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Abstract

Dataset condensation (DC) is an emerging technique capable of creating compact
synthetic datasets from large originals while maintaining considerable performance.
It is crucial for accelerating network training and reducing data storage require-
ments. However, current research on DC mainly focuses on image classification,
with less exploration of object detection. This is primarily due to two challenges:
(i) the multitasking nature of object detection complicates the condensation pro-
cess, and (ii) Object detection datasets are characterized by large-scale and high-
resolution data, which are difficult for existing DC methods to handle. As a remedy,
we propose DCOD, the first dataset condensation framework for object detection.
It operates in two stages: Fetch and Forge, initially storing key localization and
classification information into model parameters, and then reconstructing synthetic
images via model inversion. For the complex of multiple objects in an image, we
propose Foreground Background Decoupling to centrally update the foreground of
multiple instances and Incremental PatchExpand to further enhance the diversity
of foregrounds. Extensive experiments on various detection datasets demonstrate
the superiority of DCOD. Even at an extremely low compression rate of 1%, we
achieve 46.4% and 24.7% AP50 on the VOC and COCO, respectively, significantly
reducing detector training duration.

1 Introduction

In the past decade, the field of deep learning has witnessed the emergence of high-performance models,
driven by the development of convolutional and Transformer networks [10, 24, 8, 5]. These models,
while benefiting from large-scale datasets, also encounter significant challenges such as data storage
and the demand for extensive training resources. Dataset condensation (or distillation) [27, 32, 2]
has emerged in response, aiming to synthesize a small amount of data that approximates the training
effectiveness of original datasets, thus offering hope to alleviate this dilemma.

Current dataset condensation (DC) research mainly focuses on image classification and is divided
into two main frameworks: Meta-learning and Data-matching [11]. As shown in Figure 1 (a), the
Meta-learning framework [27, 17, 34, 15] optimizes synthetic datasets by minimizing performance
risks on the original dataset’s validation set, using a bi-level optimization process. In contrast, Figure 1
(b) illustrates the Data-matching framework, which aligns gradients [32], feature distributions [31], or
training trajectories [2] to simulate the original data’s impact during different model training stages.
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Figure 1: (a) Meta-learning treats synthetic set updates in DC as a meta-task; (b) Data-matching indirectly
matches gradients, feature distributions, and training trajectories generated during network training; (c) Our
proposed DCOD, the first for object detection, decouples the bi-level optimization of methods a and b, following
a Fetch and Forge two-stage approach.

While both frameworks above make significant contributions to the field, they share common limita-
tions. The complexity and computational expense of their bi-level optimization process restrict their
application, typically confining them to smaller datasets (e.g., CIFAR10, CIFAR100, Tiny-ImageNet)
and simpler network architectures (e.g., ConvNet-3, AlexNet, VGG-11, ResNet-18). This limitation
is particularly pronounced in object detection tasks, which are inherently more complex than image
classification. Specifically, i) the requirement in object detection for simultaneous localization and
classification of multiple objects in an image considerably complicates the condensation process; and
ii) the large-scale, high-resolution nature of detection dataset images, along with the complexity of
detection network structures, poses significant challenges in extending existing DC methods.

In this study, we propose DCOD, the first dataset condensation framework for object detection.
DCOD is distinct in its ability to flexibly generate foreground objects of varying sizes, shapes,
and categories at any position within an image, as demonstrated in Figure 2. Additionally, DCOD
streamlines the process by eliminating the complexities of traditional bi-level optimization, enhancing
its compatibility with complex detection networks and large-scale, high-resolution data. DCOD
operates in two stages: Fetch and Forge. As in Figure 1 (c), in the first stage Fetch, we train an
object detector on the original dataset following a standard procedure, during which key information
from the original data is stored within the detector. Then, in the second stage, we employ the model
inversion to synthesize images from the trained detector. Specifically, we freeze the detector’s weights
and input initialization images and labels (including position, size, and category) randomly sampled
from the original dataset to capture the instance distribution of real originals. During the inversion
process, we propose the Foreground Background Decoupling (FBD) to enhance attention to the
foreground areas through random erasure guided by a coarse mask and Incremental PatchExpand
(IPE) expands a single image into multiple patches, each guided by different target labels, thus
synthesizing a richer variety of instances. Finally, we utilize the detector’s loss function as the guiding
task loss for dataset condensation. To ensure the quality of the generated images, we implement two
types of regularization: pixel-level alignment and feature-level alignment. Our method underwent
rigorous evaluation on the MS COCO [13] and Pascal VOC [7, 6] datasets, achieving top-tier
results that highlight its significant effectiveness. With some problems left open and a considerable
improvement room existing, we hope this pilot study will attract more community interest.

The primary contributions of this paper can be summarized as follows:

• We propose DCOD, the first dataset condensation framework for object detection datasets.
Utilizing a two-stage process of Fetch and Forge, it can simultaneously condense crucial
localization and classification information from the original dataset.

• For the multi-object distribution characteristic of object detection datasets, we propose the
Foreground Background Decoupling strategy and Incremental PatchExpand which notably
boost the diversity of multi-instances, all within a constrained storage budget.
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Figure 2: Visualization of images synthesized using DCOD. (a) A synthetic image contains only one category
of foreground. (b) A synthetic image contains multiple foregrounds of different sizes, shapes, and categories.

• Extensive experiments on various detection datasets underscore the superiority of DCOD.
Remarkably, even at an extremely low compression rate of 1%, we achieve 46.4% and 24.5%
AP50 on the VOC and COCO datasets respectively, significantly reducing the training
duration for object detection.

2 Related work

Dataset Condensation. Dataset condensation (or distillation) aims to compress large-scale original
data into a small amount of synthetic data, accelerating network training while maintaining compa-
rable performance. Current research primarily focuses on the field of image classification and can
be divided into two frameworks: meta-learning and data matching. In the meta-learning framework,
methods such as DD [27], KIP [17], RFAD [15], and FRePo [34] update model parameters in the inner
loop and synthetic data in the outer loop. In the data matching framework, techniques like DC [32],
DSA [30], and IDC [9] utilize gradient matching, comparing neural network weight gradients from
training on both real and synthetic data. Distribution matching approaches, exemplified by DM [31],
CAFE [26], DataDAM [22], and IDM [33], align real and synthetic data distributions using Maximum
Mean Discrepancy (MMD), often through a single optimization process but potentially limiting the
performance. Trajectory matching, such as MTT [2], optimizes synthetic data by pre-calculating and
storing training trajectories of expert networks from the real dataset. A critical downside of MTT is
the significant storage requirement for these trajectories.

Recent research suggests compressing original data into models rather than synthetic data. DiM [25]
minimizes the difference in predicted logits between real and generated images, using a generator to
store original dataset information. SRe2L [29] indicates that key dataset information can be preserved
in deep neural network training. Inspired by this, we argue that the localization and classification
information of the detection data can be learned and preserved by the detector, allowing the key
information to be recovered to reconstruct the synthetic image. Unlike SRe2L, we focus on object
detection datasets with multiple instances in a single image. We propose a foreground-background
decoupling strategy and incremental PatchExpand to enhance the updating of synthesized multiple
instances.

Diverging from the traditional focus on image classification, our study pioneers dataset condensation
in object detection. We introduce a streamlined approach that separates the traditional bi-level
optimization into a two-stage Fetch and Forge process. This strategy effectively realizes dataset
condensation in object detection tasks with increased efficiency.

High Training Overhead in Object Detection. Object detection methods are broadly divided into
two categories: one-stage and two-stage detectors. One-stage detectors, such as YOLO series [19, 20],
SSD [14], DSFD [12], are valued for their speed and simplicity. Conversely, two-stage detectors
like Faster R-CNN [21] prioritize accuracy. Training object detectors, particularly on a single GPU,
demands substantial time. Training a complex model like Faster R-CNN on datasets such as COCO
can take several days or even weeks, depending on the configuration and hardware. This extensive
training time underscores the pressing need for more efficient training methodologies in object
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Figure 3: Overview of the DCOD framework: In the first stage, Fetch, a detector is trained on the original images,
encapsulating key information from the original dataset. In the second stage, Forge, a randomly initialized
synthetic set is enhanced through Foreground Background Decoupling and Incremental PatchExpand on the
initial images, which are then input into the trained detector. Guided by targets, specific category targets are
updated in the corresponding areas of the images. The loss of the detector serves as the task loss for condensation,
while pixel-level and feature-level regularization ensure the quality of the generated images.

detection, highlighting the growing importance of dataset condensation advancements. To address
this issue, we introduce the first dataset condensation framework for object detection.

3 Dataset Condensation for Object Detection

3.1 Preliminary

Dataset condensation reduces a large real dataset T into a smaller synthetic dataset S̃. We first
extend the existing DC [27, 32] optimization framework to accommodate detection task. For
object detection, each image is annotated with multiple bounding boxes and their associated class
labels. The real dataset T , containing N labeled images, is given by T = {(Xi, Ai)}Ni=1, where
Ai = {(xj , yj , wj , hj , cj)}ni

j=1, with xj , yj , wj , hj representing the coordinates and sizes of the j-th
bounding box, and cj being the class label. The synthetic dataset S̃, comprising M images where
M ≪ N , is formulated as S̃ = {(X̃i, Ãi)}Mi=1, where Ãi = {(x̃j , ỹj , w̃j , h̃j , c̃j)}ñi

j=1 represents the
synthetic bounding boxes and their corresponding class labels. The optimization process for dataset
condensation is twofold:

Model Parameters Update (Inner Loop): The model parameters θ are optimized over the synthetic
dataset S̃ to minimize the loss function LS̃(θ):

θS̃(S̃) = arg min
θ

LS̃(θ). (1)

Synthetic Dataset Update (Outer Loop): The synthetic dataset S̃ is refined to minimize the loss on
the real dataset T using the model parameters θS̃(S̃) obtained from the inner loop:

S̃∗ = arg min
S

LT (θS̃(S̃)). (2)

However, this optimization process underlying this procedure involves a complex bi-level optimization
scheme, which leads to high computational costs. The challenge intensifies when dealing with intricate
model structures in the inner-loop or large synthetic datasets in the outer-loop. In the context of object
detection, where high-resolution images and complex network structures are the norm, employing
such bi-level optimization becomes even more impractical. This emphasizes the need for more
streamlined and practical methods in dataset condensation, especially for tasks like object detection
that involve high computational demands.

4



3.2 Fetch and Forge: DCOD Framework

Pioneering the application of dataset condensation to object detection, we develop the Dataset Con-
densation for Object Detection (DCOD) framework, which is a novel two-stage process depicted in
Figure 3. This method diverges from the traditional bi-level optimization that compresses information
directly into synthetic data. Instead, we optimize the model and synthetic data separately. Subsequent
sections will delve into the optimization objectives for the Fetch and Forge stages.

Stage-I: Fetch. For object detection tasks, the real dataset is given by T = {(Xi, Ai)}Ni=1, with
Ai encompassing bounding boxes and class labels. By training an object detector ψθ parameterized
with θ on the original dataset T , we capture key information crucial for the tasks of localization and
recognition within images. The optimization can be expressed as:

θT = argmin
θ
Ldet(ψθ(X), A), (3)

with Ldet representing the composite loss function that combines localization loss Lloc and classifica-
tion loss Lcls:

Ldet(ψθ(X), A) = Lloc(ψθ(X), A) + Lcls(ψθ(X), A), (4)
minimizing Ldet adjusts θ to detect objects with higher precision.

Stage-II: Forge. In the forge stage, we borrow principles from model inversion [16, 28, 3], utilizing
a well-trained detection model to guide the embedding of essential information back into the synthetic
images. To achieve this, it is essential to recognize the unique aspects of detection tasks: an image
typically contains multiple foreground objects with different positions, sizes, and shapes. Therefore,
we propose Foreground Background Decoupling (FBD) and Incremental PatchExpand (IPE). Finally,
we use the detection loss as the task loss to guide the update of the targets’ corresponding areas with
the foregrounds of various categories.

Foreground-Background Decoupling. We initialize the synthetic set S̃ = {(X̃i, Ãi)}Mi=1 by
randomly selecting a subset of images and their corresponding targets from the original dataset, which
includes position coordinates and category labels. The primary objective of object detection is to
distinguish the foreground from the background and then classify the foreground objects. Therefore,
we prioritize synthesizing the foreground. Additionally, while the background is treated as a single
category in detection tasks, we adopt a background suppression strategy to avoid blending different
contextual semantics (e.g., integrating sky or ocean information into a grassy background).

To this end, we propose Foreground-Background Decoupling (FBD) to separately handle the updating
of the foreground and background areas, as follows:

FBD(X̃ = {xback, xfore}) =
{

xback ← αxback (α < 1)

RE(xfore)
(5)

We first separate the foreground and background regions using a binary mask based on the bounding
box coordinates from the original labels. For the background (xback), we apply a suppression strategy
controlled by a hyperparameter α, which limits updates to preserve contextual information. For the
foreground (xfore), we employ a random erasure methodRE , ensuring the model focuses more on
refining foreground pixels during the inversion phase. By strategically applying suppression and
enhancement, this approach prioritizes important visual information, optimizing the model’s ability
to generate high-fidelity synthesized images.

Incremental PatchExpand. Unlike classification datasets that contain only one object, images
in detection datasets sometimes contain multiple instances of several different categories. Inspired
by curriculum learning, we propose Incremental PatchExpand (IPE) to learn more instances during
training. By adopting this approach, we increase the number of divisions, thereby introducing
complexity into the synthetic data. We first standardize all images to a uniform size via padding.
Subsequently, we employ a procedure, as defined by the function:

IPE(X̃) = Expand(Patch(Padding(X̃), k), Ã) (6)
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Algorithm 1 Dataset Condensation for Object Detection
Input: Training set T
Required: Randomly initialized set of synthetic samples S̃, initialized detector ψθ parameterized
with θ, training iterations K, learning rate ηs

1: Stage-I: Fetch
2: Train ψθ on T : θT = argminθ Ldet(ψθ(X), A)
3: Stage-II: Forge
4: for k = 0, . . . ,K − 1 do
5: Apply FBD and IPE for synthetic set S̃=FBD(IPE(S̃))
6: Compute task loss Ldet using Equ. 4
7: Compute Rreg using Equ. 8, where compute Rpixel and Rfeature using Equ. 9 and Equ. 11
8: Calculate L = Ldet(ψθT (X̃), Ã) +Rreg

9: Update S̃ ← S̃ − ηs∇sL
10: end for
Output: Condensed synthetic dataset S̃

which divides the images into k × k patches and each patch is then optimized for different targets,
enhancing the diversity in object position, size, and shape. The incremental introduction of more
patches allows the model to gradually adapt to various complexities and learn effectively across a
broader range of scenarios.

Optimization with Pixel and Feature Regularization. The synthetic images X̃ are optimized by
solving the following minimization problem:

X̃ = argmin
X̃

Ldet(ψθT (X̃), Ã) +Rreg, (7)

where Ldet denotes the detection loss and θ signifies the parameters of the model applied to X̃ . Here,
Ã represents the set of annotations for the targets present in X̃ . The term Rreg , a regularization term,
is crucial for preserving the intrinsic qualities of the original dataset within the synthetic images and
is defined as the sum of pixel and feature regularization:

Rreg = Rpixel +Rfeature, (8)

The pixel-level regularization Rpixel comprises two terms:

Rpixel(X̃) = αTVRTV (X̃) + αl2Rl2(X̃). (9)

with RTV promoting spatial smoothness through the Total Variation regularization:

RTV (X̃) =
∑
i,j

√
(X̃i,j − X̃i+1,j)2 + (X̃i,j − X̃i,j+1)2, (10)

and Rl2 minimizing the squared Euclidean norm of pixel values. The coefficients αTV and αl2 are
hyperparameters that balance the Total Variation and L2 terms, respectively.

Feature-level regularization Rfeature aims to align the feature statistics of the synthetic image X̃
with the batch normalization (BN) layers of the pre-trained model, as follows:

Rfeature(X̃) =
∑
l

(
∥µl(X̃)− µBN

l ∥22 + ∥σ2
l (X̃)− σBN

l ∥22
)
, (11)

where µl(X̃) and σ2
l (X̃) represent the mean and variance of the activations at the l-th BN layer of X̃ ,

while µBN
l and σBN

l correspond to the statistics derived from the pre-trained model. This feature
regularization is fundamental for the consistency of the feature distribution and the utility of X̃ in
training object detectors. At last, we summarize the complete two-stage process in Algorithm 1.
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Table 1: The Performance comparison results on Pascal VOC,
with the compression ratios of 0.5%, 1%, and 2%. The methods
compared include Random [18], Uniform, K-Center [23] and
Herding [1, 4]. The models used in both the compression and
evaluation phases are YOLOv3-SPP. Ratio (%): the ratio of con-
densed images to the whole training set.

Methods mAP (%) AP50(%) AP75(%) APs(%) APm(%) APl(%)

Ratio 0.5 (%)
Random 4.9±0.2 15.8±0.7 1.4±0.1 0.2±0.1 1.4±0.1 6.7±0.4
Uniform 5.0±0.2 15.8±0.5 1.5±0.1 0.1±0.1 1.5±0.1 6.7±0.3
K-Center 3.8±0.3 14.5±0.6 0.9±0.1 0.01±0.0 0.7±0.12 5.1±0.4
Herding 3.6±0.0 12.6±0.2 0.9±0.01 0.1±0.1 0.9±0.1 4.6±0.1

Ours 14.2±0.5 37.9±0.9 6.6±0.4 2.4±0.3 6.6±0.4 18.1±0.7
Ratio 1 (%)

Random 8.6±0.5 25.5±0.7 3.0±0.2 0.4±0.1 3.1±0.1 12.6±0.6
Uniform 8.8±0.4 25.7±0.6 3.2±0.3 0.4±0.1 3.2±0.2 12.8±0.4
K-Center 6.1±0.2 21.9±0.9 1.4±0.1 0.1±0.0 1.3±0.2 8.3±0.3
Herding 5.5±0.2 19.3±0.5 1.3±0.1 0.2±0.0 1.3±0.1 7.9±0.3

Ours 19.8±0.4 46.4±0.4 13.0±0.6 4.4±0.2 10.5±0.3 24.9±0.5
Ratio 2 (%)

Random 15.8±0.5 40.5±0.7 8.2±0.7 1.4±0.6 5.8±0.4 20.5±0.4
Uniform 15.9±0.3 40.6±0.5 8.2±0.5 1.5±0.3 5.8±0.3 20.6±0.3
K-Center 9.21±0.2 31.3±0.5 2.4±0.1 0.4±0.1 2.5±0.1 12.4±0.3
Herding 8.5±0.4 28.1±0.8 2.6±0.1 0.5±0.1 2.4±0.2 12.3±0.2

Ours 23.7±0.6 50.7±0.6 18.7±0.5 5.6±0.7 13.6±0.5 29.9±0.7
Whole Dataset 46.5±0.5 76.4±0.4 46.7±0.3 11.7±0.6 28.2±0.5 52.2±0.4

Table 2: The Performance comparison re-
sults on MS COCO, with the compression
ratios of 0.25%, 0.5%, and 1%. The mod-
els used in both the compression and eval-
uation phases are YOLOv3-SPP.

Methods mAP (%) AP50(%) AP75(%)

Ratio 0.25 (%)
Random 3.5±0.1 9.7±0.1 1.6±0.1
Uniform 3.6±0.1 9.8±0.2 1.6±0.1
K-Center 1.7±0.1 6.3±0.0 0.4±0.0
Herding 1.7±0.1 5.8±0.1 0.5±0.1

Ours 7.2±0.1 17.2±0.2 4.8±0.2
Ratio 0.5 (%)

Random 5.5±0.1 14.2±0.1 2.9±0.1
Uniform 5.6±0.1 14.3±0.1 2.9±0.1
K-Center 2.8±0.0 8.9±0.1 0.7±0.1
Herding 2.6±0.1 8.8±0.1 0.8±0.1

Ours 10.0±0.1 21.5±0.2 8.0±0.1
Ratio 1 (%)

Random 8.3±0.0 19.7±0.1 5.3±0.1
Uniform 8.4±0.1 19.7±0.2 5.4±0.1
K-Center 4.0±0.1 12.9±0.1 1.2±0.1
Herding 4.1±0.1 12.5±0.2 1.3±0.2

Ours 12.1±0.1 24.7±0.2 10.4±0.1
Whole Dataset 36.1±0.2 63.6±0.3 36.5±0.2

4 Experiment

4.1 Experiment Setup

The standard evaluation of dataset condensation consists of two steps: first, condensing the original
training set into a smaller synthetic dataset; then, training an initialized model with this synthetic data
and evaluating it on the original dataset’s test set to assess the synthetic data’s effectiveness in model
training.

Datasets and Metrics. Our DCOD method is evaluated on Pascal VOC [7, 6] and MS COCO [13]
benchmarks, with image resolution set to 512x512. For Pascal VOC, we merge the trainval sets of
VOC2007 and VOC2012 into a single training set with 16,551 images, using the VOC2007 test set
for evaluation. MS COCO comprises 80 categories with 118,287 training and 5,000 test images. Both
datasets are assessed using standard COCO metrics: mAP (mean Average Precision), AP50 (0.5 IoU
threshold), AP75 (0.75 IoU threshold), and size-specific APs, APm, APl for performance evaluation.
We train the network from scratch 5 times on the distilled dataset and evaluate them on the original
test dataset to get the x̄± std.

Implementation Details. The initialization of the synthetic set involves random sampling from the
original images, adhering to the specified compression ratio. The compression rate in classification
tasks is typically set to around 1%. In our task, for VOC, we evaluate at compression rates of
0.5%, 1%, and 2%, while for COCO, we report at 0.25%, 0.5%, and 1%. During the standard
image synthesis process, we set the image learning rate at 0.002. The weight for the task loss is
set at 1, while Rfeatureis assigned a weight of 0.1. The αTV and αl2 is established at 1 and 0.001,
respectively. The α in background suppression strategy is set to 0.7. All experiments were performed
on a single V100 gpu.

4.2 Experimental Results

Counterpart Methods. As we are the first dataset condensation methods for object detection, we
refer to the comparison settings of general DC in classification [27, 32] and choose three core-set
selection methods: Random [18], K-center [23], and Herding [1, 4]. The Random method randomly
selects real images from the original training set to form a subset. To adapt the K-center and Herding
for object detection tasks, we implement a straightforward modification by using a pre-trained feature
extractor (ResNet50) to process the features of entire images and employing the L2 norm to measure
distances. Additionally, considering class balance, we also employ the Uniform, which is commonly
used in practical applications within the field of object detection.
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Table 3: Ablation Study on the components of
Forge, FBD , and IPE at 1% compression rate on
Pascal VOC, with the model using YOLOv3-SPP.

Methods
Ratio 1 (%)

mAP(%) AP50(%) AP75(%)

baseline 8.3±0.6 25.9±0.5 2.9±0.3
baseline+FBD 10.0±0.3 27.9±0.4 3.4±0.2
baseline+IPE 17.7±0.4 42.6±0.5 11.6±0.4

baseline+FBD+IPE 19.8±0.4 46.4±0.4 13.0±0.6

Table 4: Cross-architecture performance on Pascal VOC
and MS COCO. We use the one-stage detector YOLOv3-
SPP and the two-stage detector Faster RCNN for the
evaluation phase, respectively.

Ratio (%) Detector
VOC COCO

mAP(%) AP50(%) mAP(%) AP50(%)

0.5
YOLOv3-SPP 14.2±0.5 37.9±0.9 10.0±0.1 21.5±0.2
Faster-RCNN 6.3±0.4 18.5±0.7 3.7±0.3 8.4±0.2

1
YOLOv3-SPP 19.8±0.4 46.4±0.4 12.1±0.1 24.7±0.2
Faster-RCNN 13.8±0.5 33.2±0.6 6.1±0.4 13.5±0.3

Figure 4: Ablation of αTV on Pascal VOC, with
a compression ratio of 1%, using YOLOv3-SPP.

Table 5: Comparison of different initialization on Pascal
VOC with a compression ratio of 0.5% using YOLOv3-
SPP.

Initial Methods mAP(%) AP50(%)

Noise 6.9±0.7 23.2±0.5
Random 14.2±0.5 37.9±0.9
K-center 11.9±0.6 34.2±0.4
Herding 11.5±0.7 33.8±0.6

Comparison Results. Table 1 and 2 provide the comparative results of our dataset condensation
method on the VOC and COCO datasets, underlining its superior performance at all compression
rates. According to the official ultralytics/yolov3 implementation, the detector achieves an mAP of
46.5% and AP50 of 76.4% on VOC when trained with the full dataset, and 35.6% mAP on COCO,
which serves as an approximate upper limit of performance. On VOC, using a 2% compression rate,
our method still reaches an AP50 of 50.7%. On COCO, at a 1% compression rate, the mAP and AP50

reach 12.1% and 24.7% respectively. Compared to random sampling, at the lowest compression
rate of 0.5% on VOC, our method increases mAP and AP50 by 9.3% and 22.1% respectively, and at
COCO’s lowest compression rate of 0.25%, our method improves mAP and AP50 by 3.7% and 7.5%
respectively. Moreover, while the Uniform method shows slight improvement over Random, it still
falls short of the performance achieved by our approach. The Coreset method, focusing only on the
overall image features and neglecting instance-level details, shows poor performance. Our method
also demonstrates comprehensive advantages in multi-size object detection metrics like APs, APm,
APl, indicating that our DCOD significantly enhances the diversity of foreground positions, sizes,
and shapes.

4.3 Ablation Study

Effectiveness of Each Component. Table 3 shows that using model Inversion from Forge as
our baseline, our proposed augmentations IPE and FBD improve performance by 1.7% and 9.4%
respectively. Combined, they yield an 11.5% overall improvement. Notably, the baseline alone
underperforms compared to random sampling. We found that without these augmentations, the
detection loss quickly converges in early iterations, missing key positional and classification details.
Thus, incorporating both IPE and FBD is crucial to enhance the diversity and effectiveness of the
synthetic images.

Cross-architecture Generalization. We verify the performance of condensed data on new archi-
tectures, and in Table 4, our approach is able to maintain good generalization at 1% compression.
However, we observe a larger performance drop at lower compression rates. This is due to the fact
that the one-stage detector and two-stage detector architectures differ significantly, preserving limited
information when too few images are synthesized.

Sensitivity of Hyper-Parameters. Figure 4 shows how different αTV regularization weights affect
our method’s performance, using the VOC dataset with a 1% compression rate. The results indicate
that an optimal regularization weight enhances performance, while no regularization or too much
regularization reduces it. This happens because lack of regularization introduces excessive noise, and
too much regularization causes excessive smoothing in the synthetic images, both of which degrade
the quality of the images.
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GT Iter 1000Iter 0 Iter 2000 Iter 3000Iter 500

Figure 5: Visualization of different iteration steps during the condensed phase. Scores are assigned using the
trained YOLOv3-spp model, based on IOU@0.5. The “GT” column represents the true labels of images. “iter0”
shows the initial image scores, followed by scores of synthetic images and their bounding box at iterations 500,
1000, 2000, and 3000.

Figure 6: Visualization of the multi-instance synthesized images. Scores are assigned using the trained YOLOv3-
SPP model, based on IOU@0.5.

Performance upper bound As shown in Figure 7, we compare the performance variations of the
Random baseline method and the DCOD method as the compression ratio increases. The performance
of the full dataset, marked by a gray line, serves as the theoretical upper bound. When the ratio is
below 5%, DCOD shows a significant advantage over the random method, while as the ratio exceeds
20%, the performance of both methods converge.

Discussion on Initialization We discuss the impact of initialization sampling on the performance
of the synthetic dataset in this section. As shown in Table 5, the Random method, which is the
primary choice for the experiments in this paper, is simple and performs well. Initialization strategies
based on K-center and Herding lead to a decline in performance. This is these core-set methods fail
to account for the complex factors in detection datasets, such as class distribution and object size
distribution, resulting in significant differences between the synthetic and original datasets. Using
noise as the initialization method, due to the absence of any prior information from the original
dataset, causes a notable drop in the effectiveness of the synthetic dataset.

4.4 Visualization

We present a comparative analysis of synthetic images across various iterations, as shown in Figure
5. Notably, there is a progressive enhancement in the foreground scores with advancing iterations,
indicative of the incremental integration of category-specific beneficial information into the images.
Specifically, for sheep in the first row, the scores at iter500 and iter1000 start lower than the initial
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Figure 7: Visualization of performance curves on Pascal VOC using YOLOv3-SPP as the compression ratio
increases.

image but surpass initial scores after iter2000. This trend implies that early images are initially
disrupted by noise from the update process, but as iterations progress, pixel, and feature regularization
help maintain image clarity.

Additionally, we also showcase the visualization results of synthetic images containing multiple
instances, as shown in Figure 6, demonstrating that DCOD effectively supports the generation of
multiple instances required in detection tasks.

5 Conclusion, Limitations and Future Work

In this study, we introduce the first dataset condensation framework for object detection, DCOD. It is
a two-stage framework where, in the first stage, Fetch stores information vital for detection from the
original dataset into model parameters. In the second stage, Forge, the images are then reconstructed
through model Inversion. We propose foreground background decoupling and incremental Patch-
Expand, to improve the efficiency and diversity of the synthetic images. Extensive experiments are
conducted on two standard detection benchmarks, Pascal VOC and MS COCO, to demonstrate that
DCOD can significantly maintain superior performance even at an extremely low compression rate.

We acknowledge the limitations of our work from two perspectives. First, due to the significant
differences among object detectors, we did not extend our approach to more complex detectors like
DETR, as this might require more specialized designs to accommodate their structures. Second,
the performance across different architectures is still insufficient and remains an area that needs
improvement.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly outline the primary contributions and
scope of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We describe it in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification:
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe it in Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: We commit to releasing the complete code later.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We describe it in Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In all exp table we consider error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We use a singlev100 gpu in section4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The potential positive societal impacts are described in Abstract and Introduc-
tion. In our view, this work has no potential negative social impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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