
CLIMB: Class-imbalanced Learning Benchmark on Tabular Data

**Zhining Liu¹, Zihao Li¹, Ze Yang¹, Tianxin Wei¹, Jian Kang^{2,3},
Yada Zhu⁴, Hendrik Hamann^{4,5,6}, Jingrui He¹, Hanghang Tong¹**

¹University of Illinois Urbana-Champaign ² MBZUAI ³ University of Rochester

⁴ MIT-IBM Watson AI Lab, IBM Research ⁵ Stony Brook University

⁶ Brookhaven National Laboratory

liu326@illinois.edu

Abstract

Class-imbalanced learning (CIL) on tabular data is important in many real-world applications where the minority class holds the critical but rare outcomes. In this paper, we present CLIMB, a comprehensive benchmark for class-imbalanced learning on tabular data. CLIMB includes 73 real-world datasets across diverse domains and imbalance levels, along with unified implementations of 29 representative CIL algorithms. Built on a high-quality open-source Python package with unified API designs, detailed documentation, and rigorous code quality controls, CLIMB supports easy implementation and comparison between different CIL algorithms. Through extensive experiments, we provide practical insights on method accuracy and efficiency, highlighting the limitations of naive rebalancing, the effectiveness of ensembles, and the importance of data quality. Our code, documentation, and examples are available at <https://github.com/ZhiningLiu1998/imbalance-ensemble>.

1 Introduction

Class imbalance is a pervasive challenge in many real-world classification tasks, where the minority class often represents critical yet under-represented outcomes (He and Garcia, 2009; Johnson and Khoshgoftaar, 2019). Such challenges frequently arise in tabular data, which underpins many critical applications across industrial and scientific domains (Shwartz-Ziv and Armon, 2022), such as detecting fraud in financial transactions (Xiao et al., 2021), identifying malicious connections in network logs (Cieslak et al., 2006), and predicting positive diagnoses from medical records (Rahman and Davis, 2013). Given its significance in real-world decision-making, class-imbalanced learning (CIL) on tabular data has long been a key research focus in machine learning, AI and data mining.

However, the current landscape of benchmark resources for CIL on tabular data remains fragmented, with limited coverage across different algorithmic paradigms, datasets, and application domains. Most existing tabular benchmarks focus on orthogonal challenges such as distribution shift (Gardner et al., 2024), data augmentation (Machado et al., 2022), and adversarial robustness (Simonetto et al., 2024). Among the few benchmarks or empirical studies that address class-imbalanced tabular data, most focus narrowly on specific domains such as business (Zhu et al., 2018), finance (Xiao et al., 2021), healthcare (Khushi et al., 2021), or education (Wongvorachan et al., 2023), and the degree of imbalance tends to be similar. Moreover, these studies typically evaluate only a few methods within a single learning paradigm, lacking comprehensive comparisons across different types of CIL approaches (e.g., under/over-sampling, data cleaning, cost-sensitive, and their ensemble variants) in terms of both accuracy and efficiency. These limitations hinder a deeper understanding of how existing CIL methods perform on complex real-world tabular datasets with varying imbalance levels.

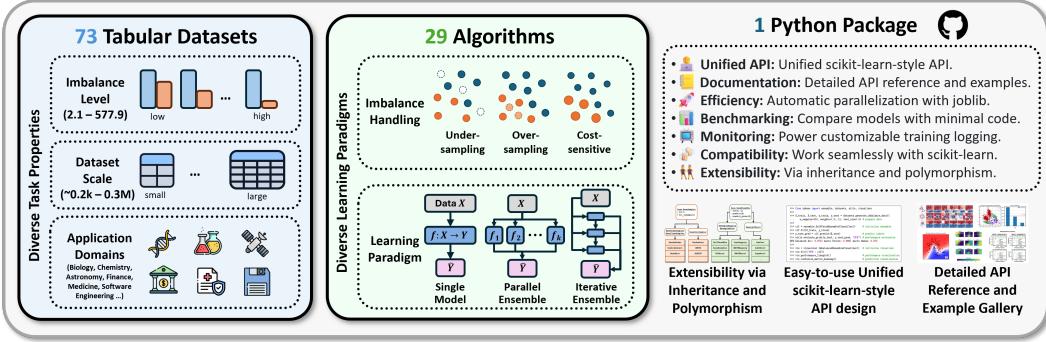


Figure 1: Overview of the proposed CLIMB benchmark. Best viewed in color.

To bridge this gap, we introduce CLIMB, a comprehensive benchmark for class-imbalanced learning on tabular data. CLIMB is based on our well-documented open-source Python package, which provides easy access to: (1) **a curated collection of 73 real-world tabular datasets** across diverse domains and imbalance levels, selected under rigorous criteria for non-triviality and realism, (2) **unified implementation of 29 representative CIL algorithms** covering resampling, cost-sensitive learning, and ensemble-based methods, (3) **principled benchmarking protocol** with comprehensive multi-fold data splits and hyperparameter searching to ensure fair comparisons. In addition, our library features: (1) **Unified API design**: we share and extend the unified API design of scikit-learn (Pedregosa et al., 2011) for ease-of-use and compatibility. (2) **Documentation and examples**: detailed API references, tutorials, and examples are provided; (3) **Quality assurance**: a suite of unit tests with 95% coverage is maintained and automatically executed through continuous integration; (4) **Easy extensibility**: algorithms are built with hierarchical and modularized abstractions, making it easy to incorporate new methods via inheritance and polymorphism. These components collectively establish CLIMB as a robust and user-friendly benchmark for class-imbalanced learning on tabular data. An overview of our CLIMB framework is provided in Figure 1.

Based on our benchmark, we have conducted extensive empirical experiments and analyses to assess the strengths and weaknesses of various CIL methods in terms of effectiveness, efficiency, and robustness. Our key takeaways are summarized as follows:

- **Class rebalancing is not always helpful.** In many cases, simple rebalancing techniques (including under-/over-sampling or cost-sensitive reweighting) tend to hurt rather than help classification performance, particularly under extreme imbalance scenarios.
- **Ensemble is critical for effective and robust CIL.** While rebalancing alone may be insufficient, combining it with ensemble strategies consistently leads to more accurate predictions and stable performance gain across different imbalance regimes.
- **Choose evaluation metrics wisely.** Different metrics emphasize different aspects of performance (e.g., AUPRC prioritizes minority class identification precision, while BAC is more sensitive to minority recall.) and may lead to different conclusions about model effectiveness.
- **Undersample ensembles strike a good performance-efficiency balance.** This paradigm is efficient due to (greatly) reduced training data and effective by combining diverse models trained on different subsets. This line of algorithms often matches or outperforms more costly competitors, thus a promising choice for large-scale or highly imbalanced scenarios.
- **Data quality matters, maybe more than class imbalance itself.** We find that adding 10% label noise or 30% missing features leads to a performance drop comparable to increasing the imbalance ratio by 500%. We believe this suggests that improving data quality may be as critical as, if not more than, solely addressing class imbalance in practice.

To summarize, our contributions in this work are three-fold: (1) **Comprehensive benchmark**: We introduce CLIMB, a general-purpose benchmark for class-imbalanced learning on tabular data. It includes a curated collection of 73 real-world datasets spanning diverse domains and imbalance levels, along with 29 representative CIL algorithms covering resampling, cost-sensitive learning, and ensemble-based approaches. (2) **High-quality open-source library**: We release a well-documented Python package that implements all benchmarked algorithms under a unified, extensible API. The library emphasizes usability, reliability, and extensibility, supported by our detailed documentation, rigorous code quality controls, and clean abstractions. (3) **Insights from extensive empirical analysis**: We perform large-scale experiments to evaluate the effectiveness, efficiency, and robustness

of existing CIL methods under class imbalance and noise. Our study reveals practical insights and failure modes, which we hope can guide future algorithm development and real-world deployment.

2 Related Works

Table 1: Comparison between this work and representative recent benchmark/empirical studies.

Reference	Algorithm Coverage				Dataset Coverage			Software Package
	Number	Resampling	Cost-sensitive	Ensemble	Number	Imbalance Ratio	Domain	
(Zhu et al., 2018)	9	✓	✗	✗	11	5.9 - 54.6	Business	✗
(Xiao et al., 2021)	9	✓	✗	✗	6	1.3 - 28.1	Finance	✗
(Khushi et al., 2021)	21	✓	✗	✓	2	24.7 - 25.0	Medical	✗
(Kim and Hwang, 2022)	7	✓	✗	✗	31	1.1 - 577.9	Multiple	✗
(Wongvorachan et al., 2023)	4	✓	✗	✗	2	3.0 - 7.1	Education	✗
Ours	29	✓	✓	✓	73	2.1 - 577.9	Multiple	✓

Class imbalance learning in different data modalities. Class imbalance is prevalent in many real-world tasks where the class of interest contains rare but critical outcomes, such as financial fraud, network intrusions, or medical diagnoses (He and Garcia, 2009). These tasks frequently involve tabular data, a core modality in practical applications (Grinsztajn et al., 2022), and have been extensively studied over the past decades. This work focuses on the most popular data-level and algorithm-level CIL branches widely adopted in practice (Haixiang et al., 2017; Rezvani and Wang, 2023). We note that class imbalance is also a central concern in deep learning, efforts in that domain typically target structured data (e.g., images, text) through customized loss functions (Lin et al., 2017a) or architectural designs (Zhou et al., 2020). Since this line of work addresses an orthogonal set of challenges, we consider it outside the scope of this paper and refer interested readers to Johnson and Khoshgoftaar (2019); Ghosh et al. (2024) for comprehensive overviews of CIL in deep learning.

Challenges of learning on imbalanced tabular data. Unlike image and language data with natural structural priors, tabular data poses unique challenges such as heterogeneous feature types, small sample sizes, and the lack of meaningful local correlations (Grinsztajn et al., 2022). As a result, tree-based models remain the de facto choice for tabular tasks due to their robustness and inductive bias (Shwartz-Ziv and Armon, 2022), often outperforming deep learning methods. These challenges are further amplified under class imbalance, where limited samples in the minority class severely affect model generalization (Ghosh et al., 2024; Rezvani and Wang, 2023). Real-world tabular data also vary widely in scale and domain-specific patterns, complicating the search for universally effective CIL strategies. Our benchmark captures these factors by including datasets with diverse sizes, imbalance ratios, and domain complexities, and further introducing controllable noise and imbalance, enabling a comprehensive evaluation of how different CIL methods handle these challenges.

Related benchmarks and empirical studies. Most prior benchmarks on tabular data have centered on challenges that are largely independent of class imbalance, such as distribution shift (Gardner et al., 2024), data augmentation (Machado et al., 2022), and adversarial robustness (Simonetto et al., 2024). Only a handful of recent benchmarks or empirical investigations explicitly focused on class-imbalanced tabular learning, but they are typically restricted to specific application domains like business (Zhu et al., 2018), finance (Xiao et al., 2021), healthcare (Khushi et al., 2021), or education (Wongvorachan et al., 2023), often featuring datasets with comparable imbalance ratios. Additionally, these studies tend to explore a limited selection of algorithms confined to a single learning paradigm, which constrains their capacity to reveal comparative insights across diverse CIL techniques. In contrast, our work introduces a comprehensive benchmark that spans a broad spectrum of real-world tasks, varying imbalance levels, and algorithmic approaches. We highlight the differences between this work and representative related works in Table 1.

3 The CLIMB Benchmark

3.1 73 Reference Imbalanced Tabular Datasets

We compiled 73 naturally class-imbalanced tabular datasets provided by OpenML (Vanschoren et al., 2014) that span a wide real-world application domains with varying sizes and imbalance levels¹. A statistical summary is provided in Figure 2. More detailed descriptions of each dataset can be found in Appendix A. They are selected using the following criteria:

¹Access via: <https://imbalanced-ensemble.readthedocs.io/en/latest/api/datasets>

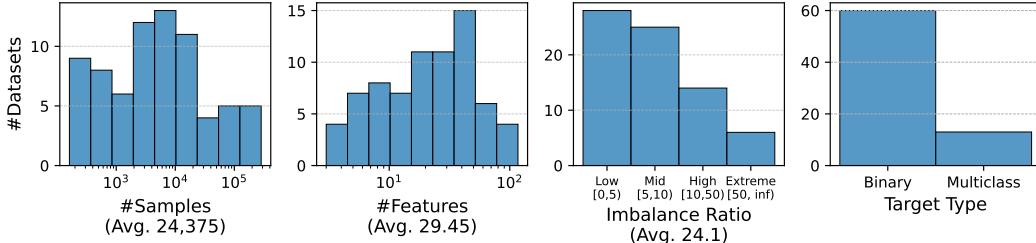


Figure 2: Statistics summary of the imbalanced tabular datasets included in CLIMB.

- **Real-world data & natural imbalance:** We select datasets collected from real-world scenarios, where the class distribution is naturally imbalanced. Artificially generated or manually imbalanced datasets are excluded to ensure that the evaluated tasks closely reflect practical applications.
- **Learning difficulty:** We discard datasets that are too easy to classify, i.e., we exclude those that can be nearly perfectly classified by a scikit-learn decision tree classifier, achieving an AUC-PR (a robust and informative metric for imbalanced classification) greater than 0.95.
- **Imbalance ratio:** Only datasets with an imbalance ratio ($IR := \frac{\#Majority\ Class}{\#Minority\ Class}$) greater than 2 are retained. For multi-class datasets, we compute IR with the largest and smallest classes. We consider that datasets with even lower IR do not pose meaningful imbalance challenges for CIL and can typically be addressed by standard machine learning methods.
- **Data completeness:** We exclude datasets with missing values. This allows us to focus on the impact of class imbalance without introducing confounding factors related to missing data handling.
- **I.I.D. datasets:** We restrict our benchmark to datasets that follow the common i.i.d. assumption, thus excluding sequential or stream-based data such as time series.
- **Not Deterministic:** We remove datasets where the target is a deterministic function of the features, e.g., datasets on games like poker and chess. We believe that these datasets differ fundamentally from most real-world tabular problems and are better examined in separate benchmarks.
- **Undocumented datasets:** To ensure datasets are suitable for in-depth individual analysis, we exclude those lacking sufficient documentation. All selected datasets have reasonably detailed descriptions, either directly on OpenML or through referenced external sources.

3.2 29 Class-imbalanced Learning Algorithms

We implemented and evaluated 29 widely-used and highly-cited representative CIL algorithms. Each algorithm follows a standardized scikit-learn-style interface, accompanied by comprehensive documentation and usage examples. Based on their underlying mechanisms, these algorithms can be broadly categorized into the following groups:

- **Undersampling:** These methods balance classes by selecting a reduced set of majority samples, typically matching the minority class size. Techniques include Random Undersampling, Cluster Centroids (Lin et al., 2017b), Instance Hardness Threshold (Smith et al., 2014), and NearMiss (Mani and Zhang, 2003). While undersampling improves computational efficiency, it often comes at the cost of information loss due to the removal of many majority-class samples.
- **Cleaning:** Cleaning methods remove noisy or borderline majority samples to clarify decision boundaries for the minority class, typically using nearest-neighbor relationships. Examples include Tomek Links (Tomek, 1976b), Edited Nearest Neighbors (Wilson, 1972), Repeated ENN (Tomek, 1976a), AllKNN (Tomek, 1976a), One-Sided Selection (Kubat et al., 1997), and the Neighborhood Cleaning Rule (Laurikkala, 2001).
- **Oversampling:** Oversampling synthesizes new minority-class instances to balance the dataset. The most well-known method is SMOTE (Chawla et al., 2002), which creates synthetic samples via linear interpolation between a seed point and one of its nearest neighbors. Our benchmark includes its enhanced variants with targeted seed selection, such as Borderline-SMOTE (Han et al., 2005), SVM-SMOTE (Nguyen et al., 2011), ADASYN (He et al., 2008), and naive Random Oversampling. While preserving original data, oversampling may introduce unrealistic samples. They also significantly increase dataset size and leading to higher training cost.
- **Undersample Ensembles:** These methods ensemble multiple models trained on diverse undersampled subsets, reducing information loss and improving robustness. Methods include Self-paced

Ensemble (Liu et al., 2020), Balance Cascade (Liu et al., 2008), Balanced Random Forest (Khoshgoftaar et al., 2007), EasyEnsemble (Liu et al., 2008), RUSBoost (Seiffert et al., 2009), and UnderBagging (Barandela et al., 2003). Beyond random undersampling, some methods leverage self-predictions to select informative subsets during training iteratively.

- **Oversample Ensembles:** These approaches build ensembles from multiple oversampled training sets, enhancing diversity without discarding data. Examples include OverBoost, SMOTEBoost (Chawla et al., 2003), OverBagging, and SMOTEBagging (Wang and Yao, 2009). However, they are computationally the most expensive due to enlarged datasets and repeated training.
- **Cost-sensitive (Ensemble):** Cost-sensitive learning adjusts for imbalance by assigning higher misclassification costs to minority classes. We set costs inversely proportional to class frequencies. We also benchmark cost-sensitive ensemble variants including AdaCost (Fan et al., 1999), AdaUBoost (Karakoulas and Shawe-Taylor, 1998), and AsymBoost (Viola and Jones, 2001).

3.3 Benchmarking Protocol

Dataset preprocessing. We apply a unified preprocessing pipeline across all datasets to ensure consistent input formats and fair comparisons among algorithms. Specifically, all numerical features are standardized to have zero mean and unit variance. For categorical features, we adopt different encoding strategies based on their cardinality: binary categorical features (i.e., with only two unique values) are transformed using ordinal encoding into a single binary nominal feature, while those with more than two unique values are encoded using one-hot encoding.

Data splitting. To mitigate the randomness introduced by a single random train-test split, we adopt a 5-fold stratified splitting strategy for all datasets and report average performance. Specifically, each dataset is partitioned into five folds with the same class distributions (i.e., preserving the original class imbalance ratio). Each fold is used once as the test set while the remaining four folds are used for training. The final performance is reported as the average score across all splits.

Algorithm configuration. Given the strong performance and widespread use of tree-based models on tabular data and their close integration with certain CIL methods (e.g., Balanced Random Forest), we use decision trees as the base classifier to cooperate with all CIL algorithms. The ensemble size is set to 100 for all ensemble-based methods. To ensure fair and optimal evaluation, we perform hyperparameter tuning using Optuna (Akiba et al., 2019), with 100 optimization trials for each of the 23 CIL algorithms with tunable hyperparameters across all 73 datasets to determine the best-performing configurations. The search space and further details are provided in Appendix B.

Evaluation metrics. Classification accuracy is known to be misleading under class imbalance, as it is often dominated by the majority class(es) (He and Garcia, 2009). To provide a fair and balanced evaluation of model performance across both majority and minority classes, we adopt three widely used metrics: Area Under the Precision-Recall Curve (AUPRC), macro-averaged F1-score, and balanced accuracy. Among these, AUPRC evaluates model performance across varying classification thresholds and thus offers a more comprehensive assessment (Saito and Rehmsmeier, 2015).

4 Benchmark Results and Analysis

Following our rigorous benchmarking protocols, we conducted comprehensive experiments across all benchmark datasets to reveal insights into the classification performance, computational efficiency, and robustness of different CIL methods under varying levels of class imbalance. These experiments involved ~ 0.8 million hyperparameter search trials, training of over 10 million base models, across 73 (datasets) \times 30 (CIL methods) \times 5 (splits) = 10,950 dataset-method-split pairs.

4.1 Main Benchmark Results

We report the main benchmark results in Table 2. To better present insights from the large volume of numerical results, we grouped the 73 datasets by imbalance ratio (IR) into four categories: low ($IR < 5$), medium ($IR \in [5, 10]$)), high ($IR \in [10, 50]$)), and extreme ($IR > 50$) imbalance. We report the performance and ranking of each CIL method averaged over each dataset within each group.

RQ1: Balancing or Cleaning? Table 2 shows that rebalancing-based CIL methods (including undersampling, oversampling, and cost-sensitive approaches) often lead to performance degradation instead of gains compared to no balancing (highlighted by red cells). Undersampling causes notable drops in AUPRC and F1 even on low-imbalance datasets due to information loss. Oversampling and cost-sensitive show degradation on highly imbalanced datasets, suggesting that synthesizing minority

Table 2: Main benchmark results. Given the large number of results, we group the 73 datasets by imbalance level into 4 categories and report the averaged AUPRC (AP), macro F1, and Balanced Accuracy (BAC) for each CIL method (in $\times 10^{-2}$). Detailed results for each dataset can be found in C. For a comprehensive evaluation, we also rank all methods on each dataset and metric, and report their average ranks. **Color coding is used to show the performance gains (blue) or losses (red) relative to the base no-balancing method, with deeper colors indicating larger differences.**

Dataset Group	Avg. Stat	Metric	Base	Undersample				Cleaning				Oversample				Undersample Ensemble				Oversample Ensemble				Cost-sensitive								
				RUS	CC	IHT	NM	TL	ENN	RENN	AKNN	OSS	NCR	ROS	SMT	BSMT	SSMT	ASYN	SPE	BC	BRF	EE	UBS	UBA	OBS	SMBS	OBA	SMBA	CS	AdaC	AdaBS	AsyBS
$IR \in [0, 5)$ (28 datasets)	Score (\uparrow)	AP	51.0	49.4	48.0	45.8	45.5	51.5	53.6	53.4	52.9	51.7	53.7	51.1	51.6	51.8	52.1	51.6	59.3	57.8	57.7	59.0	58.6	59.0	52.9	53.7	58.4	58.9	51.2	52.5	52.4	52.5
		F1	72.0	70.4	67.1	66.0	65.5	72.8	73.9	73.3	73.0	73.0	74.2	72.4	72.9	72.9	73.2	72.8	77.9	76.8	76.7	78.0	77.5	78.0	73.7	74.3	76.5	77.4	72.3	73.2	73.2	73.2
		BAC	72.1	73.3	71.7	73.8	69.7	73.3	76.5	76.7	76.4	73.6	76.6	72.5	73.5	73.6	73.8	73.6	78.5	77.3	79.7	78.7	79.7	79.7	73.7	74.8	75.7	77.0	72.4	73.2	73.1	73.2
	Rank (\downarrow)	AP	21.2	25.0	26.9	23.1	26.3	18.9	12.7	13.7	15.6	18.2	12.9	21.5	20.0	19.5	18.0	20.1	4.5	8.0	7.5	5.3	5.4	5.1	16.5	14.3	6.1	4.6	21.9	17.0	17.6	16.4
		F1	20.6	26.1	27.3	28.3	27.5	17.8	13.8	15.9	17.8	16.7	13.2	20.5	19.0	18.5	17.2	18.8	3.8	7.1	8.3	4.6	5.3	4.3	15.8	13.0	8.2	5.1	21.3	16.1	17.5	15.5
		BAC	24.3	20.3	23.9	19.3	25.4	19.2	11.2	10.8	12.1	17.9	10.8	23.6	20.0	19.1	17.5	18.9	6.3	8.7	3.5	3.5	5.8	3.4	19.7	14.3	11.9	8.8	24.8	19.6	21.3	19.2
$IR \in [5, 10)$ (24 datasets)	Score (\uparrow)	AP	50.9	43.2	35.3	40.0	32.1	51.0	52.5	52.6	52.5	50.8	52.5	51.1	51.7	51.4	51.9	50.7	64.6	62.7	60.5	62.4	63.8	62.4	54.8	54.1	61.2	62.8	51.4	54.1	54.4	54.1
		F1	74.7	68.4	56.7	64.2	57.4	74.6	75.1	75.0	75.0	74.5	75.2	74.4	75.1	75.0	75.3	74.6	79.7	78.7	76.7	78.7	79.3	78.7	75.6	75.8	77.0	78.5	74.5	75.4	75.4	75.4
		BAC	74.7	76.0	71.2	76.5	70.8	74.9	77.6	78.0	77.7	74.8	77.8	74.4	76.4	75.8	76.4	75.7	82.1	80.8	83.1	82.9	82.5	82.9	75.4	76.8	75.6	77.7	74.5	75.0	75.1	75.0
	Rank (\downarrow)	AP	20.6	25.3	28.6	25.2	28.6	20.2	14.9	14.3	15.4	19.9	15.0	20.3	17.8	18.7	17.1	20.0	2.6	5.8	8.5	6.0	3.3	5.8	14.2	15.1	9.4	6.5	20.0	15.5	15.4	15.1
		F1	18.8	27.1	29.2	28.3	29.2	18.5	15.6	15.6	15.7	18.6	15.3	18.8	16.5	17.6	15.2	18.8	3.7	6.2	12.7	6.4	3.5	6.0	14.2	14.3	10.5	5.8	18.4	15.0	15.2	14.4
		BAC	22.4	18.2	25.2	17.3	25.5	21.7	14.1	12.9	13.8	20.8	13.7	22.4	14.7	18.2	14.5	18.5	5.3	6.8	2.9	3.6	3.6	3.1	18.8	14.2	17.1	11.8	22.2	20.6	20.5	20.5
$IR \in [10, 50)$ (15 datasets)	Score (\uparrow)	AP	34.9	23.6	17.4	27.1	14.5	35.1	36.2	36.2	35.9	35.5	36.3	34.1	34.3	35.8	35.0	34.1	47.1	41.4	38.4	41.9	44.9	41.9	36.7	36.6	45.0	46.0	34.1	36.4	36.7	36.4
		F1	61.6	51.2	35.8	52.9	35.6	61.6	62.3	61.9	61.5	61.9	62.4	61.0	61.0	62.1	61.7	61.0	65.5	62.1	59.7	62.9	64.0	62.9	61.6	61.7	64.0	65.8	61.0	61.5	61.6	61.5
		BAC	61.8	63.6	56.7	65.8	54.3	62.1	64.5	65.0	64.3	62.3	64.1	60.8	63.5	63.7	63.5	62.2	70.7	67.8	72.2	72.1	70.4	72.1	61.1	64.0	62.4	65.1	61.0	61.5	61.2	61.5
	Rank (\downarrow)	AP	18.4	25.5	29.4	21.5	29.4	17.9	13.3	13.7	14.5	16.3	12.7	20.9	19.8	15.3	17.4	19.7	3.9	8.9	13.3	9.4	5.4	9.2	14.0	14.6	7.4	5.5	20.6	16.7	14.5	16.2
		F1	14.2	27.9	29.5	26.9	29.4	15.2	10.6	12.0	14.3	13.0	11.5	18.7	18.4	12.3	15.1	18.4	4.8	14.3	18.9	11.5	7.5	11.3	14.5	15.5	10.0	5.7	18.0	15.7	14.9	15.1
		BAC	20.2	16.8	27.2	11.9	28.0	19.9	14.7	13.0	15.4	18.6	14.2	24.1	14.7	13.1	14.7	16.7	5.3	6.9	2.9	2.9	5.5	2.1	22.7	14.0	17.9	13.8	23.0	21.1	22.6	21.0
$IR \in [50, 1000)$ (6 datasets)	Score (\uparrow)	AP	42.6	18.9	15.9	33.0	13.5	44.2	45.0	44.1	44.9	44.3	44.6	41.7	37.1	42.2	41.9	34.3	57.5	50.1	32.9	35.5	43.3	35.5	45.0	40.5	56.4	56.0	41.7	48.1	46.6	48.1
		F1	74.0	50.6	35.2	68.0	32.9	75.0	75.1	74.7	74.8	75.1	75.0	73.6	71.9	74.4	73.7	70.3	74.7	68.6	56.3	59.8	68.5	59.8	74.3	71.9	75.8	76.6	73.9	74.9	74.9	74.9
		BAC	74.6	81.8	70.5	79.9	66.2	75.1	75.8	76.1	75.6	75.2	75.6	73.1	77.2	76.1	76.0	76.3	85.9	83.0	88.0	87.3	85.7	87.3	73.5	77.6	72.4	74.4	73.1	74.8	73.2	74.8
	Rank (\downarrow)	AP	16.7	27.7	29.2	20.5	29.8	15.8	12.3	13.3	13.2	14.3	15.0	18.5	18.3	15.3	16.8	21.7	2.7	8.5	17.5	15.3	9.7	15.0	14.2	16.7	7.3	6.3	18.5	11.0	13.5	10.3
		F1	13.2	27.8	29.5	18.8	29.5	11.0	9.0	11.5	11.0	9.8	11.2	15.3	14.7	11.8	13.8	18.5	10.8	15.8	26.8	24.7	18.3	25.7	12.5	13.8	9.5	7.8	13.3	9.5	11.3	8.5
		BAC	20.8	7.3	21.8	10.3	23.2	20.3	13.7	14.5	14.7	19.3	15.7	25.2	13.7	16.2	16.0	17.3	4.7	5.3	2.2	3.0	4.3	2.7	23.5	12.5	26.0	21.5	24.3	20.5	24.7	19.8

Abbreviations: Random Undersampling (RUS), Cluster Centroids (CC), Instance Hardness Threshold (IHT), NearMiss (NM), Tomek Links (TL), Edited Nearest Neighbors (ENN), Repeated ENN (RENN), AllKNN (AKNN), One-Sided Selection (OSS), Neighborhood Cleaning Rule (NCR), Random Oversampling (ROS), SMOTE (SMT), Borderline SMOTE (BSMT), SVM SMOTE (SSMT), ADASYN (ASYN), Self-paced Ensemble (SPE), Balance Cascade (BC), Balanced Random Forest (BRF), Easy Ensemble (EE), RUSBoost (UBS), UnderBagging (UBA), OverBagging (OBS), SMOTEBoost (SMBS), OverBagging (OBA), SMOTEBagging (SMBA), Cost-sensitive (CS), AdaCost (AdaC), AdaUBBoost (AdaBS), AsyBoost (AsyBS).

samples and reweighting are not robust when the minority class is poorly represented. In contrast, cleaning methods with less aggressive data modifications demonstrate more stable performance.

Takeaway #1: Class rebalancing is not always helpful, while cleaning can be a safer choice.

When used alone, focusing on preserving or improving representation quality through cleaning seems to be a safer and more robust strategy than balanced resampling or reweighting.

RQ2: Does ensemble help? The top-performing methods (highlighted by blue cells) across different imbalance levels and metrics are predominantly ensemble-based. Interestingly, while standalone undersampling methods perform poorly, undersample ensembles effectively mitigate information loss by combining multiple views and lead to strong results. Even simple approaches based on random undersampling (e.g., BRF, UBS, UBA) perform well under low to medium imbalance. For highly imbalanced cases, methods like SPE and BC further improve by leveraging self-predictions to iteratively select informative subsets, achieving performance comparable to more expensive oversample ensembles. Among the oversample ensembles, Bagging-based methods (OBA, SMBA) perform better than Boosting-based ones (OBS, SMBS), especially in highly-imbalanced cases. We attribute this to the introduction of low-quality and hard-to-classify synthetic samples by oversampling strategies like SMOTE: boosting-based methods may overemphasize these low-quality synthetic samples, while bagging is generally more robust to noise within the dataset.

Takeaway #2: Ensemble is a critical technique for effective and robust CIL.

Ensembles achieve balanced and robust learning by aggregating multiple rebalanced views. They mitigate information loss from undersampling, enhance diversity from oversampling, and consistently outperform single models across all imbalance levels.

RQ3: How to select evaluation metric(s)? We also note that different metrics may lead to different conclusions. For instance, in the extreme imbalance ($IR > 50$) group, RUS and its ensembles (e.g., BRF, UBA) typically improve BAC but degrade AUPRC and F1, whereas oversampling and cost-sensitive ensembles (e.g., OBA, AdaBS) show the opposite trend. This reflects the different focus of each metric (Jeni et al., 2013; Japkowicz, 2013): AUPRC and F1 prioritize precision and accurate minority class identification, making them sensitive to false positives, while BAC emphasizes balanced recall across classes. Undersampling improves minority recall by discarding most majority samples but at the cost of precision (misclassifying many majority instances), whereas oversampling and cost-sensitive methods better preserve precision, sometimes sacrificing the recall of minority samples. In practice, metric choice should be informed by domain knowledge, e.g., precision is critical in spam detection to avoid misclassifying legitimate emails and disrupting user communication, while recall is paramount in cancer screening to prevent missing true cases (Haixiang et al., 2017).

Takeaway #3: Different metrics may lead to different conclusions for certain methods.

Different metrics emphasize different aspects of performance evaluation and sometimes lead to different conclusions. In practice, one should choose appropriate metrics based on domain needs for a more accurate interpretation of model effectiveness.

4.2 Performance versus Runtime Analysis

Setup. Beyond classification performance, the runtime efficiency of CIL algorithms is also crucial for practical applications. Figure 3 presents a performance versus runtime analysis to illustrate the utility-efficiency trade-off of different models across dataset groups with different imbalance levels. Runtimes were measured on a workstation with an Intel Core i9 12900 CPU.

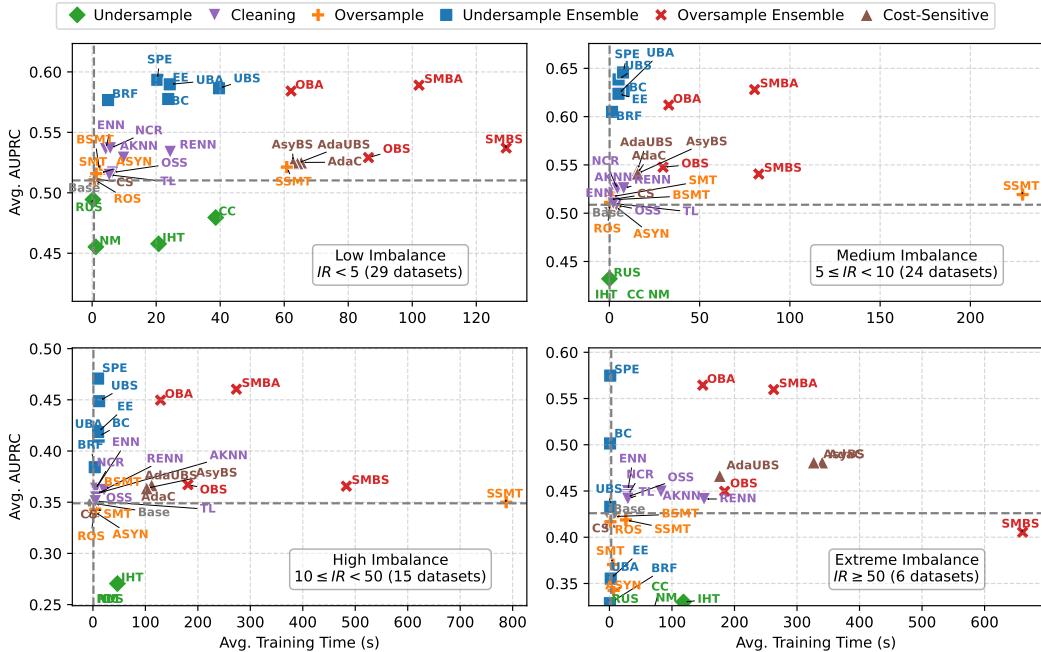


Figure 3: Performance versus runtime analysis, following the dataset grouping in Table 2. The **x-axis** shows the average runtime of each CIL algorithm, and the **y-axis** shows the average AUPRC. **Desired methods are closer to the upper-left corner with high accuracy and low computational cost.** Different markers indicate different CIL method categories, the dashed line denotes the base model (no balancing) performance and runtime. More results with other metrics are in Appendix C.

RQ4: Which (types of) methods are costly and why? (i) *For non-ensemble methods*, cost differences mainly arise from the overhead of the resampling operation itself, while the impact of training sample size is relatively minor. For example, complex undersampling methods (e.g., clustering-based CC and probability-based IHT) tend to be more time-consuming than simpler oversampling approaches. (ii) *For ensemble methods*, cost differences are primarily driven by the

size of the training data and the ensemble training paradigm. Runtime cost generally follows the order: undersampling < cost-sensitive < oversampling, and bagging-based < boosting-based. The reason behind is that ensemble methods typically do not rely on overly complex balancing operations, but training multiple base models significantly amplifies the impact of training set size and ensemble strategy on the overall runtime. **(iii) Other remarks:** We note that the runtime observations are not comparable between different dataset groups as their datasets vary in size and dimensions. Also, the importance of training set size in runtime may change if we use base models that are more/less sensitive to dataset scale.

RQ5: Are ensemble methods always more expensive to train? Not necessarily. For instance, complex undersampling methods like IHT and CC are often slower than many undersample ensembles, even though the latter needs to train 100 base models. Similarly, SVM-SMOTE (SSMT), which requires training an auxiliary SVM model for oversampling, can in some cases be more time-consuming than all tested tree-based ensembles. Notably, we observe that undersample ensembles often achieve strong predictive performance with relatively low computational cost. Even under extreme imbalance, iterative informed undersampling variants such as SPE and BC continue to perform robustly.

Takeaway #4: Undersample ensembles strike a good accuracy-efficiency balance.

Undersample ensembles deliver strong results at low cost by reducing training data and aggregating diverse views. The best variants often rival or outperform more expensive counterparts.

4.3 Robustness Analysis

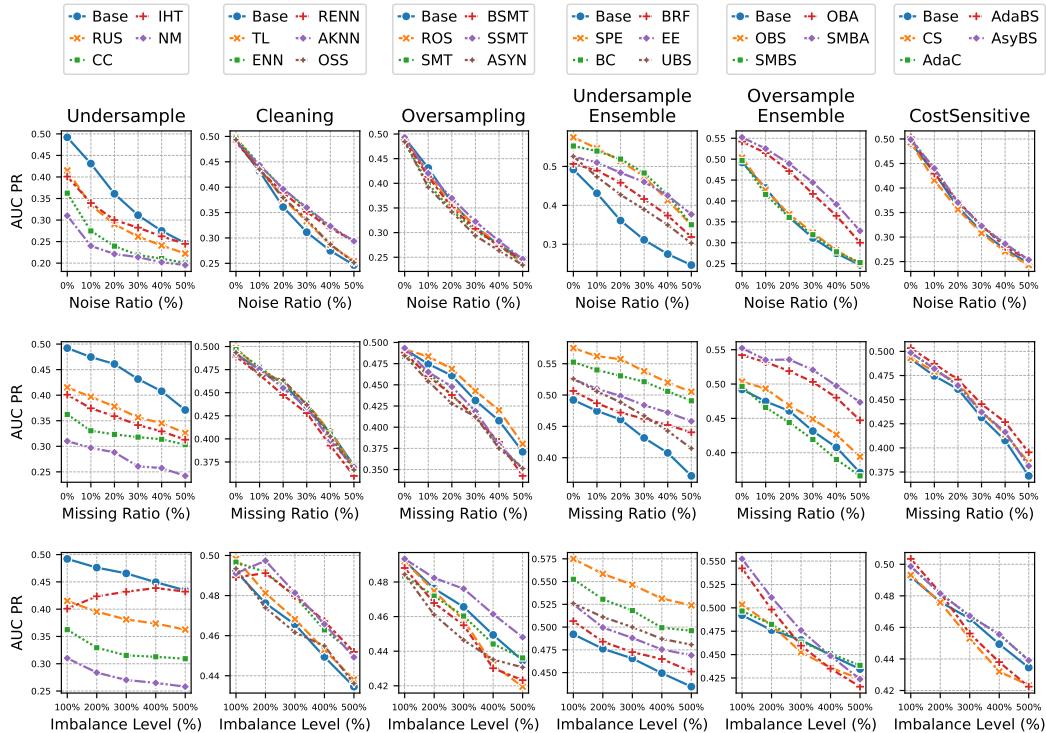


Figure 4: Robustness analysis. Each row corresponds to the noise, missing values, and additional class imbalance setting (from top to bottom). Each column represents a branch of CIL methods.

Setup. Finally, we conduct controlled experiments to study how noise, missing values, and more severe class imbalance impact CIL model performance, offering insights for handling similar difficulties in practical applications. To ensure a fair comparison, each factor is introduced individually while keeping other factors unchanged. **(i) Label noise:** We introduce label flipping noise to simulate real-world annotation errors. The noise ratio is defined on minority class, e.g., a 10% noise ratio means that 10% of the minority-class samples are randomly relabeled as other classes, while an equal number of non-minority samples are relabeled as the minority class. This preserves the original IR. **(ii)**

Missing value: Given the missing ratio, we randomly mask corresponding number of values across all samples and features, replace them with the mean value observed for each respective feature. This setting simulates the common practice of mean imputation in real-world applications. **(iii) Additional imbalance:** We intensify class imbalance by further removing samples from the minority class. For example, a 200% imbalance level means that 50% of the minority-class samples are removed, thus doubling the original IR. Figure 4 shows the results averaged over all tested datasets.

RQ6: Are CIL methods robust to additional difficulty factors? *Generally, yes.* In most cases, the relative gain or loss of CIL methods compared to the base (no-balancing) setting remains consistent across different levels of noise, missing values, and additional class imbalance. The ranking among CIL methods also remains largely stable. A few exceptions: (i) IHT shows improvement as imbalance increases. This is because IHT removes hard examples that classifiers do not predict confidently. As minority class shrinks, such hard examples become fewer, causing IHT to gradually degenerate toward no-balancing behavior. (ii) OBA and SMBA show huge performance drops under extreme imbalance. We attribute this to the further reduction in minority-class size, which limits the ability of oversampling and synthetic samples to enhance minority-class representation.

RQ7: Which factor has a greater impact? Interestingly, we observe that noise and missing values have a greater impact on model performance than class imbalance. For the base model, introducing 10% label noise or 30% missing features results in a similar performance drop of increasing the imbalance ratio by 500%. This implies the importance of maintaining data quality, which also aligns with our earlier finding on the effectiveness of data cleaning methods, as discussed in Takeaway #1.

Takeaway #5: Data quality greatly affects CIL, if not more than class imbalance itself.

Noisy labels and missing features can degrade model performance as much as, or even more than, severe class imbalance. Ensuring high data quality is crucial for building robust models and should be prioritized alongside class rebalancing.

Additional results in the appendix. Due to space limitations, we present the key results and insights in the main text. Appendix C includes results with **hybrid sampling methods and GBDTs**, **pairwise win-ratio comparisons**, **full per-dataset evaluation scores**, and **runtime analyses**.

5 Conclusion and Future Directions

Limitations and Future Directions. While we have conducted a comprehensive study given available resources, many interesting questions remain open for future work. Building on our findings, we highlight several promising directions to further extend our work and advance the field of CIL:

- Conducting similar analyses under the combined effects of class imbalance and other data quality challenges, such as noise, missing values, class overlapping (Santos et al., 2022), and small disjuncts (Jo and Japkowicz, 2004). This may be facilitated by developing flexible, realistic tabular data synthesis frameworks (Liu et al., 2024).
- Investigating the effectiveness of deep learning-based solutions. Although tree-based models generally outperform deep models on tabular data (Grinsztajn et al., 2022), combining deep architectures with established CIL paradigms (e.g., undersample ensembles) and other forms of inductive bias may enable more effective deep imbalanced learning.
- Examining the integration of CIL methods with non-tree-based models to explore whether different types of base learners provide unique advantages on imbalanced tabular data.
- Exploring combinations of different CIL paradigms, such as dynamically integrating data cleaning into ensembles to enhance robustness against low-quality data. Additionally, designing AutoML systems that can automatically compose these modules during inference presents an interesting future direction (Barbudo et al., 2023; Karmaker et al., 2021).

Conclusion. In this paper, we introduced CLIMB, a comprehensive benchmark for class-imbalanced learning (CIL) on tabular data. CLIMB provides a curated collection of 73 real-world datasets spanning diverse domains and imbalance levels, along with unified implementations of 29 representative CIL algorithms. Built upon a high-quality open-source library, CLIMB enables fair, reproducible, and extensible evaluation of CIL methods. Through empirical studies involving millions of model trainings and hyperparameter searches, we drew several practical insights. (i) naive class rebalancing alone is

often ineffective, while data cleaning offers a safer improvement strategy; (ii) ensemble methods are critical for robust and effective CIL; (iii) the evaluation metric may affect the conclusion and should be chosen wisely; (iv) undersample ensembles strike a favorable balance between performance and efficiency; (v) data quality issues, such as label noise and missing values, can have even greater impact on model performance than class imbalance itself. We hope that CLIMB will serve as a solid foundation for advancing future research on class-imbalanced learning and promote the development of more reliable and practical solutions for real-world challenges.

Acknowledgments and Disclosure of Funding

This work is supported by the National Science Foundation (IIS-2117902 and 2433308), MIT-IBM Watson AI Lab, and IBM-Illinois Discovery Accelerator Institute. The views and conclusions are those of the authors and should not be interpreted as representing the official policies of the funding agencies or the government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes, notwithstanding any copyright notation here on.

References

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A next-generation hyperparameter optimization framework. In *Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining*, pages 2623–2631, 2019.

Ricardo Barandela, Rosa María Valdovinos, and José Salvador Sánchez. New applications of ensembles of classifiers. *Pattern Analysis & Applications*, 6:245–256, 2003.

Rafael Barbudo, Sebastián Ventura, and José Raúl Romero. Eight years of automl: categorisation, review and trends. *Knowledge and Information Systems*, 65(12):5097–5149, 2023.

Gustavo EAPA Batista, Ana LC Bazzan, Maria Carolina Monard, et al. Balancing training data for automated annotation of keywords: a case study. *Wob*, 3:10–18, 2003.

Gustavo EAPA Batista, Ronaldo C Prati, and Maria Carolina Monard. A study of the behavior of several methods for balancing machine learning training data. *ACM SIGKDD explorations newsletter*, 6(1):20–29, 2004.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic minority over-sampling technique. *Journal of artificial intelligence research*, 16:321–357, 2002.

Nitesh V Chawla, Aleksandar Lazarevic, Lawrence O Hall, and Kevin W Bowyer. Smoteboost: Improving prediction of the minority class in boosting. In *European conference on principles of data mining and knowledge discovery*, pages 107–119. Springer, 2003.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In *Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining*, pages 785–794, 2016.

David A Cieslak, Nitesh V Chawla, and Aaron Striegel. Combating imbalance in network intrusion datasets. In *GrC*, pages 732–737, 2006.

Wei Fan, Salvatore J Stolfo, Junxin Zhang, and Philip K Chan. Adacost: misclassification cost-sensitive boosting. In *ICML*, volume 99, pages 97–105, 1999.

Josh Gardner, Zoran Popovic, and Ludwig Schmidt. Benchmarking distribution shift in tabular data with tableshift. *Advances in Neural Information Processing Systems*, 36, 2024.

Kushankur Ghosh, Colin Bellinger, Roberto Corizzo, Paula Branco, Bartosz Krawczyk, and Nathalie Japkowicz. The class imbalance problem in deep learning. *Machine Learning*, 113(7):4845–4901, 2024.

Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still outperform deep learning on typical tabular data? *Advances in neural information processing systems*, 35: 507–520, 2022.

Guo Haixiang, Li Yijing, Jennifer Shang, Gu Mingyun, Huang Yuanyue, and Gong Bing. Learning from class-imbalanced data: Review of methods and applications. *Expert systems with applications*, 73:220–239, 2017.

Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. Borderline-smote: a new over-sampling method in imbalanced data sets learning. In *International conference on intelligent computing*, pages 878–887. Springer, 2005.

John T Hancock and Taghi M Khoshgoftaar. Catboost for big data: an interdisciplinary review. *Journal of big data*, 7(1):94, 2020.

Haibo He and Edwardo A Garcia. Learning from imbalanced data. *IEEE Transactions on knowledge and data engineering*, 21(9):1263–1284, 2009.

Haibo He, Yang Bai, Edwardo A Garcia, and Shutao Li. Adasyn: Adaptive synthetic sampling approach for imbalanced learning. In *2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence)*, pages 1322–1328. Ieee, 2008.

Nathalie Japkowicz. Assessment metrics for imbalanced learning. *Imbalanced learning: Foundations, algorithms, and applications*, pages 187–206, 2013.

László A Jeni, Jeffrey F Cohn, and Fernando De La Torre. Facing imbalanced data—recommendations for the use of performance metrics. In *2013 Humaine association conference on affective computing and intelligent interaction*, pages 245–251. IEEE, 2013.

Sérgio Jesus, José Pombal, Duarte Alves, André Cruz, Pedro Saleiro, Rita Ribeiro, João Gama, and Pedro Bizarro. Turning the tables: Biased, imbalanced, dynamic tabular datasets for ml evaluation. *Advances in Neural Information Processing Systems*, 35:33563–33575, 2022.

Taeho Jo and Nathalie Japkowicz. Class imbalances versus small disjuncts. *ACM Sigkdd Explorations Newsletter*, 6(1):40–49, 2004.

Justin M Johnson and Taghi M Khoshgoftaar. Survey on deep learning with class imbalance. *Journal of big data*, 6(1):1–54, 2019.

Grigoris Karakoulas and John Shawe-Taylor. Optimizing classifiers for imbalanced training sets. *Advances in neural information processing systems*, 11, 1998.

Shubhra Kanti Karmaker, Md Mahadi Hassan, Micah J Smith, Lei Xu, Chengxiang Zhai, and Kalyan Veeramachaneni. Automl to date and beyond: Challenges and opportunities. *Acm computing surveys (csur)*, 54(8):1–36, 2021.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. *Advances in neural information processing systems*, 30, 2017.

Taghi M Khoshgoftaar, Moiz Golawala, and Jason Van Hulse. An empirical study of learning from imbalanced data using random forest. In *19th IEEE international conference on tools with artificial intelligence (ICTAI 2007)*, volume 2, pages 310–317. IEEE, 2007.

Matloob Khushi, Kamran Shaukat, Talha Mahboob Alam, Ibrahim A Hameed, Shahadat Uddin, Suhuai Luo, Xiaoyan Yang, and Maranatha Consuelo Reyes. A comparative performance analysis of data resampling methods on imbalance medical data. *IEEE Access*, 9:109960–109975, 2021.

Misuk Kim and Kyu-Baek Hwang. An empirical evaluation of sampling methods for the classification of imbalanced data. *PLoS One*, 17(7):e0271260, 2022.

Miroslav Kubat, Stan Matwin, et al. Addressing the curse of imbalanced training sets: one-sided selection. In *Icml*, volume 97, page 179. Citeseer, 1997.

Jorma Laurikkala. Improving identification of difficult small classes by balancing class distribution. In *Artificial Intelligence in Medicine: 8th Conference on Artificial Intelligence in Medicine in Europe, AIME 2001 Cascais, Portugal, July 1–4, 2001, Proceedings 8*, pages 63–66. Springer, 2001.

Guillaume LemaÃŽtre, Fernando Nogueira, and Christos K Aridas. Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning. *Journal of machine learning research*, 18(17):1–5, 2017.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object detection. In *Proceedings of the IEEE international conference on computer vision*, pages 2980–2988, 2017a.

Wei-Chao Lin, Chih-Fong Tsai, Ya-Han Hu, and Jing-Shang Jhang. Clustering-based undersampling in class-imbalanced data. *Information Sciences*, 409:17–26, 2017b.

Tongyu Liu, Ju Fan, Guoliang Li, Nan Tang, and Xiaoyong Du. Tabular data synthesis with generative adversarial networks: design space and optimizations. *The VLDB Journal*, 33(2):255–280, 2024.

Xu-Ying Liu, Jianxin Wu, and Zhi-Hua Zhou. Exploratory undersampling for class-imbalance learning. *IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)*, 39(2):539–550, 2008.

Zhining Liu, Wei Cao, Zhifeng Gao, Jiang Bian, Hechang Chen, Yi Chang, and Tie-Yan Liu. Self-paced ensemble for highly imbalanced massive data classification. In *2020 IEEE 36th international conference on data engineering (ICDE)*, pages 841–852. IEEE, 2020.

Pedro Machado, Bruno Fernandes, and Paulo Novais. Benchmarking data augmentation techniques for tabular data. In *International Conference on Intelligent Data Engineering and Automated Learning*, pages 104–112. Springer, 2022.

Inderjeet Mani and I Zhang. knn approach to unbalanced data distributions: a case study involving information extraction. In *Proceedings of workshop on learning from imbalanced datasets*, volume 126, pages 1–7. ICML United States, 2003.

Hien M Nguyen, Eric W Cooper, and Katsuari Kamei. Borderline over-sampling for imbalanced data classification. *International Journal of Knowledge Engineering and Soft Data Paradigms*, 3(1):4–21, 2011.

Yoshihiko Ozaki, Yuki Tanigaki, Shuhei Watanabe, Masahiro Nomura, and Masaki Onishi. Multiobjective tree-structured parzen estimator. *Journal of Artificial Intelligence Research*, 73:1209–1250, 2022.

Fabian Pedregosa, GaÃ«l Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python. *the Journal of machine Learning research*, 12:2825–2830, 2011.

M Mostafizur Rahman and Darryl N Davis. Addressing the class imbalance problem in medical datasets. *International Journal of Machine Learning and Computing*, 3(2):224, 2013.

Salim Rezvani and Xizhao Wang. A broad review on class imbalance learning techniques. *Applied Soft Computing*, 143:110415, 2023.

Takaya Saito and Marc Rehmsmeier. The precision-recall plot is more informative than the roc plot when evaluating binary classifiers on imbalanced datasets. *PloS one*, 10(3):e0118432, 2015.

Miriam Seoane Santos, Pedro Henriques Abreu, Nathalie Japkowicz, Alberto Fernández, Carlos Soares, Szymon Wilk, and Joao Santos. On the joint-effect of class imbalance and overlap: a critical review. *Artificial Intelligence Review*, 55(8):6207–6275, 2022.

Chris Seiffert, Taghi M Khoshgoftaar, Jason Van Hulse, and Amri Napolitano. Rusboost: A hybrid approach to alleviating class imbalance. *IEEE transactions on systems, man, and cybernetics-part A: systems and humans*, 40(1):185–197, 2009.

Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you need. *Information Fusion*, 81:84–90, 2022.

Thibault Simonetto, Salah Ghamizi, and Maxime Cordy. Tabularbench: Benchmarking adversarial robustness for tabular deep learning in real-world use-cases. *arXiv preprint arXiv:2408.07579*, 2024.

Michael R Smith, Tony Martinez, and Christophe Giraud-Carrier. An instance level analysis of data complexity. *Machine learning*, 95:225–256, 2014.

Ivan Tomek. An experiment with the edited nearest-neighbor rule. 1976a.

Ivan Tomek. Two modifications of cnn. 1976b.

Joaquin Vanschoren, Jan N Van Rijn, Bernd Bischl, and Luis Torgo. Openml: networked science in machine learning. *ACM SIGKDD Explorations Newsletter*, 15(2):49–60, 2014.

Paul Viola and Michael Jones. Fast and robust classification using asymmetric adaboost and a detector cascade. *Advances in neural information processing systems*, 14, 2001.

Shuo Wang and Xin Yao. Diversity analysis on imbalanced data sets by using ensemble models. In *2009 IEEE symposium on computational intelligence and data mining*, pages 324–331. IEEE, 2009.

Dennis L Wilson. Asymptotic properties of nearest neighbor rules using edited data. *IEEE Transactions on Systems, Man, and Cybernetics*, (3):408–421, 1972.

Tarid Wongvorachan, Surina He, and Okan Bulut. A comparison of undersampling, oversampling, and smote methods for dealing with imbalanced classification in educational data mining. *Information*, 14(1):54, 2023.

Jin Xiao, Yadong Wang, Jing Chen, Ling Xie, and Jing Huang. Impact of resampling methods and classification models on the imbalanced credit scoring problems. *Information Sciences*, 569: 508–526, 2021.

Boyan Zhou, Quan Cui, Xiu-Shen Wei, and Zhao-Min Chen. Bbn: Bilateral-branch network with cumulative learning for long-tailed visual recognition. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 9719–9728, 2020.

Bing Zhu, Bart Baesens, Aimée Backiel, and Seppe KLM Vanden Broucke. Benchmarking sampling techniques for imbalance learning in churn prediction. *Journal of the Operational Research Society*, 69(1):49–65, 2018.

Appendix

This appendix provides additional details to support the experiments and findings presented in the main paper. Section A presents details of the datasets used in our benchmark. Section B describes further reproducibility details such as hyperparameter search strategy and runtime measurement protocols. Finally, Section C provides extended results and analyses, including additional CIL baselines (hybrid sampling methods and GBDTs), pairwise win-ratio comparisons, discussion on the advantages of Self-paced Ensemble, comparison with the BAF benchmark, and full per-dataset evaluation scores and runtime statistics.

A Datasets Details

Dataset descriptions. The 73 datasets we evaluated span a wide range of imbalance levels, sizes, and dimensions, and were selected based on the seven rigorous criteria outlined in Section 3.1. All datasets were collected from real-world scenarios and naturally exhibit class imbalance. We note that OpenML includes numerous artificially generated imbalanced datasets, but these were excluded to ensure that the evaluated tasks closely reflect practical applications. The final collection covers tasks from diverse real-world domains such as finance, medicine, and engineering. Table 3 summarizes key information for each dataset, including name, number of samples and features, imbalance ratio, target type, domain, and a brief task description. Due to the large number of datasets, we do not provide individual citations here. Full dataset descriptions and reference publications can be found on their respective OpenML pages or in the referenced external sources therein.

Table 3: Dataset statistics and descriptions.

Dataset	#Samples	#Features	IR	Type	Domain	Description
bwin_amb	530	13	2.01	Binary	Behavioral Analytics	Aggregated data on virtual and live sports betting behavior over a multi-month period.
mozilla4	15545	5	2.04	Binary	Software Engineering	Tracks defect rates and code size changes in Mozilla C++ classes over time.
ms2	161	39	2.1	Binary	Software Engineering	NASA software defect dataset using McCabe and complexity metrics.
vertebral-column	310	6	2.1	Binary	Medicine	Biometrical features used to classify vertebral column diseases.
wholesale-customers	440	8	2.1	Binary	Retail	Annual spending profiles of wholesale distribution customers across product categories.
law-school-admission-binary	20800	14	2.11	Binary	Education	Binary prediction of law school applicants' LGPA with demographic attributes.
bank32h	8192	32	2.22	Binary	Finance	Bank dataset with a binarized target based on mean threshold.
elevators	16599	18	2.24	Binary	Robotics	Control application data binarized by thresholding numeric targets.
cpu_small	8192	12	2.31	Binary	Computer Systems	Binarized CPU performance data from original regression targets.
Credit_Approval_Classification	1000	50	2.33	Binary	Finance	Predicts credit approval based on demographic and financial features.
house_8L	22784	8	2.38	Binary	Real Estate	House price data with binarized target values based on average threshold.
house_16H	22784	16	2.38	Binary	Real Estate	Higher-dimensional version of house price data with binarized targets.
phoneme	5404	5	2.41	Binary	Speech Recognition	Classification of nasal vs. oral phonemes using harmonic amplitude features.
ilpd-numeric	583	10	2.49	Binary	Medicine	Liver disorder classification with all-numeric features.
planning-relax	182	12	2.5	Binary	Neuroscience	EEG signal data distinguishing planning vs. relaxation mental states.
MiniBooNE	130064	50	2.56	Binary	Physics	Distinguished electron from muon neutrinos in a particle experiment.
machine_cpu	209	6	2.73	Binary	Computer Systems	Binarized CPU benchmark dataset based on performance metrics.
tele-customer-churn	7043	39	2.77	Binary	Business	Telecommunications churn prediction based on service and usage data.
haberman	306	3	2.78	Binary	Medicine	Survival analysis of breast cancer patients after surgery.
vehicle	846	18	2.88	Binary	Automotive	Binarized vehicle type classification dataset based on majority class.
cpu	209	36	2.94	Binary	Computer Systems	CPU performance data converted into binary classification task.
ada	4147	48	3.03	Binary	Sociology	Discover high revenue people from census data.
adult	48842	107	3.18	Binary	Sociology	Predicts income level (>50K) from census features.
blood-transfusion-service-center	748	4	3.2	Binary	Health	Predicts blood donation behavior based on RFM features.
default-of-credit-card-clients	30000	23	3.52	Binary	Finance	Predicts default risk for credit card clients based on payment and bill history.
Customer_Churn_Classification	175028	24	3.74	Binary	Business	Predicts customer churn based on service usage and demographics.
SPECTF	267	44	3.85	Binary	Medicine	Diagnoses cardiac conditions from SPECT imaging features.
Medical-Appointment-No-Shows	110527	36	3.95	Binary	Healthcare	Predicts patient no-shows for medical appointments based on demographics and history.
JapaneseVowels	9961	14	5.17	Binary	Speech Recognition	Binarized classification of speaker voice samples originally from a multi-class dataset.
ibm-employee-attrition	1470	53	5.2	Binary	Human Resources	Predicts employee attrition based on job satisfaction and personal features.
first-order-theorem-proving	6118	51	5.26	Multiclass	Automated Reasoning	Probabilistic-based dataset for learning heuristics in first-order theorem proving.
user-knowledge	803	5	5.38	Multiclass	Education	Probabilistic-based dataset for learning heuristics in first-order theorem proving.
online-shoppers-intention	12330	28	5.46	Binary	E-commerce	Predicts purchase intention based on session behavior and web metrics.
kc1	2109	21	5.47	Binary	Software Engineering	NASA defect prediction dataset with code complexity metrics.
thoracic-surgery	470	16	5.71	Binary	Medicine	Predicts 1-year survival after lung cancer surgery.
UCI_churn	3333	18	5.9	Binary	Business	Customer churn prediction dataset with limited metadata.
arsenic-female-bladder	559	4	5.99	Binary	Medicine	Binarized dataset related to bladder health outcomes in females with arsenic exposure.
okcupid_stem	26677	117	6.83	Multiclass	Sociology	Profiles from OkCupid used to predict whether a user has a STEM-related job.
ecoli	327	7	7.15	Multiclass	Biology	Studies the cellular localization sites of E. coli proteins.
pc4	1458	37	7.19	Binary	Software Engineering	NASA defect prediction data for flight software using code complexity metrics.
bank-marketing	4521	48	7.68	Binary	Finance	Direct marketing campaign data for predicting term deposit subscription.
Diabetes-130-Hospitals_(Fairlearn)	101766	50	7.96	Binary	Medicine	Hospital readmission prediction for diabetic patients based on 10 years of clinical records.
Otto-Group-Product-Classification-Challenge	61878	93	8.36	Multiclass	E-commerce	Multi-class product classification dataset from Otto Group with anonymized features.
eucalyptus	4331	26	8.54	Multiclass	Computer Systems	High-performance computing job scheduling dataset for predictive modeling.
pendigits	10992	16	8.61	Binary	Image Recognition	Binarized dataset for pen-based digit recognition.
pc3	1583	37	8.77	Binary	Software Engineering	Defect prediction dataset for flight software using complexity metrics.
page-blocks-bin	5473	10	8.77	Binary	Document Processing	Binarized version of page layout classification dataset from scanned documents.
optdigits	5620	64	8.83	Binary	Image Recognition	Defect prediction dataset for flight software using complexity metrics.
mfest-zernike	2009	47	9.0	Binary	Image Recognition	Zernike moments of handwritten digits, binarized for classification.
mfest-karhunen	2000	76	9.0	Binary	Image Recognition	Karhunen-Loeve coefficients of handwritten digits, binarized for classification.
Pulsar-Dataset-ITR2	17898	8	9.92	Binary	Astronomy	Binary classification of pulsar vs. non-pulsar signals from radio telescope data.
vowel1	990	26	10.0	Binary	Speech Recognition	Binarized classification of vowel sounds based on audio features.
heart-h	294	13	12.53	Multiclass	Medicine	Hungarian heart disease data used to predict cardiac conditions.
pc1	1109	21	13.4	Binary	Software Engineering	NASA flight software defect prediction dataset using McCabe and Halstead metrics.
seismic-bumps	2584	22	14.2	Binary	Geophysics	Predicts hazardous seismic events in coal mines based on geophysical monitoring data.
ozone-level-8hr	2534	72	14.84	Binary	Environmental Science	Forecasts peak ozone levels using meteorological and atmospheric features.
microaggregation2	20000	20	15.02	Multiclass	Privacy Data Mining	Dataset used for evaluating microaggregation methods in privacy-preserving learning.
Sick_numeric	3772	29	15.33	Binary	Medicine	Numeric version of thyroid disease diagnosis data with binarized features.
insurance_company	9822	85	15.76	Binary	Finance	Predicts insurance company based on socio-demographic and product data.
wifi	4839	5	17.54	Binary	Remote Sensing	Remote sensing dataset for detecting disease using multispectral imagery.
Click_prediction_small	149639	11	21.37	Binary	Advertising	Small-scale dataset for predicting ad click-throughs.
jannis	83733	54	22.83	Multiclass	Image Recognition	Classify image regions into one of the 4-most popular branches.
letter	20000	16	23.6	Binary	Image Recognition	Classified handwritten letter recognition dataset.
walking-activity	149332	4	24.14	Multiclass	Biometrics	Accelerometer data used for user identification from walking patterns.
helena	65196	27	36.08	Multiclass	Image Recognition	Classify image regions into one of 100 labels.
mammography	11183	6	42.01	Binary	Medicine	Mammography dataset used for anomaly and breast cancer detection tasks.
dis	3772	29	64.03	Binary	Biology	Dataset from PMLB used for binary classification in biomedical domains.
Satellite	5100	36	67.0	Binary	Remote Sensing	Classifies land cover and detects anomalies in satellite image data.
Employee-Turnover-at-TECHCO	34452	9	68.74	Binary	Human Resources	Dataset modeling monthly employee turnover in a tech company.
page-blocks	5473	10	175.46	Multiclass	Document Processing	Page layout classification based on document blocks.
allbp	3772	29	257.79	Multiclass	Biology	Blood pressure data for classification, sourced from PMLB.
CreditCardFraudDetection	284807	30	577.88	Binary	Finance	Highly imbalanced dataset for detecting fraudulent credit card transactions.

Dataset source and access. All datasets are hosted on the OpenML (Vanschoren et al., 2014) platform. We provide a wrapper function based on the OpenML API in the CLIMB Python package, allowing users to easily download the datasets and apply standardized preprocessing.

B More Reproducibility Details

Hyperparameter search. We used Optuna (Akiba et al., 2019) to search for the best configuration of CIL methods with tunable hyperparameters. Hyperparameter optimization was conducted for 23 out of 29 CIL methods on each dataset, with AUPRC as the optimization objective. Table 4 reports the hyperparameter search space for each method. Importantly, we observed that using a single random split to create a validation set often caused the selected hyperparameters to overfit, especially due to the scarcity of minority class samples. When conducting a more comprehensive 5-fold stratified evaluation, the hyperparameters found through such overfitted search frequently underperformed compared to the default settings. To address this issue, we adopted 5-fold stratified training and evaluation within each search trial, despite the increased computational cost. For each method-dataset pair, we performed 100 search iterations and employed an early stopping strategy with 10 rounds patience to improve efficiency. We use the Tree-structured Parzen Estimator (Ozaki et al., 2022) (`optuna.samplers.TPESampler`) to sample hyperparameters in each trial. Additionally, for every method and dataset, we also evaluated the performance using default hyperparameters. The final hyperparameters were chosen based on the better result between the search and the default setting. Running these hyperparameter searches consumed more than 500 hours on our workstation.

Table 4: Hyperparameter search spaces.

Method	Search Parameters
NearMiss	$n_neighbors \in [1, 10]$
EditedNearestNeighbors	$n_neighbors \in [1, 10]$, $kind_sel \in \{\text{all}, \text{mode}\}$
Repeated ENN	$n_neighbors \in [1, 10]$, $kind_sel \in \{\text{all}, \text{mode}\}$
AllKNN	$n_neighbors \in [1, 10]$, $kind_sel \in \{\text{all}, \text{mode}\}$
OneSideSelection	$n_neighbors \in [1, 10]$
NeighborhoodCleaningRule	$n_neighbors \in [1, 10]$, $kind_sel \in \{\text{all}, \text{mode}\}$, $threshold_cleaning \in [0.0, 1.0]$
SMOTE	$k_neighbors \in [1, 10]$
BorderlineSMOTE	$k_neighbors \in [1, 10]$, $m_neighbors \in [1, 10]$
SVMSMOTE	$k_neighbors \in [1, 10]$, $m_neighbors \in [1, 10]$
ADASYN	$n_neighbors \in [1, 10]$
SelfPacedEnsemble	$k_bins \in [1, 10]$
BalanceCascade	$replacement \in \{\text{True}, \text{False}\}$
BalancedRandomForest	$max_samples \in [0.5, 1.0]$, $max_features \in [0.5, 1.0]$
EasyEnsemble	$max_samples \in [0.5, 1.0]$, $max_features \in [0.5, 1.0]$
RUSBoost	$learning_rate \in [0.0, 1.0]$, $algorithm \in \{\text{SAMME}, \text{SAMME.R}\}$
UnderBagging	$max_samples \in [0.5, 1.0]$, $max_features \in [0.5, 1.0]$
OverBoost	$learning_rate \in [0.0, 1.0]$, $algorithm \in \{\text{SAMME}, \text{SAMME.R}\}$
OverBagging	$max_samples \in [0.5, 1.0]$, $max_features \in [0.5, 1.0]$
SMOTEBoost	$learning_rate \in [0.0, 1.0]$, $algorithm \in \{\text{SAMME}, \text{SAMME.R}\}$, $k_neighbors \in [1, 10]$
SMOTEBagging	$max_samples \in [0.5, 1.0]$, $max_features \in [0.5, 1.0]$, $k_neighbors \in [1, 10]$
AdaCost	$learning_rate \in [0.0, 1.0]$, $algorithm \in \{\text{SAMME}, \text{SAMME.R}\}$
AdaUBOost	$learning_rate \in [0.0, 1.0]$, $algorithm \in \{\text{SAMME}, \text{SAMME.R}\}$
AsymBoost	$learning_rate \in [0.0, 1.0]$, $algorithm \in \{\text{SAMME}, \text{SAMME.R}\}$

Dataset preprocessing and split. As described in Section 3.3, to mitigate the randomness introduced by a single random train-test split, we adopt a 5-fold stratified splitting strategy for all datasets and report the average performance. We use the `sklearn.model_selection.StratifiedKFold` utility from scikit-learn (Pedregosa et al., 2011) to obtain stratified folds that preserve the percentage of samples in each class, ensuring that the imbalance ratio remains consistent across all splits. Similarly, we apply `preprocessing.StandardScaler` to standardize numerical features. For categorical features, we use `OrdinalEncoder` for binary attributes and `OneHotEncoder` for multi-class attributes.

Runtime measurement. The runtime reported in Figure 3 was measured on a Windows workstation equipped with an Intel Core i9-12900 CPU. It reflects the training time for a **single split** in a 5-fold stratified split, that is, the training data is formed by 4 out of 5 splits (80%). Therefore, the total runtime for each hyperparameter search should be further multiplied by 5 splits and 100 iterations.

Performance-runtime analysis with all metrics. Similarly, due to space constraints, we only visualized the performance-runtime trade-off based on AUPRC in the main paper (Figure 3). Here,

we provide additional visualizations based on F1-score (Figure 6) and balanced accuracy (Figure 7). While minor changes in the ranking of some methods can be observed, the differences across method branches remain significant. Thus, the related analyses and Takeaway #4 in the main text still hold: undersample ensembles continue to represent the most effective category for achieving the best performance-efficiency trade-off.

C Additional Experiments, Detailed Results, and Discussions

C.1 Results with Additional CIL methods

Table 5: Extended summary benchmark results with hybrid sampling methods (SMOTEENN, SMOTETomek) and GBDTs (XGBoost, LightGBM, CATBoost), this table extends the main results in Table 2 by including additional CIL baseline. Given the large number of results, we group the 73 datasets by imbalance level into 4 categories and report the averaged AUPRC (AP), macro F1, and Balanced Accuracy (BAC) for each CIL method (in $\times 10^{-2}$). Detailed results for each dataset can be found in C. For a comprehensive evaluation, we also rank all methods on each dataset and metric, and report their average ranks. **Color coding is used to show the performance gains (blue) or losses (red) relative to the base no-balancing method, with deeper colors indicating larger differences.**

Dataset	Avg.	Metric	Base	Undersamp	Cleaning				Oversamp	Hybrid	Undersamp Ensemble	Oversamp Ensemble	Cost-Sensitive	GBDTs														
Group	Stat		RUS CC IHT NM	TL ENN RENN AKNN OSS NC	ROS	SMT	BSMT	SSMT	ASYN	SENN	Stom	SPE	BC BRF	EE UBS	UBA	OBRS	SMBS	OBA	SMBA	AdaC	AdaBS	AsyBS	CS	XGB	LGB	CAT		
$I \in \{10, 5\}$ (25 datasets)	Score (↑)	AP	51.0	49.4 48.0 45.8 45.5	51.5 53.6 53.4 52.9	51.7 53.5	51.1 51.6	51.8 52.1	51.6	51.8 51.2	59.3 57.8 57.7 59.0 58.6 59.0	52.9 53.7	58.4 58.9	52.5 52.4	52.5 51.2	58.0 58.2 58.3												
	F1	72.0	70.4 67.1 66.0 65.5	72.8 73.9 73.3 73.0	73.0 74.2	72.4 72.9	72.9 73.2	72.8	72.6 72.5	72.6 72.5	77.9 76.8 76.7 78.0 77.5 78.0	73.7 74.3	76.5 77.4	73.2 73.2	73.2 72.3	76.4 76.3 75.7												
	BAC	72.1	73.3 71.7 73.8 69.7	73.3 76.5 76.7 76.4	73.6 76.6	72.5 73.5	73.6 73.8	73.6 75.5	73.1	78.5 77.3 79.7 79.7 78.7 79.7	73.7 74.8 75.7 77.0	73.2 73.1	73.2 72.4	75.8 75.9 75.5														
$I \in \{5, 10\}$ (25 datasets)	Score (↑)	AP	24.8	29.3 31.4 27.1	30.6 22.5 15.4	16.4 18.5	21.6 15.5	25.2 23.4	22.8 22.5	23.8 21.8 24.7	6.0 10.0 9.6	6.8 6.9 6.6	19.6 17.0	8.0 6.1	20.0 20.9	20.2 25.7	10.1 9.6 9.6											
	Rank (↓)	F1	24.1	30.4 32.0 33.0	32.0 21.2 16.4	19.1 21.1	19.9 16.0	24.2 22.5	21.8 20.6	22.3 22.2 23.3	5.0 8.9 10.2	5.7 6.7 5.6	19.0 15.7	10.2 6.6	19.1 20.8	19.3 24.9	9.9 9.4 10.9											
	BAC	28.3	24.0 28.1 22.7	29.5 22.8 13.2	12.7 14.2	21.4 13.1	27.5 23.5	22.5 20.9	22.4 17.1 24.2	7.1 9.9 3.9	3.9 6.2 3.7	23.0 17.2	14.4 10.1	22.9 25.0	23.5 28.7	14.0 13.5 14.9												
$I \in \{10, 50\}$ (15 datasets)	Score (↑)	AP	50.9	43.2 35.3 40.3	32.1 51.0 52.5	52.6 52.5	50.8 52.5	51.1 51.7	51.4 51.9	50.7 50.8	54.6 62.7 60.5	62.4 63.8 62.4	54.8 54.1	61.2 62.8	54.1 54.4	54.1 51.4	62.8 63.2 62.5											
	F1	74.7	68.4 56.7 64.2 57.4	74.6 75.1 75.0	75.0 74.5 75.2	74.4 75.1	75.0 75.3	74.6 74.6	74.7 74.6	74.7 74.7 74.6	99.7 78.7 76.7 78.7 79.3 78.7	75.6 75.6	77.0 78.5	75.4 75.4	75.4 74.5	78.2 78.3 77.3												
	BAC	74.7	76.0 71.2 76.5 70.8	74.9 77.6 78.0	77.7 77.4	74.4 76.4	75.8 76.4	75.7 77.8	76.0 76.0	72.1 80.8	83.1 82.9 82.5 82.9	75.4 76.8 75.6	77.7 75.0	75.1 75.0	75.0 74.5	77.0 77.0 76.0												
$I \in \{50, 100\}$ (6 datasets)	Score (↑)	AP	24.4	29.9 33.3 29.5 33.3	23.8 17.8	17.2 18.4	23.8 17.9	23.9 21.3	22.3 20.5	23.9 23.0	3.5 7.5	10.6 7.8 4.3	7.8 17.2 18.2	12.1 8.0	18.4 18.6 18.6	23.6 8.9 7.6	9.6 9.6											
	Rank (↓)	F1	22.5	32.0 34.2 33.3 34.2	21.9 18.7	18.6 18.6	22.2 18.3	22.2 19.7	21.0 18.3	22.4 24.7	21.9 4.5	7.9 15.4 12.4	8.1 4.5 7.8	16.9 16.8 13.3	7.2 7.2	17.4 18.1 17.8	21.9 8.7 8.6	10.5 10.5										
	BAC	26.3	21.6 29.3 20.0 29.5	25.2 16.4	15.4 16.1	24.5 16.1	26.5 17.7	21.5 17.6	22.0 14.9	19.4 5.9	5.7 3.2 3.9	3.7 3.2 3.2	22.1 16.7	20.6 13.5	24.0 24.2	24.3 26.1	16.5 16.4 18.2											
$I \in \{50, 100, 1000\}$ (6 datasets)	Score (↑)	AP	34.9	23.6 17.4 27.1	14.5 35.1 36.2	36.2 35.9	35.5 36.3	34.1 34.3	35.8 35.0	34.1 34.1	33.2 33.7	47.1 44.1 38.4 41.9 44.9 41.9	36.7 36.6	45.0 46.0	36.4 36.7	36.4 34.1	47.3 43.8 45.1											
	F1	61.6	51.2 35.8 52.9 35.6	61.6 62.3	61.9 61.5	61.9 61.6	61.0 61.0	62.1 61.7	61.0 61.0	59.5 60.3	65.5 62.1 59.7	62.9 64.0 62.9	61.6 61.7	64.0 65.8	61.5 61.6	61.5 61.0	65.7 63.0 63.6											
	BAC	61.8	63.6 56.7 65.8 54.3	62.1 64.5	65.0 64.3	62.3 64.1	60.8 63.5	63.7 63.5	63.2 65.2	63.0 63.0	70.7 67.8 72.2 72.1	70.4 72.1	61.1 64.0	62.4 65.1	61.5 61.2	61.5 61.0	64.1 61.6 62.1											
$I \in \{500\}$ (1 dataset)	AP	22.0	29.9 34.3 25.3 34.2	21.4 16.0	16.3 17.3	19.9 15.3	24.7 23.7	23.8 21.3	20.5 23.3	22.3 24.7	4.7 11.1	16.0 11.7 6.8	11.6 17.1 17.5	9.7 7.4	19.5 17.6	20.1 24.5	5.0 10.4 10.0											
	Rank (↓)	F1	17.0	32.8 34.4 31.7 34.2	17.7 12.7	14.5 16.9	15.7 13.7	21.6 21.4	21.6 14.5	17.6 21.3	25.3 23.3	5.7 16.7 22.7	14.9 9.0 13.7	17.2 17.9 12.1	6.5 6.5	18.1 17.5	18.1 21.3	6.7 13.7 13.1										
	BAC	23.1	19.2 31.6 13.7 32.3	22.5 16.7	15.1 17.5	21.7 20.7	27.7 17.0	15.3 17.1	19.9 13.9	18.7 18.7	5.6 7.8 2.8	5.7 2.8 5.7	2.3 26.4	16.3 20.7	15.5 24.1	26.3 24.9	26.7 15.9 23.4	22.6										
$I \in \{1000\}$ (1 dataset)	AP	42.6	18.9 15.9 33.0	13.5 44.2 45.0	44.1 44.9	44.3 44.6	41.7 37.1	42.2 41.9	34.3 34.7	34.4 34.7	57.5 50.1 32.9 35.5 43.3 35.5	45.0 40.5	56.4 56.0	48.1 46.6	48.1 41.7	58.9 48.9 58.1												
	Score (↑)	F1	74.0	50.6 35.2 68.0	32.9 75.0 75.1	74.7 74.8	75.1 75.0	73.6 73.1	74.9 74.4	73.7 70.3	70.2 70.1	74.7 68.6 56.3 59.8 68.5 59.8	74.3 71.9	75.8 76.6	74.9 74.9	74.9 73.9	78.7 73.4 77.8											
	BAC	74.6	81.8 70.5 79.9 66.2	75.1 75.8 76.1	75.6 75.2	75.6 75.6	73.1 77.2	76.1 76.0	79.4 76.0	85.9 83.0 88.0 87.3 85.7 87.3	73.5 77.6	72.4 74.4	74.8 73.2	74.8 73.1	75.8 73.5 74.9													
$I \in \{5000\}$ (1 dataset)	AP	19.2	32.7 34.2 24.0 34.8	19.5 14.8	16.0 15.7	16.7 16.7	17.8 22.0	21.0 17.8	19.5 25.2	26.2 24.3	4.5 10.8	21.0 18.8 12.7 18.5	16.7 19.3 9.8	9.0 13.0	16.2 13.3	21.3 6.7	10.2 6.8											
	Rank (↓)	F1	16.0	32.8 34.5 22.5 34.5	14.0 11.5	14.2 13.7	12.2 13.8	18.2 17.5	14.5 14.5	16.5 22.0	21.0 20.8	13.3 19.3 31.8 30.2 22.7	30.2 30.2	16.5 16.5 12.8	10.7 11.8	14.0 11.5	15.7 5.5	10.7 7.8										
	BAC	24.3	7.8 24.8 11.3 23.7	15.7 16.5	16.7 22.3	17.8 29.3	15.2 18.5	19.5 19.3	19.8 4.3	4.7 2.5	2.0 3.0	4.3 2.7	23.3 14.3 30.7	25.2 23.3	28.0 24.0	28.5 19.8	24.7 23.5											

Abbreviations: Random Undersampling (RUS), Cluster Centroids (CC), Instance Hardness Threshold (IHT), NearMiss (NM), Tomek Links (TL), Edited Nearest Neighbors (ENN), Repeated ENN (RENN), A1kNN (AKNN), One-Sided Selection (OSS), Neighborhood Cleaning Rule (NCR), Random Oversampling (ROS), SMOTE (SMT), Borderline SMOTE (BSMT), SVM SMOTE (SSMT), ADASYN (ASYN), SMOTEENN (SENN), SMOTETomek (Stom), Self-paced Ensemble (SPE), Balance Cascade (BC), Balanced Random Forest (BRF), Easy Ensemble (EE), RUSBoost (UBS), UnderBagging (UBA), OverBoost (OBS), SMOTEBagging (SMBS), OverBagging (OBA), SMOTEBagging (SMBA), Cost-sensitive (CS), AdaCost (AdaC), AdaUBoost (AdaBS), AsyBoost (AsyBS), XGBoost (XGB), LightGBM (LGB), CatBoost (CAT).

Here, we provide additional benchmark results that incorporate hybrid sampling methods (SMOTEENN (Batista et al., 2004), SMOTETomek (Batista et al., 2003)) and popular gradient-boosted decision tree (GBDT) models (XGBoost (Chen and Guestrin, 2016), LightGBM (Ke et al., 2017), CatBoost (Hancock and Khoshgoftaar, 2020)). These methods were not discussed in detail in the main paper, as our primary focus is on establishing a fair and unified comparison of representative class-imbalanced learning (CIL) techniques under consistent experimental settings. Hybrid sampling methods tend to be slower, more complex, and often underperform relative to their simpler counterparts, while GBDT models rely on specialized base learners with optimization strategies that differ fundamentally from the scikit-learn trees used throughout our benchmark, making direct comparisons less meaningful. But still, we include these results here for completeness, as they were frequently raised during the review process and help further contextualize the scope and applicability of CLIMB.

For implementation, SMOTEENN and SMOTETomek are adopted from the `imblearn` (Lemařík et al., 2017) package with their default configurations, ensuring consistency with widely used practice. For GBDTs, we evaluate XGBoost, LightGBM, and CatBoost under the same ensemble size as

the other ensemble-based CIL methods in the main paper. The extended results are summarized in Table 5. The latter full dataset-level results in Table 6-9 also include these new CIL methods.

Hybrid Sampling Methods. The extended results highlight two consistent trends. First, the hybrid sampling methods SMOTEENN and SMOTETomek do not provide consistent benefits across imbalance levels. Their performance in terms of AP, F1, and BAC is typically comparable to or worse than their single-component counterparts (e.g., SMOTE or ENN/Tomek alone), and their average ranks remain relatively low. This confirms that the added complexity of combining oversampling and cleaning does not yield robust gains in practice.

Advanced GBDTs. Second, the GBDT baselines (XGBoost, LightGBM, CatBoost) achieve strong overall results, often surpassing classical resampling-based methods, particularly under higher imbalance ratios. Nevertheless, they are not uniformly superior: ensemble-based CIL methods such as SPE, RUSBoost, and SMOTEBagging remain highly competitive, achieving comparable or better ranks in several imbalance groups. These findings indicate that while GBDTs constitute powerful baselines, well-designed CIL ensembles can match or exceed their performance, especially when tailored to severe imbalance scenarios.

C.2 Pairwise comparisons between all CIL methods.

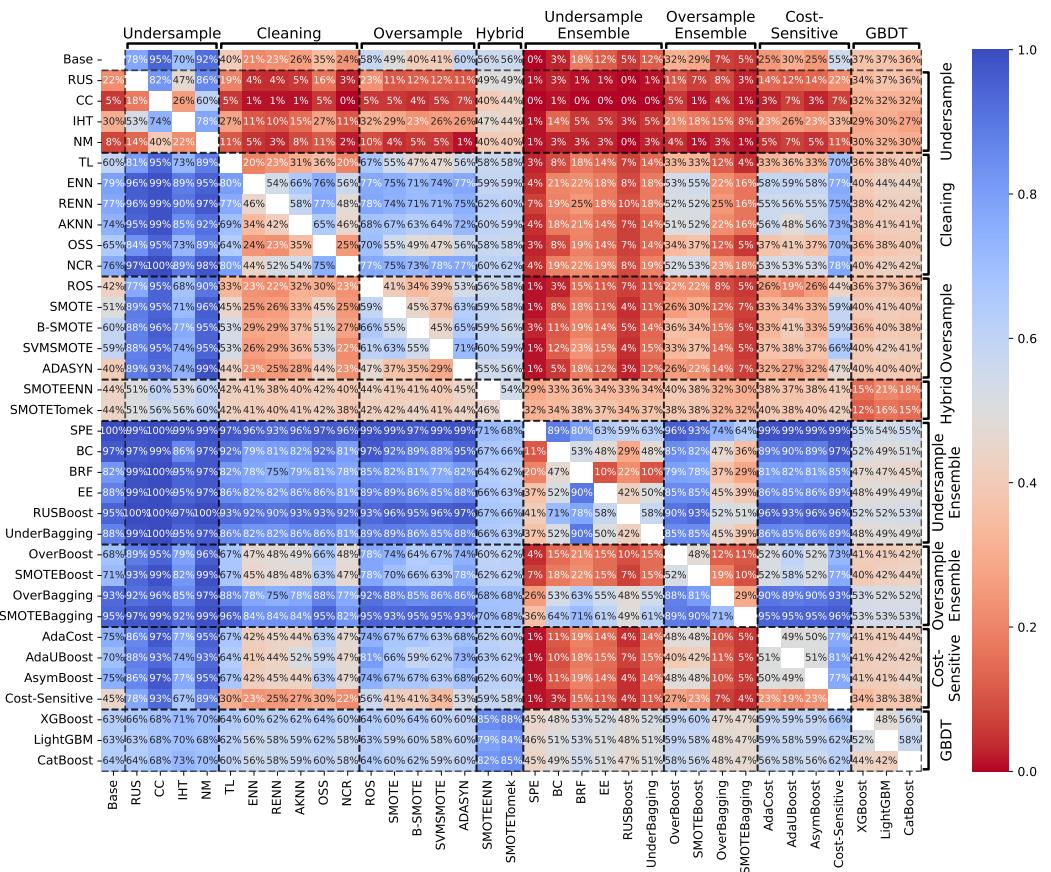


Figure 5: **Pair-wise win ratio** (by AUPRC) comparison between all CIL algorithms. The number represents the ratio of datasets that the **row method outperforms the column method** on, i.e., a **blue/red** row means the row method consistently outperforms/underperforms others.

To provide more detailed insights for model selection, we pair each combination of two CIL methods (denoted as A and B) and compute the proportion of datasets where method A outperforms method B. The results based on AUPRC are shown in Figure 5. Consistent with the analysis in Section 4.1, ensemble methods generally demonstrate a consistent advantage over non-ensemble methods across

most datasets. Among the ensemble approaches, SPE, OverBagging, and SMOTEBagging achieve relatively high win ratios. In particular, SPE, an efficient undersampling-based ensemble method, maintains a win ratio above 59% against all other CIL methods. This highlights the potential of ensemble approaches that incorporate informed undersampling strategies.

C.3 Discussion on the Self-paced Ensemble

Among all the evaluated CIL methods, Self-paced Ensemble (SPE) stands out as the most consistent top performer. Its advantage can be attributed to a few complementary factors.

- **Hard example mining:** SPE retains difficult-to-classify samples during undersampling, which improves decision boundaries.
- **Noise robustness:** The hardness harmonization mechanism balances informativeness and noise, avoiding the inclusion of overly noisy samples.
- **Self-paced learning:** Inspired by curriculum learning, SPE introduces samples progressively from easy to hard, which stabilizes training.
- **Efficiency:** As an undersampling-based ensemble, SPE trains on fewer samples per model, making it more efficient than oversampling or boosting strategies.

C.4 Comparison with BAF Benchmark

We also compare CLIMB with the BAF benchmark (Jesus et al., 2022). Both address imbalance, but with different goals and setups. CLIMB evaluates CIL methods on 73 real-world datasets with natural imbalance, using repeated cross-validation and standard metrics such as AUPRC, Macro-F1, and Balanced Accuracy. BAF instead focuses on fairness under distributional bias and temporal shift in a single fraud detection task, using CTGAN-generated synthetic data, temporal splits, and fairness metrics like TPR@5%FPR and FPR ratio. Thus, CLIMB offers a broad benchmark for CIL effectiveness, while BAF targets fairness in a specific application.

C.5 Detailed main results on each dataset.

Due to space constraints, in the main results (Table 2), we reported the average scores and rankings for each metric by grouping the 73 datasets into four categories based on their imbalance levels. Here, we provide the complete results for each method on each individual dataset. Specifically, AUPRC, F1-score, and Balanced Accuracy results are reported in Tables 6, 7, and 8, respectively. Additionally, Table 9 presents the runtime of each method across different datasets. The dataset ordering in these tables follows the order defined in Table 3. We used color coding similar to Table 2 (i.e., blue represents better than no balancing, and red represents worse than no balancing, with deeper colors indicating larger differences) for improved clarity.

Dataset-level Analysis. Although the overall conclusions of CLIMB are robust across datasets, a few cases deviate from the general trends. We intentionally phrased our main takeaways to avoid overgeneralization, and here we highlight notable examples to provide additional context:

- **Undersampling ensembles on extremely imbalanced datasets (e.g., *dis*, *satellite*):** Random undersampling based ensembles such as Balanced Random Forest (BRF), EasyEnsemble, and UBS can fail when the imbalance ratio is very severe. These methods discard most majority class samples, which results in insufficient training information and weak generalization. In contrast, approaches like Self-paced Ensemble (SPE) and BalanceCascade (BC) are more robust because they explicitly retain informative samples through hard example mining.
- **Cleaning based methods on long-tailed multiclass datasets (e.g., *user-knowledge*, *allbp*):** Cleaning based methods such as Tomek Links, ENN, and RENN often underperform in long-tailed multiclass scenarios. Since multiple minority classes can be close to majority classes in feature space, these cleaning procedures tend to over remove minority samples. This reduces the model’s ability to learn rare class patterns and leads to degraded performance.

These exceptions are limited in scope and do not alter the overall conclusions of our study. Instead, they illustrate the importance of understanding dataset specific characteristics when selecting and applying CIL methods in practice.

Table 6: Detailed full results on each dataset on AUPRC ($\times 10^{-2}$).

Dataset	Base	Cleanting				Oversample				Hybrid				UnderSampling Ensemble				OverSampling Ensemble				Cost-Sensitive				GDBDT									
		RUS	CC	HT	NM	TN	ENN	AKNN	OSN	RCS	SMT	BSMT	ASNN	SEN	STN	SPP	BC	UB	EB	UBS	OBIS	SMBS	OBRA	SMBS	Adm	Adds	Avs	BS	XGB	LGB	CAT				
hwlin_auh1	36.4	33.4	35.9	36.5	35.6	35.6	39.6	36.4	35.4	38.6	39.0	36.3	37.1	35.4	39.0	35.0	38.6	39.0	38.0	39.0	38.3	38.7	36.6	37.6	36.2	34.7	36.0	37.9	36.9						
mossl4d	82.9	78.3	76.7	65.6	66.9	82.0	81.9	81.7	81.4	81.2	81.1	79.5	77.1	81.2	80.3	80.5	85.5	89.5	89.6	84.1	81.7	90.4	89.7	83.7	83.8	83.7	84.3	88.0	89.1	88.7					
mt2	82.9	78.3	76.7	65.6	66.9	82.0	81.9	81.7	81.4	81.2	81.1	79.5	77.1	81.2	80.3	80.5	85.5	89.5	89.6	84.1	81.7	90.4	89.7	83.7	83.8	83.7	84.3	88.0	89.1	88.7					
wholestore-customer	72.5	70.0	68.0	68.2	68.1	71.6	70.6	75.4	72.2	76.5	74.9	70.0	73.3	71.6	70.5	70.2	83.0	81.8	81.6	82.6	81.7	81.2	82.6	77.7	83.3	82.3	74.2	75.9	74.7	80.5	80.3	80.3			
law-school-admission	57.7	55.7	59.7	56.9	54.2	53.8	52.6	61.3	62.4	53.5	67.1	55.3	58.2	61.4	64.7	60.0	62.1	66.5	63.5	64.5	64.6	64.9	65.4	65.5	65.4	65.5	65.2	65.8	62.0	65.6	65.1	62.1	68.0	65.3	65.0
bank25h	46.4	45.4	44.0	47.0	47.5	45.7	47.9	48.0	48.2	46.7	47.8	45.4	45.7	46.4	47.4	46.0	45.5	45.9	57.4	55.7	56.6	56.6	56.3	56.0	56.3	46.8	55.7	54.3	47.2	46.3	47.2	57.5	54.8	58.0	
elevators	57.9	52.0	56.0	47.4	45.2	52.6	56.5	55.3	56.4	56.6	55.6	55.3	56.4	56.6	56.0	56.3	71.1	70.3	70.7	67.4	68.3	67.4	67.6	67.7	60.4	56.0	57.2	55.7	74.8	76.3	73.3				
cpu	70.9	69.2	65.6	65.3	63.7	61.3	71.7	70.4	68.5	70.6	71.9	70.9	70.6	70.3	70.2	70.6	70.3	70.6	70.8	70.1	70.1	70.7	71.5	72.5	72.5	77.5	77.5	77.5	77.5	77.5	77.5	77.5			
Credit_Approval	38.1	36.3	36.6	39.4	38.6	41.2	41.2	39.2	39.7	41.2	40.3	37.6	38.8	38.1	39.1	40.0	37.0	38.5	40.6	46.4	47.1	47.5	46.0	47.5	39.0	38.7	40.0	39.0	39.1	45.4	46.1	46.3	46.4		
house_2	61.3	58.0	55.6	51.5	46.7	61.0	62.1	62.3	62.2	61.0	62.1	60.1	59.8	59.8	61.6	60.0	72.6	71.6	70.9	70.7	70.6	70.7	70.6	69.7	71.4	69.1	61.6	59.3	72.2	73.6	73.2	73.2			
adult_161	61.3	61.8	60.3	59.5	58.1	60.6	61.2	62.1	62.2	61.0	62.1	60.1	59.8	59.8	61.6	60.0	72.6	71.6	70.9	70.7	70.6	70.7	70.6	69.7	71.4	69.1	61.6	59.3	72.2	73.6	73.2	73.2			
phoneme	67.6	61.4	62.8	50.4	58.3	66.1	66.1	65.9	66.1	66.2	66.2	66.5	67.5	66.7	64.5	64.5	69.5	64.5	69.5	74.8	70.3	72.3	72.3	65.5	66.5	65.5	66.5	66.7	66.0	65.7	73.1	70.8	73.0		
planning-relax	27.7	31.7	27.4	28.5	30.9	29.9	30.3	29.8	30.1	31.4	32.0	33.0	31.1	30.7	30.3	30.3	31.7	32.8	28.1	28.5	30.4	30.4	31.9	32.3	31.9	30.4	30.4	31.7	30.6	31.7	31.7	30.6	31.7	31.7	
minn&cpu	61.3	60.2	60.3	60.0	61.3	61.7	71.4	70.7	68.5	71.6	70.9	70.6	70.3	70.2	70.3	70.6	70.2	70.6	70.8	70.1	70.1	70.7	71.5	72.5	72.5	77.5	77.5	77.5	77.5	77.5	77.5				
cpu	38.3	28.7	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8				
tele-customer-churn	36.3	38.0	36.0	39.3	29.0	38.4	41.8	32.3	42.4	38.5	37.5	38.5	37.5	38.2	38.9	38.0	39.0	44.0	38.8	45.7	46.7	46.0	46.7	46.9	40.0	45.3	37.9	39.0	37.9	37.5	37.5	44.4	44.4	44.4	
haberman	88.6	86.4	86.0	86.3	86.0	86.8	86.9	85.9	87.3	86.5	88.5	84.9	85.0	84.9	84.2	84.2	89.4	91.4	92.5	92.9	92.7	92.9	92.7	92.5	94.0	95.5	93.8	92.5	91.8	91.1	94.0	92.8	92.8		
vehicle	89.8	90.1	90.6	72.0	93.5	93.8	93.8	93.9	90.9	93.5	91.3	91.2	91.3	91.4	91.4	91.5	91.3	91.8	91.3	91.8	91.3	91.8	91.3	91.8	92.5	93.8	93.8	92.5	93.8	93.8	92.5	93.8	93.8		
cpu	30.8	28.7	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8			
adult	47.5	45.4	41.0	41.9	42.8	48.9	48.9	48.4	48.8	49.9	48.9	47.2	46.9	45.7	46.9	46.9	49.1	47.6	55.6	53.0	53.2	54.4	54.4	54.9	50.5	49.1	56.0	55.9	49.4	49.8	49.4	47.5	59.7	58.8	
tele	37.0	31.7	31.1	25.4	29.2	23.6	23.6	31.0	32.0	29.3	33.4	27.8	28.4	27.1	29.5	27.7	34.7	29.4	32.0	33.6	33.7	34.9	35.7	31.7	29.2	33.6	32.8	35.3	34.8	32.9	35.3	34.8	32.8		
blood-transfusion	37.0	31.7	31.1	25.4	29.2	23.6	23.6	31.0	32.0	29.3	33.4	27.8	28.4	27.1	29.5	27.7	34.7	29.4	32.0	33.6	33.7	34.9	35.7	31.7	29.2	33.6	32.8	35.3	34.8	32.9	35.3	34.8	32.8		
Customer_Classification	37.7	35.3	26.0	32.9	27.3	38.8	41.1	40.4	41.1	38.7	41.2	37.3	37.7	36.9	37.8	36.6	42.3	38.0	48.3	45.7	47.6	43.7	47.6	43.7	47.6	43.7	47.6	43.7	47.6	43.7	47.6	43.7	47.6	43.7	
SPECT	26.7	28.8	34.0	31.0	23.5	27.9	27.4	34.4	39.5	39.1	30.3	39.7	26.6	32.0	30.3	31.1	35.9	35.7	39.4	39.2	42.4	37.3	43.3	39.3	31.4	36.4	36.6	32.5	39.4	36.2	35.0	31.1	50.7		
Medical-Disease-NonShow	37.8	35.4	35.4	35.4	35.4	35.4	35.4	35.4	35.4	35.4	35.4	35.4	35.4	35.4	35.4	35.4	35.4	35.4	35.4	35.4	35.4	35.4	35.4	35.4	35.4	35.4	35.4	35.4	35.4	35.4	35.4	35.4			
Japanese-Attitudes	85.6	75.4	76.6	66.4	66.6	85.6	85.9	85.6	85.1	85.8	85.5	85.8	85.4	85.9	84.1	83.9	83.8	84.7	91.8	88.5	91.5	91.9	86.5	86.0	92.4	93.2	86.5	86.5	86.5	86.5	86.5	86.5	86.5		
first-order-probabilistic	30.8	26.3	24.4	22.4	29.9	28.1	27.9	28.1	29.3	30.5	30.8	30.9	30.2	27.5	29.6	27.4	28.4	27.4	29.6	28.0	28.4	28.4	28.0	28.3	28.0	29.2	28.5	28.5	28.5	28.5	28.5	28.5			
user-knowledge	71.1	63.4	62.6	58.8	60.1	67.5	69.0	67.2	65.0	67.9	69.5	64.8	74.2	71.1	71.3	71.3	71.1	74.5	74.4	74.0	74.6	74.9	74.0	74.6	74.2	73.9	74.7	74.2	74.2	74.2	74.2	74.2	74.2		
online-shopping-intention	42.4	24.4	14.9	23.3	24.3	25.7	24.5	23.7	24.5	25.7	24.5	23.7	24.5	23.7	24.5	23.7	24.5	23.7	24.5	23.7	24.5	23.7	24.5	23.7	24.5	23.7	24.5	23.7	24.5	23.7	24.5	23.7			
thoracic-surgery	17.1	14.9	16.8	17.6	17.8	17.7	18.4	17.1	18.4	17.6	17.4	17.6	18.0	18.0	19.2	19.3	20.3	19.7	16.1	17.9	20.7	20.3	20.4	20.5	20.6	16.7	20.6	16.6	16.6	16.7	16.7	16.7	16.7	16.7	
aromatic-female-bladder	24.9	22.8	24.8	26.3	19.2	27.7	27.9	27.7	28.1	26.2	20.3	26.4	21.5	21.8	20.7	26.3	21.8	25.8	28.5	27.2	27.3	30.8	26.4	29.3	25.0	29.3	26.5	21.5	24.5	25.0	27.7	22.7			
okta-Group-Product-Classification-Challenge	63.6	59.0	60.1	59.5	65.9	67.2	67.5	67.3	67.5	67.2	67.5	67.3	67.5	67.2	67.5	67.3	67.5	67.5	67.5	67.5	67.5	67.5	67.5	67.5	67.5	67.5	67.5	67.5	67.5	67.5	67.5	67.5			
pendigits	89.8	74.0	73.5	73.9	73.6	90.6	90.8	90.8	90.5	93.5	93.5	92.5	97.2	95.1	91.0	97.8	99.1	98.7	98.7	98.7	98.7	98.7	98.7	98.7	98.7	98.7	98.7	98.7	98.7	98.7	98.7	98.7	98.7		
adult-care	90.8	81.0	43.6	71.6	40.4	92.8	90.8	90.8	90.5	93.5	93.5	92.5	97.2	95.1	91.0	97.8	99.1	98.7	98.7	98.7	98.7	98.7	98.7	98.7	98.7	98.7	98.7	98.7	98.7	98.7	98.7	98.7			
Pulse-Disease-HTR2	80.2	54.5	37.4	67.1	59.8	86.2	86.3	86.2	85.3	88.8	88.2	87.4	91.8	83.2	82.0	84.7	84.7	84.7	84.8	82.8	80.7	80.7	80.7	82.3	85.6	87.0	85.6	87.0	85.6	87.0	85.6	87.0			
heart	28.3	24.3	23.7	26.5	28.3	28.3	25.0	28.4	28.5	26.8	26.5	27.9	26.8	27.0	26.5	26.5	24.7	39.3	47.7	43.4	45.8	32.3	32.3	32.3	32.3	32.3	32.3	32.3	32.3	32.3	32.3	32.3			
seismic-b	8.7	8.3	6.4	8.0	8.9	12.2	12.1	12.1	11.9	11.7	9.1	8.9	8.9	8.5	9.1	10.8	9.9	12.9	9.3	12.4	14.1	14.1	14.1	14.1	9.7	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5		
ozone-level-ds	13.9	11.3	11.5	15.6	12.6	12.6	1																												

Table 7: Detailed full results on each dataset on macro F1 ($\times 10^{-2}$).

Table 8: Detailed full results on each dataset on Balanced Accuracy ($\times 10^{-2}$).

Dataset	Base	Undersample				Chaining				Oversample				Hybrid				Undersample Ensemble				Oversample Ensemble				Cost-Sensitive				GBDT ¹						
		RUS	CC	HT	NM	TL	ENN	RENN	AKNN	OS	NCR	ROS	SMT	BSMT	SMFT	ASYN	SENN	Stem	SPR	BC	BRF	EE	UBS	UAB	OSRS	OBRS	SMRS	AdC	Adult	AdS	AsyS	CS	XGR	GBDT		
hwlin_amb1	54.6	52.0	55.4	57.1	54.0	53.4	60.2	61.2	56.1	53.7	58.9	60.0	55.2	56.1	53.5	54.9	55.2	54.1	59.0	56.5	61.0	58.8	58.1	59.0	54.4	56.3	53.9	52.9	56.3	55.9	52.6					
medical1	92.0	91.3	90.4	86.4	86.0	91.9	91.3	91.2	91.9	91.9	92.0	92.1	92.0	92.1	92.1	91.9	91.9	91.9	91.9	91.9	91.9	91.9	91.9	91.9	91.9	91.9	91.9	91.9	91.9	91.9	91.9	91.9	91.9			
mcg	62.8	62.0	62.8	62.8	62.8	62.8	62.8	62.8	62.8	62.8	62.8	62.8	62.8	62.8	62.8	62.8	62.8	62.8	62.8	62.8	62.8	62.8	62.8	62.8	62.8	62.8	62.8	62.8	62.8	62.8	62.8	62.8				
whole-sales	86.5	87.0	84.5	83.7	85.3	87.1	89.7	90.3	89.9	87.8	89.8	87.6	87.4	89.9	87.6	89.0	85.9	89.2	91.7	92.8	91.0	92.5	93.0	92.0	86.4	89.1	91.8	92.3	87.2	87.2	90.6	90.8	91.2			
water-quality	59.8	59.8	59.8	59.8	59.8	59.8	59.8	59.8	59.8	59.8	59.8	59.8	59.8	59.8	59.8	59.8	59.8	59.8	59.8	59.8	59.8	59.8	59.8	59.8	59.8	59.8	59.8	59.8	59.8	59.8	59.8	59.8				
weather-busy-happy	58.8	59.5	54.5	63.7	58.9	60.0	62.5	61.2	58.7	60.1	62.8	58.4	59.0	59.0	59.2	59.2	64.3	59.1	65.6	61.8	66.7	67.1	65.8	67.1	60.5	61.3	63.4	62.9	60.9	60.4	60.9	58.8	64.2	64.4	64.7	
bank2nb	69.3	70.3	69.1	73.8	70.8	68.8	72.2	72.9	73.6	69.6	71.9	68.4	69.5	69.3	71.3	69.7	78.1	77.9	79.5	78.4	77.3	76.4	69.4	69.5	74.0	77.1	73.1	73.1	73.1	73.1	73.1	73.1	73.1			
bank2nb	70.3	71.3	69.1	73.8	70.8	68.8	72.2	72.9	73.6	69.6	71.9	68.4	69.5	69.3	71.3	69.7	78.1	77.9	79.5	78.4	77.3	76.4	69.4	69.5	74.0	77.1	73.1	73.1	73.1	73.1	73.1	73.1				
cpu_small	86.3	87.2	86.4	85.7	83.8	87.3	88.3	88.4	88.6	87.5	88.0	88.0	86.7	87.2	86.8	86.8	86.5	88.4	87.5	90.0	90.5	91.7	91.4	91.5	91.4	86.4	87.3	89.7	90.3	86.6	86.4	86.6	86.1	90.6	90.7	90.3
Credit_Probabilistic	62.4	60.0	61.8	65.7	64.5	66.1	66.8	65.8	65.2	66.1	65.5	61.7	62.7	62.3	62.3	62.3	62.3	62.3	62.3	62.3	62.3	62.3	62.3	62.3	62.3	62.3	62.3	62.3	62.3	62.3	62.3	62.3				
house_16d	89.1	81.0	79.7	73.3	81.5	83.5	83.2	83.3	81.5	83.0	79.2	81.2	80.9	81.4	80.8	83.6	81.0	80.7	87.0	87.2	88.0	87.8	87.8	87.9	81.4	85.8	87.2	87.0	79.9	81.0	79.3	86.4	87.1	86.9		
iris	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0				
laplace	58.9	62.0	66.8	67.2	54.5	58.2	69.2	68.6	68.4	58.9	70.1	64.1	64.5	63.9	59.9	61.2	66.0	62.9	71.2	64.3	73.3	71.6	71.6	57.9	62.8	58.9	64.6	57.2	60.9	62.2	55.3					
planning-relax	44.4	54.7	46.3	48.0	54.2	53.2	50.4	51.2	38.7	55.7	46.1	53.0	54.9	46.5	46.5	46.5	46.5	46.5	46.5	46.5	46.5	46.5	46.5	46.5	46.5	46.5	46.5	46.5	46.5	46.5	46.5					
spambase	89.0	88.5	89.7	87.9	90.8	90.2	90.0	89.7	89.9	90.2	90.8	90.4	92.4	90.8	90.8	92.8	92.8	90.8	93.2	94.2	94.2	94.2	94.2	88.5	91.7	90.8	93.7	91.7	91.7	91.7	91.7	91.7				
telecom-customer-churn	62.4	68.6	65.1	65.1	65.1	65.1	65.1	65.1	65.1	65.1	65.1	65.1	65.1	65.1	65.1	65.1	65.1	65.1	65.1	65.1	65.1	65.1	65.1	65.1	65.1	65.1	65.1	65.1	65.1	65.1	65.1					
telephones	95.7	94.2	94.7	91.6	93.4	94.7	96.3	95.9	95.3	94.6	95.7	93.4	94.1	95.7	95.7	94.7	94.1	94.3	98.0	97.1	98.0	98.2	98.2	97.4	94.8	94.3	98.8	98.8	95.7	94.5	95.7	94.9	97.9	98.2	97.8	
vehicle	73.1	75.9	76.8	75.8	67.9	75.0	79.0	79.8	75.4	79.0	73.7	74.8	73.5	73.7	73.5	73.5	73.5	73.5	73.5	73.5	73.5	73.5	73.5	73.5	73.5	73.5	73.5	73.5	73.5	73.5	73.5	73.5				
vowel	82.2	77.3	75.9	77.7	65.3	76.7	70.3	80.5	70.7	79.6	74.7	75.5	74.5	75.4	75.0	75.0	75.0	80.2	80.7	83.0	83.1	83.1	76.3	76.7	77.5	77.5	77.5	77.5	77.5	77.5	77.5	77.5	77.5			
adult	73.2	73.3	73.3	73.3	73.3	73.3	73.3	73.3	73.3	73.3	73.3	73.3	73.3	73.3	73.3	73.3	73.3	73.3	73.3	73.3	73.3	73.3	73.3	73.3	73.3	73.3	73.3	73.3	73.3	73.3	73.3	73.3				
blood-transfusion-service-center	50.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0				
adults	90.0	89.1	89.1	89.1	89.1	89.1	89.1	89.1	89.1	89.1	89.1	89.1	89.1	89.1	89.1	89.1	89.1	89.1	89.1	89.1	89.1	89.1	89.1	89.1	89.1	89.1	89.1	89.1	89.1	89.1	89.1	89.1	89.1			
adults	90.0	89.6	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8			
adults	90.0	89.6	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8			
adults	90.0	89.6	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8			
adults	90.0	89.6	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8			
adults	90.0	89.6	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8			
adults	90.0	89.6	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8			
adults	90.0	89.6	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8			
adults	90.0	89.6	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8			
adults	90.0	89.6	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8			
adults	90.0	89.6	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8			
adults	90.0	89.6	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8			
adults	90.0	89.6	89.8	89.8	89.8																															

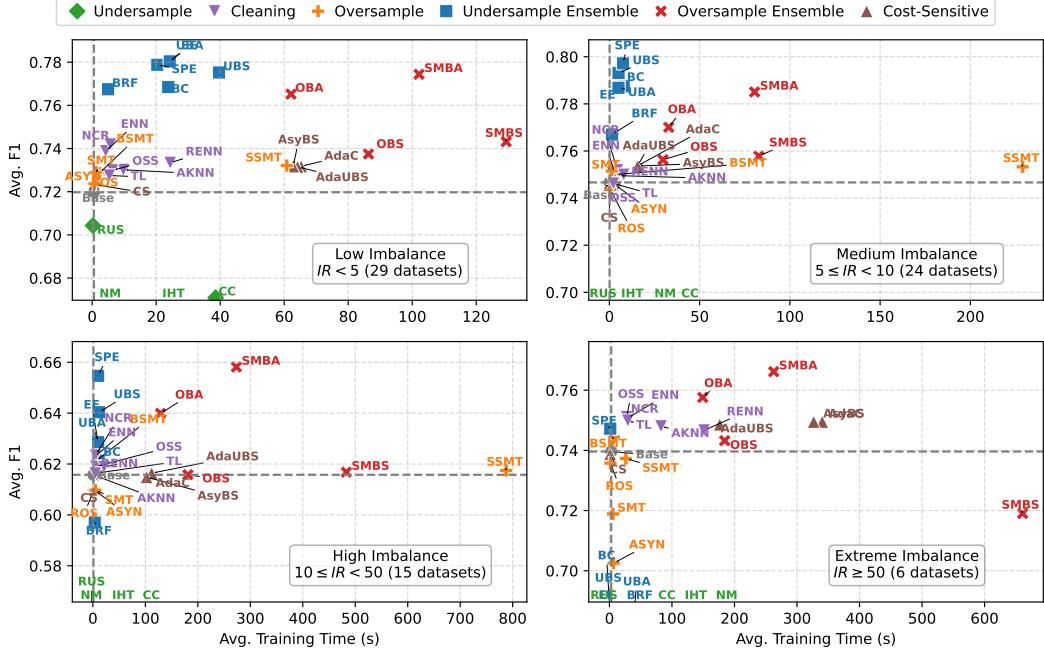


Figure 6: Macro F1 score versus runtime analysis, following the dataset grouping in Table 2. The **x-axis** shows the average runtime of each CIL algorithm, and the **y-axis** shows the average AUPRC score. **Desired methods are closer to the upper-left corner with high performance and low cost.** Different markers indicate different CIL method categories, the gray dashed line denotes the base model (no balancing) performance and runtime.

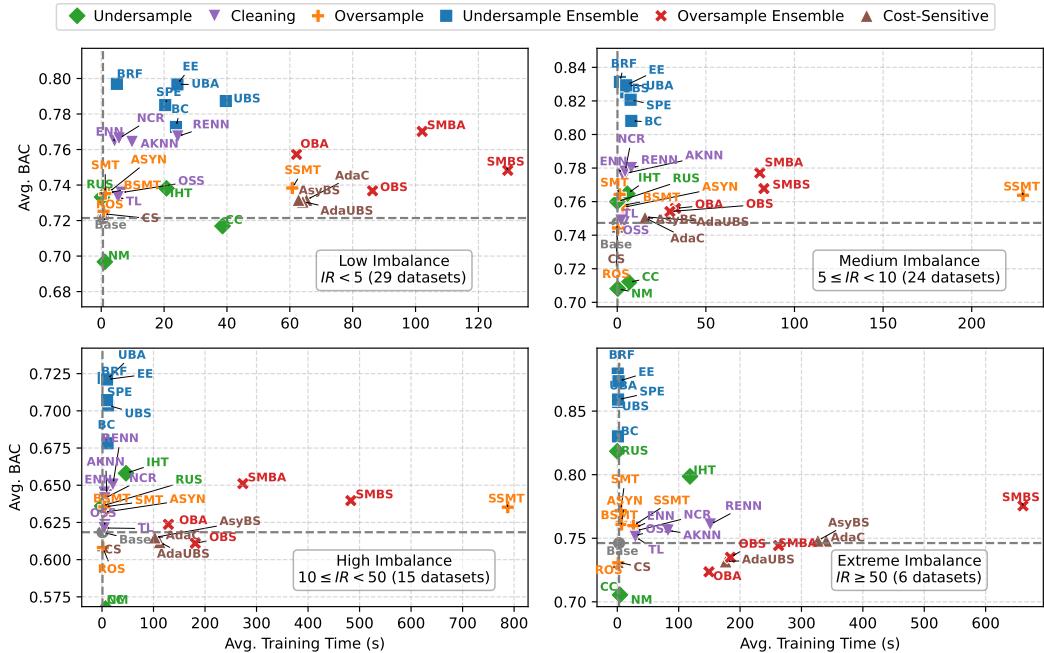


Figure 7: Balanced Accuracy versus runtime analysis, following the dataset grouping in Table 2. The **x-axis** shows the average runtime of each CIL algorithm, and the **y-axis** shows the average AUPRC score. **Desired methods are closer to the upper-left corner with high performance and low cost.** Different markers indicate different CIL method categories, the gray dashed line denotes the base model (no balancing) performance and runtime.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [\[Yes\]](#)

Justification: The abstract and introduction clearly state the contributions of the paper, including a comprehensive benchmark, a high-quality library, evaluation of 29 methods across 73 datasets, and practical insights obtained from the extensive empirical study.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [\[Yes\]](#)

Justification: Section 5 discusses several limitations and potential extensions, such as excluding deep models, limited exploration on the joint effects of imbalance and other data quality challenges.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [\[NA\]](#)

Justification: The paper does not include theoretical results or proofs.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [\[Yes\]](#)

Justification: Detailed benchmarking setup, preprocessing steps, hyperparameter configurations, and evaluation protocols are provided in Appendix A.1 and A.2.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [\[Yes\]](#)

Justification: All datasets are obtained from OpenML with public access. The processed datasets and codes are made publicly available at <https://github.com/ZhiningLiu1998/imbalanced-ensemble>, as mentioned in the main text and abstract.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [\[Yes\]](#)

Justification: Full implementation and evaluation details are provided in Section 3.3 and Appendix B.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [\[Yes\]](#)

Justification: Aggregated metrics from 5-fold stratified splits are reported. More details are addressed in B.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [\[Yes\]](#)

Justification: Section 4 discusses compute estimates. Figure 3 provides per-method runtime costs, with a more detailed per-dataset breakdown in Table 9. B provides details on the runtime measurement.

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

Answer: [\[Yes\]](#)

Justification: The paper uses only publicly available datasets and conducts evaluation in a transparent, responsible manner in accordance with the NeurIPS Code of Ethics.

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [\[Yes\]](#)

Justification: Section 1 discusses the importance of robust CIL tools for real-world applications like healthcare and finance, and potential pitfalls of naive methods.

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [\[NA\]](#)

Justification: The benchmark does not involve models or datasets with high misuse potential. All datasets are curated from OpenML.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [\[Yes\]](#)

Justification: All datasets and packages used (e.g., scikit-learn, OpenML) are properly credited in the references and the repository README.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [\[Yes\]](#)

Justification: The benchmark includes an extensive open-source code base and a new curated data collection, fully documented and publicly released on GitHub. Documentation is available at <https://imbalanced-ensemble.readthedocs.io/en/latest/>.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [\[NA\]](#)

Justification: The paper does not involve crowdsourcing or research involving human participants.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The study does not involve human participants and thus does not require IRB approval.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research?

Answer: [NA]

Justification: No LLM was used as part of the methodology. Any use was limited to writing assistance and not relevant to scientific content.