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Abstract

Catastrophic overfitting (CO) presents a signifi-
cant challenge in single-step adversarial training
(AT), manifesting as highly distorted deep neural
networks (DNNs) that are vulnerable to multi-step
adversarial attacks. However, the underlying fac-
tors that lead to the distortion of decision bound-
aries remain unclear. In this work, we delve into
the specific changes within different DNN layers
and discover that during CO, the former layers are
more susceptible, experiencing earlier and greater
distortion, while the latter layers show relative
insensitivity. Our analysis further reveals that
this increased sensitivity in former layers stems
from the formation of pseudo-robust shortcuts,
which alone can impeccably defend against single-
step adversarial attacks but bypass genuine-robust
learning, resulting in distorted decision bound-
aries. Eliminating these shortcuts can partially
restore robustness in DNNs from the CO state,
thereby verifying that dependence on them trig-
gers the occurrence of CO. This understanding
motivates us to implement adaptive weight pertur-
bations across different layers to hinder the gener-
ation of pseudo-robust shortcuts, consequently
mitigating CO. Extensive experiments demon-
strate that our proposed method, Layer-Aware
Adversarial Weight Perturbation (LAP), can effec-
tively prevent CO and further enhance robustness.
Our implementation can be found at https://
github.com/tmllab/2024_ICML_LAP.
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Figure 1. The test accuracy of R-FGSM and R-LAP under 16/255
noise magnitude, where the solid and dashed lines denote natural
and robust (PGD) accuracy, respectively.

1. Introduction
Standard adversarial training (AT) (Madry et al., 2018;
Zhang et al., 2019) is widely acknowledged as the most ef-
fective method for improving the robustness of deep neural
networks (DNNs) (Athalye et al., 2018; Croce et al., 2022).
Nevertheless, this training approach significantly increases
the computational overhead due to the multi-step backward
propagation, which limits its scalability for large networks
and datasets. To alleviate this issue, several works (Shafahi
et al., 2019; Wong et al., 2019; Kim et al., 2021) have intro-
duced single-step AT as a time-efficient alternative, offering
a balance between practicality and robustness.

Unfortunately, single-step AT faces a critical challenge
known as catastrophic overfitting (CO) (Wong et al., 2019).
This intriguing phenomenon is characterized by a sharp de-
cline in the DNN’s robustness, plummeting from peak to
nearly zero in just a few iterations, as illustrated in Figure 1.
Prior studies (Andriushchenko & Flammarion, 2020; Kim
et al., 2021) have pointed out that classifiers suffering from
CO typically exhibit severely distorted decision boundaries.
This distortion leads to a strange performance paradox in
models affected by CO, as they can perfectly defend against
single-step adversarial attacks but are highly vulnerable to
multi-step adversarial attacks. However, the precise process
of decision boundary distortion and the underlying factors
that contribute to this performance paradox remain unclear.

To gain a detailed investigation of CO, we analyse the spe-
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cific changes within individual DNN layers and their re-
spective influences on the distortion of decision boundaries.
More specifically, we identify the distinct transformations
occurring in different layers during the CO process. The ini-
tial alterations in the DNN primarily occur in the former lay-
ers, leading to observable distorted decision boundaries and
a subsequent reduction in robustness. As training progresses,
each layer within DNNs experiences varying degrees of dis-
tortion. Notably, the former layers are more susceptible,
showing markedly pronounced distortion, whereas the latter
layers display relative resilience. As a result, forward propa-
gation through these distorted former layers leads the model
to exhibit sharp decision boundaries and manifest as CO.

Building on this, we delve into the underlying factors driv-
ing the transformation process that results in the distortion
of decision boundaries and the performance paradox. Our
research reveals that the heightened sensitivity in DNN’s
former layers can be attributed to the generation of pseudo-
robust shortcuts. These shortcuts, associated with certain
large weights, empower the model to attain exceptional per-
formance defence against single-step adversarial attacks.
Nevertheless, relying solely on these shortcuts for decision-
making induces the model to bypass genuine-robust learn-
ing, consequently distorting decision boundaries. By remov-
ing large weights from the former layers, we can effectively
disrupt the improper reliance on these pseudo-robust short-
cuts, thereby gradually reinstating the robustness of DNNs
in the CO state. The above analyses validate that the model’s
dependence on pseudo-robust shortcuts for decision-making
is the key factor triggering the occurrence of CO.

Motivated by these insights, our proposed method, Layer-
Aware Adversarial Weight Perturbation (LAP), is designed
to prevent CO by hindering the generation of pseudo-robust
shortcuts. To realize this objective, LAP is strategically
crafted to interrupt the model’s stable reliance on these
shortcuts by explicitly implementing adaptive weight per-
turbations across different layers. It is worth noting that our
method simultaneously generates adversarial perturbations
for both inputs and weights, thus avoiding any additional
computational burden. We evaluate the effectiveness of our
method across various adversarial attacks, datasets, and net-
work architectures, showing that our proposed method can
not only effectively eliminate CO but also further boost ad-
versarial robustness, even under extreme noise magnitudes.
Our main contributions are summarized as follows:

• We find that during CO, different layers undergo distinct
changes, with the former layers exhibiting greater sensi-
tivity, marked by earlier and more significant distortion.

• We reveal that the generation and dependence on pseudo-
robust shortcuts trigger CO, which allows the model to
precisely defend against single-step adversarial attacks
but bypass genuine-robustness learning.

• We propose the LAP method, which aims to obstruct the
formation of pseudo-robust shortcuts, thereby effectively
preventing the occurrence of CO.

2. Related Work
In this section, we briefly review the relevant literature.

2.1. Adversarial Training

AT has been demonstrated to be the most effective defence
method (Athalye et al., 2018; Zhou et al., 2022; Dong et al.,
2023) that is generally formulated as a min-max optimiza-
tion problem (Madry et al., 2018; Croce et al., 2022; Wang
et al., 2024), which is shown in the following formula:

min
w

E{xi,yi}n
i=1

[
max
δi∈ϵp

ℓ(fw(xi + δi), yi)

]
, (1)

where {xi, yi}ni=1 is the training dataset, f is the classifier
parameterized by w, ℓ is the cross-entropy loss, δ is the
perturbation confined within the ϵ radius Lp-norm ball.

Vanilla Fast Gradient Sign Method (V-FGSM) (Goodfellow
et al., 2014) is a single-step maximization approach that
utilizes one iteration to generate perturbations, defined as:

δV−FGSM = ϵ · sign (∇xℓ(fw(xi), yi)) . (2)

Random FGSM (R-FGSM) (Wong et al., 2019) and Noise
FGSM (N-FGSM) (de Jorge Aranda et al., 2022) adopt
stronger noise initialization (−ϵ, ϵ) and (−2ϵ, 2ϵ), respec-
tively, to further enhance the quality of maximization.

To improve robust generalization, Adversarial Weight Pertu-
abtion (AWP) (Wu et al., 2020) introduces an extra weight
perturbation process, which is formulated as follows:

min
w

max
ν∈V

1

n

n∑
i=1

max
δi∈ϵp

ℓ (fw+ν(xi + δi), yi)) , (3)

where V is a feasible region for the weight perturbation ν.

2.2. Weight Perturbation

The relationship between the geometry of the loss landscape
and the model’s generalization ability has been widely in-
vestigated (Keskar et al., 2016; Dziugaite & Roy, 2017;
Huang et al., 2023b; Li & Spratling, 2023). Recent works
have demonstrated that random weight perturbations can
effectively smooth the loss surface, thereby enhancing the
generalization capacity (Wen et al., 2018; He et al., 2019).
Building on this, several studies have utilized gradient infor-
mation to generate adversarial weight perturbations, aiming
to flatten the landscape in worst-case scenarios (Wu et al.,
2020; Foret et al., 2020; Yu et al., 2022a;b). However, the
impact of weight perturbation across different layers, as
well as its role in CO, remains rarely explored.
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Figure 2. Visualization of the loss landscape for individual layers (1st to 5th columns) and for the whole model (6th column). The upper,
middle, and lower rows correspond to the stages before, during, and after CO, respectively.

2.3. Catastrophic Overfitting

Since the identification of CO (Wong et al., 2019), a line of
studies has been dedicated to understanding and addressing
this intriguing phenomenon. de Jorge Aranda et al. (2022);
Niu et al. (2022) found that employing a stronger noise
initialization can effectively delay the onset of CO. Addi-
tionally, Andriushchenko & Flammarion (2020) observed
that the models impacted by CO tend to become highly dis-
torted and proposed a gradient align method to smooth local
non-linear surfaces. Recent works have also introduced a
variety of strategies designed to counter CO, including sub-
space extraction (Li et al., 2022), gradient filtering (Vivek &
Babu, 2020; Golgooni et al., 2023; Lin et al., 2023a), adap-
tive perturbation (Kim et al., 2021; Huang et al., 2023a), and
local linearity (Park & Lee, 2021; Sriramanan et al., 2021;
Lin et al., 2023b; Rocamora et al., 2023). Regrettably, the
aforementioned methods either suffer from CO when faced
with stronger adversaries or significantly increase the com-
putational overhead. This study explores the changes within
individual DNN layers and introduces a pseudo-robust short-
cuts dependency perspective, thereby proposing the LAP as
an effective and efficient CO solution.

3. Methodology
In this section, we observe that during catastrophic overfit-
ting (CO), different layers in deep neural networks (DNNs)
undergo distinct changes, with the former layers being more
prone to distortion (Section 3.1). Subsequently, we reveal
that the model’s reliance on pseudo-robust shortcuts for
decision-making triggers CO (Section 3.2). Consequently,
we propose Layer-Aware Adversarial Weight Perturbation
(LAP), which applies adaptive perturbations to eliminate the
generation of shortcuts (Section 3.3). Finally, we provide a
theoretical analysis deriving an upper bound to ensure the
effectiveness of our proposed method (Section 3.4).

3.1. Layers Transformation During CO

Prior research (Andriushchenko & Flammarion, 2020; Kim
et al., 2021) has shown that the decision boundaries of DNNs
undergo significant distortion during the CO process, result-
ing in a performance paradox in response to single-step and
multi-step adversarial attacks. Nevertheless, the prevailing
studies on CO generally consider DNNs as a whole and
focus on analysing the final output. However, considering
an L-layer DNN with parameters {wl}Ll=1, its output is an
aggregation of forward propagation through these layers, de-
noted by fw(x) = wL(wL−1 . . . (w1x)) for l = 1, . . . , L.
Therefore, the specific impact of each layer on the distorted
decision boundaries and the underlying factors that induce
this performance paradox are still unclear.

In this work, we conduct a layer-by-layer investigation of
the single-step AT throughout the training process, as illus-
trated in Figure 2. Specifically, we utilize a PreActResNet-
18 network trained on the CIFAR-10 dataset using the R-
FGSM (Wong et al., 2019) method under 16/255 noise mag-
nitude. For visualizing the loss landscape of the whole
model, we apply random perturbations to the input, denoted
as x+ δ, and then compute the variation in loss, represented
as ∆ Loss. To analyse individual layers, we introduce ran-
dom perturbations to the weights of the corresponding layer,
expressed as wl + δ for l = 1, 5, 9, 13, 17, and calculate the
subsequent change in the loss.

As illustrated in Figure 2 (upper row), at the moment of peak
robustness, both the whole model and its individual layers
exhibit a flattened loss landscape. At this point, it becomes
evident that the former layers display a higher degree of
stability compared to the latter layers, as indicated by the
smaller variations in loss due to the random perturbations.

With the onset of CO, the model manifests a decrease in
robustness, accompanied by an observable distortion in the
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Figure 3. Singular value of weights (convolution kernel) at different DNN layers. The blue, green, and red lines represent the model state
before, during, and after CO, respectively.

loss landscape, as illustrated in Figure 2 (middle row). The
detailed analysis within each layer demonstrates that the
former layers are the first to manifest increased sensitivity,
characterized by a sharper loss landscape; in contrast, the
latter layers undergo only minor transformations.

Following the occurrence of CO, the classifier’s decision
boundaries become completely distorted, rendering it ex-
tremely vulnerable to multi-step adversarial attacks, as de-
picted in Figure 2 (lower row). It can be observed that
different layers exhibit distinct changes; the former layers
experience the most severe distortion, marked by a signifi-
cantly sharp surface, whereas the latter layers exhibit relative
insensitivity. In summary, during the CO process, the former
layers within DNNs undergo the most profound changes,
transitioning from relatively stable to entirely sensitive.

3.2. Pseudo-Robust Shortcut Dependency

Subsequently, we delve into the underlying factors that in-
duce the sensitivity transformation observed in DNNs dur-
ing the CO process. To accomplish this objective, we exam-
ine the influence of weights on the model’s decision-making
process. In practice, we compute the singular values for
each convolutional kernel to handle the extensive number of
weights, as depicted in Figure 3. Before the CO occurrence,
a fairly uniform distribution of singular values is observed
across all layers. However, after CO, there is a noticeable in-
crease in the variance of singular values, leading to sharper
model output, as discussed in Section 3.1. This significant
rise in large singular values suggests the growing impor-
tance of certain weights in the model’s decision-making.
Remarkably, the former layers exhibit the most pronounced
increase in large singular values, nearly tripling from be-
fore, indicating that the model’s decision-making becomes
heavily dependent on certain weights in these layers.

In order to gain deeper insight into this dependency, we ran-
domly removed some weights from the former (1st to 5th)
layers in a model already affected by CO, as illustrated in
Figure 4(a) (left column). With the increased removal rate,
the model’s accuracy under the FGSM attack decreased
from 26% to 6%, whereas its accuracy against the PGD
attack showed a slight increase. This anomalous trend in-
dicates a performance paradox in models impacted by CO

under FGSM and PGD attacks, contrasting with genuine-
robust models where higher FGSM accuracy generally im-
plies greater PGD accuracy. Therefore, we propose that the
heightened sensitivity in the former layers originates from
the generation of pseudo-robust shortcuts, solely relying on
them can effectively defend against single-step adversarial
attacks but bypass genuine-robust learning.

To further substantiate our perspective, we investigate the
particular weights associated with these pseudo-robust short-
cuts. As shown in Figure 4(a) (middle column), the removal
of small weights in the former layers has a negligible im-
pact on the model’s performance against both FGSM and
PGD attacks, suggesting a weak relevance between these
weights and shortcuts. Conversely, removing only 10% of
the large weights can effectively interrupt the pseudo-robust
shortcuts, resulting in a notable 22% reduction in FGSM at-
tack accuracy and reinstatement of robustness against PGD
attack to 2.65%, as depicted in Figure 4(a) (right column).
With the gradual removal of larger weights, the model not
only shows an improvement in robustness but also success-
fully overcomes the performance paradox against FGSM
and PGD attacks. For a fair comparison, we also remove
the large weights from the latter (14th to 17th) layers, as
depicted in Figure 4(b). Clearly, the same intervention in the
latter layers is less effective, highlighting the pseudo-robust
shortcuts that play a critical role in the CO phenomenon,
primarily present in the former layer.

Conclusively, we introduce the perspective of pseudo-robust
shortcuts dependency to explain the occurrence of CO.
Specifically, the heightened sensitivity of DNN can be at-
tributed to its decision-making solely dependent on pseudo-
robust shortcuts, which are typically associated with certain
large weights in former layers. These shortcuts, although
exceptionally accurate in defending against single-step ad-
versarial attacks, induce the model to bypass genuine-robust
learning, thereby resulting in distorted decision boundaries
and triggering the performance paradox in CO.

3.3. Proposed Methods

Building upon our perspective, our objective is to eliminate
the formation of pseudo-robust shortcuts, thereby effec-
tively preventing the occurrence of CO. Inspired by AWP
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(a) Remove random weights, small weights, and large weights from the former (1st to 5th) layers, as
shown in the left, middle, and right columns, respectively.
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(b) Remove large weights from
the latter (14th to 17th) layers.

Figure 4. Evaluating the test accuracy of a CO-affected model against single-step (FGSM) and multi-step (PGD) adversarial attack.

(Wu et al., 2020) and SAM (Foret et al., 2020), we introduce
the Layer-Aware Adversarial Weight Perturbation (LAP)
method that explicitly implements adaptive weight pertur-
bations across different layers to hinder the generation of
pseudo-robust shortcuts, which can be expressed as follows:

min
w

1

n

n∑
i=1

max
δi

max
νl

ℓ (fw+νl
(xi + δi), yi)) . (4)

To closely align with our goal, we introduce three novel im-
provements. Firstly, our method accumulates weight pertur-
bations to effectively break persistent shortcuts by maintain-
ing a larger magnitude of alteration. Secondly, we prioritize
generating weight perturbations over input perturbations,
aiming to obstruct the model from establishing stable short-
cuts between inputs and weights. Thirdly, recognizing the
distinct transformations in each layer, our approach adopts a
gradually decreasing weight perturbation strategy from the
former to the latter layer to avoid unnecessary redundant
perturbations, as summarized below:

λl = β ·
(
1−

(
ln(l)

ln(L+ 1)

)γ)
, for l = 1, . . . , L (5)

where λl is the layer-aware perturbation, β is the step size,
and γ controls the different layers strength.

However, the above design still requires extra backward
propagation, which diminishes the efficiency advantage of
single-step AT. To address this issue, we propose an efficient
LAP implementation that concurrently generates adversarial
perturbations for both inputs and weights, as detailed below:

min
w

1

n

n∑
i=1

max
δi,νl

ℓ (fw+νl
(xi + δi), yi)) . (6)

We further elucidate the intuitive basis for the efficient im-
plementation of LAP. For a given input, its corresponding
adversarial perturbation is generated by maximizing the loss
value, which is calculated from both the network weights
and the loss function. Assuming the loss function is Lips-
chitz continuous with a constant L, the change in loss due

Algorithm 1 Layer-Aware Adversarial Weight Perturbation

Input: L-layer Network fw, training data {xi, yi}ni=1,
training epoch T , batch size N , input perturbation size
α, layer-aware weight perturbation size λl.

Output: Adversarially robust model fw.
1: for t = 1 . . . T to do
2: for i = 1 . . . N to do
3: # simultaneously generate δi and νl.
4: δi = α · sign (∇xℓ(fw(xi), yi))

5: νl = λl · ∇wℓ(fw(xi),yi))
∥∇wℓ(fw(xi),yi))∥∥w∥

6: LAP = 1
n

∑n
i=1 ℓ (fw+νl

(xi + δi), yi))
7: w = (w + νl)−∇w+νl

(LAP )
8: end for
9: end for

to weight perturbation can be bounded as follows:

∣∣ℓ (fw+νl (x), y
)
− ℓ (fw(x), y)

∣∣ ≤ L
∥∥fw+νl (x)− fw(x)

∥∥ . (7)

Hence, the variation in loss value is directly related to the
changes in the model’s output, which results from the aggre-
gation of multiple layers, as outlined below:

fw+νl(x)− fw(x) =

L∏
l=1

(wl + νl) · x−
L∏

l=1

(wl) · x. (8)

The above analysis reveals a positive correlation between
changes in output and the magnitudes of weight perturba-
tions. In practice, we employ a small weight perturbation
size to restrict this magnitude. Meanwhile, our optimization
objective is to attain a flattened weight loss landscape, en-
suring that the introduction of small weight perturbations
leads to relatively minor alterations in the loss value. There-
fore, this discussion empirically demonstrates that the input
perturbation, generated based on the original weights, has
a high probability of retaining its effectiveness after the in-
jection of weight perturbations, consequently enabling us
to simultaneously generate both input and weight perturba-
tions. The LAP algorithm is summarized in Algorithm 1.
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Table 1. Comparison of CIFAR-10 test accuracy (%) for various methods under different noise magnitudes. The results are averaged over
three random seeds and reported with the standard deviation.

Method
8/255 12/255 16/255 32/255

Natural Auto Attack Natural Auto Attack Natural Auto Attack Natural Auto Attack

AT Free 76.52±1.34 40.13±0.39 68.28±0.13 27.65±0.38 55.91±10.94 0.00±0.00 59.25±10.98 0.00±0.00

Grad Align 82.35±0.92 44.76±0.02 74.80±0.64 29.88±0.23 61.10±0.49 19.07±0.28 24.15±4.03 6.71±2.31

ZeroGrad 81.71±0.21 43.28±0.18 77.75±0.20 22.56±0.05 82.54±0.19 0.00±0.00 68.95±2.51 0.00±0.00

MultiGrad 81.83±0.31 44.19±0.10 83.72±1.47 0.00±0.00 81.59±3.19 0.00±0.00 73.50±4.90 0.00±0.00

V-FGSM 84.26±4.18 0.00±0.00 79.92±1.82 0.00±0.00 72.72±3.04 0.00±0.00 65.52±2.15 0.00±0.00

V-LAP 79.09±0.78 41.24±0.51 66.20±0.42 24.07±0.34 56.02±0.07 15.17±0.31 17.76±3.11 7.12±0.64

R-FGSM 84.12±0.29 42.88±0.09 79.49±4.57 0.00±0.00 73.67±6.86 0.00±0.00 33.31±8.31 0.00±0.00

R-LAP 83.81±0.24 43.14±0.45 74.10±0.31 26.04±1.04 64.83±0.29 15.69±0.28 27.49±0.48 8.04±0.63

N-FGSM 80.40±0.16 44.21±0.47 71.44±0.16 30.25±0.06 62.91±1.03 18.58±2.28 27.66±3.57 0.00±0.00

N-LAP 80.76±0.15 44.97±0.24 71.91±0.19 30.60±0.27 63.73±0.27 19.55±0.18 29.19±1.00 8.85±1.48

PGD-2 84.72±0.08 42.92±0.60 79.13±0.25 28.30±0.35 72.50±0.51 17.89±0.16 48.99±0.19 3.76±0.02

PGD-10 80.91±0.52 46.37±0.76 72.03±0.30 33.13±0.28 67.61±0.83 21.98±0.30 35.28±0.78 10.88±0.41

3.4. Theoretical Analysis

Furthermore, we provide a theoretical analysis to derive an
upper bound on the expected error of our method. Building
upon the previous PAC-Bayesian framework (Neyshabur
et al., 2017; Wu et al., 2020) and assuming a prior distribu-
tion P ∼ N (0, σ2) for the weights, we can formulate the
upper bound for the expected error of the classifier, with a
probability of at least 1− δ across the n training samples:

Eν [ℓ (fw+ν)] ≤ Eν

[
ℓ̂ (fw+ν)

]
+ 4

√
1

n

(
KL(w + ν∥P ) + ln

2n

δ

)
.

(9)

Considering the weight perturbation in the worst-case sce-
nario maxν [ℓ̂ (fw+ν)], and the standard deviation of the
weight perturbation relation to the layer magnitude σl =
λl · ∥wl∥2, the PAC-Bayes bound of our proposed LAP
method can be controlled as follows:

E{xi,yi}n
i=1,{νl}L

l=1
[ℓ (fw+νl

)] ≤ ℓ̂ (fw)

+
{
max{νl}L

l=1
[ℓ̂ (fw+νl

)]− ℓ̂ (fw)
}

+ 4

√√√√ 1

n

(
L∑

l=1

(
1

2λ2
l

)
+ ln

2n

δ

)
.

(10)

4. Experiment
In this section, we evaluate the effectiveness of LAP, in-
cluding experiment settings (Section 4.1), performance eval-
uations (Section 4.2), ablation studies (Section 4.3), and
training cost analysis (Section 4.4).

4.1. Experiment Setting

Baselines. We select a range of popular single-step AT
methods for compare with LAP, which includes V-FGSM
(Goodfellow et al., 2014), R-FGSM (Wong et al., 2019),
N-FGSM (de Jorge Aranda et al., 2022), FreeAT (Shafahi
et al., 2019), Grad Align (Andriushchenko & Flammarion,
2020), ZeroGrad and MultiGrad (Golgooni et al., 2023).
Additionally, we present the results of the iterative-step
AT method PGD-2 and PGD-10 (Madry et al., 2018) as a
reference for ideal performance.

Datasets and Model Architectures. We use three bench-
mark datasets, CIFAR-10, CIFAR-100 (Krizhevsky et al.,
2009) and Tiny-ImageNet (Netzer et al., 2011), for evaluat-
ing the performances of our proposed method. The widely-
used data augmentation random cropping and horizontal
flipping are applied to these datasets. The settings and
results on Tiny-ImageNet can be found in Appendix B.
For a comprehensive evaluation, we report the training
from scratch results on PreActResNet-18 (He et al., 2016),
WideResNet-34 (Zagoruyko & Komodakis, 2016), and Vit-
small (Dosovitskiy et al., 2020) architectures. The results of
WideResNet-34 and Vit-small are provided in Appendix A.

Learning Rate Schedule. We use the cyclical learning rate
schedule (Smith, 2017) spanning 30 epochs, which reaches
its maximum learning rate of 0.2 at the 15th epoch. The
results of the piecewise learning rate schedule with 200
training epochs are available in Appendix C.

Adversarial Evaluation. In order to thoroughly assess the
models’ robustness, we utilize the widely-used PGD attack
configuration with 50 steps and 10 restarts (Wong et al.,
2019), as well as the Auto Attack (Croce & Hein, 2020).
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Table 2. Comparison of CIFAR-100 test accuracy (%) for various methods under different noise magnitudes. The results are averaged
over three random seeds and reported with the standard deviation.

Method
8/255 12/255 16/255 32/255

Natural Auto Attack Natural Auto Attack Natural Auto Attack Natural Auto Attack

V-FGSM 54.87±2.53 0.00±0.00 45.40±1.89 0.00±0.00 41.38±6.03 0.00±0.00 27.22±4.54 0.00±0.00

V-LAP 53.07±0.59 19.49±0.57 42.24±0.29 11.27±0.33 34.30±0.19 7.63±0.52 9.37±1.76 1.33±0.21

R-FGSM 60.29±2.12 0.00±0.00 21.18±9.56 0.00±0.00 11.46±7.33 0.00±0.00 13.56±10.95 0.00±0.00

R-LAP 58.75±0.20 21.62±0.01 49.74±0.29 12.10±0.13 39.13±0.46 7.98±1.09 19.52±0.84 2.50±0.44

N-FGSM 55.19±0.35 22.46±0.12 46.16±0.18 14.51±0.11 37.71±0.06 10.22±0.18 18.29±5.64 0.00±0.00

N-LAP 55.12±0.20 23.15±0.28 46.76±0.18 15.16±0.04 38.02±0.11 10.40±0.14 16.85±0.83 3.45±0.28

PGD-2 60.09±0.20 22.52±0.14 53.46±0.27 13.69±0.02 47.50±0.28 9.56±0.07 31.89±0.69 1.76±0.22

PGD-10 55.20±0.31 23.71±0.11 47.74±0.15 15.52±0.06 42.21±0.16 10.87±0.07 21.82±0.21 4.03±0.08

Figure 5. Visualization of the loss landscape for individual layers (1st to 5th columns) and for the whole model (6th column).

Table 3. Hyperparameter β settings for CIFAR-10 and CIFAR-100.

β 8/255 12/255 16/255 32/355

V-LAP 0.03 0.058 0.07 0.48
R-LAP 0.002 0.03 0.05 0.3
N-LAP 0.001 0.002 0.005 0.075

Setup for LAP. In this work, we employ the SGD opti-
mizer with a momentum of 0.9, a weight decay of 5 × 10−4,
the L∞-norm for input perturbation, and the L2-norm for
weight perturbation. We integrate LAP into three commonly
used baselines, V-FGSM, R-FGSM, and N-FGSM, respec-
tively. For each of these baselines, we adhere to the con-
figurations provided in their official repository. Regarding
our hyperparameters, we set the γ as 0.3, and the detailed
setting for β can be found in Table 3.

4.2. Performance Evaluation

CIFAR-10 Results. In Table 1, we report the natural and
robust test accuracy of our proposed method alongside the
competing baselines. These results are obtained at the final
training epoch without the early stopping. From Table 1, it is
evident that LAP demonstrates superior performance across
all evaluation cases. More specifically, in the cases where
CO does not occur in baselines, our method demonstrates a
consistent ability to improve robustness. More importantly,
in the cases where baselines are affected by CO, LAP not
only effectively prevents its occurrence but also substantially

boosts overall performance. It is worth noting that our
method can reliably prevent CO even under extreme noise
magnitude, underscoring its trustworthy effectiveness.

CIFAR-100 Results. We also extend our experiments to
the CIFAR-100 dataset, wherein the number of categories
is increased tenfold and the number of training data per
category is reduced tenfold. Notably, CIFAR-100 is more
challenging than CIFAR-10, manifested by a greater sen-
sitivity of baseline methods to the occurrence of CO, as
shown in Table 2. Despite the increased challenge, our
proposed LAP method consistently demonstrates its effec-
tiveness in mitigating CO and further enhancing adversarial
robustness. The above results highlight the reliability and
broad applicability of our approach in preventing CO.

4.3. Ablation Study

In this part, we conduct an examination of each compo-
nent within the R-LAP on CIFAR-10 under 16/255 noise
magnitude using PreActResNet-18.

Loss Landscape. To showcase the effectiveness of our pro-
posed method, we illustrate the loss landscape for both the
whole model and individual layers, using the same visual-
ization approach as detailed in Section 3.1. Compared to
the baseline illustrated in Figure 2, it clearly demonstrates
that LAP leads to a more flattened loss landscape for both
individual layers and the whole model, as shown in Figure 5.
This outcome indicates that our proposed method can ef-
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Figure 6. The impact of hyperparameter α, β and γ are shown in the left, middle, and right panels, respectively.

Table 4. Comparison of training cost. The results are obtained on a single NVIDIA RTX 4090 GPU and averaged over 30 training epochs.

Method FreeAT Grad Align ZeroGrad MultiGrad V/R/N-FGSM V/R/N-LAP PGD-2 PGD-10

Training Time (S) 43.8 36.1 11.1 21.7 11.0 11.8 16.4 59.1

Table 5. Comparison of test accuracy (%) for LAP with various op-
timization objectives. The results are averaged over three random
seeds and reported with the standard deviation.

Method Natural Auto Attack

LAP 64.83±0.29 15.69±0.28

Original AWP 88.47±0.75 0.00±0.00

Modified AWP 30.00±0.25 12.53±0.98

LAP-A 59.09±0.85 15.72±0.01

LAP-R 53.87±0.14 11.22±0.10

LAP-L∞ 20.38±0.38 13.67±0.35

fectively hinder the generation of pseudo-robust shortcuts
which typically result in sharp decision boundaries, thereby
successfully preventing the occurrence of CO.

Optimization Objectives. We also explore LAP in con-
junction with other optimization objectives. These include
the Original AWP as defined in Equation 3, Modified AWP
retaining the accumulated weight perturbation, LAP-A re-
quiring an Additional backward propagation as outlined in
Equation 4, LAP-R plugging the Random weight pertur-
bation, and LAP-L∞ using L∞-norm weight perturbation.
To ensure a fair comparison, we conduct a thorough search
on the hyperparameter β of these methods, and the results
are summarized in table 5. It is evident that the original
AWP is ineffective at mitigating CO due to its inability
to disrupt persistent shortcuts. While the modified AWP
can mitigate CO, it demonstrates unsatisfactory natural and
robust accuracy. This subpar outcome can be attributed
to the introduction of redundant adversarial perturbations
in the latter layers, which negatively affect the representa-
tion learning. Notably, the LAP-family methods, utilizing
diverse operations, can effectively obstruct the generation
of pseudo-robust shortcuts, thereby preventing CO. This
comprehensive outcome further verifies our perspective that
the model’s dependence on these shortcuts triggers the oc-

currence of CO. Nevertheless, while LAP-A shows a slight
improvement in robustness, its requests additional backward
propagation that significantly limits its applicability. Mean-
while, LAP-R and LAP-L∞ fail to achieve a comparable
performance to the reported LAP implementation.

Hyperparameters Selection. We separately explore the
effects of α, β, and γ on both natural and robust accuracy.
When tuning one hyperparameter, the others remain fixed.
From Figure 6 (left), we can observe that an increase in α
leads to improved robust accuracy, but in turn results in a
decline in natural accuracy. In light of this trade-off, we fol-
low the original setting and choose not to modify α. From
the observations in Figure 6 (middle), we note that when
β is set to a small value, the weight perturbation is inad-
equate to effectively obstruct pseudo-robust shortcuts and
mitigate CO. However, excessively increasing β will cause
an over-smoothing model, thereby leading to a decrease
in natural accuracy. In Figure 6 (right), a similar trend is
observed in the adjustment of γ. When weight perturbation
is applied solely to the 1st layer, it fails to effectively hinder
the formation of shortcuts. On the other hand, employing
uniform weight perturbation across all layers results in a
substantial reduction in the natural accuracy.

4.4. Training Cost Analysis

Efficiency is the primary advantage of single-step AT over
multi-step AT, offering better scalability to large networks
and datasets. Consequently, the computational overhead be-
comes a crucial factor in assessing the overall performance.
In Table 4, we present a comparison of training time con-
sumption among various methods. It is evident that the
training cost of the LAP method is comparable to that of the
FGSM method, which imposes only a 7% additional train-
ing cost. In contrast, the Grad Align and PGD-10 methods
are significantly more time-consuming, being 3 and 5 times
slower than our method, respectively.
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5. Conclusion
In this paper, we reveal that deep neural networks’ depen-
dency on pseudo-robust shortcuts for decision-making trig-
gers the occurrence of catastrophic overfitting. More specifi-
cally, our investigation demonstrates the distinct transforma-
tion occurring in different network layers, with the former
layers experiencing earlier and more severe distortion while
the latter layers exhibit relative insensitivity. Our study
further discovers that this heightened sensitivity can be at-
tributed to the generation of pseudo-robust shortcuts, which
alone can accurately defend against single-step adversar-
ial attacks but bypass genuine-robust learning, leading to
distorted decision boundaries. The model exclusively de-
pends on these shortcuts for decision-making inducing the
performance paradox. To this end, we introduce an effective
and efficient approach, Layer-Aware Adversarial Weight
Perturbation (LAP), which strategically applies adaptive
perturbations across different layers to hinder the generation
of shortcuts, thereby preventing catastrophic overfitting.

Impact Statement
This paper presents work whose goal is to advance the field
of adversarial robustness in machine learning. Although
single-step adversarial training is the most promising time-
efficient method for defending against adversarial exam-
ples, it is severely hampered by the catastrophic overfitting
problem. In this work, we propose the Layer-Aware Adver-
sarial Weight Perturbation (LAP) method, which aims to
effectively and efficiently prevent catastrophic overfitting.
Despite LAP being designed to save computing resources, it
may still have potential negative impacts on environmental
protection (e.g., carbon footprint and global warming). Last
and most importantly, while our goal is to develop more
secure and robust machine learning for real-world applica-
tions, it is crucial to acknowledge that attaining completely
safe and trustworthy models is still a distant objective.
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A. Experiment with WideResNet and Vit Architecture
WideResNet-34. To further validate the effectiveness of LAP, we conduct a performance comparison using WideResNet-
34 (Zagoruyko & Komodakis, 2016), which is more complex than PreActResNet-18. In the case of WideResNet-34,
we adjust the β values for the V/R/N-LAP methods to 0.04, 0.024, and 0.005, respectively, while maintaining other
hyperparameters consistent with the original configurations.

Table 6. Comparison of WideResNet-34 test accuracy (%) for various methods under 8/255 noise magnitudes on CIFAR-10. The results
are averaged over three random seeds and reported with the standard deviation.

Method V-FGSM V-LAP R-FGSM R-LAP N-FGSM N-LAP PGD-2

Natural 86.10±1.61 81.92±1.14 85.21±0.78 86.10±0.08 84.85±0.25 84.42±0.49 88.55±0.11

PGD-50-10 0.00±0.00 44.64±0.59 0.00±0.00 46.29±0.69 49.32±0.32 50.53±0.14 46.75±0.11

Table 6 illustrates that our proposed method, LAP, can consistently prevent CO and achieve a higher level of robustness,
comparable to multi-step AT. Moreover, it is worth noting that the complex networks can more significantly demonstrate the
efficiency advantages of our method in terms of training time. The results obtained with WideResNet-34 emphasize the
applicability of our method in complex network architectures.

Vit-small. By testing our method on both PreActResNet-18 and WideResNet-34, we have verified its effectiveness in
mitigating CO on CNN-based architectures. To further substantiate our perspective and approach, we extend our verification
to Transformer-based architectures, specifically Vit-small (Dosovitskiy et al., 2020). Regarding Vit, the β settings are
detailed in Table 7, with all other hyperparameters remaining in the original setting.

Table 7. Hyperparameter β settings for Vit-small.

β 8/255 12/255 16/255 32/355

V-LAP 0.003 0.006 0.009 0.05
R-LAP 0.002 0.004 0.006 0.04
N-LAP 0.001 0.002 0.003 0.03

Table 8. Comparison of Vit-small test accuracy (%) for various methods under different noise magnitudes on CIFAR-10. The results are
averaged over three random seeds and reported with the standard deviation.

Method
8/255 12/255 16/255 32/255

Natural PGD-50-10 Natural PGD-50-10 Natural PGD-50-10 Natural PGD-50-10

V-FGSM 39.32±1.48 25.68±0.53 25.26±0.80 17.82±0.53 14.34±6.43 0.00±0.00 12.68±4.28 0.00±0.00

V-LAP 41.98±0.61 26.38±0.14 24.53±0.45 18.18±0.62 17.85±0.62 11.79±0.24 16.44±0.14 8.93±0.13

R-FGSM 45.08±0.37 26.28±0.30 28.08±0.99 18.80±0.38 23.80±1.07 14.27±0.04 13.71±2.11 0.00±0.00

R-LAP 46.56±0.03 27.06±0.42 27.60±0.49 19.01±0.24 21.72±0.14 15.49±0.24 17.15±0.78 9.04±0.21

N-FGSM 37.30±1.98 24.84±0.74 24.85±0.97 17.61±0.45 20.68±0.80 13.38±1.93 8.67±1.89 0.00±0.00

N-LAP 40.48±0.56 25.69±0.29 24.15±0.65 17.99±0.67 20.19±0.80 14.15±0.26 15.75±0.35 8.49±0.50

PGD-2 48.97±0.41 26.21±0.42 32.25±0.83 19.51±0.28 25.42±1.00 16.04±0.19 18.04±3.97 9.67±3.79

It is worth emphasizing that prior research has identified that the CO phenomenon also exists in the Vit model (Shao
et al., 2022), consistent with our observations in Table 8. Furthermore, the above results underscore two significant
differences in the baseline performance between CNN-based and Transformer-based architectures. Firstly, Vit exhibits a
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lower susceptibility to CO, showing that the V-FGSM does not experience CO when the noise magnitudes are 8 and 12/255,
and the R-FGSM can also be effectively trained when the noise magnitude is 16/255. Secondly, the R-FGSM attains the
most excellent outcome in baselines, which could be attributed to the larger perturbation introduced by the N-FGSM that
disrupts the Transformer-based model learning. Most importantly, Table 8 highlights that our approach can effectively
mitigate CO and improve robust accuracy across all levels of noise magnitudes. It is evident both the universality of our
perspective and the effectiveness of our approach when applied to Transformer-based architectures.

B. Settings and Results on Tiny-ImageNet Dataset
We also extend our method to a large-sized dataset, Tiny-ImageNet (Netzer et al., 2011), to showcase its effectiveness. In
the case of Tiny-ImageNet, we set the β values for the V/R/N-LAP methods to 0.016, 0.006, and 0.002, while keeping other
hyperparameters consistent with their original configurations.

Table 9. Comparison of Tiny-imagenet test accuracy (%) for various methods under 8/255 noise magnitudes using PreactResNet-18. The
results are averaged over three random seeds and reported with the standard deviation.

Method V-FGSM V-LAP R-FGSM R-LAP N-FGSM N-LAP PGD-2

Natural 32.70±4.55 47.35±0.46 51.65±2.15 50.05±0.47 48.86±0.75 47.82±0.24 46.58±0.45

PGD-50-10 0.00±0.00 17.64±0.61 0.00±0.00 19.03±0.18 20.58±0.49 20.82±0.20 20.42±0.39

Table 9 presents the results of LAP applied to the Tiny-ImageNet dataset. These results again substantiate our approach’s
efficacy in effectively preventing CO and enhancing robust accuracy, establishing it as a dependable solution for large-scale
datasets.

C. Long Training Schedule Results
We have further evaluated the performance of our method using the standard multi-step AT schedule (Rice et al., 2020),
which consists of 200 epochs with an initial learning rate of 0.1. The learning rate is reduced by 10 at the 100th and 150th
epochs, respectively.

Table 10. Comparison of long training schedule test accuracy (%) for various methods under 8/255 noise magnitudes using PreactResNet-
18. The results are averaged over three random seeds and reported with the standard deviation.

Method V-FGSM V-LAP R-FGSM R-LAP N-FGSM N-LAP PGD-2

Natural 87.94±0.35 80.11±0.18 90.89±0.76 85.09±0.85 83.55±0.14 83.15±0.20 86.53±0.25

PGD-50-10 0.00±0.00 31.26±0.10 0.00±0.00 36.17±0.53 36.79±0.38 37.37±0.21 37.99±0.07

Table 10 illustrates that our method, LAP, consistently enhances adversarial robustness in the face of another commonly
adopted training schedule. This reaffirms the LAP’s consistent, reliable, and effective performance in mitigating CO.
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