Wu, Junyi Guan,
 503 Weiping Ding, and Weiguo Sheng. Collaborative similarity fusion and consistency recovery for
 504 incomplete multi-view clustering. In *Proceedings of the AAAI Conference on Artificial Intelli-
 505 gence*, volume 39, pp. 17617–17625, 2025.

506

507 Xiaorui Jiang, Zhongyi Ma, Yulin Fu, Yong Liao, and Pengyuan Zhou. Heterogeneity-aware fed-
 508 erated deep multi-view clustering towards diverse feature representations. In *Proceedings of the*
 509 *32nd ACM International Conference on Multimedia*, pp. 9184–9193, 2024.

510

511 Zhao Kang, Guoxin Shi, Shudong Huang, Wenyu Chen, Xiaorong Pu, Joey Tianyi Zhou, and
 512 Zenglin Xu. Multi-graph fusion for multi-view spectral clustering. *Knowledge-Based Systems*,
 189:105102, 2020.

513

514 Chenghua Liu, Zhuolin Liao, Yixuan Ma, and Kun Zhan. Stationary diffusion state neural estima-
 515 tion for multiview clustering. In *Proceedings of the AAAI conference on artificial intelligence*,
 516 volume 36, pp. 7542–7549, 2022.

517

518 Jiyuan Liu, Xinwang Liu, Yuexiang Yang, Xifeng Guo, Marius Kloft, and Liangzhong He. Multi-
 519 view subspace clustering via co-training robust data representation. *IEEE Transactions on Neural*
 520 *Networks and Learning Systems*, 33(10):5177–5189, 2021.

521

522 Suyuan Liu, Qing Liao, Siwei Wang, Xinwang Liu, and En Zhu. Robust and consistent anchor graph
 523 learning for multi-view clustering. *IEEE Transactions on Knowledge and Data Engineering*, 36
 524 (8):4207–4219, 2024.

525

526 Zhenqiu Shu, Bin Li, Cunli Mao, Shengxiang Gao, and Zhengtao Yu. Structure-guided feature and
 527 cluster contrastive learning for multi-view clustering. *Neurocomputing*, 582:127555, 2024.

528

529 Jie Wen, Na Han, Xiaozhao Fang, Lunke Fei, Ke Yan, and Shanhua Zhan. Low-rank preserving
 530 projection via graph regularized reconstruction. *IEEE transactions on cybernetics*, 49(4):1279–
 531 1291, 2018.

532

533 Song Wu, Yan Zheng, Yazhou Ren, Jing He, Xiaorong Pu, Shudong Huang, Zhifeng Hao, and
 534 Lifang He. Self-weighted contrastive fusion for deep multi-view clustering. *IEEE Transactions*
 535 *on Multimedia*, 26:9150–9162, 2024.

536

537 Junpeng Xu, Min Meng, Jigang Liu, and Jigang Wu. Deep multi-view clustering with diverse and
 538 discriminative feature learning. *Pattern Recognition*, 161:111322, 2025.

539

540 Weiqing Yan, Yuanyang Zhang, Chenlei Lv, Chang Tang, Guanghui Yue, Liang Liao, and Weisi Lin.
 541 Gcfagg: Global and cross-view feature aggregation for multi-view clustering. In *Proceedings of*
 542 *the IEEE/CVF conference on computer vision and pattern recognition*, pp. 19863–19872, 2023.

543

544 Yang Yang and Changming Zhu. Deep multi-view clustering based on global hybrid alignment with
 545 cross-contrastive learning. *The Visual Computer*, pp. 1–13, 2024.

540 Qinghai Zheng, Jihua Zhu, Zhongyu Li, Zhiqiang Tian, and Chen Li. Comprehensive multi-view
541 representation learning. *Information Fusion*, 89:198–209, 2023.
542

543 Yiyang Zhou, Qinghai Zheng, Shunshun Bai, and Jihua Zhu. Semantically consistent multi-view
544 representation learning. *Knowledge-Based Systems*, 278:110899, 2023.
545

546 Jiale Zou, Yan Chen, Bingbing Jiang, Peng Zhou, Liang Du, Lei Duan, and Yuhua Qian. Robust
547 tensor learning with graph diffusion for scalable multi-view graph clustering. In *Proceedings of*
548 *the 33rd ACM International Conference on Multimedia*, pp. 2207–2215, 2025.
549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593