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Abstract

Class-imbalanced learning (CIL) on tabular data is important in many real-
world applications where the minority class holds the critical but rare out-
comes. In this paper, we present CLIMB, a comprehensive benchmark for class-
imbalanced learning on tabular data. CLIMB includes 73 real-world datasets
across diverse domains and imbalance levels, along with unified implementa-
tions of 29 representative CIL algorithms. Built on a high-quality open-source
Python package with unified API designs, detailed documentation, and rigor-
ous code quality controls, CLIMB supports easy implementation and compar-
ison between different CIL algorithms. Through extensive experiments, we
provide practical insights on method accuracy and efficiency, highlighting the
limitations of naive rebalancing, the effectiveness of ensembles, and the impor-
tance of data quality. Our code, documentation, and examples are available at
https://github.com/ZhininglLiu1998/imbalanced-ensemble,

1 Introduction

Class imbalance is a pervasive challenge in many real-world classification tasks, where the minority
class often represents critical yet under-represented outcomes (He and Garcial 2009; Johnson and
Khoshgoftaar, 2019). Such challenges frequently arise in tabular data, which underpins many
critical applications across industrial and scientific domains (Shwartz-Ziv and Armon) 2022)), such
as detecting fraud in financial transactions (Xiao et al.,[2021)), identifying malicious connections in
network logs (Cieslak et al., [2006), and predicting positive diagnoses from medical records (Rahman
and Davis, [2013). Given its significance in real-world decision-making, class-imbalanced learning
(CIL) on tabular data has long been a key research focus in machine learning, Al and data mining.

However, the current landscape of benchmark resources for CIL on tabular data remains fragmented,
with limited coverage across different algorithmic paradigms, datasets, and application domains.
Most existing tabular benchmarks focus on orthogonal challenges such as distribution shift (Gardner
et al.;,|2024), data augmentation (Machado et al., [2022), and adversarial robustness (Simonetto et al.,
2024). Among the few benchmarks or empirical studies that address class-imbalanced tabular data,
most focus narrowly on specific domains such as business (Zhu et al., 2018)), finance (Xiao et al.|
2021)), healthcare (Khushi et al.,|2021)), or education (Wongvorachan et al., [2023)), and the degree
of imbalance tends to be similar. Moreover, these studies typically evaluate only a few methods
within a single learning paradigm, lacking comprehensive comparisons across different types of CIL
approaches (e.g., under/over-sampling, data cleaning, cost-sensitive, and their ensemble variants)
in terms of both accuracy and efficiency. These limitations hinder a deeper understanding of how
existing CIL methods perform on complex real-world tabular datasets with varying imbalance levels.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).


https://github.com/ZhiningLiu1998/imbalanced-ensemble

- 1 Python Package O
(3 Tabular Datasets N 29 Algorithms A . y 8
° iog Unified API: Unified scikit-learn-style API. :
Imbalance -~ ® .. : ° .. : ° Documentation: Detailed API reference and examples. :
Level E Imbalance ® ® @ LYY LYY i «»” Efficiency: Automatic parallelization with joblib. :
8 : 21-577.9) 0w : %" Handling ® o~ ©%e® ©® o° i + Ll Benchmarking: Compare models with minimal code.
5 I Undgr- 0ve|:» C°§{- : * B Monitoring: Power customizable training logging.
2 . £ T i+, Compatibility: Work seamlessly with scikit-learn.
a Scale 0 i« &k Extensibility: Via inheritance and polymorphism.
9 ‘e .
2§ (02-03m) sl Torge § $ : :
g ................................................ : - I :gﬁ;sg & II
Q : Application «& % £ Learning L& F
> g = g
a Domains @ 2 Paradigm J J J = g 2me
i % . ] Extensibility via  Easy- to use Unified Detailed API
o] = E:::“”:L Inheritance and  scikit-learn-style Reference and
\_ " W, k ..................................................... Polymorphism API design Example Gallery

Figure 1: Overview of the proposed CLIMB benchmark. Best viewed in color.

To bridge this gap, we introduce CLIMB, a comprehensive benchmark for class-imbalanced learning
on tabular data. CLIMB is based on our well-documented open-source Python package, which
provides easy access to: (1) a curated collection of 73 real-world tabular datasets across diverse
domains and imbalance levels, selected under rigorous criteria for non-triviality and realism, (2)
unified implementation of 29 representative CIL algorithms covering resampling, cost-sensitive
learning, and ensemble-based methods, (3) principled benchmarking protocol with comprehensive
multi-fold data splits and hyperparameter searching to ensure fair comparisons. In addition, our
library features: (1) Unified API design: we share and extend the unified API design of scikit-learn
(Pedregosa et al.l 2011) for ease-of-use and compatibility. (2) Documentation and examples:
detailed API references, tutorials, and examples are provided; (3) Quality assurance: a suite of unit
tests with 95% coverage is maintained and automatically executed through continuous integration;
(4) Easy extensibility: algorithms are built with hierarchical and modularized abstractions, making it
easy to incorporate new methods via inheritance and polymorphism. These components collectively
establish CLIMB as a robust and user-friendly benchmark for class-imbalanced learning on tabular
data. An overview of our CLIMB framework is provided in Figure[I]

Based on our benchmark, we have conducted extensive empirical experiments and analyses to assess
the strengths and weaknesses of various CIL methods in terms of effectiveness, efficiency, and
robustness. Our key takeaways are summarized as follows:

* Class rebalancing is not always helpful. In many cases, simple rebalancing techniques
(including under-/over-sampling or cost-sensitive reweighting) tend to hurt rather than help
classification performance, particularly under extreme imbalance scenarios.

* Ensemble is critical for effective and robust CIL. While rebalancing alone may be insufficient,
combining it with ensemble strategies consistently leads to more accurate predictions and stable
performance gain across different imbalance regimes.

* Choose evaluation metrics wisely. Different metrics emphasize different aspects of perfor-
mance (e.g., AUPRC prioritizes minority class identification precision, while BAC is more
sensitive to minority recall.) and may lead to different conclusions about model effectiveness.

e Undersample ensembles strike a good performance-efficiency balance. This paradigm
is efficient due to (greatly) reduced training data and effective by combining diverse models
trained on different subsets. This line of algorithms often matches or outperforms more costly
competitors, thus a promising choice for large-scale or highly imbalanced scenarios.

* Data quality matters, maybe more than class imbalance itself. We find that adding 10%
label noise or 30% missing features leads to a performance drop comparable to increasing the
imbalance ratio by 500%. We believe this suggests that improving data quality may be as critical
as, if not more than, solely addressing class imbalance in practice.

To summarize, our contributions in this work are three-fold: (1) Comprehensive benchmark: We
introduce CLIMB, a general-purpose benchmark for class-imbalanced learning on tabular data. It
includes a curated collection of 73 real-world datasets spanning diverse domains and imbalance
levels, along with 29 representative CIL algorithms covering resampling, cost-sensitive learning, and
ensemble-based approaches. (2) High-quality open-source library: We release a well-documented
Python package that implements all benchmarked algorithms under a unified, extensible API. The
library emphasizes usability, reliability, and extensibility, supported by our detailed documentation,
rigorous code quality controls, and clean abstractions. (3) Insights from extensive empirical
analysis: We perform large-scale experiments to evaluate the effectiveness, efficiency, and robustness



of existing CIL methods under class imbalance and noise. Our study reveals practical insights and
failure modes, which we hope can guide future algorithm development and real-world deployment.

2 Related Works

Table 1: Comparison between this work and representative recent benchmark/empirical studies.

Reference Algorithm Coverage Dataset Coverage Software Package
Number Resampling Cost-sensitive Ensemble  Number Imbalance Ratio D 8

(Zhu et al.||2018) 9 v X X 11 59-54.6 Business X
(X1ao et al.||2021) 9 v X X 6 1.3-28.1 Finance X
(Khusht et al.[|2021) 21 v X v 2 24.7-25.0 Medical X
(Kim and Hwang![2022) 7 4 X X 31 1.1-577.9 Multiple X
(Wongvorachan et al.[2023) 4 4 X X 2 3.0-7.1 Education X
Ours | 29 v v o | 73 2.1-577.9 Multiple | v

Class imbalance learning in different data modalities. Class imbalance is prevalent in many
real-world tasks where the class of interest contains rare but critical outcomes, such as financial
fraud, network intrusions, or medical diagnoses (He and Garcia, [2009). These tasks frequently
involve tabular data, a core modality in practical applications (Grinsztajn et al., 2022), and have been
extensively studied over the past decades. This work focuses on the most popular data-level and
algorithm-level CIL branches widely adopted in practice (Haixiang et al.,|2017; Rezvani and Wang,
2023). We note that class imbalance is also a central concern in deep learning, efforts in that domain
typically target structured data (e.g., images, text) through customized loss functions (Lin et al.|
2017a)) or architectural designs (Zhou et al., 2020). Since this line of work addresses an orthogonal
set of challenges, we consider it outside the scope of this paper and refer interested readers to{Johnson
and Khoshgoftaar| (2019)); Ghosh et al.[(2024)) for comprehensive overviews of CIL in deep learning.

Challenges of learning on imbalanced tabular data. Unlike image and language data with natural
structural priors, tabular data poses unique challenges such as heterogeneous feature types, small
sample sizes, and the lack of meaningful local correlations (Grinsztajn et al.| [2022). As a result, tree-
based models remain the de facto choice for tabular tasks due to their robustness and inductive bias
(Shwartz-Z1v and Armon, |2022), often outperforming deep learning methods. These challenges are
further amplified under class imbalance, where limited samples in the minority class severely affect
model generalization (Ghosh et al.l[2024; Rezvani and Wang|,2023). Real-world tabular data also vary
widely in scale and domain-specific patterns, complicating the search for universally effective CIL
strategies. Our benchmark captures these factors by including datasets with diverse sizes, imbalance
ratios, and domain complexities, and further introducing controllable noise and imbalance, enabling a
comprehensive evaluation of how different CIL methods handle these challenges.

Related benchmarks and empirical studies. Most prior benchmarks on tabular data have centered
on challenges that are largely independent of class imbalance, such as distribution shift (Gardner
et al.l 2024), data augmentation (Machado et al., |2022), and adversarial robustness (Simonetto
et al.| 2024)). Only a handful of recent benchmarks or empirical investigations explicitly focused on
class-imbalanced tabular learning, but they are typically restricted to specific application domains
like business (Zhu et al., [2018)), finance (Xiao et al., [2021)), healthcare (Khushi et al.| [2021)), or
education (Wongvorachan et al.[2023)), often featuring datasets with comparable imbalance ratios.
Additionally, these studies tend to explore a limited selection of algorithms confined to a single
learning paradigm, which constrains their capacity to reveal comparative insights across diverse
CIL techniques. In contrast, our work introduces a comprehensive benchmark that spans a broad
spectrum of real-world tasks, varying imbalance levels, and algorithmic approaches. We highlight the
differences between this work and representative related works in Table

3 The CLIMB Benchmark

3.1 73 Reference Imbalanced Tabular Datasets

We compiled 73 naturally class-imbalanced tabular datasets provided by OpenML (Vanschoren et al.|
2014) that span a wide real-world application domains with varying sizes and imbalance level A
statistical summary is provided in Figure[2] More detailed descriptions of each dataset can be found
in Appendix[A|l They are selected using the following criteria:

!Access via: https://imbalanced-ensemble.readthedocs.io/en/latest/api/datasets
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Figure 2: Statistics summary of the imbalanced tabular datasets included in CLIMB.

* Real-world data & natural imbalance: We select datasets collected from real-world scenarios,
where the class distribution is naturally imbalanced. Artificially generated or manually imbalanced
datasets are excluded to ensure that the evaluated tasks closely reflect practical applications.

» Learning difficulty: We discard datasets that are too easy to classify, i.e., we exclude those that
can be nearly perfectly classified by a scikit-learn decision tree classifier, achieving an AUC-PR (a
robust and informative metric for imbalanced classification) greater than 0.95.

« Imbalance ratio: Only datasets with an imbalance ratio (IR := %@gﬁ:) greater than 2 are

retained. For multi-class datasets, we compute IR with the largest and smallest classes. We consider
that datasets with even lower IR do not pose meaningful imbalance challenges for CIL and can
typically be addressed by standard machine learning methods.

* Data completeness: We exclude datasets with missing values. This allows us to focus on the
impact of class imbalance without introducing confounding factors related to missing data handling.

* LLD. datasets: We restrict our benchmark to datasets that follow the common i.i.d. assumption,
thus excluding sequential or stream-based data such as time series.

* Not Deterministic: We remove datasets where the target is a deterministic function of the features,
e.g., datasets on games like poker and chess. We believe that these datasets differ fundamentally
from most real-world tabular problems and are better examined in separate benchmarks.

* Undocumented datasets: To ensure datasets are suitable for in-depth individual analysis, we
exclude those lacking sufficient documentation. All selected datasets have reasonably detailed
descriptions, either directly on OpenML or through referenced external sources.

3.2 29 Class-imbalanced Learning Algorithms

We implemented and evaluated 29 widely-used and highly-cited representative CIL algorithms.
Each algorithm follows a standardized scikit-learn-style interface, accompanied by comprehensive
documentation and usage examples. Based on their underlying mechanisms, these algorithms can be
broadly categorized into the following groups:

* Undersampling: These methods balance classes by selecting a reduced set of majority samples,
typically matching the minority class size. Techniques include Random Undersampling, Cluster
Centroids (Lin et al.} 2017D), Instance Hardness Threshold [2014), and NearMiss
land Zhang| [2003). While undersampling improves computational efficiency, it often comes at the
cost of information loss due to the removal of many majority-class samples.

* Cleaning: Cleaning methods remove noisy or borderline majority samples to clarify decision
boundaries for the minority class, typically using nearest-neighbor relationships. Examples include

Tomek Links [1976b), Edited Nearest Neighbors [1972), Repeated ENN (Tomek,
[19764), AIIKNN [19764), One-Sided Selection 11997), and the Neighborhood
Cleaning Rule 2001).

* Oversampling: Oversampling synthesizes new minority-class instances to balance the dataset.
The most well-known method is SMOTE (Chawla et al., [2002)), which creates synthetic samples
via linear interpolation between a seed point and one of its nearest neighbors. Our benchmark
includes its enhanced variants with targeted seed selection, such as Borderline-SMOTE
2005), SVM-SMOTE (Nguyen et all 2011), ADASYN 2008), and naive Random
Oversampling. While preserving original data, oversampling may introduce unrealistic samples.
They also significantly increase dataset size and leading to higher training cost.

* Undersample Ensembles: These methods ensemble multiple models trained on diverse under-
sampled subsets, reducing information loss and improving robustness. Methods include Self-paced




Ensemble (Liu et al., [2020), Balance Cascade (Liu et al., 2008)), Balanced Random Forest (Khosh-
goftaar et al., 2007)), EasyEnsemble (Liu et al., 2008)), RUSBoost (Seiffert et al., |2009), and
UnderBagging (Barandela et al.,|2003). Beyond random undersampling, some methods leverage
self-predictions to select informative subsets during training iteratively.

* Oversample Ensembles: These approaches build ensembles from multiple oversampled train-
ing sets, enhancing diversity without discarding data. Examples include OverBoost, SMOTE-
Boost (Chawla et al., 2003), OverBagging, and SMOTEBagging (Wang and Yaol |[2009). However,
they are computationally the most expensive due to enlarged datasets and repeated training.

* Cost-sensitive (Ensemble): Cost-sensitive learning adjusts for imbalance by assigning higher
misclassification costs to minority classes. We set costs inversely proportional to class frequen-
cies. We also benchmark cost-sensitive ensemble variants including AdaCost (Fan et al.,[1999)),
AdaUBoost (Karakoulas and Shawe-Taylor, [1998), and AsymBoost (Viola and Jones|, [2001}).

3.3 Benchmarking Protocol

Dataset preprocessing. We apply a unified preprocessing pipeline across all datasets to ensure
consistent input formats and fair comparisons among algorithms. Specifically, all numerical features
are standardized to have zero mean and unit variance. For categorical features, we adopt different
encoding strategies based on their cardinality: binary categorical features (i.e., with only two unique
values) are transformed using ordinal encoding into a single binary nominal feature, while those with
more than two unique values are encoded using one-hot encoding.

Data splitting. To mitigate the randomness introduced by a single random train-test split, we adopt
a 5-fold stratified splitting strategy for all datasets and report average performance. Specifically, each
dataset is partitioned into five folds with the same class distributions (i.e., preserving the original
class imbalance ratio). Each fold is used once as the test set while the remaining four folds are used
for training. The final performance is reported as the average score across all splits.

Algorithm configuration. Given the strong performance and widespread use of tree-based models
on tabular data and their close integration with certain CIL methods (e.g., Balanced Random Forest),
we use decision trees as the base classifier to cooperate with all CIL algorithms. The ensemble size
is set to 100 for all ensemble-based methods. To ensure fair and optimal evaluation, we perform
hyperparameter tuning using Optuna (Akiba et al., [2019)), with 100 optimization trials for each
of the 23 CIL algorithms with tunable hyperparameters across all 73 datasets to determine the
best-performing configurations. The search space and further details are provided in Appendix

Evaluation metrics. Classification accuracy is known to be misleading under class imbalance, as it
is often dominated by the majority class(es) (He and Garcia, [2009). To provide a fair and balanced
evaluation of model performance across both majority and minority classes, we adopt three widely
used metrics: Area Under the Precision-Recall Curve (AUPRC), macro-averaged F1-score, and
balanced accuracy. Among these, AUPRC evaluates model performance across varying classification
thresholds and thus offers a more comprehensive assessment (Saito and Rehmsmeier, [2015).

4 Benchmark Results and Analysis

Following our rigorous benchmarking protocols, we conducted comprehensive experiments across all
benchmark datasets to reveal insights into the classification performance, computational efficiency,
and robustness of different CIL methods under varying levels of class imbalance. These experiments
involved ~0.8 million hyperparameter search trials, training of over 10 million base models, across
73 (datasets) x 30 (CIL methods) x 5 (splits) = 10,950 dataset-method-split pairs.

4.1 Main Benchmark Results

We report the main benchmark results in Table[2} To better present insights from the large volume
of numerical results, we grouped the 73 datasets by imbalance ratio (IR) into four categories: low
(IR< 5), medium (IR€ [5,10)), high (IR€ [10, 50)), and extreme (IR> 50) imbalance. We report
the performance and ranking of each CIL method averaged over each dataset within each group.

RQ1: Balancing or Cleaning? Table [2] shows that rebalancing-based CIL methods (including
undersampling, oversampling, and cost-sensitive approaches) often lead to performance degradation
instead of gains compared to no balancing (highlighted by red cells). Undersampling causes notable
drops in AUPRC and F1 even on low-imbalance datasets due to information loss. Oversampling and
cost-sensitive show degradation on highly imbalanced datasets, suggesting that synthesizing minority



Table 2: Main benchmark results. Given the large number of results, we group the 73 datasets by
imbalance level into 4 categories and report the averaged AUPRC (AP), macro F1, and Balanced
Accuracy (BAC) for each CIL method (in x 1072). Detailed results for each dataset can be found in
@ For a comprehensive evaluation, we also rank all methods on each dataset and metric, and report
their average ranks. Color coding is used to show the performance gains (blue) or losses (red)
relative to the base no-balancing method, with deeper colors indicating larger differences.

Dataset  Avg. Metric|B Undersample Cleaning Oversample Undersample Ensemble  |Oversample Ensemble Cost-senstive
etric

Group Stat RUS CC IHT NM| TL ENN RENN AKNN OSS NCR|ROS SMT BSMT SSMT ASYN|SPE BC BRF EE UBS UBA|OBS SMBS OBA SMBA| CS AdaC AdaBS AsyBS

AP |51.0 49.448.0458455(51.5 53.6 534 52.9 51.7 53.7|51.1 51.6 51.8 52.1 51.6|59:3 57.8 57.7 59.0 58.6 59.0/ 52.9 53.7 584 589 512 525 524 525
Score (1) F1 |72.0 70.4 67.1 66.0 65.5(72.8 73.9 73.3 73.0 73.0 74.2|72.4 729 729 732 72.8 |11.9 76.8 76.7 718.0 77.5 78.0 73.7 743 76.5 114 72.3 732 732 7132
BAC |72.1 73.3 71.7 73.8/69.7(73.3 76.5 76.7 76.4 73.6 76.6|72.5 73.5 73.6 73.8 73.6 |78.5 77.3 9.7 79:7 78.7 9.7 73.7 74.8 757 770 72.4 732 73.1 732

IR € [0,5)
(28 datasets)

AP |21.225.026.9 23.126.3(18.9 12.7 13.7 156 182 129|21.520.0 19.5 189 20.1 |45 80 7.5 53 54 5.1 165 143 6.1 46 219 17.0 17.6 164
Rank (1) F1 |20.6 26.1 27.328.327.5(17.8 13.8 159 17.8 16.7 13.2|20.5 19.0 185 172 18.8 3.8 7.1 83 46 53 43 158 13.0 82 51 213 161 175 155
BAC |24.3 203239 19.3254{19.2 11.2 108 12.1 17.9 10.8(23.6 20.0 19.1 17.5 189 [63 87 35 35 58 34 197 143 119 88 248 196 213 192
AP |50.9 43.235.340.032.1(51.0 52.5 52.6 52.5 50.8 52.5|51.1 51.7 51.4 51.9 50.7 |64.6 62.7 60.5 62.4 63.8 62.4 54.8 54.1 612 628 51.4 541 544 54.1
Score (1) F1 |74.7 68.4/56.7 64.257.4/74.6 75.1 750 750 74.5 752|744 75.1 750 753 74.6 |19 78.776.7 78.779.3 78.7 75.6 75.8 77.0 785 745 754 754 754

BAC |74.7 76.071.2 76.5[70.8(74.9 77.6 78.0 77.7 74.8 77.8|74.4 764 75.8 76.4 75.7 |82.1 80.8 83.1 82.9 825 82.9 754 76.8 75.6 77.7 745 750 751 75.0
AP |20.6 25.328.6 25.228.6(20.2 149 143 154 199 150|203 17.8 187 17.1 200 |26 58 85 60 33 58 142 151 94 6.5 200 155 154 151

IR € [5,10)
(24 datasets)

Rank (1) F1 |18.8 27.1 29.228.329.2(18.5 15.6 15.6 157 18.6 15.3]18.8 165 17.6 152 18.8 |37 6.2 12.7 64 3.5 6.0 142 143 105 58 184 150 152 144
BAC |22.4 1821252 17.3125.5(21.7 14.1 129 138 20.8 13.7(22.4 147 182 145 185 |53 6.8 29 3.6 3.6 3.1 188 142 17.1 11.8 222 206 205 20.5

AP 349 23.6 174 27.1/145(35.1 36.2 36.2 359 35.536.3|34.1 343 358 350 34.1 |[47.141.438.441.9449 419 36.7 36.6 450 460 34.1 364 367 364
Score (1) F1 [61.6 51.235.8 52.9135.6/61.6 62.3 61.9 61.5 61.9 62.4(61.0 61.0 62.1 61.7 61.0 [65.562.1 59.7 62.9 64.0 62.9 61.6 61.7 64.0 658610 61.5 61.6 615
BAC |61.8 63.6 56.7 65.8 54.3(62.1 64.5 65.0 64.3 62.3 64.1/60.8 63.5 63.7 63.5 63.2|70.7 67.8 72.272.1 704 72.1 61.1 64.0 624 65.1 61.0 61.5 612 61.5
AP |18425529.421.5294(179 133 13.7 145 163 127|209 198 153 174 19.7 |39 89 133 94 54 92 '14.0 146 74 55 '20.6 16.7 145 162

IR € [10, 50)
(15 datasets)

Rank (1) F1 |14.227.929.526.929.4(152 10.6 12.0 143 13.0 11.5/18.7 184 123 15.1 184 |48(14318911.5 7.5 11.3 145 155 100 57 180 157 149 15.1
BAC (202 16.827.211.928.0(19.9 147 13.0 154 18.6 142|24.1 147 13.1 147 167 |53 69 29 29 55 21227 140 179 138 23.0 21.1 226 210

AP 426 18.9 15.9 33.0/13.5(44.2 45.0 44.1 449 443 44.6|41.7 37.1 422 41.9 343 |57.550.1 32.9 35.543.3 35.5 45.0 40.5 564 56.0 41.7 48.1 46.6 48.1
Score (1) F1 |74.0 50.6 35.2 68.032.9(75.0 75.1 74.7 748 75.1 75.0|73.6 71.9 744 73.7 70.3 |74.7 68.6 56.3 59.8 68.5 59.8 74.3 71.9 75.8 766 73.9 749 749 749
BAC |74.6 81.8 70.5 79.9166.2(75.1 75.8 76.1 75.6 752 75.6|73.1 77.2 76.1 76.0 76.3 |85.9 83.0 88.0 87.3 85.7 87.3 73.5 77.6 724 744 73.1 748 732 748
AP |16.727.729.220.529.8(15.8 12.3 133 132 143 150|185 183 153 168 21.7 |29 8.5 17.515.3 9.7 15.0'14.2 167 73 63 '18.5 11.0 135 103

IR € [50, 1000)
(6 datasets)

Rank (}) F1 |13.227.829.5 18.829.5/11.0 9.0 115 11.0 98 112(153 147 11.8 13.8 185 [10.8 15.826.8 24.7 183 25.7 12.5 13.8 ' 9.5 78 133 95 113 | 85
BAC (20.8 7.3 21.810.3232(20.3 13.7 145 147 193 157|252 13.7 162 16.0 17.3 |47 53 22 3.0 43 27235 125 260 21.5 243 205 247 198

*Abbreviations: Random Undersampling (RUS), Cluster Centroids (CC), Instance Hardness Threshold (IHT), NearMiss (NM), Tomek Links (TL), Edited Nearest Neighbors (ENN), Repeated
ENN (RENN), AIIKNN (AKNN), One-Sided Selection (OSS), Neighborhood Cleaning Rule (NCR), Random Oversampling (ROS), SMOTE (SMT), Borderline SMOTE (BSMT), SVM SMOTE
(SSMT), ADASYN (ASYN), Self-paced Ensemble (SPE), Balance Cascade (BC), Balanced Random Forest (BRF), Easy Ensemble (EE), RUSBoost (UBS), UnderBagging (UBA), OverBoost (OBS),
SMOTEBoost (SMBS), OverBagging (OBA), SMOTEBagging (SMBA), Cost-sensitive (CS), AdaCost (AdaC), AdaUBoost (AdaBS), AsymBoost (AsyBS).

samples and reweighting are not robust when the minority class is poorly represented. In contrast,
cleaning methods with less aggressive data modifications demonstrate more stable performance.

Takeaway #1: Class rebalancing is not always helpful, while cleaning can be a safer choice.

When used alone, focusing on preserving or improving representation quality through cleaning
seems to be a safer and more robust strategy than balanced resampling or reweighting.

RQ2: Does ensemble help? The top-performing methods (highlighted by blue cells) across different
imbalance levels and metrics are predominantly ensemble-based. Interestingly, while standalone
undersampling methods perform poorly, undersample ensembles effectively mitigate information
loss by combining multiple views and lead to strong results. Even simple approaches based on
random undersampling (e.g., BRF, UBS, UBA) perform well under low to medium imbalance. For
highly imbalanced cases, methods like SPE and BC further improve by leveraging self-predictions
to iteratively select informative subsets, achieving performance comparable to more expensive
oversample ensembles. Among the oversample ensembles, Bagging-based methods (OBA, SMBA)
perform better than Boosting-based ones (OBS, SMBS), especially in highly-imbalanced cases. We
attribute this to the introduction of low-quality and hard-to-classify synthetic samples by oversampling
strategies like SMOTE: boosting-based methods may overemphasize these low-quality synthetic
samples, while bagging is generally more robust to noise within the dataset.

Takeaway #2: Ensemble is a critical technique for effective and robust CIL.

Ensembles achieve balanced and robust learning by aggregating multiple rebalanced views.
They mitigate information loss from undersampling, enhance diversity from oversampling, and
consistently outperform single models across all imbalance levels.



RQ3: How to select evaluation metric(s)? We also note that different metrics may lead to different
conclusions. For instance, in the extreme imbalance (IR>50) group, RUS and its ensembles (e.g., BRF,
UBA) typically improve BAC but degrade AUPRC and F1, whereas oversampling and cost-sensitive
ensembles (e.g., OBA, AdaBS) show the opposite trend. This reflects the different focus of each
metric (Jeni et al., 2013} Japkowicz,2013)): AUPRC and F1 prioritize precision and accurate minority
class identification, making them sensitive to false positives, while BAC emphasizes balanced recall
across classes. Undersampling improves minority recall by discarding most majority samples but
at the cost of precision (misclassifying many majority instances), whereas oversampling and cost-
sensitive methods better preserve precision, sometimes sacrificing the recall of minority samples. In
practice, metric choice should be informed by domain knowledge, e.g., precision is critical in spam
detection to avoid misclassifying legitimate emails and disrupting user communication, while recall
is paramount in cancer screening to prevent missing true cases (Haixiang et al., [2017)).

Takeaway #3: Different metrics may lead to different conclusions for certain methods.

Different metrics emphasize different aspects of performance evaluation and sometimes lead
to different conclusions. In practice, one should choose appropriate metrics based on domain
needs for a more accurate interpretation of model effectiveness.

4.2 Performance versus Runtime Analysis

Setup. Beyond classification performance, the runtime efficiency of CIL algorithms is also crucial
for practical applications. Figure [3|presents a performance versus runtime analysis to illustrate the
utility-efficiency trade-off of different models across dataset groups with different imbalance levels.
Runtimes were measured on a workstation with an Intel Core 19 12900 CPU.
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Figure 3: Performance versus runtime analysis, following the dataset grouping in Table 2] The
x-axis shows the average runtime of each CIL algorithm, and the y-axis shows the average AUPRC.
Desired methods are closer to the upper-left corner with high accuracy and low computational
cost. Different markers indicate different CIL method categories, the dashed line denotes the base
model (no balancing) performance and runtime. More results with other metrics are in Appendix [C]

RQ4: Which (types of) methods are costly and why? (i) For non-ensemble methods, cost
differences mainly arise from the overhead of the resampling operation itself, while the impact
of training sample size is relatively minor. For example, complex undersampling methods (e.g.,
clustering-based CC and probability-based IHT) tend to be more time-consuming than simpler
oversampling approaches. (ii) For ensemble methods, cost differences are primarily driven by the



size of the training data and the ensemble training paradigm. Runtime cost generally follows the
order: undersampling < cost-sensitive < oversampling, and bagging-based < boosting-based. The
reason behind is that ensemble methods typically do not rely on overly complex balancing operations,
but training multiple base models significantly amplifies the impact of training set size and ensemble
strategy on the overall runtime. (iii) Other remarks: We note that the runtime observations are not
comparable between different dataset groups as their datasets vary in size and dimensions. Also,
the importance of training set size in runtime may change if we use base models that are more/less
sensitive to dataset scale.

RQS5: Are ensemble methods always more expensive to train? Not necessarily. For instance,
complex undersampling methods like IHT and CC are often slower than many undersample ensembles,
even though the latter needs to train 100 base models. Similarly, SVM-SMOTE (SSMT), which
requires training an auxiliary SVM model for oversampling, can in some cases be more time-
consuming than all tested tree-based ensembles. Notably, we observe that undersample ensembles
often achieve strong predictive performance with relatively low computational cost. Even under
extreme imbalance, iterative informed undersampling variants such as SPE and BC continue to
perform robustly.

Takeaway #4: Undersample ensembles strike a good accuracy-efficiency balance.

Undersample ensembles deliver strong results at low cost by reducing training data and aggre-
gating diverse views. The best variants often rival or outperform more expensive counterparts.

4.3 Robustness Analysis
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Figure 4: Robustness analysis. Each row corresponds to the noise, missing values, and additional
class imbalance setting (from top to bottom). Each column represents a branch of CIL methods.

Setup. Finally, we conduct controlled experiments to study how noise, missing values, and more
severe class imbalance impact CIL model performance, offering insights for handling similar diffi-
culties in practical applications. To ensure a fair comparison, each factor is introduced individually
while keeping other factors unchanged. (i) Label noise: We introduce label flipping noise to simulate
real-world annotation errors. The noise ratio is defined on minority class, e.g., a 10% noise ratio
means that 10% of the minority-class samples are randomly relabeled as other classes, while an equal
number of non-minority samples are relabeled as the minority class. This preserves the original IR. (ii)



Missing value: Given the missing ratio, we randomly mask corresponding number of values across
all samples and features, replace them with the mean value observed for each respective feature. This
setting simulates the common practice of mean imputation in real-world applications. (iii) Additional
imbalance: We intensify class imbalance by further removing samples from the minority class. For
example, a 200% imbalance level means that 50% of the minority-class samples are removed, thus
doubling the original IR. Figure[d] shows the results averaged over all tested datasets.

RQ6: Are CIL methods robust to additional difficulty factors? Generally, yes. In most cases, the
relative gain or loss of CIL methods compared to the base (no-balancing) setting remains consistent
across different levels of noise, missing values, and additional class imbalance. The ranking among
CIL methods also remains largely stable. A few exceptions: (i) IHT shows improvement as imbalance
increases. This is because IHT removes hard examples that classifiers do not predict confidently.
As minority class shrinks, such hard examples become fewer, causing IHT to gradually degenerate
toward no-balancing behavior. (ii) OBA and SMBA show huge performance drops under extreme
imbalance. We attribute this to the further reduction in minority-class size, which limits the ability of
oversampling and synthetic samples to enhance minority-class representation.

RQ7: Which factor has a greater impact? Interestingly, we observe that noise and missing values
have a greater impact on model performance than class imbalance. For the base model, introducing
10% label noise or 30% missing features results in a similar performance drop of increasing the
imbalance ratio by 500%. This implies the importance of maintaining data quality, which also aligns
with our earlier finding on the effectiveness of data cleaning methods, as discussed in Takeaway #1.

Takeaway #5: Data quality greatly affects CIL, if not more than class imbalance itself.

Noisy labels and missing features can degrade model performance as much as, or even more
than, severe class imbalance. Ensuring high data quality is crucial for building robust models
and should be prioritized alongside class rebalancing.

Additional results in the appendix. Due to space limitations, we present the key results and
insights in the main text. Appendix [Cincludes results with hybrid sampling methods and GBDTs,
pairwise win-ratio comparisons, full per-dataset evaluation scores, and runtime analyses.

5 Conclusion and Future Directions

Limitations and Future Directions. While we have conducted a comprehensive study given
available resources, many interesting questions remain open for future work. Building on our findings,
we highlight several promising directions to further extend our work and advance the field of CIL:

* Conducting similar analyses under the combined effects of class imbalance and other data quality
challenges, such as noise, missing values, class overlapping (Santos et al.| [2022), and small
disjuncts (Jo and Japkowicz, |2004)). This may be facilitated by developing flexible, realistic tabular
data synthesis frameworks (Liu et al., 2024).

* Investigating the effectiveness of deep learning-based solutions. Although tree-based models
generally outperform deep models on tabular data (Grinsztajn et al., [2022), combining deep
architectures with established CIL paradigms (e.g., undersample ensembles) and other forms of
inductive bias may enable more effective deep imbalanced learning.

» Examining the integration of CIL methods with non-tree-based models to explore whether different
types of base learners provide unique advantages on imbalanced tabular data.

* Exploring combinations of different CIL paradigms, such as dynamically integrating data cleaning
into ensembles to enhance robustness against low-quality data. Additionally, designing AutoML
systems that can automatically compose these modules during inference presents an interesting
future direction (Barbudo et al.| [2023; |Karmaker et al., [2021]).

Conclusion. In this paper, we introduced CLIMB, a comprehensive benchmark for class-imbalanced
learning (CIL) on tabular data. CLIMB provides a curated collection of 73 real-world datasets spanning
diverse domains and imbalance levels, along with unified implementations of 29 representative CIL
algorithms. Built upon a high-quality open-source library, CLIMB enables fair, reproducible, and
extensible evaluation of CIL methods. Through empirical studies involving millions of model trainings
and hyperparameter searches, we drew several practical insights. (i) naive class rebalancing alone is



often ineffective, while data cleaning offers a safer improvement strategy; (ii) ensemble methods are
critical for robust and effective CIL; (iii) the evaluation metric may affect the conclusion and should
be chosen wisely; (iv) undersample ensembles strike a favorable balance between performance and
efficiency; (v) data quality issues, such as label noise and missing values, can have even greater
impact on model performance than class imbalance itself. We hope that CLIMB will serve as a solid
foundation for advancing future research on class-imbalanced learning and promote the development
of more reliable and practical solutions for real-world challenges.
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Appendix

This appendix provides additional details to support the experiments and findings presented in the main
paper. Section [A]presents details of the datasets used in our benchmark. Section [B]describes further
reproducibility details such as hyperparameter search strategy and runtime measurement protocols
Finally, Section [C| provides extended results and analyses, including additional CIL baselines (hybrid
sampling methods and GBDTs), pairwise win-ratio comparisons, discussion on the advantages of
Self-paced Ensemble, comparison with the BAF benchmark, and full per-dataset evaluation scores
and runtime statistics.

A Datasets Details

Dataset descriptions. The 73 datasets we evaluated span a wide range of imbalance levels, sizes,
and dimensions, and were selected based on the seven rigorous criteria outlined in Section[3.1] All
datasets were collected from real-world scenarios and naturally exhibit class imbalance. We note that
OpenML includes numerous artificially generated imbalanced datasets, but these were excluded to
ensure that the evaluated tasks closely reflect practical applications. The final collection covers tasks
from diverse real-world domains such as finance, medicine, and engineering. Table [3]summarizes key
information for each dataset, including name, number of samples and features, imbalance ratio, target
type, domain, and a brief task description. Due to the large number of datasets, we do not provide
individual citations here. Full dataset descriptions and reference publications can be found on their
respective OpenML pages or in the referenced external sources therein.

Table 3: Dataset statistics and descriptions.

Dataset | #Samples  #Features IR Type Domain Description
bwin_amlb 530 13 201 Binary Behavioral Analytics  Aggregated data on virtual and live sports betting behavior over a multi-month period.
a4 15545 5 204  Binary Software Engineering ~ Tracks defect fixes and code size changes in Mozilla C-++ classes over time.

161 39 2.1 Binary Software Engineering  NASA software defect data using McCabe and Halstead complexity metrics.
vertebra-column 310 6 21 Binary Medicine Biomechanical features used to classify vertebral column pathologies.
wholesale-customers 440 8 2.1 Binary Retail Annual spending profiles of wholesale distribution customers across product categories.
law-school-admission-bianry 20800 14 211  Binary Education Binary prediction of law school applicants’ UGPA with demographic attributes.
bank32nh 8192 32 222 Binary Finance Bank dataset with a binarized target based on mean threshold.
elevators 16599 18 224 Binary Robotics Control application data binarized by thresholding numeric targets.
cpu_small 8192 12 231 Binary Computer Systems Binarized CPU performance data from original regression targets.
Credit_Approval_Classification 1000 50 233 Binary Finance Predicts credit approval based on demographic and financial features.
house_8L 22784 8 2.38 Binary Real Estate House price data with binarized target values based on average threshold.
house_16H 22784 16 2.38 Binary Real Estate Higher-dimensional version of house price data with binarized targets.
phoneme 5404 5 241 Binary Speech Recognition Classification of nasal vs. oral phonemes using harmonic amplitude features.
ilpd-numeric 583 10 2.49 Binary Medicine Liver disorder classification with all-numeric features.
planning-relax 182 12 25 Binary Neuroscience EEG signal data distinguishing planning vs. relaxation mental states.

MiniBooNE 130064 50 256  Binary Physics Distinguishes electron from muon neutrinos in a particle experiment.

machine_cpu 209 6 273 Binary Computer Systems Binarized CPU benchmark dataset based on performance metrics.
telco-customer-churn 7043 39 2.77 Binary Business Telecom customer churn prediction based on service and usage da

haberman 306 3 278  Binary Medicine Survival analysis of breast cancer patients after surgery.

vehicle 846 18 288 Binary Automotive Binarized vehicle type classification dataset based on majority class.
cpu 209 36 294 Binary Computer Systems CPU performance data converted into binary classification task.

ada 4147 48 303 Binary Sociology Discover high revenue people from census data.

adult 48842 107 3.18 Binary Sociology Predicts income level (>50K) from census features.

blood-transfusion-service-center 748 4 32 Binary Health Predicts blood donation behavior based on RFM features.
default-of-credit-card-clients 30000 23 3.52 Binary Finance Predicts default risk for credit card clients based on payment and bill history.
Customer_Churn_Classification 175028 24 374  Binary Business Predicts customer churn based on service usage and demographics.

SPECTF 267 44 3.85 Binary Medicine Diagnoses cardiac conditions from SPECT imaging features.
Medical-Appointment-No-Shows 110527 36 395  Binary Healthcare Predicts patient no- shows for medical appointments based on demographics and history.
JapaneseVowels 9961 14 517  Binary Speech it Binarized f speaker voice samples originally from a multi-class dataset.
ibm-employee-atirition 1470 53 52 Binary Human Resources Predicts employee atrtion based on job satisfaction and personal features.
first-order-theorem-proving 6118 51 5.26 ated based dataset for learning heuristics in first-order theorem proving.
user-knowledge 403 5 5.38 Multiclass ~ Education Mo(lels students’ domain knowledge in electrical machines based on performance and behavior.
online-shoppers-intention 12330 28 546  Binary E-commerce Predicts purchase intention based on session behavior and web metrics.

kel 2109 21 547  Binary Software Engineering  NASA defect prediction dataset with code complexity metrics.

thoracic-surgery 470 16 571 Binary Medicine Predicts 1-year survival after lung cancer surgery.

UCI_churn 3333 18 5.9 Binary Business Customer churn prediction dataset with limited metadata.

arsenic-female-bladder 559 4 5.99 Binary Medicine Binarized dataset likely related to bladder health outcomes in females with arsenic exposure.
okcupid_stem 26677 117 6.83 Multiclass ~ Sociology Profiles from OkCupid used to predict whether a user has a STEM-related job.
ecoli 327 7 7.15 Multiclass ~ Biology Studies the cellular localization sites of E. coli proteins.

pe 1458 37 7.9 Binary Software Engineering  NASA defect prediction data for flight software using code complexity metrics.
bank-marketing 4521 48 7.68  Binary Finance Direct marketing campaign data for predicting term deposit subscription
Diabetes-130-Hospitals_(Fairlearn) 101766 50 7.96 Binary Medicine Hospital readmission prediction for diabetic patients based on 10 years uf clinical records.
Otto-Group-Product-Classification-Challenge | 61878 93 8.36 Multiclass ~ E-commerce Multi-class product classification dataset from Otto Group with anonymized features.
eucalyptus 4331 26 854  Multiclass Computer Systems High-performance computing job scheduling dataset for predictive modeling.
pendigits 10992 16 861  Binary Image Recognition Binarized dataset for pen-based digit recognition.

pe3 1563 37 877  Binary Software Engineering  Defect prediction dataset from NASA flight software using complexity metrics.
page-blocks-bin 5473 10 877  Binary Document Processing  Binarized version of page layout classification based on document blocks.

optdigits 5620 64 8.83 Binary Image Recognition Binarized optical digit recognition dataset from scanned documents.

mfeat-zernike 2000 47 9.0 Binary Tmage Rccogmuon Zernike moments ot handwnucn digits, binarized for classification.

mfeat- ﬁ)urier 2000 76 9.0 Binary Image Fourier digits, binarized for classification.

mfeat-karhun 2000 64 9.0 Binary Image Recognition Karhunen-Loeve cncmclcms of handwritten digits, binarized for classification.
Pulsar- Dataset HTRU2 17898 8 992 Binary Astronomy Binary classification of pulsar vs. non-pulsar signals from radio telescope data.

vowel 990 26 10.0 Binary Speech i Binarized i of vowel sounds based on audio features.

heart-h 294 13 12,53 Multiclass ~ Medicine Hungarian heart disease data used to predict cardiac conditions.

pel 1109 21 134 Binary Software Engineering  NASA flight software defect prediction dataset using McCabe and Halstead metrics

smic-bumps 2584 22 142 Binary Geophysics Predicts hazardous seismic events in coal mines based on geophysical monitoring data.

ozone-level-8hr 2534 72 1484 Binary Environmental Science  Forecasts peak ozone levels using meteorological and atmospheric features.
microaggregation2 20000 20 1502 Multiclass  Privacy Data Mining ~ Dataset used for evaluati ion methods in privacy-preserving learning.
Sick_numeric 3772 29 1533 Binary Medicine Numeric version of thyroid disease diagnosis data with binarized features.
insurance_company 9822 85 1576  Binary Finance Predicts caravan insurance ownership using socio-demographic and product data.
wilt 4839 5 17.54  Binary Remote Sensing Remote sensing dataset for detecting diseased trees using multispectral imagery.
Click_prediction_small 149639 11 21.37  Binary Advertising Small-scale dataset for predicting ad click-throughs.
jannis 83733 54 2283  Multiclass  Image Recognition Classify image regions into one of the 4-most populated branches.
Tetter 20000 16 236  Binary Image Recognition Binarized handwritten letter recognition dataset.
walking-activity 149332 4 24.14 i Biometri data used for user identification from walking patterns.
helena 65196 27 36.08  Multiclass Image Recognition Classify image regions into one of 100 labels.
mammography 11183 6 4201 Binary Medicine Mammography dataset used for anomaly and breast cancer detection tasks.
dis 3772 29 64.03 Binary Biology Dataset from PMLB used for binary classification in biomedical domains.
Satellite 5100 36 67.0 Binary Remote Sensing Classifies land cover and detects anomalies in satellite image data.
Employee-Turnover-at-TECHCO 34452 9 68.74  Binary Human Resources Dataset modeling monthly employee turnover in a tech company.
page-blocks 5473 10 175.46 i Document Pr in; Page layout based on document blocks.

allbp 3772 29 25779 Multiclass  Biology Blood pressure data for classification, sourced from PMLB.
CrcdnCardl'mudDmcclmn 284807 30 577.88  Binary Finance Highly imbalanced dataset for detecting fraudulent credit card transactions.
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Dataset source and access. All datasets are hosted on the OpenML (Vanschoren et al.| [2014)
platform. We provide a wrapper function based on the OpenML API in the CLIMB Python package,
allowing users to easily download the datasets and apply standardized preprocessing.

B More Reproducibility Details

Hyperparameter search. We used Optuna (Akiba et al., 2019) to search for the best configuration
of CIL methods with tunable hyperparameters. Hyperparameter optimization was conducted for 23
out of 29 CIL methods on each dataset, with AUPRC as the optimization objective. Table[]reports the
hyperparameter search space for each method. Importantly, we observed that using a single random
split to create a validation set often caused the selected hyperparameters to overfit, especially due
to the scarcity of minority class samples. When conducting a more comprehensive 5-fold stratified
evaluation, the hyperparameters found through such overfitted search frequently underperformed
compared to the default settings. To address this issue, we adopted 5-fold stratified training and
evaluation within each search trial, despite the increased computational cost. For each method-dataset
pair, we performed 100 search iterations and employed an early stopping strategy with 10 rounds
patience to improve efficiency. We use the Tree-structured Parzen Estimator (Ozaki et al., [2022)
(optuna.samplers.TPESampler) to sample hyperparameters in each trail. Additionally, for every
method and dataset, we also evaluated the performance using default hyperparameters. The final
hyperparameters were chosen based on the better result between the search and the default setting.
Running these hyperparameter searches consumed more than 500 hours on our workstation.

Table 4: Hyperparameter search spaces.

Method Search Parameters

NearMiss n_neighbors € [1,10

EditedNearestNeighbors n_neighbors € [1,10], kind_sel € {all, mode}
Repeated ENN n_neighbors € [1,10], kind_sel € {all, mode}
AIIKNN n_neighbors € [1,10], kind_sel € {all, mode}
OneSideSelection n_neighbors € [1,10

NeighborhoodCleaningRule
SMOTE
BorderlineSSMOTE

n_neighbors €
k_neighbors €
k_neighbors €

1,10

1,10], kind_sel € {all, mode}, threshold_cleaning € [0.0,1.0]

1,10], m_neighbors € [1, 10]

SVMSMOTE k_neighbors € [1,10], m_neighbors € [1,10]

ADASYN n_neighbors € [1,10

SelfPacedEnsemble k_bins € [1,10]

BalanceCascade replacement € {True, False}

BalancedRandomForest max_samples € [0.5,1.0], max_features € [0.5, 1.0]

EasyEnsemble max_samples € [0.5,1.0], max_features € [0.5,1.0]

RUSBoost learning_rate € [0.0,1.0], algorithm € {SAMME, SAMME.R}
UnderBagging max_samples € [0.5,1.0], max_features € [0.5,1.0]

OverBoost learning_rate € [0.0,1.0], algorithm € {SAMME, SAMME.R}
OverBagging max_samples € [0.5,1.0], max_features € [0.5,1.0]

SMOTEBoost learning_rate € [0.0,1.0], algorithm € {SAMME, SAMME.R}, k_neighbors € [1, 10]
SMOTEBagging max_samples € [0.5,1.0], max_features € [0.5,1.0], k_neighbors € [1, 10]
AdaCost learning_rate € [0.0,1.0], algorithm € {SAMME, SAMME.R}
AdaUBoost learning_rate € [0.0,1.0], algorithm € {SAMME, SAMME.R}
AsymBoost learning_rate € [0.0, 1.0, algorithm € {SAMME, SAMME.R}

Dataset preprocessing and split. As described in Section[3.3] to mitigate the randomness introduced
by a single random train-test split, we adopt a 5-fold stratified splitting strategy for all datasets and
report the average performance. We use the sklearn.model_selection.StratifiedKFold
utility from scikit-learn (Pedregosa et al., 2011) to obtain stratified folds that preserve the percentage
of samples in each class, ensuring that the imbalance ratio remains consistent across all splits.
Similarly, we apply preprocessing.StandardScaler to standardize numerical features. For
categorical features, we use OrdinalEncoder for binary attributes and OneHotEncoder for multi-
class attributes.

Runtime measurement. The runtime reported in Figure [3|was measured on a Windows workstation
equipped with an Intel Core i9-12900 CPU. It reflects the training time for a single split in a 5-fold
stratified split, that is, the training data is formed by 4 out of 5 splits (80%). Therefore, the total
runtime for each hyperparameter search should be further multiplied by 5 splits and 100 iterations.

Performance-runtime analysis with all metrics. Similarly, due to space constraints, we only
visualized the performance-runtime trade-off based on AUPRC in the main paper (Figure[3). Here,
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we provide additional visualizations based on F1-score (Figure [6)) and balanced accuracy (Figure
[7). While minor changes in the ranking of some methods can be observed, the differences across
method branches remain significant. Thus, the related analyses and Takeaway #4 in the main text still
hold: undersample ensembles continue to represent the most effective category for achieving the best
performance-efficiency trade-off.

C Additional Experiments, Detailed Results, and Discussions
C.1 Results with Additional CIL methods

Table 5: Extended summary benchmark results with hybrid sampling methods (SMOTEENN,
SMOTETomek) and GBDTs (XGBoost, LightGBM, CATBoost), this table extends the main results
in Table 2| by including additional CIL baseline. Given the large number of results, we group the 73
datasets by imbalance level into 4 categories and report the averaged AUPRC (AP), macro F1, and
Balanced Accuracy (BAC) for each CIL method (in x 10~2). Detailed results for each dataset can be
found in Q For a comprehensive evaluation, we also rank all methods on each dataset and metric, and
report their average ranks. Color coding is used to show the performance gains (blue) or losses
(red) relative to the base no-balancing method, with deeper colors indicating larger differences.

Oversampl | Cost-Sensiti ‘ GBDTs

Dataset  Avg. ‘ Undersample Cleaning ‘ Oversample ‘ Hybrid ‘ U Ensemble |

Metric!
Group ~ Stat ‘ ‘lu;s CC IHT NM‘ TL ENN RENN AKNN 0SS NCR‘ROS SMT BSMT SSMT ASYN‘SENN STom|

Base!

SPE BC BRF EE UBS UnA‘ons SMBS OBA SMBA [AdaC AdaBS AsyBS CS ‘XGB LGB CAT

AP |51.0|49.4 48.045.8455|51.5 53.6 534 529 51.7 53.7|51.1 51.6 51.8 521 51.6 51.8 51.2 593578 57.7 59.0 58.6 59.0 52.9 53.7 584 589 525 524 525 51.2/58.0 582 58.3
Score (1) F1 [72.0(70.4 67.166.0 65.5/72.8 73.9 733 73.0 73.0 742(72.4 72.9 729 732 728 72.6 72.5 [71.976.8 76.7 78.0 77.5 78.0/73.7 74.3 765 714 732 732 732 723764 763 75.7
BAC |72.1|73.371.7 73.8/69.7/73.3 76.5 76.7 76.4 73.6 76.6(72.5 73.5 73.6 73.8 73.6 755 73.1 785 77.3/79.779.778.779.7 73.7 74.8 757 71.0 732 73.1 732 724758 759 75.5

IRE[0,5)
(28 datasets)

AP |24.8(293 314 27.130.6/22.5 154 164 185 21.6 155(252 234 228 225 238 21.8 247 [60 100 96 68 69 6.6 196 170 80 6.1 | 200 209 202 257 10.1 96 9.6
Rank (1) F1 |24.1[30.432.033.032.0(21.2 164 19.1 21.1 199 16.0(24.2 22.5 21.8 20.6 223 222 233 /50 89 102 57 67 56 190 157 102 66 190 208 193 249 99 94 109
BAC |28.3]24.0 28.1 22.729.5122.8 13.2 127 142 214 13.1(27.5 235 225 209 224 17.1 242 7.1 99 39 39 62 3.7 230 172 144 10.1 229 250 235 287 14.0 135 149

AP |50.9]43.235.340.032.1|51.0 52.5 52.6 525 50.8 52.5|51.1 51.7 514 519 50.7 50.8 50.7 [64.662.7 60.5 62.4 63.8 624 54.8 54.1 61.2 628 54.1 544 54.1 51.4628 632 62.5
Score (1) F1 [74.7(68.4/56.7 64.2 57.4|74.6 75.1 750 75.0 74.5752(74.4 75.1 750 753 74.6 73.6 74.6 197 78.7 76.7 78.779.3 78.7 75.6 75.8 77.0 785 754 754 754 74.5782 783 773
BAC |74.7|76.0 71.2 76.5 70.8/74.9 77.6 78.0 77.7 74.8 77.8(74.4 764 758 764 757 77.8 76.0 82.1 80.8 83.1 829 82,5 829 754 76.8 75.6 77.7 750 751 750 745 77.0 77.0 76.0

IR € [5,10)
(24 datasets)

AP |24.4(299133.329.5333(23.8 17.8 17.2 184 238 17.8(239 21.3 223 20.5 239 230 23635 75 106 7.8 43 78 172 182 12.1 80 184 186 188 236 89 76 9.6
Rank (]) F1 [225(32.034.2333342/21.9 187 18.6 18.6 222 183(222 197 21.0 183 224 247 219 |45 79 154 8.1 45 7.8 169 168 133 72 174 181 178 21.9/87 86 105
2

BAC |26.321.6129.320.029.5(25.2 164 154 16.1 24.516.1(26.5 17.7 21.5 17.6 22.0 14.9 194 59 7.5 132539 3732 22.1 167 20.6 13.5 240 242 243 26.1 16.5 164 18.2

AP |34.9]23.6 174 27.1 14.5/35.1 362 36.2 359 35536.3|34.1 343 358 350 34.1 332 337 471414 38441.9449 419 367 36.6 450 460 364 36.7 36.4 34.1 413 438 45.1
Score () F1 |61.6/51.2135.8 52.935.6(61.6 62.3 61.9 61.5 61.9 62.4|61.0 61.0 62.1 61.7 61.0 59.5 60.3 |65.562.1 59.7 62.9 64.0 62.9 61.6 61.7 64.0 658 61.5 61.6 61.5 61.0/65.7 63.0 63.6
BAC |61.863.6 56.7 65.8 54.3/62.1 64.5 65.0 64.3 623 64.1(60.8 63.5 63.7 63.5 632 652 63.0 70.767.8 722721704 72.1 61.1 640 624 651 615 612 61.5 61.0 64.1 61.6 62.1

IR € [10,50)
(15 datasets)

AP [22.0|29.9343 253342/121.4 160 163 173 199 153(24.7 233 185 205 233 222 247 [4F 11.116.0 11.7 68 11.6 17.1 175 97 74 195 17.6 20.1 245750 104 10.0
Rank (]) F1 [17.0(32.834431.7342|17.7 127 145 169 157 13.7(21.6 21.4 145 176 21.3 253 233 [5§7116.722.7 140 9.0 13.7 172 179 121 65 | 18.1 17.5 18.1 21.3[6.7 13.7 13.1
BAC |23.1]19.231.6 13.7 323|225 16.7 15.1 175 21.7 16.7(27.7 17.0 153 17.1 199 139 18.7 56 7.8 29 28 57 23 264 163 20.7 155 241 263 249 26.7 159 234 226

AP 426|189 159 33.013.5/44.2 45.0 44.1 449 443 44.6/41.7 37.1 422 419 343 347 344 57.550.1 32.9 35.543.3 355 45.0 40.5 564 560 48.1 46.6 48.1 41.7/589 489 58.1
Score (1) F1 [74.0(50.635.268.032.9|75.0 75.1 74.7 74.8 75.1 75.0(73.6 71.9 744 737 703 702 70.1 74.7 68.6 563 59.8 68.5 59.8 743 71.9 758 76.6 749 749 749 7390187 734 718
BAC |74.6|81.8 70.5 79.9 66.2|75.1 75.8 76.1 75.6 75.275.6(73.1 772 76.1 76.0 763 79.4 76.0 85.983.0 88.0 87.3 85.7 87.3 73.5 77.6 724 744 748 732 748 73.1 758 73.5 749

IR € [50, 1000)
(6 datasets)

AP |19.2(32.7 342 24.034.8/19.5 148 160 157 16.7 17.8[220 21.0 17.8 195 252 262 243 [45 108 21.0 188 12.7 185 16.7 193 9.8 9.0 130 162 133 21.3[67 102 6.8
Rank () F1 |16.0(32.834522.5345(14.0 11.5 142 137 122 138|182 17.5 145 165 220 21.0 208 13.319.331.830.222.7 302 153 165 128 107 118 140 115 157/85 107 7.8

BAC |24.3| 7.8 24.811.3 26.5/123.7 15.7 165 16.7 223 17.8(29.3 152 185 185 195 93 198 47 55 22 30 43 27 273 143 307 252 233 287 240 285 19.8 247 235

*Abbreviations: Random Undersampling (RUS), Cluster Centroids (CC), Instance Hardness Threshold (IHT), NearMiss (NM), Tomek Links (TL), Edited Nearest Neighbors (ENN), Repeated ENN
(RENN), AIIKNN (AKNN), One-Sided Selection (OSS), Neighborhood Cleaning Rule (NCR), Random Oversampling (ROS), SMOTE (SMT), Borderline SMOTE (BSMT), SVM SMOTE (SSMT),
ADASYN (ASYN), SMOTEENN (SENN), SMOTE Tomek (STom), Self-paced Ensemble (SPE), Balance Cascade (BC), Balanced Random Forest (BRF), Easy Ensemble (EE), RUSBoost (UBS),
UnderBagging (UBA), OverBoost (OBS), SMOTEBoost (SMBS), OverBagging (OBA), SMOTEBagging (SMBA), Cost-sensitive (CS), AdaCost (AdaC), AdaUBoost (AdaBS), AsymBoost (AsyBS),
XGBoost (XGB), LightGBM (LGB), CATBoost (CAT).

Here, we provide additional benchmark results that incorporate hybrid sampling methods (SMO-
TEENN (Batista et al., 2004), SMOTETomek (Batista et al.,[2003))) and popular gradient-boosted
decision tree (GBDT) models (XGBoost (Chen and Guestrin, [2016), LightGBM (Ke et al.,[2017),
CatBoost (Hancock and Khoshgoftaar, [2020)). These methods were not discussed in detail in the
main paper, as our primary focus is on establishing a fair and unified comparison of representative
class-imbalanced learning (CIL) techniques under consistent experimental settings. Hybrid sampling
methods tend to be slower, more complex, and often underperform relative to their simpler counter-
parts, while GBDT models rely on specialized base learners with optimization strategies that differ
fundamentally from the scikit-learn trees used throughout our benchmark, making direct comparisons
less meaningful. But still, we include these results here for completeness, as they were frequently
raised during the review process and help further contextualize the scope and applicability of CLIMB.

For implementation, SMOTEENN and SMOTETomek are adopted from the imblearn (LemaAZtre
et al.,|2017) package with their default configurations, ensuring consistency with widely used practice.
For GBDTs, we evaluate XGBoost, LightGBM, and CatBoost under the same ensemble size as
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the other ensemble-based CIL methods in the main paper. The extended results are summarized in
Table[3 The latter full dataset-level results in Table [Bl0lalso include these new CIL methods.

Hybrid Sampling Methods. The extended results highlight two consistent trends. First, the
hybrid sampling methods SMOTEENN and SMOTETomek do not provide consistent benefits across
imbalance levels. Their performance in terms of AP, F1, and BAC is typically comparable to or worse
than their single-component counterparts (e.g., SMOTE or ENN/Tomek alone), and their average
ranks remain relatively low. This confirms that the added complexity of combining oversampling and
cleaning does not yield robust gains in practice.

Advanced GBDTs. Second, the GBDT baselines (XGBoost, LightGBM, CatBoost) achieve strong
overall results, often surpassing classical resampling-based methods, particularly under higher
imbalance ratios. Nevertheless, they are not uniformly superior: ensemble-based CIL methods such
as SPE, RUSBoost, and SMOTEBagging remain highly competitive, achieving comparable or better
ranks in several imbalance groups. These findings indicate that while GBDTSs constitute powerful
baselines, well-designed CIL ensembles can match or exceed their performance, especially when
tailored to severe imbalance scenarios.

C.2 Pairwise comparisons between all CIL methods.

Undersample  Oversample Cost-

Undersample Cleaning Oversample Hybrid Ensemble Ensemble Sensitive  GBDT
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Figure 5: Pair-wise win ratio (by AUPRC) comparison between all CIL algorithms. The number
represents the ratio of datasets that the row method outperforms the column method on, i.e., a
blue/red row means the row method consistently outperforms/underperforms others.

To provide more detailed insights for model selection, we pair each combination of two CIL methods
(denoted as A and B) and compute the proportion of datasets where method A outperforms method
B. The results based on AUPRC are shown in Figure[5] Consistent with the analysis in Section @1}
ensemble methods generally demonstrate a consistent advantage over non-ensemble methods across
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most datasets. Among the ensemble approaches, SPE, OverBagging, and SMOTEBagging achieve
relatively high win ratios. In particular, SPE, an efficient undersampling-based ensemble method,
maintains a win ratio above 59% against all other CIL methods. This highlights the potential of
ensemble approaches that incorporate informed undersampling strategies.

C.3 Discussion on the Self-paced Ensemble

Among all the evaluated CIL methods, Self-paced Ensemble (SPE) stands out as the most consistent
top performer. Its advantage can be attributed to a few complementary factors.

* Hard example mining: SPE retains difficult-to-classify samples during undersampling, which
improves decision boundaries.

* Noise robustness: The hardness harmonization mechanism balances informativeness and noise,
avoiding the inclusion of overly noisy samples.

* Self-paced learning: Inspired by curriculum learning, SPE introduces samples progressively from
easy to hard, which stabilizes training.

* Efficiency: As an undersampling-based ensemble, SPE trains on fewer samples per model, making
it more efficient than oversampling or boosting strategies.

C.4 Comparison with BAF Benchmark

We also compare CLIMB with the BAF benchmark (Jesus et al.| 2022). Both address imbalance,
but with different goals and setups. CLIMB evaluates CIL methods on 73 real-world datasets with
natural imbalance, using repeated cross-validation and standard metrics such as AUPRC, Macro-Fl1,
and Balanced Accuracy. BAF instead focuses on fairness under distributional bias and temporal
shift in a single fraud detection task, using CTGAN-generated synthetic data, temporal splits, and
fairness metrics like TPR@5%FPR and FPR ratio. Thus, CLIMB offers a broad benchmark for CIL
effectiveness, while BAF targets fairness in a specific application.

C.5 Detailed main results on each dataset.

Due to space constraints, in the main results (Table[2), we reported the average scores and rankings
for each metric by grouping the 73 datasets into four categories based on their imbalance levels.
Here, we provide the complete results for each method on each individual dataset. Specifically,
AUPRC, F1-score, and Balanced Accuracy results are reported in Tables[6] [7} and [§] respectively.
Additionally, Table [9] presents the runtime of each method across different datasets. The dataset
ordering in these tables follows the order defined in Table[3] We used color coding similar to Table
(i.e., blue represents better than no balancing, and red represents worse than no balancing, with
deeper colors indicating larger differences) for improved clarity.

Dataset-level Analysis. Although the overall conclusions of CLIMB are robust across datasets, a
few cases deviate from the general trends. We intentionally phrased our main takeaways to avoid
overgeneralization, and here we highlight notable examples to provide additional context:

* Undersampling ensembles on extremely imbalanced datasets (e.g., dis, satellite): Random
undersampling based ensembles such as Balanced Random Forest (BRF), EasyEnsemble, and
UBS can fail when the imbalance ratio is very severe. These methods discard most majority class
samples, which results in insufficient training information and weak generalization. In contrast,
approaches like Self-paced Ensemble (SPE) and BalanceCascade (BC) are more robust because
they explicitly retain informative samples through hard example mining.

* Cleaning based methods on long-tailed multiclass datasets (e.g., user-knowledge, allbp):
Cleaning based methods such as Tomek Links, ENN, and RENN often underperform in long-tailed
multiclass scenarios. Since multiple minority classes can be close to majority classes in feature
space, these cleaning procedures tend to over remove minority samples. This reduces the model’s
ability to learn rare class patterns and leads to degraded performance.

These exceptions are limited in scope and do not alter the overall conclusions of our study. Instead,

they illustrate the importance of understanding dataset specific characteristics when selecting and
applying CIL methods in practice.
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Table 6: Detailed full results on each dataset on AUPRC (x1072)

Dataset ‘Bne Undersample Cleaning ‘ Oversample Hybrid ‘ ‘ 1pl ‘ Cost-Sensitive
RUS CCINT NM | TL ENN RENN AKNN 0SS NCR | ROS SMT BSMT SSMT ASYN | SENN STom | SPEBC BRF EE UBS UBA | OBS SMBS OBA SMBA | AdaC  AdabS
bwin_amib o4 B8] 359 369 356 353 ¥ 363 31 34 350 380 B3 387 66 376 T 362
mozillad 829 % 7 0 X ®4 88 ®1 L1195 841 817 37
me2 07 |49 9 | 437 469 45 9 421 1459 438
‘wholesale-customers 735 | 700 680 ¥ 5 76 Y 09 740 B3 716 716
vertebra-column 572 583 1 6L 606
law-school-admission-bianry 374 | 375 3 5 40 ¥ 3136 36 317 317
‘bank32oh 164 | a5 9 a8 : 18 454 457 464 474
569 | 524 562 566 565 553 56 556 366 566 562 568 658
09 n1 7 D0 717 704 713695
381 X 2 39 7 412 403 376 88 /I 01 400
612 [580 542 520 6 62 X 617 612 610 594
613 601 60 599 588
675 611 624 165 1662 661 662 662 667 659 | 645 66
338 | 35. X 4 338 384383 U8 358 2
7 285 X 301 276 307 288 281 285 301
710 685 695 716 109 706 705 703 696
789 [ 732 6. 2 754 762 775 717 777 FE2SNMEBBMINEZON 812 | 71
363 X T 385 4150 375 32 386 390
303 326 306 322 03306
886 8.7 85 888 856 89 80 80
9. X 938 909 935 938 914 912 924 914 | 954
450 )6 SIS 504 473 490 468 451 454 4ag
adult 475 457 469 461
blood-transfusion-service-center 78 /1 (271 25 27
default-of-credit-card-<l 2.1 82 292 26 2B
Customer_Chum_Classification 77 33 37 369 38 366
SPECTF 27 207 269 320 303 3L1 | 35 4362
Medical-Appointment-No-Shows 250 249 243 246 246 243 246 7 244 250 258
JapaneseVowels 86 54 859 856 B $39
iom-employec-atrition 242 |21, 220 251 250 248 (24 248 [2I8] 258 253 246 244 ¥ 28 246 261 299
firstorder-theoren-proving 308 | 26: 279 29, 05308 309 302
user-knowledge 711|634 62 65 ©0 685 72 711 @3 711
online-shoppers-intention 381 | 36 £ 8 40 £ 386 8T 379 400 92
kel 22 9 266
thoracic.surgery 17 190 192 197
UCI_chum 534 530 55 22 54
arsenic-female-bladder 239 | 24 % X 1218
okcupid._stem 02 07 41 W02 02 P8 04 02
ccoli 636 15697 630 2 678 662 645 640 664 648
pet 300 343 311 32 33 37
bank marketing 270 03 274 2.
Diabetes-130-Hospials_(Firicarn) 11 12011 s e 1S s
Otto-Giroup-Product-Classification-Challenge 494 487 465 478 474
cucalyptus 62 612 @5 624 67 615 | 5!
pendigits 8938 893 897 895 X
pei 181 5 190 183 213 185
ie-blocks-bin 602 | 57: ¥ 672 65 2 723 659 ¥
opuigits 747 | 582 90 6 T X 813 792 761 719 T80 | 86 T8
mieat-karhunen 02 02 689 763 714 T34 716 696
‘micat fourier 903 | 81 08 908 908 0. 935 935 95
mieat-zenike 843 637 519 3 B9 847 86 3 84 827 802 83803 2
Pulsar-Dataset- HTRU2 07 | 45 ©2 €3 707 702 62 705 741
vowel 862 863 6. 784 84T NOLEN 82 820 % 828 780807
heart-h 23 65 279 268 270
pel 184 88 193 179 211 195
scismic-bumps 89 99 85 9l
ozone-level-Sh 166 158 161 168
‘microaggregation 256 2607 268 210 265
Sick_numeric 06 668 650
insurance_company 73 74 71 13
wilt 66 661 686 664 684
Click_prediction_small S5l s0
jannis 353350 358 340
letter 84 WO B 857 826
walking-activity B2 BS M0 BT
helena 40 42 43
mammography 393 354 319 376 32 293 24 307 214 263 213
dis 295 WG 291 278 244 270 27 : 3600 121 145 256
Satellte W7 w1 33 32 459 a1 34 |29 2 09 154 28 97
Employee Tumover-at-TECHCO 22 22 I8N 23 W26W 250 23 | 20 2 24 23 26 25
page-blocks 666 TIOBO 61 693 06 712 647
allbp 567 9 99 )5 552 522 544 563 67 508 530
CreditCardFraudDetection 575 516 582 568 590 313 532 556 | 286

Table 7: Detailed full results on each dataset on macro F1 (x1072)

Dataset Undersample i Oversample iybrid ‘ ‘ ‘ Cost-Sensitive GBDTs
ccmr KN 0ss BSMT  SSMTASYN Stom [ SPE_ BC BRE EE UBS UBA | OBS SMBS OBA SMBA | A AdaBS  AsyBS XGB LGB cAT
win_amib 55 23 sid S 50 576 553 562 539 563 557
mozillad 916 916 905
me 620 €27 639 ol4
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vertebra-colu 94 (RIS 793
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‘bank32nh 03 6.
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cpu_small 801 864 856
Credit_Approval_Classification 20 61 6
house 8L LI S8 799
house_16H 809 802 795
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blood-transusion-serviee-cenier 567
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SPECTF @2
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JapaneseVowels 915
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kel 653
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okeupid_stem 92
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bank marketin 89
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ped €4
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904
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e
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alibp T 003 ol 0
CraditCardFraudDetection X 818 867 753

19



Table 8: Detailed full results on each dataset on Balanced Accuracy (x1072).

GBDTs
LGB CAT

Dataset ‘ ase Undersample Cleaning ‘ Oversample ‘ Cost-Sensitive
RUS cC T ENN RENN AKNN 0SS NCR | ROS SMTSSVT  ASYN OB SMBA | AdaC AdaBS
bwin_amib s61 537 561 535 549 514563
mozillad 915 919 919 922 920 921 914
me2 636 653 671 627 61 661 |
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law-school-admission-bianry 601 628 84 592
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694
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7

76
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840 846 87
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747
748
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643
493 481 488 SLI

559 526

929 924
637 614

739 720
682 667

Table 9:

Detailed full results on each dataset on runtime (ms).
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Figure 6: Macro F1 score versus runtime analysis, following the dataset grouping in Table[2} The
x-axis shows the average runtime of each CIL algorithm, and the y-axis shows the average AUPRC
score. Desired methods are closer to the upper-left corner with high performance and low cost.
Different markers indicate different CIL method categories, the gray dashed line denotes the base
model (no balancing) performance and runtime.

@ Undersample ¥ Cleaning + Oversample M Undersample Ensemble % Oversample Ensemble A Cost-Sensitive

T
1 EE 0.841 HRF
] RF
o0] 1 e T
0.7 ! [ L 0.82 :'lspE
.78 1 NCR B-BC
RENN MBA |
U 0.76 1 Ei\%AKNs/ xOBA *° 0.80 1 NER
. AKNN
2 spr AN B sMps| .75 ] EM'WA:US JSeA
% 0.74 1R @J*H"TSS #asyBS % 0BS s ASYN % SMBS sspT
z Y TL &\AdaUBS 0.76 1 0BS
0.72 TS~ €S~ ==~ S e e L L Lty - AUBS - — = — —m m oo |
H ¢ 0.744, 1 AdaC
0.701 M Low Imbalance 0724 Medium Imbalance
1 IR <5 (29 datasets) . 5=/R <10 (24 datasets)
0.681 !
v : : : : : : 0.70 1+ : : : :
0 20 40 60 80 100 120 0 50 100 150 200
T _UBA BRF
0.7251 | EE = EE
PE AsPE
0.700 uss 0.854 TUBS
1
[Tl e
) 0.675 A e . Q\us
g 0.650 1 ENBJ“&R RUS SMBA 0.80 %IMT ‘HT
z MT. ASYN SMBS sspT AYYN ssMT RENN sMes
0.625 1 % OBA_AsyBS B ,_IJENN NC| AsyBE
A L it el et sttt bt CR LR 3ok 2710 RSN -7 SN S —
=ks AdaUBS p BYse TL
0.600 1 Ros High Imbalance L cs X Adauss Extreme Imbalance
1 10 =< /R <50 (15 datasets) o BA IR =50 (6 datasets)
1
0575-—@ T T T T T T T T 0.70 L FNM T T T T T
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600
Avg. Training Time (s) Avg. Training Time (s)

Figure 7: Balanced Accuracy versus runtime analysis, following the dataset grouping in Table[2] The
x-axis shows the average runtime of each CIL algorithm, and the y-axis shows the average AUPRC
score. Desired methods are closer to the upper-left corner with high performance and low cost.
Different markers indicate different CIL method categories, the gray dashed line denotes the base
model (no balancing) performance and runtime.

21



	Introduction
	Related Works
	The Climb Benchmark
	73 Reference Imbalanced Tabular Datasets
	29 Class-imbalanced Learning Algorithms
	Benchmarking Protocol

	Benchmark Results and Analysis
	Main Benchmark Results
	Performance versus Runtime Analysis
	Robustness Analysis

	Conclusion and Future Directions
	Datasets Details
	More Reproducibility Details
	Additional Experiments, Detailed Results, and Discussions
	Results with Additional CIL methods
	Pairwise comparisons between all CIL methods.
	Discussion on the Self-paced Ensemble
	Comparison with BAF Benchmark
	Detailed main results on each dataset.


