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ABSTRACT

Despite impressive performance, large language models (LLMs) still struggle with
seemingly simple questions such as “How many r’s are in ‘strawberry’?” This limi-
tation highlights that LLMs are unable to understand how humans ‘see’ language.
We attempt to address this by experimenting with stochastic tokenization schemes
in which the same text may be tokenized into multiple possible token sequences.
We find that using stochastic tokenization during pretraining dramatically alters the
representations learned and allows LLMs to capture understanding of fine-grained
spelling-level detail in addition to the structure learned with standard tokenization.
We demonstrate this by showing that LLMs pretrained with standard determin-
istic tokenization cannot be finetuned to answer language-game type questions,
whilst with the minimal addition of stochastic tokenization during pretraining, the
corresponding LLMs perform near-perfectly. Crucially, these improvements are
achieved without any performance drop on standard benchmarks or any additional
training cost — the only change is a single simple, computationally cheap prepro-
cessing step. Overall, our results suggest that embracing stochastic tokenization
can help enable LLMs to better understand how humans perceive language.

1 INTRODUCTION

Large language models (LLMs) have achieved remarkable progress on a wide range of tasks (Achiam
et al., 2023; Team et al., 2023; Dubey et al., 2024). However, their reliance on tokenization obscures
how humans naturally perceive language. For example, while humans see ‘book’ and ‘cook’ as
differing by a single letter, LLMs always see these words as distinct token IDs1. This makes subword-
focused tasks such as counting letters or identifying shared substrings difficult, even for current
state-of-the-art LLMs. While these weaknesses may seem limited to wordplay-based games, they
highlight a more fundamental inability of LLMs to understand how humans perceive language, an
essential aspect of being able to communicate with humans effectively.

In light of this, we investigate whether stochastic tokenization can address these limitations, where
‘stochastic tokenization’ refers to any tokenization scheme in which the same text may be encoded as
multiple possible token sequences. We start with the simplest instantiation of this, in which tokens are
randomly split into equivalent pairs of smaller tokens with some small probability. Our experiments
show that this minimal preprocessing step significantly alters the representations learned and allows
the model to capture human notions of written language in addition to the structure learned with
deterministic tokenization. We demonstrate this by showing that language models pretrained with
stochastic tokenization can quickly adapt to near-perfect accuracy on ‘language game’ tasks, while
the models trained with deterministic tokenization fail. Crucially, the benefit comes without any
performance drop on the original benchmarks or any additional training computation cost.

It is also notable that stark performance change is achieved with the simplest instantiation of stochastic
tokenization, which comes with several benefits. Firstly, while prior methods such as subword
regularization (Kudo, 2018) and BPE-dropout (Provilkov et al., 2020) rely on Unigram and BPE

†Corresponding author anya.sims@stats.ox.ac.uk
1e.g. ‘book’=3092 and ‘cook’=171691 in the GPT-4o and GPT-4o mini models.
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Figure 1: Main result: Tokenizing the
pretraining dataset stochastically means
the representations learned during pre-
training capture the fine-grained details
of how humans ‘see’ language. This is
demonstrated as models pretrained with
stochastic tokenization can be finetuned
to answer language game questions.

tokenization respectively, our method is compatible with any base tokenizer. Furthermore, unlike
prior methods, our algorithm retains the same vocabulary and decoding function as the original
tokenizer, making it simple to switch between stochastic and standard tokenization in different stages
of model training2. Finally, it has minimal computational overhead, while subword regularization
requires using the Viterbi algorithm (Viterbi, 1967), or Forward-Filtering and Backward-Sampling
(FFBS, Scott (2002)), and BPE-dropout requires retokenizing the data from scratch for different
stochasticity levels.

Tokenization has recently received less attention than finetuning and other downstream tasks since its
position at the start of the pretraining pipeline often means experimentation is prohibitively expensive.
However, the striking difference in behavior achieved with such a modest change may highlight
additional benefits—including improved handling of typos, enhanced robustness to training data
quality, reduced susceptibility to overfitting due to increased randomness, as well as potentially
helping solve the ‘counting’ problem described by Zhang et al. (2024); Barbero et al. (2024). Overall,
our findings suggest that stochastic tokenization is a promising direction to revisit.

2 BACKGROUND AND RELATED WORK

The two dominant tokenization methods are Byte-Pair Encoding (BPE, Sennrich et al. (2016)) and
Unigram tokenization (see Appendix A for a brief summary).3 The main stochastic variant of BPE
is BPE-dropout (Provilkov et al., 2020). In this algorithm, stochasticity is introduced by randomly
omitting some of BPE’s constructed merge operations during tokenization. This, however, results
in a different vocabulary than that of the original BPE and forces tokenization from scratch, which
complicates the reuse of pretrained resources and consistency between training and inference.

The main stochastic variant of Unigram is subword regularization (Kudo, 2018). Here, stochasticity
is added by sampling valid segmentations from the learned probability distribution rather than
choosing the maximum probability segmentation. This, however, adds to the already considerable
computational and memory requirements of Unigram due to its reliance on the Viterbi algorithm or
forward–backward search (FSBS) and involves many implementation complexities — for example,
handling overlapping candidates, tuning beam search parameters, and ensuring numerical stability.

3 SIMPLE STOCHASTIC TOKENIZATION

Our proposed stochastic tokenization scheme is straightforward yet effective. First, we tokenize the
dataset using a standard deterministic tokenizer. Then, in a post-tokenization step, we apply a random
‘expansion’ operation in which, for expand_prop*len(dataset) iterations, a token is randomly
selected and split into an equivalent pair of tokens from within the existing vocabulary. This repeated
subword re-segmentation allows the model to observe many alternative decompositions; for example,
the training data may contain the word [example] as any of: [[example]], [[exam][ple]],
[[ex][ample]], [[ex][am][ple]], or [[e][x][am][ple]]. A simple illustrative example of
the vocabulary and tokenization process is provided in Appendix C.

2For example here we switch to deterministic tokenization in finetuning experiments.
3BPE is currently the most common method due to its simplicity and lower memory requirements compared

to Unigram (Groeneveld et al., 2024; Dubey et al., 2024; Team et al., 2024; Jiang et al., 2023; Abdin et al., 2024;
Guo et al., 2025; Yang et al., 2024; Biderman et al., 2023).
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This approach offers several practical advantages over existing methods such as subword regular-
ization and BPE-dropout. First, it is compatible with any base tokenization method including BPE,
WordPiece, or Unigram. Second, rather than running a computationally intensive tokenization pro-
cedure multiple times, we tokenize the data only once and then cheaply “detokenize” or expand
the dataset for various levels of stochasticity (as controlled by the expand_prop parameter; see
Algorithm 2). Finally, because the method retains the same vocabulary as the original tokenizer, we
can more closely isolate the effect of adding stochasticity, reuse the base tokenizer’s detokenization
and tokenization functions, and switch between stochastic and deterministic tokenization for the
same model—such as during different stages of training. In the next section, we describe several
experiments used to evaluate the impact of this stochastic tokenization.

4 EXPERIMENTS

We build on the 50M-parameter baseline setup in the open-source SuperTinyLanguageModels
repo (Hillier et al., 2024). This setup uses the GPT-2 BPE tokenizer from the tiktoken4 library and
pretrains the model on the OpenWebText dataset (Gokaslan & Cohen, 2019). In the following section,
we describe results from a series of experiments investigating the effects of stochastic tokenization.

4.1 SIGNIFICANT IMPROVEMENTS IN LANGUAGE GAME TASKS

For our first experiment, we set up a dataset of language game questions involving identifying word
lengths, suffixes, prefixes, substrings, individual letters, etc. (see Appendix D for examples). We look
at the performance of models finetuned on these questions starting from three models: (1) pretrained
with normal deterministic tokenization, (2) pretrained with stochastic tokenization (STOCHASTOK),
and (3) no pretraining. In Figure 1 we observe that the language model pretrained with stochastic
tokenization quickly achieves near-perfect accuracy on the language game questions, while the models
pretrained with deterministic tokenization and the model with no pretraining are unable to reach high
performance. Notably, all models have the same vocabulary and the same deterministic tokenizer
during finetuning, meaning the finetuning stage is identical for all models (the only change is whether
the STOCHASTOK ‘expansion step’ is applied before pretraining). This suggests that stochastically
tokenized data results in the model’s internal representations capturing fine-grained sub-token-level
language understanding in addition to the structure learned with deterministic tokenization.

4.2 NO HARM IN ORIGINAL PERFORMANCE

Figure 2: Stochastic tokenization does not harm performance on the original benchmarks.

Crucially, this much-improved fine-grained written language understanding does not come at any
cost to the original performance. In Figure 2 we show that stochastic tokenization does not give any
performance drop on the original benchmarks (ARC (Clark et al., 2018), Blimp (Warstadt et al., 2020),
HellaSwag (Zellers et al., 2019), Winograd Sakaguchi et al. (2021))5. Notably, the number of tokens
seen during training (and hence computational cost) is fixed for each model, meaning the models
trained with stochastic tokenization overall see less text. Furthermore, tokenization stochasticity
is added by applying the STOCHASTOK expansion just once before training rather than on-the-fly,
meaning the training loop is identical and the only change is a single simple preprocessing step.

4github.com/openai/tiktoken
5We plot normalized accuracy so that 0 is random guessing and 1 is perfect accuracy.

3

https://github.com/openai/tiktoken


Published at ICLR 2025 Workshop on Foundation Models in the Wild

4.3 ROBUST TO STOCHASTICITY LEVEL

Figure 3: Stochastic tokenization is effective over
a wide range of stochasticity levels (log x-scale).

In Figure 3 we plot the language game accuracy from
models pretrained with different stochasticity lev-
els (as controlled by expand_prop ‘p’ in Algo-
rithm 2). We find the benefits of stochastic tokeniza-
tion to be robust over an order of magnitude range.

4.4 GENERALIZES OUT-OF-DISTRIBUTION

Figure 4: Generalization to heldout language game
question types with and without stochastic tok-
enization pretraining.

Next, we examine generalization by constructing
separate train/validation and holdout language game
questions. The train/validation questions all involve
identifying substrings/prefixes/suffixes where the sub-
string/prefix/suffix is always less than or equal to
half the answer length, while in the holdout set the
substring/prefix/suffix is always longer than half the
answer length. In Figure 4 we observe that mod-
els trained with stochastic tokenization generalize
near-perfectly while the deterministic tokenization-
pretrained equivalent fails to generalize well.

4.5 INTERNAL REPRESENTATIONS VISIBLY CAPTURE SUBWORD-LEVEL STRUCTURE

Figure 5: Visualizing the internal representations of models trained with and without stochastic tokenization.

In Figure 5 we visualize the internal representations, both with and without stochastic tokenization.
We first fit a PCA model on the embeddings6 of the top 1k most common words. Next, we plot the
PCA-transformed embeddings for alternative tokenizations of the same words, using a random sample
of 20 words. We observe that, when using stochastic tokenization, the embeddings for alternative
tokenizations of the same word are more closely aligned. This suggests improved morphological
awareness and subword-level understanding.

5 CONCLUSION

We show that incorporating stochastic tokenization during pretraining dramatically enhances language
models’ ability to represent subword-level structures central to human language perception. Our
experiments demonstrate that a small tweak to tokenization yields dramatic improvements on language
game tasks, without compromising—and sometimes even slightly enhancing—standard benchmarks.
Recently, research has focused on finetuning and other downstream processes, as experimenting with
changes early in the pipeline is often prohibitively computationally expensive. Our results, however,
suggest that revisiting tokenization could have a large impact on overall model performance. We
are excited by the potential of this approach and hope our work encourages renewed exploration of
tokenization schemes to bridge the gap between human and machine language perception.

6The activations after the final causal attention layer for the last token in the token sequence for each word.
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SUPPLEMENTARY MATERIAL

A A BRIEF SUMMARY OF TOKENIZERS

A.1 BPE TOKENIZATION

Construction
The tokenizer is constructed by initializing the vocabulary as individual characters and then iteratively
adding the most frequent adjacent token pair in the “training dataset” until the desired vocabulary
size is reached. This yields a vocabulary and a hierarchy of merge rules.

Encoding
The dataset is initially tokenized as individual characters. Pairs of tokens are then merged according
to the hierarchy of merge rules until there are no more merges available. 7

Decoding
The text strings corresponding to each token ID are simply looked up and joined together.

A.2 UNIGRAM TOKENIZATION

Construction
In contrast to BPE, Unigram starts with a large candidate vocabulary of possible subword units
and removes elements to get down to the desired vocabulary size. Tokens are removed from the
vocabulary by modeling the dataset as a Unigram model and removing the token that results in the
smallest increase in log-likelihood of the dataset considering all possible tokenizations. This relies
on using the Viterbi algorithm to compute probabilities of all possible tokenizations. It also relies
on using the Expectation-Maximization (EM) to optimize the vocabulary and the probability of the
dataset simultaneously. The result is a vocabulary and corresponding probabilities of each token (i.e.
a Unigram model of the dataset).

Encoding
All possible tokenizations are considered and the one with the highest probability under the unigram
model is chosen. This involves using the Viterbi algorithm to find the highest probability tokenization.

Decoding
Same as BPE: The text strings corresponding to each token ID are simply looked up and joined
together.

B PSEUDOCODE FOR STOCHASTOK

Algorithm 1 STOCHASTOK: Construction of splits

1: Require: Tokenizer (e.g. tiktoken’s GPT-2 tokenizer)
2: V ← Tokenizer vocabulary
3: splits← {} Initialize an empty dictionary
4: for each token s in V do
5: t← encode(s) Get the token id
6: splits[t]← [ ] Initialize empty list for this token
7: for each possible split index i from 1 to len(s)− 1 do
8: s1, s2 ← s[: i], s[i :] Split string s into two substrings
9: if s1 and s2 in V then

10: t1, t2 ← encode(s1), encode(s1) If both substrings are in the vocab
11: splits[t].append((t1, t2)) Add this possible split
12: end if
13: end for
14: end for

7WordPiece (Schuster & Nakajima, 2012) can be seen as a variant of BPE with merges during encoding
chosen by token length rather than the original merge rules.
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Algorithm 2 STOCHASTOK: Tokenization

1: Require: Tokenizer
2: Require: text: The input text to tokenize
3: Require: splits: Dictionary of possible splits for each token
4: Require: expand_prop: Expansion proportion (e.g. = 0.01)
5: tokenized← Tokenizer(text) Apply standard tokenization
6: num_to_expand← len(tokenized) ∗ expand_prop
7: for _ in 1 · · · num_to_expand do
8: i← randomInteger(1, len(tokenized)) Choose a random position
9: t← tokenized[i]

10: if t in splits and splits[t] not empty then
11: (t1, t2)← randomChoice(splits[t]) Replace with a random split
12: tokenized← tokenized[1 : i− 1] + [t1, t2] + tokenized[i+ 1 :]
13: end if
14: end for
15: return: tokenized

C STOCHASTIC TOKENIZATION ILLUSTRATIVE EXAMPLE

Example vocabulary of base tokenizer:
vocabulary = [_, h, u, g, b, m, hu, ug, hug, bug]

Build token_splits which, for each token, contains a list of all possible pairs of component tokens that
are themselves in the vocabulary.

token_splits = {
ug:[(u,g)],
hu:[(h,u)],
hug:[(h,ug),(hu,g)],
bug:[(b,ug)],
ugs:[(ug,s)]

}
Examples of possible expansions:
original: [hug] → all possible expansions: [hu g], [h ug], [h u g]
original: [bug] → all possible expansions: [b ug], [b u g]
original: [m ug] → all possible expansions: [m u g]

D LANGUAGE GAME QUESTIONS

Which word has the most letter ‘n’s? These are the available options:
[ reason, step, continent, their]. Answer: continent.

Which choice contains ‘ec’? The possible choices are: [ was, children,
require, check]. Answer: check.

Which option string starts with ‘mo’? The options: [ case, ask, month,
event]. Answer: month.

Which of the option words ends with ‘ad’? The option words are: [ cost,
lead, south, sun]. Answer: lead.

Which of the available choices is the longest? These are the available
choices: [ wild, dear, had, section]. Answer: section.

Which string is the shortest? The possible option words: [ thought,
job, circle, nothing]. Answer: job.
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