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1. Introduction
The discovery of synthesizable materials is a

one of the main challenge in chemistry and con-
densed matter physics. While computational mod-
els such as generative models have enabled the gen-
eration of hundreds of thousands of energetically
stable inorganic materials,[1, 2] only one have been
synthesized.[3] Metal-Organic Frameworks (MOFs)
[4] are no exception and present an even greater
challenge due to their large combinatorial chemistry
space, arising from the combination of organic link-
ers, inorganic nodes and topologies, making their
synthesis highly complex. Due to their high-porosity
and tunable building blocks, MOFs have foundmany
applications such as direct air carbon capture.[5] In
this context, generative AI models can play a pivotal
role in accelerating the discovery of experimentally
accessible MOFs.
In this work we developed an AI-driven framework
that combine several generative models, quantum
mechanical computations, Monte Carlo simulation
as well as synthesizability-feasibility rules to gener-
ate experimental MOFs. We validated our methodol-
ogy by high throughput synthesis, successfully syn-
thesizing a set of purely AI-generated MOFs, the
largest number of synthesizedmaterials obtained by
generative models to date.

2. Substantial Section
2.1 Novelty and Methodology
We developed a framework based on a com-

bination of generative models, a fine-tuned large
language model that generate input to a chemical
formula-conditioned diffusion model. The diffusion
model takes inspiration of models used image gen-
eration andwas tuned to tackle largeMOF structures
with more than 256 atoms. The model was trained
on computational MOF databases as well as all
experimentally synthesized MOF, incorporating the
latest structures curated from the CDCC database.
The generated structures are then processed
through a multi-stage workflow integrating multi-
level density functional theory (DFT) computations,

machine learning interatomic potential,[6] Monte
Carlo simulation and expert-designed synthesizable
rules to filter out the most relevant MOF structures.
The final structure are then geometry optimized
at a very high level DFT and key stability-related
properties such as formation energy are computed.
This approach resulted in the generation of hun-
dred of thousands of MOFs, far exceeding the
number of MOF historically synthesized, and a
similar number of organic linkers never reported
before that escaped prior human intuition. Finally
a key point in our method was to includes exper-
imental constraints, proposed by human-expert,
like human-in-the-loop, ensuring relevance to
real-world synthesis. Finally, we validated our
methodology by successfully synthesizing several of
them.

2.2 Comparison to Related Work
Our diffusion model architecture represente a

MOF structure as point clouds allowing to target
large systems such as MOFs, In contrast, other gen-
erative models designed for inorganic crystal gener-
ation such as UniMat[2] andMatterGen [3] cannot be
directly applied to MOFs due to their size.
Several works have developed diffusion model for
MOF but none have implemented all-atomdiffusion.
For example MOFDiff [7] employs a coarse-grained
approach, by representing the MOF into organic
linkers and inorganic SBUs, anotherwork focusedon
generating the organic linkers alone.[8]
In any case, our approach surpasses prior efforts,
such as those in [1, 2, 3], by bridging the gap between
computational prediction and experimental synthe-
sis, by synthesizing MOF. Unlike "energy above the
hull" metrics commonly used in inorganic materi-
als, our workflow accounts for synthesis-constraint
andmultiple synthesizable-checking rules, enabling
the curation and filtering of only experimentally rel-
evant structures.
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2.3 Results and Validation
The generated database includes over a hun-

dred of thousands of MOFs and their correspond-
ing organic linkers. After filtering, we ended-up
with 80,000 novel and synthesizable organic link-
ers. Their synthesizability was assessed through
the combination of several crietria, through the
Allchemy software, scoring functions, machine
learning-predicted synthesizability and expert eval-
uations from experimentalists. From these or-
ganic linkers, we used high-throughput synthesis
and robotic automation to synthesize several MOFs.

Fig. 1: Overview of the workflow. At the top the ar-
chitecture of the chemical formula-conditioned
diffusionmodel. In themiddle theworkflowdevel-
oped within theMaterial Project infrastructure.[9]
Bottom, high-throughput experimental synthesis.

3. Conclusion and Outlook
Our generative model and workflow significantly

accelerate the discovery of synthesizable MOF. Be-
yond the computational generation of hundred of
thousands of MOFs, the synthesis of several AI-
designed MOFs show the promise of the use of gen-
erative models combined with human-expert rules
into actual experimental discovery, accelerating the
lenghtly trial-and-error process of current chem-
istrywhile giving idea to synthetic chemist for gener-
ating new compounds. This approach paves also the
way for the development of new diffusion model ar-
chitecture that could generate closely-to-experiment
MOF structures.
Future directions include property-conditioned

generation, as done in MatterGen[3], and the inr-
poration of additional experimental constraints to
further enhance synthesizability. Our work high-
lights the transformative potential of generative AI
in chemistry, bridgingAI innovation andexperimen-
tal validation.
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