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Abstract

The design of novel protein structures remains a
challenge in protein engineering for applications
across biomedicine and chemistry. In this line
of work, a diffusion model over rigid bodies in
3D (referred to as frames) has shown success in
generating novel, functional protein backbones
that have not been observed in nature. However,
there exists no principled methodological frame-
work for diffusion on SE(3), the space of orienta-
tion preserving rigid motions in R3, that operates
on frames and confers the group invariance. We
address these shortcomings by developing theo-
retical foundations of SE(3) invariant diffusion
models on multiple frames followed by a novel
framework, FrameDiff , for learning the SE(3)
equivariant score over multiple frames. We apply
FrameDiff on monomer backbone generation and
find it can generate designable monomers up to
500 amino acids without relying on a pretrained
protein structure prediction network that has been
integral to previous methods. We find our samples
are capable of generalizing beyond any known
protein structure. Code: https://github.
com/jasonkyuyim/se3_diffusion

1. Introduction
The ability to engineer novel proteins holds promise in de-
veloping bio-therapeutics towards global health challenges
such as SARS-COV-2 (Arunachalam et al., 2021) and cancer
(Quijano-Rubio et al., 2020). Unfortunately, efforts to engi-
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neer proteins have required substantial domain knowledge
and laborious experimental testing. To this end, protein en-
gineering has benefited from advancements in deep learning
by automating knowledge acquisition from data and improv-
ing efficiency in designing proteins (Ding et al., 2022).

Generating a novel protein satisfying specified structural or
functional properties is the task of de novo protein design
(Huang et al., 2016). In this work, we focus on generat-
ing protein backbones. A protein backbone consists of N
residues, each with four heavy atoms rigidly connected via
covalent bonds, N−Cα−C−O. Computationally designing
novel backbones is technically challenging due to the cou-
pling of structure and sequence: atoms that comprise protein
structure must adhere to physical and chemical constraints
while being “designable” in the sense that there exists a
sequence of amino acids which folds to that structure. We
approach this problem with diffusion generative modeling
which has shown promise in recent work (see Sec. 6).

A main technical challenge is to combine expressive geomet-
ric deep learning methods that operate on protein structures
with diffusion generative modeling. Because the N−Cα−C
atoms for each residue may be described accurately as a
frame (Fig. 1A), many successful computational methods
for both protein structure prediction (Jumper et al., 2021)
and design (Watson et al., 2022) represent backbone struc-
tures by an element of the Lie group SE(3)N . Moreover,
since the biochemical function of proteins is imparted by
the relative geometries of the atoms (and so is invariant to
rigid transformations) these methods typically utilize SE(3)
equivariant neural networks.1 While De Bortoli et al. (2022);
Huang et al. (2022) have extended diffusion modeling to
Riemannian manifolds (such as SE(3)), these works do not
readily provide tractable training procedures or accommo-
date inclusion of geometric invariances.

Modeling SE(3)N poses theoretical challenges and current
deep learning methods have outpaced theoretical founda-
tions. Watson et al. (2022) demonstrated a diffusion model
(RFdiffusion) to generate novel protein-binders with high,
experimental-verified affinities, but relied on a heuristic de-
noising loss and required pretraining on protein structure

1SE(3)N is the manifold of N frames while SE(3) equivari-
ance refers to the equivariance on global rotations and translations.
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Figure 1. Method overview. (A) Backbone parameterization with frames. Each residue along the protein chain shares the same structure
of backbone atoms due to the fixed bonds between each atom. Performing the GramSchmidt operation on vectors v1, v2 results in rotation
matrix r that parameterizes the N− Cα − C placements with respect to the frame translation, x, set to the Cα coordinates. An additional
torsion angle, ψ, is required to determine the placement of the oxygen atom, O. (B) Inference is performed by sampling N frames
initialized from the reference distribution over rotations and translations. Then a time-reversed SE(3) diffusion is run from t = TF to
t = 0 at which point the ψ angle is predicted. The final frames and ψ angles are used to construct the protein backbone atoms.

prediction. Our goal is to bridge this theory-practice gap
and develop a principled method without pretraining.

The contribution of this work is on the theory and methodol-
ogy of SE(3) diffusion models with applications to protein
backbone generation. First, we construct a diffusion process
on SE(3)N . In Sec. 3, we characterize the distribution of
the Brownian motion on compact Lie groups (with a focus
on SO(3)) in a form amenable for denoising score matching
(DSM) training and define a forward process on SE(3)N

that allows for separation of translations and rotations. We
show that an SE(3) invariant process on SE(3)N can only
be made translation invariant by keeping the diffusion pro-
cess centered at the origin since no R3 invariant probability
measure exists. Second, we implement our theory as a SE(3)
invariant diffusion model on SE(3)N for protein backbones.
We refer to our method as FrameDiff and describe it in
Sec. 4. Empirically, we find through experiments in Sec. 5
that FrameDiff can generate designable, diverse, and novel
protein monomers up to length 500. Compared to other
methods, FrameDiff achieves in-silico designability suc-
cess rates that are second only to RFdiffusion, a pretrained
model with 4-fold more parameters. Our contributions will
enable further advancements in SE(3) diffusion methodol-
ogy that underlies RFdiffusion and FrameDiff for proteins
as well as other domains such as robotics where SE(3) and
other Lie groups are used.

2. Preliminaries and Notation
Backbone parameterization. We adopt the backbone
frame parameterization used in AlphaFold2 (AF2) (Jumper
et al., 2021). Here, an N residue backbone is parame-
terized by a collection of N orientation preserving rigid
transformations, or frames, that map from fixed coordinates
N⋆,C⋆

α,C
⋆,O∗ ∈ R3 centered at C⋆

α = (0, 0, 0) (Fig. 1A).
Each fixed coordinate assumes chemically idealized bond
angles and lengths measured experimentally (Engh & Hu-
ber, 2012). For each residue indexed by n, the backbone

main atom coordinates are given by

[Nn,Cn, (Cα)n] = Tn · [N⋆,C⋆,C⋆
α], (1)

where Tn is a member of the special Euclidean group SE(3),
the set of orientation preserving rigid transformations in
Euclidean space. Each Tn may be decomposed into two
components Tn = (rn, xn) where rn ∈ SO(3) is a 3 × 3
rotation matrix and xn ∈ R3 represents a translation; for a
coordinate v ∈ R3, Tn · v = rnv+xn denotes the action of
Tn on v. Together, we collectively denote all N frames as
T = [T1, . . . , TN ] ∈ SE(3)N . With an additional torsion
angle ψ, we may construct the backbone oxygen by rotating
O⋆ around the bond between Cα and C. App. I.1 provides
additional details on this mapping and idealized coordinates.

Diffusion modeling on manifolds. To capture a distribu-
tion over backbones in SE(3)N we build on the Riemannian
score based generative modeling approach of De Bortoli
et al. (2022). We briefly review this approach. The goal of
Riemannian score based generative modeling is to sample
from a distribution X(0) ∼ p0 supported on a Riemannian
manifold M by reversing a stochastic process that trans-
forms data into noise. One first constructs an M-valued
forward process (X(t))t≥0 that evolves from p0 towards an
invariant density2 pinv(x) ∝ e−U(x) following

dX(t) = − 1
2∇U(X(t))dt+ dB

(t)
M, X(0) ∼ p0, (2)

where B(t)
M is the Brownian motion onM. The time-reversal

of this process is given by the following proposition.

Proposition 2.1 (Time-reversal, De Bortoli et al. (2022)).
Let TF > 0 and

←−
X(t) given by

←−
X(0) d

= X(TF) and

d
←−
X(t) = { 12∇U(

←−
X(t)) +∇ log pTF−t(

←−
X(t))}dt+ dB

(t)
M,

where pt is the density of X(t). Then under mild assump-

2density w.r.t. the volume form on M.

2



SE(3) diffusion model with application to protein backbone generation

tions onM and p0 we have that
←−
X(t) d

= X(TF−t).

Diffusion modeling in Euclidean space is a special case of
Prop. 2.1. However, generative modeling using this reversal
beyond the Euclidean setting requires additional mathemati-
cal machinery, which we now review.

Riemannian gradients and Brownian motions. In the
above, ∇U(x) and ∇ log pt(x) are Riemannian gradients
taking values in TanxM, the tangent space of M at x,
and depend implicitly on the choice of an inner product on
TanxM, denoted by ⟨·, ·⟩M. Similarly, the Brownian mo-
tion relies on ⟨·, ·⟩M through the Laplace–Beltrami operator,
∆M, which dictates its density through the Fokker-Planck
equation in the absence of drift; if πt is the density of the
B

(t)
M then ∂tπt = 1

2∆Mπt. We refer the reader to Lee
(2013) and Hsu (2002) for background on differential geom-
etry and stochastic analysis on manifolds.

Denoising score matching. The quantity∇ log pt is called
the Stein score and is unavailable in practice. It is approxi-
mated with a score network sθ(t, ·) trained by minimizing a
denoising score matching (DSM) loss

L(θ) = E[λt∥∇ log pt|0(X
(t)|X(0))− sθ(t,X(t))∥2],

(3)
where pt|0 is the density of X(t) given X(0), λt > 0 a
weight, and the expectation is taken over t ∼ U([0,TF]) and
(X(0),X(t)). For an arbitrarily flexible network, the mini-
mizer θ⋆ = argminθL(θ) satisfies sθ⋆(t, ·) = ∇ log pt.

Lie groups are Riemannian manifolds with an additional
group structure, i.e. there exists an operator ∗ : G×G→ G
such that (G, ∗) is a group and ∗ as well as its inverse are
smooth. We define the left action as Lg(h) = g ∗ h for
any g, h ∈ G and its differential is denoted by dLg(h) :
TangG → Tang∗hG. SO(3), SE(3) and R3 are all Lie
groups. For any group G, we denote g its Lie algebra. We
refer to Sola et al. (2018) for an introduction to Lie groups.

Additional notation. Superscripts with parentheses are
reserved for time, i.e. x(t). Uppercase is used to denotes ran-
dom variables, e.g. X ∼ p, and lower case is used for
deterministic variables. Bold denotes concatenated ver-
sions of variables, e.g. x = (x1, . . . , xN ) or processes
(X(t))t∈[0,TF].

3. Diffusion models on SE(3)

Parameterizing flexible distributions over protein backbones,
leveraging the Riemannian diffusion method of Sec. 2 to
SE(3)N , requires several ingredients. First, in Sec. 3.1
we develop a forward diffusion process on SE(3), then
Sec. 3.2 derives DSM training on compact Lie groups, using
SO(3) as the motivating example. At this point, a diffusion
model on SE(3)N is defined. Next, because incorporating

invariances can improve data efficiency and generalization
(e.g. Elesedy & Zaidi, 2021) we desire SE(3) invariance
where the SE(3)N data distribution is invariant to global
rotations and translations. Sec. 3.3 will show this is not
possible without centering the process at the origin and
having a SO(3)-equivariant neural network.

3.1. Forward diffusion on SE(3)

In contrast to Euclidean space and compact manifolds, no
canonical forward diffusion on SE(3)N exists, and we must
define one. This entails (a) choosing an inner product on
SE(3) to define a Brownian motion and (b) choosing a
reference measure for the forward diffusion.

We begin with the inner product, which we derive from the
canonical inner products for SO(3) and R3 which we recall
below–see Carmo (1992). For u, v ∈ so(3) and x, y ∈ R3

⟨u, v⟩SO(3) = Tr(uv⊤)/2 and ⟨x, y⟩R3 =
∑3

i=1 xiyi,

In the next proposition, we show that, under an appropri-
ate choice of inner product, SE(3) can be identified with
SO(3) × R3 from a Riemannian point of view, thereby
providing a Laplace-Beltrami operator and a well-defined
Brownian motion.

Proposition 3.1 (Metric on SE(3)). For any T ∈
SE(3) and (a, x), (a′, x′) ∈ TanTSE(3) we define
⟨(a, x), (a′, x′)⟩SE(3) = ⟨a, a′⟩SO(3) + ⟨x, x′⟩R3 . We have:

(a) for any f ∈ C∞(SE(3)) and T = (r, x) ∈ SE(3),
∇T f(T ) = [∇rf(r, x),∇xf(r, x)],

(b) for any f ∈ C∞(SE(3)) and T = (r, x) ∈ SE(3),
∆SE(3)f(T ) = ∆SO(3)f(r, x) + ∆R3f(r, x),

(c) for any t > 0, B(t)
SE(3) = [B

(t)
SO(3),B

(t)
R3 ] with indepen-

dent B(t)
SO(3) and B

(t)
R3 .

Other choices of metric for SE(3) are possible, lead-
ing to different definitions of the exponential and Brow-
nian motion. Our choice has the advantage of simplic-
ity and allows to treat SO(3) and R3 forward processes
independently (conditionally on T(0)). For the invari-
ant density of T = (r, x), we choose p

SE(3)
inv (T ) ∝

USO(3)(r) N (x; 0, Id3). The associated forward process
(T(t))t≥0 = (R(t),X(t))t≥0 is given according to (2) and
Prop. 3.1 by

dT(t) = [0,− 1
2X

(t)]dt+ [dB
(t)
SO(3),dB

(t)
R3 ]. (4)

3.2. Denoising score matching on SE(3)

As a consequence of Prop. 3.1 and the independence
of the rotational and translational components of the
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forward process, we have ∇T(t) log pt|0(T
(t)|T(0)) =

[∇R(t) log pt|0(R
(t)|R(0)),∇X(t) log pt|0(X

(t)|X(0))] and
we can compute these quantities independently over the
rotation and translation components.

Denoising score matching on SO(3). The forward process
(R(t))t≥0 is simply the Brownian motion on SO(3), and
pt|0 is defined by the heat kernel, see Hsu (2002). We
obtain pt|0 analytically as a series as a special case of the
decomposition of the heat kernel for compact Lie groups.

Proposition 3.2 (Brownian motion on compact Lie groups).
Assume thatM is a compact Lie group, where for any ℓ ∈ N
χℓ is the character associated with the irreducible unitary
representation of dimension dℓ. Then χℓ : M→ R is an
eigenvector of ∆ and there exists λℓ ≥ 0 such that ∆χℓ =
−λℓχℓ. In addition, we have for any t > 0 and x(0), x(t) ∈
M, pt|0(x(t)|x(0)) =

∑
ℓ∈N dℓe

−λℓt/2χℓ((x
(0))−1x(t)).

Combining Prop. 3.2 and the explicit expression of irre-
ducible characters for SO(3) provides an explicit expression
for the density transition kernel B(t)

SO(3). In App. E.1, we
showcase another application of our method by computing
the heat kernel on SU(2).

Proposition 3.3 (Brownian motion on SO(3)). For any
t > 0 and r(0), r(t) ∈ SO(3) we have that pt|0(r(t)|r(0)) =
IGSO3(r

(t); r(0), t) given by IGSO3(r
(t); r(0), t) =

f(ω(r(0)⊤r(t)), t), where ω(r) is the rotation angle in radi-
ans for any r ∈ SO(3)—its length in the axis–angle repre-
sentation3— and

f(ω, t) =
∑

ℓ∈N(2ℓ+ 1)e−ℓ(ℓ+1)t/2 sin((ℓ+1/2)ω)
sin(ω/2) . (5)

Prop. 3.3 agrees with previous proposed expressions of the
law of the Brownian motion (Nikolayev & Savyolov, 1970;
Leach et al., 2022) up to a two-fold deceleration of time.
This deceleration is crucial to the correct application of
Prop. 2.1 (see App. E.3 for details).

Accurate values of the Brownian density (5) can easily be
obtained by truncating the series. Also, although exact sam-
pling is not available, accurate samples can be obtained by
numerically inverting the cdf (Leach et al., 2022). More-
over, this density allows computation of the conditional
score required by the dsm loss.

Proposition 3.4 (Score on SO(3)). For t > 0, r(0), r(t) ∈
SO(3), we have

∇ log pt|0(r
(t) | r(0)) = r(t)

ω(t) log{r(0,t)}
∂ωf(ω

(t), t)

f(ω(t), t)
,

with r(0,t) = r(0)⊤r(t), ω(t) = ω(r(0,t)) and log the inverse
of the exponential on SO(3), i.e. the matrix logarithm.

3See App. C.3 for details about the parameterization of SO(3).

Denoising score matching on R3. The process (X(t))t≥0

is an Ornstein–Uhlenbeck process, see (4), (also called
VP-SDE (Song et al., 2021)) and converges geomet-
rically to N (0, Id). In addition, pt|0(x

(t)|x(0)) =

N (x(t); e−t/2x(0), (1 − e−t) Id3) and the corresponding
conditional score can be computed explicitly as

∇ log pt|0(x
(t)|x(0)) = (1− e−t)−1(e−t/2x(0) − x(t)).

3.3. SE(3) invariance through centered SE(3)N

In this subsection, we show how one can construct a diffu-
sion process over SE(3)N that is invariant to global transla-
tions and rotations. Formally, we want to design a measure
µ on SE(3)N such that for any T0 ∈ SE(3), and measurable
A ⊂ SE(3)N , µ(A) = µ({T0 ·T , T ∈ A}), where for any
T = (T1, · · · , TN ), T0 ·T = (T0T1, . . . , T0TN ). Unfortu-
nately, there exists no probability measure on SE(3)N which
is SE(3) invariant since there exists no probability measure
on R3N which is R3 invariant. As a result, no output of
a SE(3)N -valued diffusion model can be SE(3) invariant.
However, we will show SE(3) invariance is achieved by
keeping the diffusion process always centered at the origin.

From SE(3) to SO(3) invariance. We show that we can
construct an invariant measure on SE(3)N by keeping the
center of mass fixed to zero, i.e.

∑N
n=1 xn = 0. Formally,

this defines a subgroup of SE(3)N denoted SE(3)N0 with
elements [(r1, x1), . . . , (rN , xN )], which we refer to as cen-
tered SE(3). Note that SE(3)N0 is still a Lie group and
SO(3) is a subgroup of SE(3)N0 .

Proposition 3.5 (Disintegration of measures on SE(3)N ).
Under mild assumptions4, for every SE(3)-invariant mea-
sure µ on SE(3)N , there exist η an SO(3)-invariant prob-
ability measure on SE(3)N0 and µ̄ proportional to the
Lebesgue measure on R3 such that

dµ([(r1, x1), ..., (rN , xN )]) = dµ̄( 1
N

∑N
i=1 xi)

×dη([(r1, x1 − 1
N

∑N
i=1 xi), ..., (rN , xN −

1
N

∑N
i=1 xi)]).

The previous proposition is based on the disintegration of
measures (Pollard, 2002). The converse is also true. In
practice this means that in order to define a SE(3)-invariant
measure on SE(3)N one needs only to define an SO(3)-
invariant measure on SE(3)N0 . This is the goal of the next
paragraph.

Diffusion models on SE(3)N0 . A simple modification of the
forward process (4) yields a stochastic process on SE(3)N0 .
Indeed consider (T(t))t≥0 on SE(3)N given by

dT(t) = [0,− 1
2PX

(t)]dt+ [dB
(t)

SO(3)N
,PdB

(t)

R3N ], (6)

4See App. G for a precise statement.
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where P ∈ R3N×3N is the projection matrix remov-
ing the center of mass 1

N

∑N
n=1 xn. Then (T(t))t≥0 =

(R(t),X(t))t≥0 is a stochastic process on SE(3)N0 with in-
variant measure P#(N (0, Id)⊗N ) ⊗ U(SO(3))⊗N 5. We
note that such ‘center of mass free’ systems have been pro-
posed for continuous normalizing flows and discrete time
diffusion models (Köhler et al., 2020; Xu et al., 2022). An
application of Props. 2.1 and 3.1 shows that the backward
process (

←−
T (t))t∈[0,TF] = ([

←−
R(t),

←−
X(t)])t∈[0,TF] is given by

d
←−
R(t) = ∇r log pTF−t(

←−
T (t))dt+ dB

(t)

SO(3)N
, (7)

d
←−
X(t) = P{ 12

←−
X(t) +∇x log pTF−t(

←−
T (t))}dt+ PdB

(t)

R3N .

As in Sec. 3.2, we have pt|0((r
(t),x(t))|(r(0),x(0))) =

pt|0(r
(t)|r(0))pt|0(x(t)|x(0)), where these densities addi-

tionally factorizes along each of the residues. In App. J.1,
we use the forward process (6) for training and the backward
process (7) for sampling in App. J.2.

Invariance and equivariance on Lie groups. Finally, we
want the output of the backward process, i.e. the distribution
of (R(t),X(t)) given by (7) to be SO(3)-invariant so that
the associated measure on SE(3)N given by Prop. 3.5 is
SE(3)-invariant. To do so we use the following result.
Proposition 3.6 (G-invariance and SDEs). Let G be a Lie
group and H a subgroup of G. If (a) X(0) ∼ p0 for an H
invariant distribution p0 and (b) dX(t) = b(t,X(t))dt +
Σ1/2dB(t) for bounded, H-equivariant coefficients b and
Σ satisfying b ◦ Lh = dLh(b) and ΣdLh(·) = dLh(Σ·),
and where B(t) is a Brownian motion associated with a
left-invariant metric. Then for every t ≥ 0

(a) the distribution pt of X(t) is H-invariant, and

(b) its score∇X(t) log pt(X
(t)) is H-equivariant.

The proof can be extended to non-bounded coefficients un-
der appropriate assumption on the growth of b. As a conse-
quence of Prop. 3.6 we obtain the announced invariance.
Corollary 3.7. Suppose {T(0)}t≥0 has SO(3) invariant
initial distribution p0 and evolves according to Eq. (6).
Then for every t ∈ (0,TF), ∇ log pTF−t(

←−
T (t)) is SO(3)

equivariant, and the distribution of (
←−
R(t),

←−
X(t)) implied by

Eq. (7) is SO(3)-invariant.

The significance Corollary 3.7 is two-fold. First, because
the true score∇ log pTF−t(

←−
T (t)) is SO(3)-equivariant, the

corollary shows that incorporating an SO(3)-equivariance
constraint into neural network approximations of the score,
[srθ, s

x
θ ], does not limit the ability of the model to describe

any SO(3) invariant target. Second, it shows that any such
approximation

←−
T (t) will be SO(3) invariant.

5P# is the pushforward by P.

Equation (3.7) is still true if [∇r log pt,∇x log pt] is re-
placed with [srθ, s

x
θ ] with srθ and sxθ SO(3)-equivariant neu-

ral networks, see Sec. 4.1.

4. Protein backbone diffusion model
We now describe FrameDiff , a diffusion model for sam-
pling protein backbones by modeling frames based on the
centered SE(3)N stochastic process in Sec. 3. In Sec. 4.1,
we describe our neural network to learn the score using
frame and torsion predictions. Sec. 4.2 presents a multi-
objective loss involving score matching and auxiliary pro-
tein structure losses. Additional details for training and
sampling are postponed to Apps. J.1 and J.2.

4.1. FramePred: score and torsion prediction

In this section, we provide an overview of our score and
torsion prediction network; technical details are given in
App. I.2. Our neural network to learn the score is based on
the structure module of AlphaFold2 (AF2) (Jumper et al.,
2021), which has previously be adopted for diffusion by
Anand & Achim (2022). Namely, it performs iterative up-
dates to the frames over a series of L layers using a com-
bination of spatial and sequence based attention modules.
Let hℓ = [h1ℓ , . . . , h

N
ℓ ] ∈ RN×Dh be the node embeddings

of the ℓ-th layer where hnℓ is the embedding for residue n.
zℓ ∈ RN×N×Dz are edge embeddings with znmℓ being the
embedding of the edge between residues n and m.

Fig. 2 shows one single layer of our neural network. Spatial
attention is performed with Invariant Point Attention (IPA)
from AF2 which can attend to closer residues in coordinate
space while a Transformer (Vaswani et al., 2017) allows
for capturing interactions along the chain structure. We
found including the Transformer greatly improved train-
ing and sample quality. As a result, the computational
complexity of FrameDiff is quadratic in backbone length.
Unlike AF2, we do not use StopGradient between rota-
tion updates. The updates are SE(3)-invariant since IPA
is SE(3)-invariant. We utilize fully connected graph struc-
ture where each residue attends to every other node. Up-
dates to the node embeddings are propagated to the edges
in EdgeUpdate where a standard message passing edge
update is performed. BackboneUpdate is taken from AF2
(Algorithm 23), where a linear layer is used to predict trans-
lation and rotation updates to each frame. Feature initializa-
tion follows Trippe et al. (2023) where node embeddings
are initialized with residue indices and timestep while edge
embeddings additionally get relative sequence distances.
Edge embeddings are additionally initialized through self-
conditioning (Chen et al., 2023) with a binned pairwise
distance matrix between the model’s Cα predictions. All
coordinates are represented in nanometers.
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Figure 2. Single layer of FrameDiff . Each layer takes in the current node embedding hℓ, edge embedding zℓ, frames Tℓ, and initial node
embedding h0. Rectangles indicate trainable neural networks. Node embeddings are first updated using IPA with a skip connection.
Before Transformer, the initial node embeddings and post-IPA embeddings are concatenated. After transformer, we include a skip
connection with post-IPA embeddings. The updated node embeddings hℓ+1 are then used to update edge embeddings zℓ+1 as well as
predict frame updates Tℓ+1. See App. I.2 for in-depth architecture details.

Our model also outputs a prediction of the ψψψ angle for each
residue, which positions the backbone oxygen atom with
respect to the predicted frame. Putting it all together, our
neural network with weights θ predicts the denoised frame
and torsion angle,

(T̂(0), ψ̂̂ψ̂ψ) = FramePred(T(t), t; θ), T̂(0) = (R̂(0), X̂(0)).

Score parameterization. We relate the FrameDiff predic-
tion to a score prediction via ∇T(t) log pt|0(T

(t) | T̂(0)) =

{(srθ(t,T(t))n, s
x
θ(t,T

(t))n)}Nn=1 where the predicted
score is computed separately for the rotation and translation
of each residue, srθ(t,T

(t))n = ∇
R

(t)
n

log pt|0(R
(t)
n |R̂(0)

n )

and sxθ(t,T
(t))n = ∇

X
(t)
n

log pt|0(X
(t)
n |X̂(0)

n ).

4.2. Training losses

Learning the translation and rotation score amounts to min-
imizing the DSM loss given in (3). Following Song et al.
(2021), we choose the weighting schedule for the rotation
component as λrt = 1/E[∥∇ log pt|0(R

(t)
n |R(0))∥2SO(3)];

with this choice, the expected loss of the trivial prediction
R̂(0) = R(t) is equal to 1 for every t.

For translations, we use λxt = (1− e−t)/e−t/2 so (3) sim-
plifies as

Lx
dsm = 1

N

∑N
n=1 ∥X

(0)
n − X̂(0)

n ∥2.

We find this choice is beneficial to avoid loss instabilities
near low t (see Karras et al. for more discussion) where
atomic accuracy is crucial for sample quality. There is
also the physical interpretation of directly predicting the Cα

coordinates. Our SE(3) DSM loss is Ldsm = Lr
dsm+Lx

dsm.

Auxiliary losses. In early experiments, we found that
FrameDiff with Ldsm generated backbones with plausi-
ble coarse-grained topologies, but unrealistic fine-grained
characteristics, such as chain breaks or steric clashes. To
discourage these physical violations, we use two additional
losses to learn torsion angle ψ and directly penalize atomic

errors in the last steps of generation. Let Ω = {N,C,Cα,O}
be the collection of backbone atoms. The first loss is a direct
MSE on the backbone (bb) positions,

Lbb = 1
4N

∑N
n=1

∑
a∈Ω ∥a

(0)
n − â(0)n ∥2.

Next, define dnmab = ∥a(0)n −b(0)m ∥ as the true atomic distance
between atoms a, b ∈ Ω for residue n and m. The predicted
pairwise atomic distance is d̂nmab = ∥â(0)n − b̂(0)m ∥. Similar
in spirit to the distogram loss in AF2, the second loss is a
local neighborhood loss on pairwise atomic distances,

L2D = 1
Z

∑N
n,m=1

∑
a,b∈Ω 1{dnmab < 0.6}∥dnmab − d̂nmab ∥2,

Z = (
∑N

n,m=1

∑
a,b∈Ω 1{dnmab < 0.6})−N.

where 1{dnmab < 0.6} is a indicator variable to only penal-
ize atoms that within 0.6nm (i.e. 6Å). We apply auxiliary
losses only when t is sampled near 0 (t < TF/4 in our
experiments) during which the fine-grained characteristics
emerge. The full training loss can be written,

L = Ldsm + w · 1{t < TF

4 }(Lbb + L2D),

where w > 0 is a weight on these additional losses. We find
a including a high weight (w = 0.25 in our experiments)
leads to improved sample quality with fewer steric clashes
and chain breaks. Training follows standard diffusion train-
ing over the empirical data distribution p0. A full algorithm
(Alg. 3) is provided in the appendix.
Centering of training examples. Each training example
X(t), is centered at zero in accordance with Eq. (6). From a
practical perspective, this centering leads to lower variance
loss estimates than without centering. In particular, variabil-
ity in the center of mass of X(t) would lead to corresponding
variability in FrameDiff’s frame predictions as a result of
the architecture’s SE(3) equivariance. By centering training
examples, we eliminate this variability and thereby reduce
the variance of Lx

dsm and of gradient estimates.
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Algorithm 1 FrameDiff sampling of protein backbones
Require: θ,N,TF, Nsteps, ζ, ϵ

1: γ = (1− ϵ)/Nsteps

2: # Sample from invariant density
3: T(TF) ∼ P#p

SE(3)N

inv

4: for t = TF,TF − γ,TF − 2γ, . . . , ϵ do
5: T̂(0), = FramePred(T(t), t; θ)

6: {(srθ,n, sxθ,n)}Nn=1 = ∇T(t) log pt|0(T
(t) | T̂(0))

7: for (R
(t)
n , X

(t)
n ) = T

(t)
1 , . . . , T

(t)
N do

8: # Translation tangent Gaussian
9: Zx

n ∼ N (0, Id3)

10: W x
n = Pγ[ 12X

(t)
n + sxθ,n] + ζ

√
γZx

n

11: # Remove center of mass
12: W x

n = PW x
n

13: # Rotation tangent Gaussian
14: Zr

n ∼ T NR
(t)
n
(0, Id)

15: # Euler–Maruyama step on tangent space
16: W r

n = γsrθ,n + ζ
√
γZr

n

17: T
(t−γ)
n = exp

T
(t)
n
{(W r

n,W
x
n)}

18: end for
19: end for
20: Return: FramePred(T(ϵ), ϵ; θ)

4.3. Sampling

Alg. 1 provides our sampling procedure. Following De Bor-
toli et al. (2022), we use an Euler–Maruyama discretization
of Eq. (7) with Nsteps steps implemented as a geodesic ran-
dom walk. Each step involves samples Zx

n and Zr
n from

Gaussian distributions defined in the tangent spaces of X(t)
n

and R(t)
n , respectively. For translations, this is simply the

usual Gaussian distribution on R3, Zx
n ∼ N (0, Id3). For

rotations, we sample the coefficients of orthonormal ba-
sis vectors of the Lie algebra so(3) and rotate them into
the tangent space to generate Zr

n ∼ T NR
(t)
n
(0, Id) as

Zr
n = R

(t)
n
∑3

i=1 δiei, where δi
iid∼ N (0, 1) and e1, e2, e3

are orthonormal basis vectors (see App. C.2 for details).

Because we found that the backbones commonly destabi-
lized in the final steps of sampling, we truncate sampling
trajectories early, at a time ϵ > 0. Following Watson et al.
(2022), we explore generating from the reverse process with
noise downscaled by a factor ζ ∈ [0, 1] . For simplicity of ex-
position, we so far have assumed that the forward diffusion
involves a Brownian motion without a diffusion coefficient;
in practice we set TF = 1 and consider different diffusion
coefficients for the rotation and translation (see App. I.3).

5. Experiments
We evaluate FrameDiff on monomer backbone generation.
We trained FrameDiff with L = 4 layers on a filtered set of

20312 backbones taken from the Protein Data Bank (PDB)
(Berman et al., 2000). Our model comprises 17.4 million
parameters and was trained for one week on two A100
Nvidia GPUs. See App. J.1 for data and training details.

We analyzed our samples in terms of designability (if a
matching sequence can be found), diversity, and novelty.
Comparison to prior protein backbone diffusion models is
challenging due to differences in training and evaluation
among them. We compared ourselves with published results
from two promising protein backbone diffusion models for
protein design: Chroma (Ingraham et al., 2022) and RFd-
iffusion (Watson et al., 2022). We include comparison in
App. J.5 to FoldingDiff (Wu et al., 2022) which has publicly
available code. We refer to Sec. 6 for details on these and
other diffusion methods.

5.1. Monomeric protein generation and evaluation

We assess FrameDiff’s performance in unconditional gen-
eration of monomeric protein backbones. In this section, we
detail our inference and evaluation procedure.

Designability. A generated backbone is meaningful only
if there exists an amino acid sequence which folds to that
structure. We follow Trippe et al. (2023) and assess back-
bone designability with self-consistency evaluation: a fixed-
backbone sequence design algorithm proposes sequences,
these sequences are input to a structure prediction algo-
rithm, and self-consistency is assessed as the best agree-
ment between the sampled and predicted backbones (see
Fig. 5). In this work, we use ProteinMPNN at temperature
0.1 to generate Nseq sequences for ESMFold (Lin et al.,
2023) to predict structures. We quantify self-consistency
through both TM-score (scTM, higher is better) and Cα-
RMSD (scRMSD, lower is better). Chroma reports using
scTM> 0.5 as the designable criterion. However, it was
shown scRMSD< 2Å provides a more stringent filter, par-
ticularly for long (e.g. 600 amino acid) backbones on which
0.75 scTM can be attained for very structurally different
backbones (Watson et al., 2022).

Diversity. We quantify the diversity of backbones sampled
by FrameDiff through the number of distinct structural clus-
ters. In particular, for a collection of backbone samples we
use MaxCluster (Herbert & Sternberg, 2008) to hierarchi-
cally cluster backbones with a 0.5 TM-score threshold. We
report diversity as the proportion of unique clusters: (num-
ber of clusters) / (number of samples).

Novelty. We assess the ability of FrameDiff to generalize
beyond the training set and produce novel backbones by
comparing the similarity to known structures in the PDB. We
use FoldSeek (van Kempen et al., 2023) to search for similar
structures and report the highest TM-scores of samples to
any chain in PDB, which we refer to as pdbTM.
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Figure 3. Designability, diversity, and novelty of FrameDiff generated backbones with ζ = 0.1, Nsteps = 500, Nseq = 100. (A)
scRMSD based on 100 backbone samples of each length 70, 100, 200, 300 for Nseq = 8, 100 plotted in the same manner as done in
RFdiffusion. (B) Scatter plot of Designability (scRMSD) vs. novelty (pdbTM) across lengths. (C) Selected samples from panel (B) of
novel and highly designable samples. Left: sampled backbones from FrameDiff . Middle: best ESMFold predictions with high confidence
(pLDDT) Right: samples aligned with their closest PDB chain.

5.2. Results

We analyze FrameDiff monomer samples on designability,
diversity, and novelty. On designability, we briefly compare
FrameDiff’s samples with backbone generation diffusion
models Chroma and RFdiffusion. However, we note that
the training and evaluation set-ups are significantly different
across FrameDiff , Chroma, and RFdiffusion.

Using scTM> 0.5 as the designable criterion, Chroma re-
ported designability of 55% with 100 designed sequences
(Nseq = 100). Lengths are between 100 and 500 and sam-
pled proportionally “1/length”. However, this heavily biases
performance towards shorter lengths and leads to additional
length variability across evaluations. Instead, we sample
10 backbones at every length [100, 105, . . . , 495, 500] in
intervals of 5 (810 total samples) such that lengths are fixed
and distributed uniformly.

Table 1 reports FrameDiff metrics as we vary different
sampling parameters. We notice a stark improvement in des-
ignability by changing the noise scale ζ = 0.5 at the cost of
lower diversity. Increasing Nseq also improves designability
but at a significant compute cost. The reported results use
Nsteps = 500; however decreasing to Nsteps = 100 with a
low noise scale still resulted in designable backbones. With
Nsteps = 100, generation of a 100 amino acid backbone
takes 4.4 seconds on an A100 GPU; compared to RFdiffu-
sion, this is more than an order of magnitude speed-up.6

Using ζ = 1.0, Nsteps = 500, Nseq = 8, we perform ab-

Table 1. FrameDiff sample metrics.

NOISE SCALE ζ 1.0 0.5 0.1 0.1 0.1
NSTEPS 500 500 500 500 100
NSEQ 8 8 8 100 8

> 0.5 SCTM (↑) 49% 74% 75% 84% 74%
< 2Å SCRMSD (↑) 11% 23% 28% 40% 24%
DIVERSITY (↑) 0.75 0.56 0.53 0.54 0.55

6Watson et al. (2022) report 150 seconds (34-fold slower) for
100 amino acid backbones on an A4000 GPU.

lations on self-conditioning, auxiliary losses, and form of
the SO(3) loss – either the DSM form developed in our
work or the squared Frobenius norm loss (LF , equal to
∥R̂(0) −R(0)∥2F ) used in prior works (Watson et al., 2022;
Luo et al., 2022). Our results are in Table 2 where we
see the best model incorporates all components. We leave
hyperparameter searches to future work.

Table 2. FrameDiff ablations.

> 0.5SCTM (↑) SELF
COND. L2D Lbb Ldsm LF

49% ✓ ✓ ✓ ✓
39% ✓ ✓ ✓ ✓
42% ✓ ✓ ✓
22% ✓ ✓
16% ✓
0% ✓ ✓ ✓

In Fig. 3A, we evaluate scRMSD across four lengths.
FrameDiff is able to generate designable samples with-
out pretraining; by contrast, RFdiffusion demonstrated the
capacity to generate designable sequences only when ini-
tialized with pre-trained weights. More training data (i.e.
training on complexes) and neural network parameters could
help close the gap to RFdiffusion’s reported performance.
Finally, RFdiffusion uses an all-to-all pairwise TM-align
to measure diversity of its samples with clustering at 0.6
TM-score threshold. We perform an equivalent diversity
evaluation using maxcluster with 0.6 TM-score threshold
in Table 3 where we find a high degree of diversity (>0.5)
that is comparable with RFdiffusion. App. J.4 shows more
results and visualizations.

We next investigated the similarity of each sample to known
structures in PDB. In Fig. 3B, we plot the novelty (pdbTM)
as a function of designability (scRMSD). As expected, des-
ignability decreases with longer lengths. Samples with low
scRMSD tend to have high similarity with the PDB. Our
interest is in the lower left hand quadrant where scRMSD
< 2.0 and pdbTM < 0.6. Fig. 3C illustrates two examples
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of FrameDiff samples that are designable and novel. We
additionally find ESMFold to be highly confident, predicted
LDDT (pLDDT) > 0.7, for these samples.

Our experiments indicate FrameDiff is capable of learning
complex distributions over protein monomer backbone that
are designable, diverse, and in some cases novel compared
to known protein structures. When used with decreased
noise-scale, 75% of samples across a range of lengths were
designable by scTM>0.5; by contrast, all prior works re-
porting this metric not involving pretrained networks (see
Sec. 6) have reported below 55% designability. However,
due to differences in training and evaluation across these
methods and ours, we refrain making state-of-the-art claims.

6. Related work
Diffusion models on proteins. Past works have developed
diffusion models over different representations of protein
structures without pretraining (Wu et al., 2022; Trippe et al.,
2023; Anand & Achim, 2022; Qiao et al., 2022). Out of
these methods, Chroma (Ingraham et al., 2022) reported
the highest designability metric by diffusing over back-
bone atoms with a non-isotropic diffusion based on sta-
tistically determined covariance constraints. Compared to
these works, we develop a principled SE(3) diffusion frame-
work over protein backbones that demonstrates improved
sample quality over methods that do not use SE(3) diffu-
sion. Most similar to our work is RFdiffusion (Watson et al.,
2022) which formulated the same forward diffusion process
over SE(3)N , but with squared Frobenius norm rotation
loss and reverse step that deviates from theory. We discuss
the nuance between the rotation losses in App. I.5. While
not outperforming RFdiffusion, FrameDiff enjoys several
benefits such as being principled, having 1/4 the number of
neural network weights, and not requiring expensive pre-
training on protein structure prediction.

Diffusion models on manifolds. A general framework for
continuous diffusion models on manifolds was first intro-
duced in De Bortoli et al. (2022) extending the work of
Song et al. (2021) to Riemannian manifolds. Concurrently,
Huang et al. (2022) introduced a similar framework ex-
tending the maximum likelihood approach of Huang et al.
(2021). Some manifolds have been considered in the setting
of diffusion models for specific applications. In particular,
Jing et al. consider the product of tori for molecular con-
former generation, Corso et al. (2023) on the product space
R3 × SO(3) × SO(2)m for protein docking applications
and Leach et al. (2022) on SO(3) for rotational alignment.
Finally, we highlight the work of Urain et al. (2022) who
introduce SE(3)-diffusion models for robotics applications.
One major theoretical and methodological difference with
the present work is that we develop a principled diffusion
model on this Lie group ensuring that at optimality we re-

cover the exact backward process.

7. Discussion
Protein backbone generation is a fundamental task in de
novo protein design. Motivated by the success of rigid-body
frame representation of proteins, we developed an SE(3)-
invariant diffusion models on SE(3)N for protein modelling.
We laid the theoretical foundations of this method, and intro-
duced FrameDiff , a instance of this framework, equipped
with an SE(3)-equivariant score network which needs not
to be pretrained. We empirically demonstrated FrameDiff’s
ability to generate designable and diverse samples. Even
with stringent filters, we find our samples can generalize be-
yond PDB, although we note that claims of generating novel
proteins requires experimental characterization. Our results
are competitive with those reported in Chroma and RFd-
iffusion. However, differences in training and evaluation
confound rigorous comparisons between the methods.

One important research direction is to extend FrameDiff
to conditional generative modeling tasks, such as proba-
bilistic sequence-to-structure prediction which to capture
functional motion (Lane, 2023) and probabilistic scaffold-
ing design given a functional motif (Trippe et al., 2023) We
hypothesize scaling FrameDiff to train on larger data and
improving the optimization would deliver backbones with
designability on par with RFdiffusion while maintaining
FrameDiff’s simplicity. Finally, we highlight that the key
aspects of our theoretical contributions— the general form
of Brownian motions that is amenable to DSM along with
sub-group invariance—are applicable to general Lie groups.
Of particular interest are SO(3) in robotics (Barfoot et al.,
2011) and SU(2) in Lattice QCD (Albergo et al., 2021).
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Supplementary to:

SE(3) diffusion model
with application to protein backbone generation

A. Organization of the supplementary
In this supplementary, we first recall in App. B some important concepts on Lie groups and representation theory which
are useful for what follows. In App. C we derive the irreducible representations of SU(2) and then of SO(3). Using
these, we introduce in App. D the canonical (bi-invariant) metric on SO(3), and a left-invariant metric on SE(3) which
induces a Laplacian that factorises over SO(3) and R3. In particular, we prove Prop. 3.1. In App. E, we compute the heat
kernel on compact Lie groups and in particular on SO(3), therefore proving Prop. 3.2 and Prop. 3.3. In App. F, we show
that equivariant drift and diffusion coefficients induces invariant processes and prove Prop. 3.6. In App. G, we show the
equivalence SE(3)-invariant measures and SO(3)-invariant measures with pinned center of mass, proving Prop. 3.5. Details
about score computations on SO(3) using Rodrigues’ formula are given in App. H, including the proof of Prop. 3.4. In
App. I, we include additional method details. In App. J, we present additional experiment details.

B. Lie group and representation theory toolbox
In this section, we introduce some useful tools for the study of the heat kernel on Lie groups using representation theory. We
refer to (Faraut, 2008; Hall, 2015; Harris et al., 1991; Knapp & Knapp, 1996; Folland, 2016) for more details on Lie groups
and representation theory.

B.1. Group representation

Let G be a group. A group representation (ρ, V ) is given by a vector space V 7 and a homomorphism ρ : G→ GL(V ). A
representation (ρ, V ) is said to be irreducible if for any subspace W ⊂ V which is invariant by ρ, i.e. ρ(G)(W ) ⊂W , then
W = {0} or W = V . The study of irreducible group representations is at the heart of the analysis on groups. In particular,
it is remarkable that if G is compact every unitary representation can be decomposed as a direct sum of irreducible finite
dimensional unitary representations of G. This result is known as the Peter–Weyl theorem (Weyl & Peter, 1927).

B.2. Lie group and Lie algebra

We recall that a Lie group is a group which is also a differentiable manifold for which the multiplication and inversion maps
are smooth. Homomorphism of Lie groups are homomorphisms of groups with an additional smoothness assumption. The
Lie algebra of a Lie group G is defined as the tangent space of the Lie group at the identity element e and is denoted g. A
vector field X ∈ X(G) acts on a smooth function f ∈ C∞(G) as X(f) =

∑d
i=1Xi∂if . Note that X(f) ∈ C∞(G). Given

two vector fields X,Y ∈ X(G), the bracket between X and Y is given by [X,Y ] ∈ X(G) such that for any f ∈ C∞(G),
[X,Y ](f) = X(Y (f))− Y (X(f)). Note that for any X0 ∈ g there exists X ∈ X(G) such that X(e) = X0. Hence, we
define the Lie bracket between X0, Y0 ∈ g as [X0, Y0] = [X,Y ]. Note that if G ⊂ GLn(C) then we have that for any
X,Y ∈ g, [X,Y ] = XY − Y X , where XY is the matrix product between X and Y .

For an arbitrary Lie group, the exponential mapping is defined as exp : g→ G such that for any X ∈ g, exp[X] = γ(1)
where γ : R→ G is an homomorphism such that γ′(0) = X . Another useful exponential map in the space of matrices is
the exponential of matrix, given by exp[X] =

∑
k∈NX

k/k!. Note that if the metric is bi-invariant (invariant w.r.t. the left
and right actions) then the associated exponential map coincides with the exponential of matrix, see (Carmo, 1992, Chapter
3, Exercise 3). If G is compact then given any left-invariant metric ⟨·, ·⟩G we can consider ⟨·, ·⟩Ḡ given for any X,Y ∈ G by

⟨X,Y ⟩Ḡ =
∫
G
⟨dRgX,dRgY ⟩dµ(g),

where µ is the left-invariant Haar measure on G. Then ⟨·, ·⟩Ḡ is bi-invariant. If G is compact and connected then exp is

7We focus on real vector spaces in this presentation.
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surjective, see Hall (2015, Exercises 2.9, 2.10).

One of the most important aspect of Lie groups is that (at least in the connected setting), they can be described entirely
by their Lie algebra. More precisely, for any homomorphism Φ : G → H , denoting ϕ = dΦ(e) : g → h, we have
Φ ◦ exp = exp ◦ϕ, see Harris et al. (1991, p.105).

B.3. Lie algebra representations

A Lie algebra homomorphism ϕ : g→ g′ between two Lie algebras g and g′ is defined as a linear map which preserves Lie
brackets, i.e. for any X,Y ∈ g, ϕ([X,Y ]) = [ϕ(X), ϕ(Y )]. A Lie algebra representation of g is given by (ρ, V ) such that
ρ : g→ gl(V ) is a Lie algebra homomorphism, i.e. for any X,Y ∈ g, ρ([X,Y ]) = ρ(X)ρ(Y )− ρ(Y )ρ(X). One way to
construct Lie algebra representations is through Lie group representations. Indeed, one can verify that the differential at e of
any Lie group representation is a Lie algebra representation.

One important Lie algebra representation is given by the adjoint representation. First, define Φ : G→ Aut(G) such that for
any g, h ∈ G, Φ(g)(h) = ghg−1. Then, for any g ∈ G, denote Ad(g) = dΦ(g)(e). Note that for any g ∈ G, we have that
Ad(g) ∈ GL(g). Ad : G→ GL(g) is a Lie homomorphism and therefore a representation of G. Differentiating the adjoint
Lie group representation we obtain a Lie algebra representation ad : g→ gl(g). It can be shown that for any X,Y ∈ g,
ad(X)(Y ) = [X,Y ]. Note that we have Ad ◦ exp = exp ◦ad (Hall, 2015, Chapter 2, Proposition 2.24, Exercise 19). Note
that this equivalence between homomorphism defined on the group level and homomorphisms defined on the Lie algebra
level can be extended in the simply connected setting, see (Hall, 2015, Theorem 3.7).

C. Representations and characters of SO(3)

In order to study the irreducible (unitary) representations of SO(3), we first focus on the irreducible (unitary) representations
of SU(2) in App. C.1. We describe the double-covering of SO(3) by SU(2), which relates these two groups, in App. C.2.
We discuss different SO(3) parameterizations in App. C.3. Finally, we give the SO(3) irreducible unitary representations in
App. C.4.

C.1. Representations and characters of SU(2)

In this section, we follow the presentation of Faraut (2008) and provide a construction of the irreducible unitary repre-
sentations of SU(2) for completeness. We refer to Faraut (2008); Hall (2015) for an extensive study of this group. For
every m ∈ N, with n ≥ 1 we consider the representation (πm, Vm) where Vm is the space of homogeneous polyno-
mials of degree m with two variables X , Y and complex coefficients. For any P ∈ Vm and g ∈ SL(2,C), we define
πm(g)(P )(X,Y ) = P (g(X,Y )). For example, we have

g =

(
0 −1
1 0

)
, π4(g)(X

3Y −X2Y 2) = −XY 3 −X2Y 2.

We denote ρm the differentiated representation arising from πm : sl(2,C)→ gl(Vm). A basis of sl(2,C) (as a complex Lie
algebra) is given by

H =

(
1 0
0 −1

)
, E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
.

We have the following Lie brackets

[H,E] = 2E, [H,F ] = −2F, [E,F ] = H. (8)

A basis of Vm is given by {Pj}mj=0 with Pj = XjY m−j for j ∈ {0, . . . ,m}. Using (Hall, 2015, Theorem 3.7), we have
that ρm(M) = (exp[πm(tM)])′t=0, for M ∈ {E,F,H} and therefore

ρm(H)(P ) = X∂XP − Y ∂Y P, ρm(E)(P ) = X∂Y P, ρm(F )(P ) = Y ∂XP.

Proposition C.1. For any m ∈ N with m ≥ 1, ρm is an irreducible Lie algebra representation.
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Proof. For any j ∈ {0, . . . ,m} we have

ρm(H)(Pj) = (2j −m)Pj , ρm(E)(Pj) = (m− j)Pj+1, ρm(F )(Pj) = jPj−1,

with P−1 = Pm+1 = 0. Now let W ̸= {0} be an invariant subspace of Vm for ρm. We have that ρm(H) restricted to W
admits an eigenvector and therefore, there exists j0 ∈ {0, . . . ,m} such that Pj0 ∈ W . Indeed, let P =

∑m
i=0 αiPi, with

(αi)
m
i=0 ∈ Cm+1, be such an eigenvector with eigenvalue λ ∈ C. We have∑m

i=0(2i−m)αiPi = ρm(H)(P ) =
∑m

i=0 λαiPi.

Hence,
∑m

i=0(2i −m − λ)αiPi = 0. This means that for any i ∈ {0, . . . ,m} except for one i0 ∈ {0, . . . ,m}, αi = 0.
Hence, Pi0 ∈W . Upon applying ρm(E) and ρm(F ) repeatedly we find that for any j ∈ {0, . . . ,m}, Pj ∈W and therefore
W = Vm, which concludes the proof.

Proposition C.2. Let (ρ, V ) an irreducible Lie algebra representation, then there exist m ∈ N with m ≥ 1 and A ∈
GL(V, Vm) such that for any ρ = A−1ρmA.

Proof. Let v be the eigenvector of ρ(H) associated with eigenvalue λ with smallest real part. Using (8), we have that

ρ(H)ρ(E)v = ρ(E)ρ(H)v + ρ([H,E])v = (λ+ 2)ρ(E)v.

Similarly, we have
ρ(H)ρ(F )v = ρ(F )ρ(H)v + ρ([H,F ])v = (λ− 2)ρ(F )v. (9)

For any k ∈ N, denote vk = ρ(E)kv. Denote m ∈ N such that for any k > m, vk = 0 and vm ̸= 0. We have that
{v0, . . . , vm} are linearly independent, since for each k ∈ {0, . . . ,m} we have that vk is an eigenvector of ρ(H) with
eigenvalue λ+ 2k. Denote W the subspace spanned by {v0, . . . , vm}. ρ(H)(W ) ⊂W and ρ(E)(W ) ⊂W . Let us show
that ρ(F )(W ) ⊂W . Assume that ρ(F )vk = αkvk−1 for some k ∈ {1, . . . ,m− 1}, then we have

ρ(F )(vk+1) = ρ(F )ρ(E)vk = ρ(E)ρ(F )vk + ρ([F,E])vk = (αk − (λ+ 2k))vk.

Hence, setting αk+1 = αk− (λ+2k), we get that that ρ(F )(vk+1) = αk+1vk. Let us show that ρ(F )(v1) = α1v0 = −λv0.
First, using (9) we have that if ρ(F )(v0) ̸= 0 then ρ(F )(v0) is an eigenvector of ρ(H) for the eigenvalue λ− 2, which is
absurd since λ has minimal real part. Hence ρ(F )(v0) = 0 and we have

ρ(F )(v1) = ρ(E)ρ(F )v0 + ρ([F,E])v0 = −λv0.

Therefore, we have that ρ(F )(W ) ⊂W and therefore V =W since ρ is irreducible. In addition, by recursion, we have that
for any k ∈ {0, . . . ,m}, αk = −k(λ+ k − 1). A basis of V is given by {vj}mj=0 and we have that for any j ∈ {0, . . . ,m}

ρ(H)(vj) = (λ+ 2j)vj , ρ(E)(vj) = vj+1, ρ(F )(vj) = −j(λ+ j − 1)vj−1,

with v−1 = vm+1 = 0. We have that

Tr(ρ(H)) = 0 =
∑m

j=0 λ+ 2j = (m+ 1)(λ+m).

Hence λ = −m and we have

ρ(H)(vj) = (−m+ 2j)vj , ρ(E)(vj) = vj+1, ρ(F )(vj) = j(m− j + 1)vj−1,

Hence, letting wj = λjvj with λj/λj+1 = m− j we have

ρ(H)(wj) = (−m+ 2j)wj , ρ(E)(wj) = (m− j)wj+1, ρ(F )(wj) = jwj−1.

We conclude upon defining Awj = Pj for any j ∈ {0, . . . ,m}.

Proposition C.3. Let (π, V ) be a irreducible representation of SU(2) then there exist m ∈ N and A ∈ GL(V, Vm) such
that π = A−1πmA.

15



SE(3) diffusion model with application to protein backbone generation

Proof. Let ρ : su(2)→ gl(V ) the Lie algebra representation associated with π. ρ can be linearly extended to a Lie algebra
representation of sl(2,C) using that sl(2,C) = su(2)⊕ su(2) (indeed each element Z of sl(2,C) can be written uniquely as
Z = X+ iY with X,Y ∈ su(2)). The extension of ρ is given by ρext(Z) = ρ(X)+ iρ(Y ). Let W be an invariant subspace
for ρext then it is an invariant subspace for ρ and therefore for any X ∈ su(2), exp[ρ(X)](W ) ⊂W . Using that SU(2) is
connected we have that for any U ∈ SU(2) there exists X ∈ su(2) such that U = exp[X] and using that π ◦ exp = exp ◦ρ,
(Hall, 2015, Theorem 3.7), we get that π(SU(2))(W ) ⊂ W and therefore W = V . Hence, ρext is irreducible and there
exist m ∈ N and A ∈ GL(V, Vm) such that ρ = A−1ρmA. We conclude by exponentiation, (Hall, 2015, Theorem 3.7).

C.2. Double-covering of SO(3)

In order to derive the (unitary) irreducible representations of SO(3) we first link SO(3) with SU(2) using the adjoint
representation. First, let us consider a basis of su(2), (X1, X2, X3) given by

X1 =

(
0 i
i 0

)
, X2 =

(
0 −1
1 0

)
, X3 =

(
i 0
0 −i

)
.

A basis of so(3) is given by

Y1 =

0 0 0
0 0 −1
0 1 0

 , Y2 =

 0 0 1
0 0 0
−1 0 0

 , Y3 =

0 −1 0
1 0 0
0 0 0

 .

Note that for any i ∈ {1, 2, 3}, ad(Xi) = 2Yi, when represented in the basis (X1, X2, X3) (recall that ad : g → gl(g)).
Therefore, we have that ad : su(2)→ so(3) is an isomorphism. Since SO(3) is compact and connected, exp is surjective
and therefore using that Ad ◦ exp = exp ◦ad, we get that Ad : SU(2) → SO(3) is surjective. In addition, we have that
Ker(Ad) = {±e}. Hence SU(2) is a double-covering of SO(3).

C.3. Parameterizations of SO(3)

Before concluding this section and describing the unitary representations of SO(3), we describe different possible parame-
terizations of SO(3) and its Lie algebra.

Axis-angle. Let (a, b, c) ∈ R3 such that a2 + b2 + c2 = 1, i.e. ω = (a, b, c) ∈ S2 and θ ∈ R+, then any element of
so(3) is given by Y = θK, with K = aY1 + bY2 + cY3. Hence, any element of SO(3) can be written as exp[θK]. The
parameterization of SO(3) using (ω, θ) is called the axis-angle parameterization. Using that K3 = −K we have

exp[θK] = Id+ sin(θ)K + (1− cos(θ))K2.

This is called the Rodrigues’ formula and provides a concise way of computing the exponential. In addition, it should be
noted that for any (a, b, c), v ∈ R3,

(aY1 + bY2 + cY3)v = a× v, (aY1 + bY2 + cY3)
2v = ⟨a, v⟩a− v. (10)

Combining this result (10) we recover the Rodrigues’ rotation formula, i.e. for any v ∈ R3 we have

exp[θK]v = cos(θ)v + sin(θ)ω × v + (1− cos(θ))⟨ω,v⟩ω.

From this formula, it can be seen that exp[θK]v is the rotation of the vector v of angle θ around the axis ω.

Euler angles. For every U ∈ SU(2) there exists (ψ, θ, φ) ∈ R3 such that U = exp[ψX3] exp[θX2] exp[φX3]. Therefore,
using that Ad is surjective and that Ad ◦ exp = exp ◦ad we have that for any R ∈ SO(3) there exists (ψ, θ, φ) ∈ R3 such
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that

R = exp[ψY3] exp[θY1] exp[φY3]

=

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1

 .

The three angles ψ, θ, φ are called the Euler angles: ψ is called the precession angle, θ the nutation angle and φ the angle
of proper rotation (or spin).

Quaternions. Every element U of SU(2) can be uniquely written as

U =

(
α β
−β̄ α

)
,

with α, β ∈ C2 and |α|2+|β|2 = 1. This representation of SU(2) entails an isomorphism between SU(2) and the unit sphere
in R4, which shows that SU(2) is simply connected. To draw the link with quaternions, we introduce i = X1, j = −X2 and
k = X3. Note that i2 = j2 = k2 = ijk = −1. Using the exponential map and the properties of i, j and k, we get that each
element in SU(2) can be uniquely represented as q = a+bi+cj+dk with ∥q∥2 = a2+b2+c2+d2 = 1. Using the adjoint
representation, we get that Ad(q) is the rotation with axis (b, c, d) and angle θ such that tan(θ/2) =

√
b2 + c2 + d2/|a| if

a ̸= 0 and θ = π otherwise.

C.4. Irreducible representations and characters of SO(3)

We start by describing the irreducible characters of SU(2). Recall that irreducible unitary representations of SU(2) are given
in Prop. C.3.

Proposition C.4. Let U ∈ SU(2) such that U = exp[θX] with X = aX1 + bX2 + cX3 and a2 + b2 + c2 = 1, θ > 0.
Then for any m ∈ N with m ≥ 1 we have

χm(U) = sin((m+ 1)θ)/ sin(θ).

Proof. First note that X2 = − Id. Hence {−iθ, iθ} are the eigenvalues of θX and {eiθ, e−iθ} are the eigenvalues of
exp[θX]. Hence, there exists U0 ∈ SU(2) such that U = U0UθU

−1
0 with Uθ diagonal with values {eiθ, e−iθ}. Hence, since

χm is a trace class function we have that χm(U) = χm(Uθ). We have that ρm(iθH) has eigenvalues {iθ(2j −m)}mj=0.
Therefore, we get that πm(Uθ) has eigenvalues {eiθ(2j−m)}mj=0, using that exp ◦ρm = πm ◦ exp. We conclude upon
summing the eigenvalues.

Proposition C.5. Let (π, V ) be an irreducible representation of SO(3). Then there exist m ∈ N with m ≥ 1 and
A ∈ GL(V, Vm) such that π ◦Ad = A−1π2mA. Respectively for any m ∈ N, there exists π̃m such that π̃m ◦Ad = π2m.

Proof. Let π be an irreducible representation of SO(3). Then π ◦Ad is an irreducible representation of SU(2) and therefore
equivalent to πm for some m ∈ N with m ≥ 1. Since Ad(−e) = e we have that m is even. Respectively, for any m ∈ N
with m ≥ 1, since π2m(−e) = e then π2m factorizes through Ad, which concludes the proof.

Proposition C.6. Let R ∈ SO(3) such that R = exp[θX] with X = aY1 + bY2 + cY3 and a2 + b2 + c2 = 1, θ > 0 (i.e.
we consider the axis-angle representation of R). Then for any m ∈ N with m ≥ 1, we have

χm(R) = sin((m+ 1/2)θ)/ sin(θ/2).

Proof. Let m ∈ N with m ≥ 1. The associated representation with χm is π̃m such that π̃m = π2m ◦ Ad. Let X =
aX1 + bX2 + cX3, we have that Ad(exp[(θ/2)X]) = exp[θY ]. We conclude using Prop. C.4.

We conclude this section by noting that SO(3) representations can also be realized with spherical harmonics (Faraut, 2008).
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D. Metrics and Laplacians
In this section, we provide more details on the metrics and Laplacian on SE(3). We start by introducing a canonical metric
on SO(3) in App. D.1. Then, we move onto the parameterization of SE(3), its Lie algebra and adjoint representations in
App. D.2. Once we have introduced these tools we describe one metric in App. D.3 which gives rises to the factorized
formulation of the Laplacian. Finally, we conclude with considerations on the unimodularity of SE(3) in App. D.4.

D.1. Canonical metric on SO(3)

We first describe a canonical metric on SO(3) obtained using the notion of Killing form. The construction of such a metric
is valid for any compact Lie group.

Adjoint representations. First, we need to compute the adjoint representation on SO(3). We recall that a basis of so(3) is
given by

Y1 =

0 0 0
0 0 −1
0 1 0

 , Y2 =

 0 0 1
0 0 0
−1 0 0

 , Y3 =

0 −1 0
1 0 0
0 0 0

 . (11)

We have that [Y1, Y2] = Y3, [Y2, Y3] = Y1 and [Y3, Y1] = Y2. We have the following result.

Proposition D.1. ad = Id and Ad = Id.

Proof. Recalling that for any i, j ∈ {1, 2, 3}, ad(Yi)(Yj) = [Yi, Yj ] we obtain the result using the Lie bracket relations. We
conclude upon using that Ad ◦ exp = exp ◦ad and that exp is surjective since SO(3) is compact and connected.

Killing form. We begin by recalling a few basics on the Killing form. The Killing form B is a symmetric 2-form on g
defined for any X,Y ∈ g by

B(X,Y ) = Tr(ad(X) ◦ ad(Y )).

One of the key property of the Killing form is that it is invariant under any automorphims of the Lie algebra. In particular,
using that for any g ∈ G, X,Y ∈ g and g ∈ G, Ad(g)[X,Y ] = [Ad(X),Ad(Y )], we have

B(Ad(g)(X),Ad(g)(Y )) = B(X,Y ). (12)

The invariance under the adjoint representation is key to define metrics which are bi-invariant (left and right invariant). Let
B̄ a positive symmetric 2-form on g, i.e. a scalar product. Then B̄ defines a left-invariant metric ⟨·, ·⟩ on G by letting for
any g ∈ G and X,Y ∈ TgG

⟨Xg, Yg⟩G = B̄(dLg(e)
−1Xg,dLg(e)

−1Yg),

where Lg : G→ G is given for any h ∈ G by Lg(h) = gh.

Proposition D.2. The metric ⟨·, ·⟩ is right-invariant if and only if B̄ is Ad(g)-invariant for any g ∈ G.

Proof. We have that ⟨·, ·⟩ is right-invariant if for any g, h ∈ G and Xh, Yh ∈ ThG,

⟨dRg(h)(Xh),dRg(h)(Yh)⟩ = ⟨Xh, Yh⟩.

We have that for any g, h ∈ G and Xh, Yh ∈ ThG

⟨dRg(h)(Xh),dRg(h)(Yh)⟩ = B̄(dLhg(e)
−1dRg(h)(Xh),dLhg(e)

−1dRg(h)(Yh)) (13)

In addition, using that for any g1, g2 ∈ G, Lg1 and Rg2 commute, we have that for any g, h ∈ G and Xh, Yh ∈ ThG

dLhg(e)
−1dRg(h) = dLg−1h−1(hg)dRg(h)

= dLg−1(g)dLh−1(hg)dRg(h)

= dLg−1(g)dRg(e)dLh−1(h)

= Ad(g)dLh−1(h) = Ad(g)dLh(e)
−1.
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Combining this result and (13) we get that for any g, h ∈ G and Xh, Yh ∈ ThG

⟨dRg(h)(Xh),dRg(h)(Yh)⟩ = B̄(Ad(g)dLh(e)
−1Xh,Ad(g)dLh(e)

−1Yh).

In addition, we have for any h ∈ G and Xh, Yh ∈ ThG, ⟨Xh, Yh⟩ = B̄(dLh(e)
−1Xh,dLh(e)

−1Yh). Therefore, we have
that ⟨·, ·⟩ is right-invariant if and only if for any g, h ∈ G and Xh, Yh ∈ ThG

B̄(dLh(e)
−1Xh,dLh(e)

−1Yh) = B̄(Ad(g)dLh(e)
−1Xh,Ad(g)dLh(e)

−1Yh).

Hence, we get that ⟨·, ·⟩ is right-invariant if and only if for any g ∈ G and X,Y ∈ g,

B̄(X,Y ) = B̄(Ad(g)(X),Ad(g)(Y )),

which concludes the proof.

Combining this result and (12) we immediately get that if the Killing form defines a scalar product then the associated
left-invariant metric is also right-invariant. In the case of SO(3) we have the following explicit formula for the Killing form.

Proposition D.3. If G = SO(3) we have that B(X,Y ) = Tr(XY ). In the basis (Y1, Y2, Y3) we have that B = −2 Id.

Proof. The first result is a direct consequence of Prop. D.1. The second result is a consequence of the fact that Tr(YiYj) =
−2δi,j for i, j ∈ {1, 2, 3}.

Hence by considering −B/2 we obtain that {Y1, Y2, Y3} is an orthonormal basis on so(3). The associated metric is
bi-invariant. We can define the Laplace-Beltrami operator associated with so(3) and we have that for any f ∈ C∞(SO(3))
and g ∈ SO(3)

∆f(g) =
∑3

i=1
d
dt2 f(g exp[tYi])|t=0.

Also, note that in that case the Riemannian exponential mapping coincide with the matrix exponential map, (Carmo, 1992,
Chapter 3, Exercise 3).

Eigenvalues of the Laplacian. Similarly, one can define ∆ on SU(2) using the Killing form. In this case we have that
B(X,Y ) = −Tr(XY ) and we set the metric on SU(2) to be the one associated with −B/2. We have that {Xi}3i=1 is an
orthonormal basis of su(2) for this metric and therefore for any f ∈ C∞(SU(2)) and g ∈ SU(2)

∆f(g) =
∑3

i=1
d
dt2 f(g exp[tXi])|t=0,

see (Faraut, 2008, p.162) for a definition and basic properties. It can be shown (Faraut, 2008, Proposition 8.2.1, Proposition
8.3.1) that for any m ∈ N with m ≥ 1, we have

∆χm = −m(m+ 2)χm.

Using that Ad is surjective for any g ∈ SO(3) there exists g0 ∈ SU(2) such that Ad(g0) = g. In addition, for any
i ∈ {1, 2, 3}, ad(Xi) = 2Yi. Using these results and the fact that Ad◦exp = exp ◦ad we have that for any f ∈ C∞(SO(3))
and g ∈ SO(3)

∆f(g)=
∑3

i=1
d
dt2 f(g exp[tYi])|t=0

=
∑3

i=1
d
dt2 f(g exp[ad(tXi/2)])|t=0

=
∑3

i=1
d
dt2 f(gAd(exp[tXi/2]))|t=0

=
∑3

i=1
d
dt2 f(Ad(g0 exp[tXi/2]))|t=0 = ∆(f ◦Ad)(g0)/4. (14)

This result yields the following proposition.

Proposition D.4. For every m ∈ N, ∆χ̃m = −m(m+ 1)χ̃m.
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Proof. Recall that for any m ∈ N, χ2m = χ̃m ◦Ad. Therefore, using (14), we have that for any g ∈ SO(3) and m ∈ N

∆χ̃m(g) = ∆χ2m(g0)/4 = −m(m+ 1)χ2m(g0) = −m(m+ 1)χ̃m(g).

D.2. Parameterization of SE(3) and Lie algebra

Parameterization. The special Euclidean group on R3, denoted SE(3), (also known as the rigid body motion group, see
(Murray et al.)) is the group given by all the affine isometries. We have

SE(3) =

{(
R x
0 1

)
: R ∈ SO(3), x ∈ R3

}
.

As a consequence we have the following composition rule for (R, x), (R′x,′ ) ∈ SE(3)

(R, x) ∗ (R′, x′) = (RR′, x+Rx′).

Therefore as a group we have that SE(3) = SO(3)⋊R3. In particular, the group structure of SE(3) is different from the
canonical product SO(3)×R3. The inverse of (R, x) is given by (R, x)−1 = (R−1,−R−1x). SE(3) is also a 6-dimensional
Lie group and its Lie algebra is given by

se(3) =

{(
X x
0 0

)
: X ∈ so(3), x ∈ R3

}
.

A basis for se(3) = so(3)⊕ R3 is given by {Y1, Y2, Y3, e1, e2, e3} where {Y1, Y2, Y3} is a basis for so(3), see (11).

Adjoint representations. Let us now compute the adjoint representation of SE(3). We have the following result.

Proposition D.5. We have that for any g = (R, x) ∈ SE(3) we have

Ad(g) =

(
R 0
M R

)
,

in the basis {Y1, Y2, Y3, e1, e2, e3} with M = (−RY1R−1x| −RY2R−1x| −RY3R−1x).

Proof. Let i ∈ {1, 2, 3}. We have that

Ad(g)(Xi) =

(
R x
0 1

)(
Xi 0
0 0

)(
R−1 −R−1x
0 1

)
=

(
RXiR

−1 −RXiR
−1x

0 0

)
.

Similarly, for any ξ ∈ R3 we have

Ad(g)(ξ) =

(
R x
0 1

)(
0 ξ
0 0

)(
R−1 −R−1x
0 1

)
=

(
0 Rξ
0 0

)
,

which concludes the proof upon using that Ad = Id on SO(3), see Prop. D.1.

D.3. Choice of metric and Laplacian derivation

A left invariant metric. It can be shown that the Killing form is not negative and therefore there is no canonical metric
on SE(3). In fact in this section, we show that there is no bi-invariant metric on SE(3). However, one specific choice of
left-invariant metric on SE(3) leads to a metric (and Laplacian) that factorizes between SO(3) and R3. Roughly speaking,
this implies that as a Riemannian manifold SE(3) can be seen as SO(3)× R3. The following proposition can be found in
see (Murray et al., Proposition A.5) and is a consequence of Prop. D.5 and Prop. D.2.
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Proposition D.6. Let B̄ be a symmetric 2-form on se(3). Then B̄ is Ad invariant if and only if there exist α, β > 0 s.t.

B̄ =

(
α Id β Id
β Id 0

)
,

where B̄ is expressed in the basis {Y1, Y2, Y3, e1, e2, e3} where {Y1, Y2, Y3} is a basis for so(3), see (11).

Note that in any case B̄ is not positive definite and therefore, there does not exist any bi-invariant metric on SE(3). However,
one can define pseudo metrics. Letting β = 1 and α = 0 one recover the Klein form which yields an hyperbolic metric on
SE(3). If one lets α = −4 then we recover the Killing form.

In this work, we consider the metric B̄ = Id. According to Prop. D.6 the associated metric on SE(3) is left-invariant but
not right-invariant. However, this metric has interesting properties which we list below. We denote ⟨·, ·⟩SE(3) the metric
associated with B̄, ⟨·, ·⟩SO(3) the one associated with the Killing form in SO(3), see App. D and ⟨·, ·⟩ the Euclidean inner
product.

Proposition D.7 (Metric on SE(3)). For any T ∈ SE(3) and (a, x), (a′, x′) ∈ TanTSE(3) we define
⟨(a, x), (a′, x′)⟩SE(3) = ⟨a, a′⟩SO(3) + ⟨x, x′⟩R3 . We have:

(a) for any f ∈ C∞(SE(3)) and T = (r, x) ∈ SE(3), ∇T f(T ) = [∇rf(r, x),∇xf(r, x)].

(b) for any f ∈ C∞(SE(3)) and T = (r, x) ∈ SE(3), ∆SE(3)f(T ) = ∆SO(3)f(r, x) + ∆R3f(r, x). In addition,
T 7→ ∆SE(3)f(T ) is SE(3)-equivariant (for the left action).

(c) for any t > 0, B(t)
SE(3) = [B

(t)
SO(3),B

(t)
R3 ] with independent B(t)

SO(3) and B
(t)
R3 .

(d) For any (R0, x0) ∈ SE(3) and (X,x) ∈ Tan(R0,x0)SE(3) we have exp(R0,x0)[X,x] = (R0 exp[R
−1
0 X], x0 + x).

Proof. We have that {Y1, Y2, Y3, e1, e2, e3} where {Y1, Y2, Y3} is a basis for so(3), see (11), is an orthonormal basis for
se(3). By definition of the metric on SE(3), we also have that for any (R, x) ∈ SE(3), {RY1, RY2, RY3, Re1, Re2, Re3}
(note the action ofR on the R3 components) is an orthonormal basis on Tan(R,x)SE(3). However, another orthonormal basis
of se(3) is given by {Y1, Y2, Y3, R−1e1, R

−1e2, R
−1e3} which implies that {RY1, RY2, RY3, e1, e2, e3} is an orthonormal

basis of Tan(R,x)SE(3). We divide the rest of the proof into four parts.

(a) First, we show that for any f ∈ C∞(SE(3)) and T = (r, x) ∈ SE(3), ∇T f(T ) = [∇rf(r, x),∇xf(r, x)]. Let
f ∈ C∞(SE(3)) and T = (r, x) ∈ SE(3). Consider the smooth curve γ : [−ε, ε]→ SE(3) given for any t ∈ [−ε, ε], by
γ(t) = (R exp[tY1], x). We have that

d
dtf(γ(t))|t=0 = d

dtf(R exp[tY1], x)|t=0 = df(R, x)(RY1) = (∇rf(R, x))1,

since {RY1, RY2, RY3} is an orthonormal basis of TanRSO(3). Similarly, we have that {RY1, RY2, RY3, e1, e2, e3} is
an orthonormal basis of TanTSE(3). Consider the smooth curve γ : [−ε, ε] → SE(3) given for any t ∈ [−ε, ε], by
γ(t) = (R, x+ te1). We have that

d
dtf(γ(t))|t=0 = d

dtf(R, x+ te1)|t=0 = df(R, x)(e1) = (∇xf(R, x))1,

which concludes the proof.

(b) By definition of the divergence, the previous point and using that {RY1, RY2, RY3, e1, e2, e3} is an orthonormal basis
of Tan(R,x)SE(3), we have

∆SE(3)f = div(∇T f) =
∑3

i=1⟨∇RYi
∇rf,RYi⟩SO(3) +

∑3
i=1⟨∇ei∇rf, ei⟩R3 = ∆SO(3)f +∆R3f.

The equivariance property is a direct consequence of the definition of the Laplacian, see Lemma F.5.

(c) For any t > 0, B(t)
SE(3) = [B

(t)
SO(3),B

(t)
R3 ]. According to the previous point, we have that for any f ∈ C∞(SE(3)).

f(B
(t)
SE(3))− f(B

(0)
SE(3))− (1/2)

∫ t

0
∆SE(3)f(B

(s)
SE(3))ds,
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which is a local martingale (with respect to the filtration associated with (B
(t)
SO(3))t≥0 and (B

(t)
R3 )t≥0). Using (Hsu, 2002,

Proposition 3.2.1), we have that (B(t)
SE(3))t≥0 is a Brownian motion on SE(3).

(d) Let γ : [−ε, ε]→ SE(3) a smooth curve and consider

E(γ) =
∫ ε

−ε
∥γ′(t)∥2SE(3)dt =

∫ ε

−ε
∥γ′r(t)∥2SO(3)dt+

∫ ε

−ε
∥γ′x(t)∥2R3dt,

where γ = [γr, γx]. γ is a geodesics between γ(−ε) and γ(ε) if it minimizes E(γ), see (Carmo, 1992, Section 9.2).
Therefore, γr is the geodesics on SO(3) between γr(−ε) and γr(ε) and γx is the geodesics on R3 between γx(−ε) and
γx(ε), which concludes the proof.

This proves Prop. 3.1. In particular, note that the exponential mapping on SE(3) does not coincide with the matrix
exponential mapping contrary to the compact Lie group setting like SO(3).

D.4. Haar measure on SE(3)

We conclude this section with some measure theoretical consideration on SE(3). Let G be a locally compact Hausdorff
topological group. The Borel algebra B(G) is the σ-algebra generated by the open subsets of G. A left-invariant Haar
measure is a measure µ on the Borel subsets of G such that:

(a) For any g ∈ G and A ∈ B(G), µ(gA) = µ(A).

(b) For any K compact, µ(K) < +∞.

(c) For any A ∈ B(G), µ(A) = inf{µ(U) : A ⊂ U, U open}.

(d) For any U open, µ(U) = sup{µ(K) : K ⊂ U, K compact}.

Similarly, we define right-invariant Haar measures. Haar’s theorem asserts that left-invariant and right-invariant Haar
measures are unique up to a positive multiplicative scalar. A group G for which the left and right-invariant Haar measures
coincide is called a unimodular group. It can be shown that the product measure between µSO(3) (the Haar measure on
SO(3)) and the Lebesgue measure on R3 is a left and right invariant measure on SE(3). This measure can be realized as the
volume form associated with the metrics described in the previous section.

E. Heat kernel on Lie groups: theory and practice
We start this section with a result on the heat kernel on SO(3) in App. E.1. Then, we present practical considerations in
App. E.3 and App. E.4.

E.1. Heat kernel on compact Lie groups

On a compact Lie group we have the following result, see Ebert & Wirth (2011, Section 2.5.1) for instance.

Proposition E.1 (Brownian motion on compact Lie groups). Assume thatM is a compact Lie group, where for any ℓ ∈ N
χℓ is the character associated with the irreducible unitary representation of dimension dℓ. Then χℓ : M → R is an
eigenvector of ∆ and there exists λℓ ≥ 0 such that ∆χℓ = −λℓχℓ. In addition, we have for any t > 0 and x(0), x(t) ∈M

pt|0(x
(t)|x(0)) =

∑
ℓ∈N dℓe

−λℓt/2χℓ((x
(0))−1x(t)).

It is important to note here that we have implicitly chosen a Brownian motion and therefore a metric to define the Laplace-
Beltrami operator. The metric chosen here is the canonical invariant metric given by the Killing form which is bi-invariant
in the compact case.

In the special case of SO(3) it turns out that the characters can be computed as shown in App. C.4.
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Proposition E.2 (Brownian motion on SO(3)). For any t > 0 and r(0), r(t) ∈ SO(3) we have that pt|0(r(t)|r(0)) =

IGSO3(r
(t); r(0), t) given by

IGSO3(r
(t); r(0), t) = f(ω(r(0)⊤r(t)), t), (15)

where ω(r) is the rotation angle in radians for any r ∈ SO(3)—its length in the axis–angle representation8— and

f(ω, t) =
∑

ℓ∈N(2ℓ+ 1)e−ℓ(ℓ+1)t/2 sin((ℓ+1/2)ω)
sin(ω/2) .

We can also give a similar result on SU(2) using the same tools, see Fegan (1983).

Proposition E.3 (Brownian motion on SU(2)). For any t > 0 and r(0), r(t) ∈ SU(3) we have that pt|0(r(t)|r(0)) =

IGSU2(r
(t); r(0), t) given by

IGSU2(r
(t); r(0), t) = f(ω(r(0)⊤r(t)), t),

where ω(r) is the rotation angle in radians for any r ∈ SU(2)—its length in the axis–angle representation— and

f(ω, t) =
∑

ℓ∈N,ℓ≥1 ℓ
2e−(ℓ2−1)t/8 sin(ℓω)

sin(ω) .

E.2. Sampling and evaluating density of Brownian motion on SO(3)

In practice, we obtain a tractable and accurate approximation of the Brownian motion density by truncating the series (15)
with N = 2000 terms as

pt|0(r
(t)|r(0)) ≈ p̃t|0(r(t)|r(0)) ≜

N−1∑
ℓ=0

(2ℓ+ 1)e−ℓ(ℓ+1)t/2 sin((ℓ+1/2)ω)
sin(ω/2) . (16)

We similarly approximate the conditional score ∇r(t) log pt|0(r
(t) | r(0)) = r(t)

ω(t) log{r(0,t)}∂ωf(ω(t),t)
f(ω(t),t)

from Prop. 3.4 by

truncating the partial derivative ∂ωf(ω(t), t) term.

Following Leach et al. (2022), samples are obtained via inverse transform sampling, where the cdf is numerically approxi-
mated through trapezoidal integration of the truncated density (16) .

E.3. Diffusion modeling on SO(3), and the scaling of time in the IGSO3 density of the Brownian motion

It is worth mentioning as well that the choice of inner product on so(3) influences the speed of the Brownian motion. In
particular, in the present work we have chosen to define ⟨u, v⟩so(3) = Tr(uv⊤)/2 because this is the metric for which the
canonical basis vectors of so(3) (App. C.2) are orthonormal. However, had we instead chosen ⟨u, v⟩so(3) = Tr(uv⊤) the
Brownian motion would again have a different speed, and the normalization in the conditional score in Prop. 3.4 would also
be different.

Additionally, another source of error is the confusion between the heat kernel (qt)t≥0 satisfying ∂tqt = ∆qt and the
density of the Brownian motion (pt)t≥0 satisfying ∂tpt = 1

2∆pt. The origin of this factor 1/2 can be traced back to the
Fokker-Planck equation which describes the evolution of the density of the Brownian motion.

Other recent works have attempted a generative modeling on rotations through an iterative denoting paradigm akin to
diffusion modeling in applications to protein modeling (Anand & Achim, 2022; Luo et al., 2022), as well as robotics (Urain
et al., 2022). However, the associated “forward noising” mechanisms in these works are not defined with respect to an
underlying diffusion and do not have a well defined time-reversal. We hope that our thorough identification of the law of the
B

(t)
SO(3), its score, and its time reversal provides stable ground for further work on generative modeling on SO(3) across a

variety of application areas.

E.4. Pytorch implementation of IGSO3, and simulation of forward and reverse process on a toy example

The goal of this section is to provide a minimal example of a forward and reverse process on SO(3). In particular, we pay
attention to the definition of the exponential, the sampling of a normal with zero mean and identity covariance matrix in the

8See App. C.3 for details about the parameterization of SO(3).
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tangent space, and the sampling from IGSO(3).

In the example that follows, we consider as a target p0 a discrete measure on SO(3)

p0(dR) = N−1
∑N

n=1 δRn
(dR),

where δRn
denotes a Dirac mass on Rn and the atoms locations Rn are chosen randomly by sampling from the uniform

distribution on SO(3).

The intermediate densities are defined via the transition kernel of the Brownian motion as

pt(dR)
∫
R0
pt|0(dR|R(0))p0(dR0),

and the Stein score of these densities∇R log pt(dR) is computed using automatic differentiation.

When the forward and reverse processes are simulated using a geodesic random walk as implemented in Listing 4, their
marginal distributions closely agree for each time t.

import numpy as np
import torch
from scipy.spatial.transform import Rotation
import scipy.linalg

# Orthonormal basis of SO(3) with shape [3, 3, 3]
basis = torch.tensor([

[[0.,0.,0.],[0.,0.,-1.],[0.,1.,0.]],
[[0.,0.,1.],[0.,0.,0.],[-1.,0.,0.]],
[[0.,-1.,0.],[1.,0.,0.],[0.,0.,0.]]])

# hat map from vector space Rˆ3 to Lie algebra so(3)
def hat(v): return torch.einsum(’...i,ijk->...jk’, v, basis)

# Logarithmic map from SO(3) to Rˆ3 (i.e. rotation vector)
def Log(R): return torch.tensor(Rotation.from_matrix(R.numpy()).as_rotvec())

# logarithmic map from SO(3) to so(3), this is the matrix logarithm
def log(R): return hat(Log(R))

# Exponential map from so(3) to SO(3), this is the matrix exponential
def exp(A): return torch.linalg.matrix_exp(A)

# Exponential map from tangent space at R0 to SO(3)
def expmap(R0, tangent):

skew_sym = torch.einsum(’...ij,...ik->...jk’, R0, tangent)
return torch.einsum(’...ij,...jk->...ik’, R0, exp(skew_sym))

# Return angle of rotation. SO(3) to Rˆ+
def Omega(R): return torch.arccos((torch.diagonal(R, dim1=-2, dim2=-1).sum(axis=-1)-1)/2)

Listing 1. Primitives for moving between parameterizations of SO(3)

# Power series expansion in the IGSO3 density.
def f_igso3(omega, t, L=500):

ls = torch.arange(L)[None] # of shape [1, L]
return ((2*ls + 1) * torch.exp(-ls*(ls+1)*t/2) *

torch.sin(omega[:, None]*(ls+1/2)) / torch.sin(omega[:, None]/2)).sum(dim=-1)

# IGSO3(Rt; I_3, t), density with respect to the volume form on SO(3)
def igso3_density(Rt, t, L=500): return f_igso3(Omega(Rt), t, L)

# Normal sample in tangent space at R0
def tangent_gaussian(R0):

return torch.einsum(’...ij,...jk->...ik’, R0, hat(torch.randn(R0.shape[0], 3)))
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# Riemannian gradient of f at R
def riemannian_gradient(f, R):

coefficients = torch.zeros(list(R.shape[:-2])+[3], requires_grad=True)
R_delta = expmap(R, torch.einsum(’...ij,...jk->...ik’, R, hat(coefficients)))
grad_coefficients = torch.autograd.grad(f(R_delta).sum(), coefficients)[0]
return torch.einsum(’...ij,...jk->...ik’, R, hat(grad_coefficients))

# Simluation procedure for forward and reverse
def geodesic_random_walk(p_initial, drift, ts):

Rts = {ts[0]:p_initial()}
for i in range(1, len(ts)):

dt = ts[i] - ts[i-1] # negative for reverse process
Rts[ts[i]] = expmap(Rts[ts[i-1]],

drift(Rts[ts[i-1]], ts[i-1]) * dt +
tangent_gaussian(Rts[ts[i-1]]) * np.sqrt(abs(dt)))

return Rts

Listing 2. Primitives for simulating and reversing the Brownian motion.

Scaling rules. As noted in App. E.3, the choice of inner product impacts the scalings of several objects in the implemen-
tation in Listing 2. Let ⟨·, ·⟩ be an inner product on G and denote ⟨·, ·⟩α the inner product given by ⟨·, ·⟩α = α⟨·, ·⟩. We
consider a test function f ∈ C∞(G) and X ∈ X(G) a vector field.

(a) If∇f is the gradient of f w.r.t. ⟨·, ·⟩, then ∇f/α is the gradient of f w.r.t. ⟨·, ·⟩α.

(b) If div(X) is the divergence of X w.r.t. ⟨·, ·⟩, then div(X) is the gradient of X w.r.t. ⟨·, ·⟩α.

(c) If ∆f is the Laplace-Beltrami of f w.r.t. ⟨·, ·⟩, then ∆f/α is the Laplace-Beltrami of f w.r.t. ⟨·, ·⟩α.

(d) If {Xi}di=1 is an orthonormal basis of TangG at g ∈ G w.r.t ⟨·, ·⟩. then {Xi/
√
α}di=1 is an orthonormal basis of

TangG at g ∈ G w.r.t ⟨·, ·⟩α.

(e) If Z is a Gaussian random variable with zero mean and identity covariance in TangG at g ∈ G w.r.t. ⟨·, ·⟩, then Z/
√
α

is a Gaussian random variable with zero mean and identity covariance in TangG at g ∈ G w.r.t. ⟨·, ·⟩α.

(f) If exp is the exponential mapping w.r.t. ⟨·, ·⟩, then exp is the exponential mapping w.r.t. ⟨·, ·⟩α.

# Sample N times from U(SO(3)) by inverting CDF of uniform distribution of angle
def p_inv(N, M=1000):

omega_grid = np.linspace(0, np.pi, M)
cdf = np.cumsum(np.pi**-1 * (1-np.cos(omega_grid)), 0)/(M/np.pi)
omegas = np.interp(np.random.rand(N), cdf, omega_grid)
axes = np.random.randn(N, 3)
axes = omegas[:, None]* axes/np.linalg.norm(axes, axis=-1, keepdims=True)
return exp(hat(torch.tensor(axes)))

# Define discrete target measure on SO(3), and it’s score for t>0
N_atoms = 3
mu_ks = p_inv(N_atoms) # Atoms defining target measure

# Sample p_0 ˜ (1/N_atoms)\sum_k Dirac_{mu_k}
def p_0(N): return mu_ks[torch.randint(mu_ks.shape[0], size=[N])]

# Density of discrete target noised for time t
def p_t(Rt, t): return sum([

igso3_density(torch.einsum(’ji,...jk->...ik’, mu_k, Rt), t)
for mu_k in mu_ks])/N_atoms

# Stein score, grad_Rt log p_t(Rt)
def score_t(Rt, t): return riemannian_gradient(lambda R_: torch.log(p_t(R_, t)), Rt)

Listing 3. Instantiation of invariant density, discrete target measure, and its Stein score.
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### Set parameters of simulation
N = 5000 # Number of samples
T = 4. # Final time
ts = np.linspace(0, T, 200) # Discretization of [0, T]

# Simulate forward process
forward_samples = geodesic_random_walk(

p_initial=lambda: p_0(N), drift=lambda Rt, t: 0., ts=ts)

# Simulate reverse process
reverse_samples = geodesic_random_walk(

p_initial=lambda: p_inv(N), drift=lambda Rt, t: -score_t(Rt, t), ts=ts[::-1])

Listing 4. Simulation of forward and reverse processes.

F. Invariant diffusion processes
In this section, we prove Prop. 3.6. Let G be a Lie group and H a subgroup acting on G. We define the left shift operator
Lh(g) = hg. Note that since, we are on a Lie group, this function is differentiable and we have for any g ∈ G, h ∈ H ,
dLh(g) : TangG→ TanhgG.

Definition F.1. A function f : G→ R is said to be H-invariant if for any g ∈ G and h ∈ H , f(Lg(h)) = f(h). We note
g.f = f . A section F ∈ Γ(TG) is said to be H-equivariant if for any h ∈ H and g ∈ G, F (Lh(g)) = dLh(g)F (g). An
operator A : C∞(G,R) → C∞(G,R) is H-invariant if for any h ∈ H and f ∈ C∞(G,R), A(h.f) = f . An operator
A : C∞(G,R)→ C∞(G,R) is H-equivariant if for any h ∈ H and f ∈ C∞(G,R), A(h.f) = h.(Af).

Proposition F.2. Let G be a Lie group and H a subgroup of G. Let X associated with dX(t) = b(t,X(t))dt+Σ1/2dB(t),
with bounded coefficients, where B(t) is a Brownian motion associated with a left-invariant metric. Assume that the
distribution of X(0) is H-invariant and that for any t ≥ 0 and h ∈ H , Σ(dLh.∇pt) = dLh.(Σ∇pt) and b ◦ Lh = dLh.b

9

then the distribution of X(t) is H-invariant for any t ≥ 0.

Proof. Denote pt the density of the distribution of Xt w.r.t. the Haar measure. Since the Haar measure is H-invariant by
definition, we only need to show that pt is H-invariant. To do so, we show that pt ◦ Lh satisfy the same Fokker-Planck
equation as pt. Indeed, in that case we have that (Xt)t≥0 and (h.Xt)t≥0 both satisfy the same martingale problems and
therefore are both weak solution to the SDE dX(t) = b(t,X(t))dt+Σ1/2dB(t). Since the coefficients are continuous and
bounded we have uniqueness in the solution, see (Ikeda & Watanabe, 2014, Chapter IV, Theorem 3.3) and the distribution of
h.Xt is the same as the one of Xt for all h ∈ H , which concludes the proof. Using Lemma F.5, we have for any t ∈ [0,TF]
and g ∈ G

∂t(h.pt)(g) = −div(bpt)(Lh(g)) +
1
2∆Σpt(Lh(g))

= −div(bpt)(Lh(g)) +
1
2h.(∆Σpt)(g)

= −div(bpt)(Lh(g)) +
1
2∆Σ(h.pt)(g)

= −div(b)(Lh(g))h.pt(g)− ⟨b(Lh(g)),∇pt(Lh(g))⟩+ 1
2∆Σ(h.pt)(g),

We have that for any t ∈ [0,TF] and g ∈ G

d(h.pt)(g) = dpt(Lh(g))dLh(g).

Hence, for any t ∈ [0,TF] and g ∈ G and u ∈ TgG we have

⟨∇(h.pt)(g), u⟩ = ⟨∇pt(Lh(g)),dLh(g)u⟩.

Hence, using this result and that b is H-equivariant we have for any t ∈ [0,TF] and g ∈ G

⟨b(Lh(g)),∇pt(Lh(g))⟩ = ⟨dLh(g)b(g),∇pt(Lh(g))⟩ = ⟨b(g),∇(h.pt)(g)⟩.
9b is said to be equivariant with respect to action of H .
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Finally, using Lemma F.4, we have that div(b)(Lh(g)) = div(b)(g) for any g ∈ G. Therefore, we get that for any t ∈ [0,TF]
and g ∈ G

∂t(h.pt)(g) = −div(b)(Lh(g))h.pt(g)− ⟨b(Lh(g)),∇pt(Lh(g))⟩+ 1
2∆Σ(h.pt)(g)

= −div(b)(g)h.pt(g)− ⟨b(g),∇(h.pt)(g)⟩+ 1
2∆Σ(h.pt)(g)

= −div(bh.pt)(g) + 1
2∆Σ(h.pt)(g).

Hence h · pt satisfies the same Fokker-Planck equation as pt, which concludes the proof.

Lemma F.3. Assume that X ∈ Γ(TG) is H-equivariant. Then for any Y ∈ Γ(TG) which is H-equivariant ∇YX is
H-equivariant.

Proof. Let g ∈ G. We have∇YX(g) = (dLgγ(t)−1(γ(t))X(γ(t)))′(0), with γ(t) a smooth curve such that γ′(0) = Y (g)
and γ(0) = g. Note that γh(t) = Lh(γ(t)) is a smooth curve such that γ′h(t) = Y (hg). As a consequence, using the
equivariance of X , we have

∇YX(Lhg) = (dLhgγ(t)−1h−1(Lh(γ(t)))X(Lh(γ(t))))
′(0)

= (dLhgγ(t)−1h−1(Lh(γ(t)))dLh(γ(t))X(γ(t)))′(0)

= (dLhgγ(t)−1(γ(t))X(γ(t)))′(0)

= dLh(g)(dLgγ(t)−1(γ(t))X(γ(t)))′(0) = dLh(g)∇YX(g),

which concludes the proof.

Using this result we have the following lemma.

Lemma F.4. Assume that X ∈ Γ(TG) is H-equivariant. Then div(X) is H-invariant.

We provide two proofs of this theorem.

Proof. For the first proof, let {ei}di=1 be an orthonormal frame of TG, then we have that

div(X) =
∑d

i=1⟨∇eiX, ei⟩.

Therefore, using that {ei}di=1 is orthonormal and that the dLh(g) is an isometry, we have for any g ∈ G and h ∈ H

div(X)(hg) =
∑d

i=1⟨∇eiX(hg), ei(hg)⟩

=
∑d

i=1⟨dLh(g)∇eiX(g),dLh(g)ei(g)⟩

=
∑d

i=1⟨∇eiX(g), ei(g)⟩ = div(X)(g),

which concludes the proof.

For the second proof, we use the divergence theorem and don’t rely on the fact that the covariant derivative preserve the
equivariance.

Proof. For any test function f ∈ C∞
c (G,R) we have∫

G
f(g)div(X)(hg)dµ(g) =

∫
G
f(h−1g)div(X)(g)dµ(h). (17)

Second we have that d(f ◦ Lh−1)(g) = df(h−1g)dLh−1(g). In particular, for any u ∈ TgG we have

⟨∇(f ◦ Lh−1)(g), u⟩ = d(f ◦ Lh−1)(g)(u) = df(h−1g)dLh−1(g)(u) = ⟨∇f(h−1g),dLh−1(g)u⟩.
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Combining this result, (18) and the divergence theorem.∫
G
f(g)div(X)(hg)dµ(g)= −

∫
G
⟨∇(f ◦ Lh−1)(g), X(g)⟩dµ(g)

= −
∫
G
⟨∇f(h−1g),dLh−1(g)X(g)⟩dµ(g)

= −
∫
G
⟨∇f(h−1g), X(h−1g)⟩dµ(g)

= −
∫
G
⟨∇f(g), X(g)⟩dµ(g) =

∫
G
f(g)div(X)(g)dµ(g).

Hence, we have that for any test function f ∈ C∞
c (G,R),

∫
G
f(g)(div(X)(hg) − div(X)(g))dµ(g) = 0 and therefore

div(X) is H-invariant.

Lemma F.5. Let f ∈ C∞(G) such that for any h ∈ H , dLh(Σ∇f) = Σ(dLh∇f). Then, we have that for any h ∈ H ,
h.∆Σ(f) = ∆Σ(h.f), where ∆Σ(f) = div(Σ∇f).

Note that in the case where Σ = Id we recover that ∆ is equivariant.

Proof. For any test function u, v ∈ C∞
c (G,R) we have∫

G
u(g)div(Σ∇v)(hg)dµ(g) =

∫
G
u(h−1g)div(Σ∇)(g)dµ(g), (18)

where µ is the (left-invariant) Haar measure onG. Second we have that d(u◦Lh−1)(g) = du(h−1g)dLh−1(g). In particular,
for any ξ ∈ TgG we have

⟨∇(u ◦ Lh−1)(g), ξ⟩ = d(u ◦ Lh−1)(g)(ξ) = du(h−1g)dLh−1(g)(ξ) = ⟨∇u(h−1g),dLh−1(g)ξ⟩.

Combining this result, (18) and the divergence theorem.∫
G
u(g)div(Σ∇v)(hg)dµ(g)= −

∫
G
⟨∇(u ◦ Lh−1)(g),Σ∇v(g)⟩dµ(g)

= −
∫
G
⟨∇u(h−1g),dLh−1(g)Σ∇v(g)⟩dµ(g)

= −
∫
G
⟨∇u(h−1h),ΣdLh−1(g)∇v(g)⟩dµ(g)

= −
∫
G
⟨∇u(h−1g),Σ∇(h.v)(h−1g)⟩dµ(g)

= −
∫
G
⟨∇u(g),Σ∇(h.v)(g)⟩dµ(g) =

∫
G
u(g)div(Σ∇(h.v))(g)dµ(g).

Hence, we have that for any test function u ∈ C∞
c (G,R),

∫
G
u(g)(div(Σ∇v)(hg) − div(Σ∇(h.v))(g))dµ(g) = 0 and

therefore h.∆Σ(v) = ∆Σ(h.v).

G. Connection between SO(3)-invariant pinned probability measures and SE(3)-invariant
measures

In this section, we prove Prop. 3.5. We first present a result on the disintegration of measures, see (Pollard, 2002, p.117). We
specify this result

Proposition G.1. Let µ be a measure on SE(3)N which can be written as a countable sum of finite measures, each
with compact support. Then, there exist a kernel K : R3 × B(SE(3)N ) → R+ such that (µ ⊗ K) = F#µ with
F ([T1, . . . , Tn]) = ([T1, . . . , Tn],

1
N

∑N
i=1 xi).

In what follows, we denote M([T1, . . . , Tn]) =
1
N

∑N
i=1 xi. We are now ready to state the following proposition.

Proposition G.2 (Disintegration of measures on SE(3)N ). Let µ be a measure on SE(3)N which can be writ-
ten as a countable sum of finite measures, each with compact support. Assume that for any f ∈ C∞

c (SE(3)N ),
x 7→

∫
SE(3)N

f([T1, . . . , TN ])dK(x, [T1, . . . , TN ]) is continuous and for any x ∈ R3, K(x, SE(3)N ) < +∞. Then,
there exist η an SO(3)-invariant probability measure on SE(3)N0 and µ̄ proportional to the Lebesgue measure on R3 such
that

dµ([(r1, x1), . . . , (rN , xN )])

= dη([(r1, x1 − x̄), . . . , (rN , xN − x̄)])dµ̄(x̄).

28



SE(3) diffusion model with application to protein backbone generation

Proof. First, we have that M#µ is translation invariant since µ is SE(3)-invariant. Since f#µ is a translation invariant
measure on R3, we have that µ is proportional to the Lebesgue measure, without of loss of generality we assume that it is
equal to the Lebesgue measure in what follows. For any x0 ∈ R3, f ∈ C∞

c (SE(3)N ) and g ∈ C∞
c (R3) we have∫

SE(3)N
f([T1, . . . , TN ])g(M([T1, . . . , TN ]))dµ([T1, . . . , TN ]) =

∫
R3 g(x̄)

∫
SE(3)N

f([T1, . . . , TN ])K(x̄,d[T1, . . . , TN ])dx̄

=
∫
R3 g(x̄+ x0)

∫
SE(3)N

f([(R1, x1), . . . , (RN , xN )])K(x̄+ x0,d[T1, . . . , TN ])dx̄

=
∫
R3 g(x̄+ x0)

∫
SE(3)N

f([(R1, x1 + x0), . . . , (RN , xN + x0)])K(x̄, d[T1, . . . , TN ])dx̄,

where the first equality is obtained using the translation invariance of the Lebesgue measure and the second is obtained
using the SE(3) invariance of µ. Therefore, we obtained that for almost any x̄ ∈ R3, f ∈ C∞

c (SE(3)N )∫
SE(3)N

f([T1, . . . , TN ])K(x̄+ x0,d[T1, . . . , TN ]) =
∫
SE(3)N

f([T1, . . . , TN ])(tx0
)#K(x̄, d[T1, . . . , TN ]),

where tx0
([T1, . . . , Tn]) = [(R1, x1 + x0), . . . , (RN , xN + x0)]. Since, for any f ∈ C∞

c , x0 7→∫
SE(3)N

f([T1, . . . , TN ])K(x̄+ x0,d[T1, . . . , TN ]) is continuous, we have that for any x̄ ∈ R3, f ∈ C∞
c (SE(3)N )∫

SE(3)N
f([T1, . . . , TN ])K(x̄+ x0,d[T1, . . . , TN ]) =

∫
SE(3)N

f([T1, . . . , TN ])(tx0
)#K(x̄, d[T1, . . . , TN ]),

Therefore, we get that for any x0 ∈ R3, K(x0, ·) = (tx0
)#K(0, ·). By definition, we have that K(0, ·)((SE(3)N0 )c) = 0, i.e.

K(0, ·) is supported on SE(3)N0 . In what follows, we denote η = K(0, ·). We have that for any f ∈ C∞
c (SE(3)N )∫

SE(3)N
f([T1, . . . , TN ])dµ([T1, . . . , TN ]) =

∫
R3

∫
SE(3)N0

f([T1, . . . , TN ])dη([(r1, x1 − x̄), . . . , (rN , xN − x̄)])dx̄.

For any f ∈ C∞
c (SE(3)N )∫

SE(3)N
f([T1, . . . , TN ])dµ([T1, . . . , TN ]) =

∫
R3

∫
SE(3)N0

f([T1, . . . , TN ])dη([(r1, x1 − x̄), . . . , (rN , xN − x̄)])dx̄

=
∫
R3

∫
SE(3)N0

f([(r0r1, r0x1), . . . , (r0rN , r0xN )])dη([(r1, x1 − x̄), . . . , (rN , xN − x̄)])dx̄

=
∫
R3

∫
SE(3)N0

f([T1, . . . , TN ])(r0)#dη([(r1, x1 − x̄), . . . , (rN , xN − x̄)])dx̄.

Therefore, η is SO(3)-invariant which concludes the proof.

We also have the following proposition.

Proposition G.3 (Construction of invariant measures). Let η be an SO(3)-invariant probability measure on SE(3)N0 , µ̄ the
Lebesgue measure on R3. Then

dη([(r1, x1 − x̄), . . . , (rN , xN − x̄)])dµ̄(x̄),

is SE(3)-invariant on SE(3)N .

H. Rodrigues’ formula and differentiation
In this section, we prove Prop. 3.4. We recall that the Lie algebra so(3) can be described with ω ∈ S2 and θ ∈ R by

Y = θYω, Yω = ω1Y1 + ω2Y2 + ωY3.

This is the axis-angle representation of the Lie algebra. Note that ∥Yω∥2 = 2, since ω ∈ S2 and Tr(YiY
⊤
j ) = 2δi,j . In

addition, we have that Y 3
ω = −Yω and therefore we recover Rodrigues’ formula

exp[θYω] = Id+ sin(θ)Yω + (1− cos(θ))Y 2
ω .

Denote φ : (0,π)× S2 → SO(3) with S2 identified with {a1Y2 + a2Y2 + a3Y3 : (a1, a2, a3) ∈ S2} and

φ(θ, Yω) = Id+ sin(θ)Yω + (1− cos(θ))Y 2
ω .
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Note that φ is injective, we denote Im(φ) its image, and is inverse is given by

φ−1(R)1 = θ = cos−1((Tr(R)− 1)/2),

φ−1(R)2 = Yω = ((R32 −R23)Y1 + (R13 −R31)Y2 + (R21 −R12)Y3)/(2 sin(θ)).

We have the following proposition.

Proposition H.1. For any R ∈ Im(φ), we have

∇φ−1(R)1 = R exp−1(R)/ exp−1(R)1.

Proof. First, note that (RY1, RY2, RY3) is an orthonormal basis for TanRSO(3). Consider Rt = R exp[tY1]. We have that
φ−1
1 (Rt)

′(0) = (∇φ−1(R))1. Let ε > 0 such that for any t ∈ [−ε, ε], Rt ∈ Im(φ). We have that for any t ∈ [−ε, ε]

φ−1(Rt)
′
1 = −(1− ((Tr(R)− 1)/2)2)1/2 Tr(RY1)/2 = −Tr(RY1)/(2 sin(θ)).

Using that Tr(RY1) = −R32 +R23 we get that

φ−1(Rt)
′
1 = (R32 −R23)/(2 sin(θ)),

Hence, we have

∇φ−1(R)1 = Rφ−1(R)2 = Rφ−1(R)1φ
−1(R)2/φ

−1(R)1.

Note that identifying R3 and R+ × Sso(3) we have the identification

φ−1(R) = φ−1(R)1φ
−1(R)2,

which concludes the proof.

Finally, we have the following proposition

Proposition H.2. For almost any R,R′ ∈ SO(3) we have

∇φ−1(R′⊤R)1 = R exp−1(R′⊤R)/ exp−1(R′⊤R)1.

Proof. Let H1 = RY1, f(R) = φ−1(R′⊤R) and g(R) = φ−1(R) defined for almost all R ∈ SO(3). We have that
f = g ◦ LR′⊤ . Therefore, we have that for almost any R ∈ SO(3)

df(R)(H1) = dg(R′⊤R)(dLR′⊤(R)(H1))

= dg(R′⊤R)(R′⊤H1) = ⟨∇g(R′⊤R), R′⊤H1⟩ = ⟨R′∇g(R′⊤R), H1⟩,

which concludes the proof.

The proof of Prop. 3.4 is a direct consequence of Prop. H.2.

I. Additional method details
I.1. Frame to coordinates

We continue from Sec. 2 in describing backbone atom parameterization in terms of frames. As discussed, N⋆,C⋆
α,C

⋆,O∗ are
idealized atom coordinates that assumes chemically idealized bond angles and lengths. AF2 derived these coordinates from
Engh & Huber (2012). However, these values differ slightly per amino acid type. Since we do not model sequence, we take
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the idealized values of Alanine which are,

N⋆ = (−0.525, 1.363, 0.0)
C⋆
α = (0.0, 0.0, 0.0)

C⋆ = (1.526, 0.0, 0.0)

O∗ = (0.627, 1.062, 0.0)

note the idealized values are taken with respect to C⋆
α as the origin. Using a central frame Tn, we may manipulate idealized

coordinates to construct backbone atoms for residue n via Eq. (1).

The backbone oxygen requires rotating a idealized oxygen around the C− Cα bond.

On = Tn · T ⋆
psi(ψn) · O⋆.

where ψn ∈ SO(2) denotes a backbone torsion angle of residue n and T ⋆
psi(ψn) = (Rx(ψn), xpsi) is a Euclidean

transformation from the central frame Tn to a new frame Tn · T ∗
psi centered at C and rotated around the x-axis by ψn. Recall

ψn is a tuple of of two values specifying a point along the unit circle, ψn = [ψn,1, ψn,2] where (ψn,1)
2 + (ψn,2)

2 = 1.

Rx(ψ) =

1 0 0
0 ψn,1 −ψn,2

0 ψn,2 ψn,1


xpsi = (1.526, 0.0, 0.0)

(19)

The mapping from frames to idealized coordinates, frame2atom, is achieved with Eqs. (1) and (19):

[Nn,Cn, (Cα)n,On] = frame2atom(Tn, ψn). (20)

We next describe constructing frames from coordinates. Each residue’s frames are obtained as described in Fig. 1A and the
rigidFrom3Point algorithm in AF2,

v1 = Cn − (Cα)n, v2 = Nn − (Cα)n

e1 = v1/∥v2∥, u2 = v2 − e1(eT1 v2)
e2 = u2/∥u2∥
e3 = e1 × e2
Rn = concat(e1, e2, e3)

xn = (Cα)n

Tn = (Rn, xn)

where the first four lines follow from Gram-Schmidt. The operation of going from coordinates to frames is called atom2frame,

Tn = atom2frame(Nn,Cn, (Cα)n). (21)

atom2frame will be used in App. I.2 when constructing initial frames from the data. We do not need to construct ψn since in
App. J.1 our losses are directly on the coordinates themselves. However, it can easily be solved by solving a least squares
with Eq. (19).

I.2. FramePred architecture

Here we provide mathematical detail of FramePred presented in Sec. 4.1. To recap, hℓ = [h1ℓ , . . . , h
N
ℓ ] ∈ RN×Dh are the

node embeddings of the ℓ-th layer where hnℓ is the embedding for residue n; zℓ ∈ RN×N×Dz are edge embeddings with
znmℓ being the embedding of the edge between residues n and m. The frames of every residue at the ℓ-th layer is denoted
Tℓ ∈ SE(3)N . Unless stated otherwise, all instances of Multi-Layer Perceptrons (MLP) use 3 Linear layers with biases,
ReLU activation, and LayerNorm (Ba et al., 2016) after the final layer. In this section, superscripts without parentheses
are used to refer to residue indices, superscript numbers within parentheses refer to time step, subscripts refer to variable
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names.

Feature initialization. Following Trippe et al. (2023), node embeddings are initialized with residue indices and timestep
while edge embeddings additionally get relative sequence distances. Initial embeddings at layer 0 for residues n,m are
obtained with an MLP and sinusoidal embeddings ϕ(·) (Vaswani et al., 2017) over the features.

We additionally include self-conditioning of predicted Cα displacements. Let x̂sc be the Cα coordinates (in Å) predicted
during self-conditioning. 50% of the time we set x̂sc = 0. The binned displacement of two α is given as,

dispnmsc =
∑Nbins

i=1 1 {|x̂nsc − x̂msc| < νi}

where ν1, . . . , νNbins
= linspace(0, 20) are equally spaced bins between 0 and 20 angstroms. In our experiments we set

Nbins = 22. The initial embeddings can be expressed as

hn0 = MLP([ϕ(n), ϕ(t)]) hn0 ∈ RDh

znm0 = MLP([ϕ(n), ϕ(m), ϕ(m− n), ϕ(t), ϕ(dispnmsc )]) znm0 ∈ RDz

where Dh, Dz are node and edge embedding dimensions.

To construct the initial frames, Cα coordinates are first zero-centered and all backbone coordinates (N,C,Cα,O) are scaled
to nanometers as done in AF2 by multiplying coordinates by 1/10. We then construct initial frames for each residue n with
Eq. (21),

T (0),n = (R(0),n, x(0),n) = atom2frame(Nn,Cn,Cn
α)

During training, initial frames are then sampled T
(t)
0 ∼ pt|0(·|T(0),n). We now write out the neural network described in

Fig. 2. Starting at layer ℓ = 0, we iteratively update node embeddings, edge embeddings, and frames.

Node update. Invariant Point Attention (IPA) was introduced in (Jumper et al., 2021). We apply it without modifications.
No weight sharing is performed across layers. Transformer is used without modification from (Vaswani et al., 2017).
Hyperparameters for Transformer and IPA are given in App. I.4.

hipa = LayerNorm(IPA(hℓ, zℓ,Tℓ) + hℓ) hipa ∈ RN,Dh

hskip = Linear(h0) hskip ∈ RN,Dskip

hin = concat(hipa,hskip) hin ∈ RN,(Dskip+Dh)

htrans = Transformer(hin) htrans ∈ RN,(Dskip+Dh)

hout = Linear(htrans) + hℓ hout ∈ RN,Dh

hℓ+1 = MLP(hout) hℓ + 1 ∈ RN,Dh

Edge update. Each edge is updated with a MLP over the current edge and source and target node embeddings.

hdown = Linear(hℓ+1) hdown ∈ RN,Dh/2

znmin = concat(hndown, h
m
down, z

nm
ℓ ) znmin ∈ RN,(Dh+Dz)

zℓ+1 = LayerNorm(MLP(zin)) zℓ+1 ∈ RN,N,Dz

In the first line, node embeddings are first projected down to half the dimension.
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Backbone update. Our frame updates follow the BackboneUpdate algorithm in AF2. We write the algorithm here with
our notation,

bn, cn, dn, xnupdate = Linear(hℓ)

(an, bn, cn, dn) = (1, bn, cn, dn)/
√
1 + bn + cn + dn (22)

Rn
update =

(
(an)2+(bn)2−(cn)2−(dn)2 2bncn−2andn 2bndn+2ancn

2bncn+2andn (an)2−(bn)2+(cn)2−(dn)2 2cndn−2anbn

2bndn−2ancn 2cndn−2anbn (an)2−(bn)2−(cn)2+(dn)2

)
(23)

Tn
update = (Rn

update, x
n
update)

Tn
ℓ+1 = Tn

ℓ · Tn
update.

where bn, cn, dn ∈ R, xnupdate ∈ R3. Eq. (22) constructs a normalized quaternion which is then converted into a valid
rotation matrix in Eq. (23).

Frame and score prediction. After L layers, we take the final frame as the predicted frame, TL = T̂(0) = (R̂(0), x̂(0)).
From this we construct the score for residue n (denoted with a subscript) as,

sxθ(t,T
(t))n = ∇

x
(t)
n

log pt|0(x
(t)
n |x̂(0)n )

= −x
(t)
n − e−

1
2β(t)x

(0)
n

1− eβ(t)

srθ(t,T
(t))n = ∇

R
(t)
n

log pt|0(R
(t)
n |R̂(0)

n )

=
R(t)

n

ω(R̂
(0)
n ))

log{R̂(0,t)
n }∂ωf(ω(R̂(0)

n )), t) (24)

TorsionPrediction. Predicting torsion angle ψ follows AF2.

hpsi = MLP(hL) hpsi ∈ RN,Dh

ψψψunnormalized = Linear(hpsi + hL) znmin ∈ RN,2

ψ̂̂ψ̂ψ = ψψψunnormalized/∥ψψψunnormalized∥ ψ̂̂ψ̂ψ ∈ SO(2)N

I.3. Diffusion schedule and reduced noise sampling

For simplicity of exposition, the main text presents the forward diffusion process on SE(3) as evolving as

dT(t) = [0,− 1
2X

(t)]dt+ [dB
(t)
SO(3),dB

(t)
R3 ],

and reaching sufficiently close to the invariant distribution by some time T > 0. However, for the purpose of implementation
it preferable to consider the diffusion as approaching the invariant distribution by t = 1 (taking T = 1), and to decouple
the rates of diffusion of X(t) and X(t). To accomplish this, we introduce drift and diffusion coefficients, f(·) and g(·)
respectively, which we define separately for the rotations and translations. For the translations we write

dX(s) = fx(s)X
(s)dt+ gx(s)dB

(s)
R3

where fx(s) = − 1
2β(s) and gx(s) =

√
β(s), for some schedule β(·). We choose

β(s) = βmin + t(βmax − βmin),

which is the linear beta schedule introduced by Ho et al. (2020) adapted to the SDE setting Song et al. (2021).

This may be seen as a time-rescaled OU process. Letting Gx(s) =
∫ s

0
gx(t)

2 = t · βmin +
1
2 t

2(βmax − βmin), we have that
ps|0(X

(s)|X(0)) = N (X(s); exp−G(s) X(s), 1− exp−Gx(s) Id3).
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Similarly, for rotations we have
dR(s) = gr(s)dB

(s)
SO(3).

We relate gr(s) to a time rescaling σ2
r(s) =

∫ s

0
g(t)2dt so that we may write

ps|0(R
(s)|R(0)) = IGSO3(R

(s);R(0), σ2
r(s)

2).

We found it easier to choose gr(s) implicitly through the choice of the time rescaling σr(s). In particular, we first defined
σr(s) = log(s · exp{σmax}+ (1− s) exp{σmin}) This schedule is depicted in Fig. 4 Right. This choice of σr coincides

with the diffusion coefficient gr(s) =
√

d
dsσ

2(s). We choose σ2
min = 0.01 and σ2

max = 2.25.

The forward processes above imply a time reversals
←−
T (s) d

= T(1−s) is given by

←−
T (s) =

[
gr(1− s)2∇r log p1−s(

←−
T (s))

gx(1− s)2∇x log p1−s(
←−
T (s))− fx(1− s)

←−
X(s)

]
dt+

[
gr(1− s)B(s)

SO(3)

gx(1− s)B(s)
R3

]
. (25)

Both schedules are plotted as a function of t in Fig. 4 using hyperparameters in App. I.4. We additionally plot the rotation
schedule when a linear σ(t) = σmin + (σmax − σmin)

2 is used. The variance is decay slower when a logarithmic schedule
is used. We found this led to slightly improved samples.

Figure 4. Variances schedules for translations and rotations using hyperparameters in App. I.4. For rotations, we use a logarithmic σ such
that the variance decays slower and more closely matches the translation variance schedule.
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Noise scaling To generate samples with the noise-rescaling, we include additional factor on the diffusion coefficients
applied to the noise when simulating (25).

←−
T (s) =

[
gr(1− s)2∇r log p1−s(

←−
T (s))

gx(1− s)2∇x log p1−s(
←−
T (s))− fx(1− s)

←−
X(s)

]
dt+ ζ

[
gr(1− s)dB(s)

SO(3)

gx(1− s)dB(s)
R3

]
,

where ζ ∈ [0, 1] is the ‘noise-scale’. Notably, when ζ ̸= 1,
←−
T (s)

d

̸=
←−
T (1−s).

I.4. Hyperparameters

Neural network hyperparameters.

Global parameters: Dh = 256 Dz = 128 Dskip = 64 L = 4
IPA parameters: heads=8 query points=8 value points= 12

Transformer parameters: heads=4 layers=2

With these parameters, our neural network has 17446190 trainable weights.

SDE parameters.

Translations: schedule=linear βmin = 0.1 βmax = 20
Rotations: schedule=logarithmic σmin = 0.1 σmax = 1.5

I.5. Connection to DiffAb and RFdiffusion rotation loss

We briefly compare two different possible losses for learning rotations. The first is a straightforward Frobenius norm loss,
LF on rotation matrices used in both RFdiffusion (Watson et al., 2022) and DiffAb (Luo et al., 2022).

LF (θ) = E[∥R(0) − R̂(0)∥2],

Our work utilizes the denoising score matching loss (DSM) Eq. (3) as discussed in Sec. 3.2. We copy it here for rotations,

LDSM (θ) = E[λt∥∇ log pt|0(R
(t)|R(0))− srθ(t,X(t))∥2],

We now discuss the difference between LF and LDSM . By definition, the minimizer of LF recovers the true rotation R(0)

while the minimizer of LDSM is the score srθ. It is crucial to observe these objects are defined in different spaces: srθ is an
element of the tangent space, while R(0) is an element of SO(3). However, if one has access to R(0) then srθ is perfectly
recoverable as seen in Eq. (24). In practice, we can only approximate R(0) with deep learning. Hence, LF and LDSM are
likely to learn different objects except under certain settings. We perform an ablation of using LF in Table 2 where we see it
results in a slight reduction in designability. Due to its compatibility with the theory of score-based generative models, the
DSM loss is more appealing.

J. Additional experiment details and results
J.1. Training details

In this section we provide details on training FrameDiff in our experiments Sec. 5.

Training data. We train FrameDiff over monomers10 between length 60 and 512 with resolution < 5Å downloaded from
PDB (Berman et al., 2000) on August 8, 2021. This resulted in 23913 proteins. We further filtered the data by only including
proteins with high secondary structure compositions. For each monomer, we ran DSSP (Kabsch & Sander, 1983) then
removed monomers with more than 50% loops – resulting in 20312 proteins. We found removing such proteins improved
training and sample quality. Extending our method to larger proteins and multimers is a direction of future research.

10Oligomeric state is determined by the metadata in the mmcif file.
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Batched training. Since FrameDiff operates on fully connected graphs, the memory requirement scales quadratically.
Our implementation is based on OpenFold (Ahdritz et al., 2022) which is not compatible with efficient batching strategies
implemented in PyTorch Geometric (Fey & Lenssen, 2019). We instead adopt a simple batching strategy in Alg. 2. Each
element in a batch is a different timestep of the same protein backbone. Each batch is therefore a collection of different
diffused instances of the same backbone. This way each element is the same length and no masking is required. We set a
threshold NMaxEdges to be the maximum number of edges in each batch. New diffused instances are added to the batch
until this threshold is reached. In our experiments, we set NMaxEdges = 1000000.

Optimization. We use Adam optimizer (Kingma & Ba, 2014) during training with learning rate 0.0001, β1 = 0.9,
β2 = 0.999. Our network was trained over a period of 2 weeks on two A100 Nvidia GPUs.

Algorithm 2 TimestepBatch
Require: T, ε,NMaxRes

1: ζ = 0

2: # Initialize batch
3: T̄ = []

4: t̄ = []

5: {T (0)
n }Nn=1 = T

6: while ζ < NMaxRes do
7: # Sample time
8: t ∼ U([ε, 1])
9: # Apply forward diffusion

10: for n = 1, . . . , N do
11: (R

(0)
n , X

(0)
n ) = T

(0)
n

12: X
(t)
n ∼ N (X

(0)
n e−t/2, (1− e−t) Id3)

13: R
(t)
n ∼ IGSO3(R

(0)
n , t)

14: T
(t)
n = (R

(t)
n , X

(t)
n )

15: end for
16: T(t) = {(R(t)

n , X
(t)
n )}Nn=1

17: # Remove CoM
18: T(t) = Ppin(T

(t))

19: # Append to batch
20: T̄.append(T(t))

21: # Append time step
22: t̄.append(t)

23: # Increase residue count
24: ζ = ζ +N2

25: end while
26: Return (T̄, t̄)

Algorithm 3 Training.
Require: p0, ε,NMaxRes, θ

1: while not converged do
2: # Sample data point
3: T(0) ∼ p0
4: # Sample batch over time steps
5: (T̄, t̄) = TimestepBatch(T, ε,NMaxRes)

6: # Optimize weights θ with loss L over batch
7: θ = optimizer(θ, T̄(t), t̄,L)
8: end while
9: return θ

J.2. Sampling details

Alg. 1 outlines sampling from FrameDiff . For an N -residue backbone, frames T(1) ∈ SE(3)N are first initialized from the
reference distribution, pNinv. Starting at time t = TF, we run discretized Langevin dynamics with FrameDiff with a step
size of δt = γ to predict the next frame at time (t− γ). At each step, intermediate frames are always re-centered in line 12.
Once the diffusion is time-reversed to t = ϵ, we perform a final forward pass of FrameDiff on lines 14 with t = 0. This
final output is used to construct idealized backbone atom coordinates via frame2atom Eq. (20).
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J.3. Designability

Figure 5. Designability test. Using FrameDiff , we sample a backbone starting from noise then proceed to sample multiple (Nseq)
sequences with ProteinMPNN(Dauparas et al., 2022). Each sequence is then folded with ESMFold (Lin et al., 2023) to obtain the
predicted backbone which is scored again the sampled backbone with RMSD (scRMSD) or TM-score (scTM). This framework also gives
a method for generating a full protein with sequence and sidechains starting from a generated backbone.

J.4. Additional results

In this section, we provide additional results to supplement the main text. In Sec. 5.2 and Fig. 3, our main results are based
samples obtained using on the hyperparameters ζ = 0.1, Nsteps = 500, Nseq = 100. We perform additional analysis on
these backbone samples across lengths 100 to 500.

On the left plot of Fig. 6, we see FrameDiff can generate backbones up to length 500 that are well designable according to
the scTM> 0.5 criterion. We see it is more difficult to achieve designability according to the more stringent scRMSD< 2
criterion. Reliably achieving designability of scRMSD< 2 past length 400 is only reported by RFdiffusion. Improving
FrameDiff’s scRMSD designability past length 400 is a direction of further research.

The right plot of Fig. 6 depicts the secondary structure composition of FrameDiff samples across lengths. We observe a
wide range of secondary compositions from different helical and sheet percentages with a preference to sample more helical
backbones. More so, we notice longer backbones past 400 tend to be mostly helical. The wide range of secondary structures
and folds are visualized in random samples from Fig. 7. Note the operating characteristics of this plot insists our samples
always have loop composition <50% due to the filtering of training data in App. J.1.

Figure 6. Additional analysis of designability across samples. Left: plot of scRMSD vs. length with color to indicate scTM> 0.5
designability. Right: secondary structure composition of all samples across lengths.

Since RFdiffusion’s code is not released at time of writing, we reimplement the reported evaluation procedure in Watson
et al. (2022) by sampling 100 backbones for each length 70, 100, 200, 300 and evaluating designability in Fig. 3A. With
these samples, we additionally calculate diversity as the proportion of clusters out of 100 samples in Table 3. Interestingly,
our diversity remains high despite lower noise scales in contrast to the decreased diversity reported in RFdiffusion (their
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diversity is reported as a bar plot across noise scales). However, FrameDiff designability across these lengths are lower than
RFdiffusion. Exploring how to jointly improve diversity and designability will be an important research direction.

Table 3. Sample diversity compared with RFdiffusion.
RFDIFFUSION FrameDiff

LENGTH
NOISE SCALE 0.0 0.5 1.0 0.1 0.5 1.0

70 0.16 0.26 0.34 0.72 0.67 0.9
100 0.26 0.35 0.65 0.59 0.52 0.81
200 0.29 0.65 0.83 0.49 0.67 0.86
300 0.17 0.67 0.91 0.62 0.52 0.8

J.5. Comparison to FoldingDiff

In this section, we compare our results with FoldingDiff (Wu et al., 2022), a torsion angle based protein backbone diffusion
model, which has publicly available code11 allowing for direct comparison. However, the published FoldingDiff weights
are limited to generating proteins up to length 128. We re-trained FoldingDiff and performed evaluation on proteins up to
length 500 on the same dataset used to train FrameDiff. To be as fair as possible, we use the evaluation code in FoldingDiff
(i.e. OmegaFold for structure prediction, ProteinMPNN C-alpha only for sequence design) to evaluate FrameDiff for which
we used noise scale ζ = 1.0, NSTEPS = 500, NSEQ = 8. The results are in Table 4 where we see FrameDiff greatly
outperforms FoldingDiff. The increase to 60% from 49% designability ( Table 1) is due to the switch from full backbone
ProteinMPNN to Ca only ProteinMPNN.

Table 4. FrameDiff comparison to FoldingDiff.
FOLDINGDIFF FRAMEDIFF

> 0.5 SCTM (↑) 6% 60%

11https://github.com/microsoft/foldingdiff
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Figure 7. Visualization of samples across 4 random samples from each length group 200, 300, 40 at two different noise scales ζ = 0.1, 1.0.
Beta sheets are colored in red, alpha helices in cyan, and loops in magenta.

39


