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ABSTRACT

The pursuit of unified multimodal models (UMMs) has long been hindered by a
fundamental schism between multimodal understanding and generation. Current
approaches typically disentangle the two and treat them as separate endeavors with
disjoint objectives, missing the mutual benefits. We argue that true unification
requires more than just merging two tasks. It requires a unified, foundational
objective that intrinsically links them. In this paper, we introduce an insightful
paradigm through the Auto-Encoder lens, i.e., regarding understanding as the
encoder (I2T) that compresses images into text, and generation as the decoder
(T2I) that reconstructs images from that text. We argue that: if the encoder truly
"understands" the image, its description should capture all essential structure, and
if the decoder truly "understands" the text, it should recover that structure faithfully.
Hence, high-fidelity reconstruction serves as a powerful perspective for genuine
multimodal unification, evidencing near-lossless, bidirectional information flow
between the two processes. To implement this, we propose UAE, where we begin
by pre-training the decoder with the proposed 700k long-context image-caption
pairs to direct it to "understand" the fine-grained and complex semantics from the
text, as longer intermediate text, in our Auto-Encoder framework, can preserve
more information from the input image for reconstruction. We then propose
Unified-GRPO via reinforcement learning (RL) to unify the two, which covers
two complementary stages: (1) Generation for Understanding, where the encoder is
trained to generate informative captions that maximize the decoder’s reconstruction
quality, enhancing its visual perception; (2) Understanding for Generation, where
the decoder is refined to reconstruct from these captions, forcing it to leverage
every detail and improving its long-context instruction following and generation
fidelity. Our empirical results suggest that understanding can largely enhance
generation (verified on GenEval), while generation, in turn, notably strengthens
fine-grained visual perception like small object and color recognition (verified on
MMT-Bench). This bidirectional improvement reveals a deep synergy: under the
unified reconstruction objective, generation and understanding can mutually benefit
each other, moving closer to truly unified multimodal intelligence.

1 INTRODUCTION AND MOTIVATION

"Imagine opening your eyes to a scene, then closing them—your unified brain
instantly recalls it, much like an auto-encoder."

Unifying multimodal models (UMMs) that support both generation and understanding has recently
gained increasing popularity in both academia and industry (Wang et al., 2024b; Chen et al., 2025b;
Wu et al., 2025a; Xie et al., 2024b; Pan et al., 2025; Gupta et al., 2022; Zhou et al., 2024; Yan
et al., 2025; Deng et al., 2024; Ge et al., 2024). However, directly unifying the understanding and
generation models can lead to a sub-optimal result, as most existing arts on UMMs (Wu et al., 2025a;
Pan et al., 2025; Chen et al., 2025a) suggest that optimizing diffusion-based generative objectives
negatively degrade the understanding capability and learned representations (and conversely), making
joint training brittle.

Consequently, some existing works decouple the UMM problem (Wu et al., 2025a; Qu et al., 2025),
training understanding and generation modules separately, and missing out on potential cross-task
mutual benefits. These design choices and empirical observations have dampened confidence in
truly unified systems: absent demonstrable mutual gains, "unification" collapses into training two
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Figure 1: Illustration of the key insight of our UAE, an Auto-Encoder inspired design, for unified
multimodal understanding and generation. We treat the understanding model as the encoder and the
generation model as the decoder. Using the reconstruction similarity as the unified score, we use RL
to maximize it (Unified-GRPO) and utilize it to evaluate the degree of unification (Unified-Bench).

large components side by side. This raises an important question: Can understanding truly benefit
generation, and vice versa? And how can this interplay be optimized in a complementary, mutually
reinforcing way, a direction still unexplored? A genuinely unified approach, however, should deliver
explicit, bidirectional gains, leveraging each task to strengthen the other, rather than merely bridging
them as independent parts.

In this paper, we argue that the Auto-Encoder view is central to unifying multimodal under-
standing and generation. In this view (Fig. 1), the two tasks are symmetric and complementary:
the encoder compresses visual content into a descriptive, compact caption (I2T), and the decoder
reconstructs it to pixels (T2I). We leverage the similarity between the input image and reconstruction
image as the key objective to optimize both tasks, where successful reconstruction (higher similarity)
indicates a more coherent bidirectional information flow between the understanding (encoding) and
generation (decoding), leading to a higher unified score that indicates a more unified system between
the understanding and generation.

To operationalize this, we introduce UAE, a new framework for unified multimodal learning, as
illustrated in Fig. 2. Since reconstructing an image from input to output requires an ultra-detailed
textual caption that maximally preserves the original image’s information, we propose LongCap-
700k, a highly descriptive dataset for text-to-image generation, designed to train the decoder to
"understand" long-context inputs. We then pre-train the decoder on these long-context image
captions (at 1024 resolution) to optimize the model for capturing fine-grained visual semantics and
compositional structure.

Then, we propose a post-training strategy for UMMs, namely Unified-GRPO, the first reinforcement
learning (RL) approach to benefit both understanding and generation modules with a unified objective.
Our Unified-GRPO covers two complementary stages: (1) Generation for Understanding: the encoder
is trained to produce the highly descriptive, generation-friendly captions that maximize the decoder’s
reconstruction quality, thereby strengthening visual perception; (2) Understanding for Generation:
the decoder is refined to reconstruct from the text, forcing it to leverage every detail and improving
long-context instruction following and generation fidelity.
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Figure 2: The overall workflow of our UAE, consisting of three stages: long-context pre-training
(stage-1), generation for understanding (stage-2), and understanding for generation (stage-3). We
name our post-training method as Unified-GRPO (the last two RL stages), which utilize a single,
unified reconstruction objective for optimization.

During experiments, we observe an emergent "aha moment" in multimodal learning: as RL progresses,
the encoder autonomously generates longer, richer captions, while the decoder concurrently improves
its ability to interpret them, yielding reconstructions of striking fidelity, as demonstrated in Fig. 1.
This co-evolution offers compelling evidence of progress toward genuine multimodal unification. Our
empirical results support that the understanding can greatly improve the generation performance (e.g.,
from 0.73→0.86 on GenEval (Ghosh et al., 2023) and 0.296→0.475 on GenEval++ (Ye et al., 2025)),
while generation also notably enhances specifically dimensions of the understanding, particularly
fine-grained visual recognition and perception, e.g., from 0.05→0.45 on small object detection and
from 0.15→0.75 on Person ReID of the MMT-Bench (Ying et al., 2024), consistent with the findings
reported by Ross (Wang et al., 2024a)). These results demonstrate that understanding and generation
can indeed mutually benefit each other to a certain extent by training with a unified reconstruction
objective.

In summary, our work makes the following contributions:

• We propose UAE, the first work based on an Auto-Encoder principle for the unified multimodal
model, casting understanding as the encoder (I2T) and generation as the decoder (T2I), with
reconstruction as a measurable signal of cross-modal information coherence. This resolves the
long-standing schism between understanding and generation and provides an actionable, verifiable
objective for unified multimodal models (UMMs).

• We develop Unified-GRPO, the first RL-based post-training method to achieve the mutual
bonus that improves the unification between generation and understanding. This bidirectional
optimization forms a positive feedback loop toward genuine unification.

• Our empirical results demonstrate that the understanding and generation models can indeed
mutually benefit via a unified reconstruction objective.

• We release Unified-Bench, the tailored benchmark explicitly designed to measure the degree
of unification in UMMs, rather than individually evaluating the generation or understanding
capabilities.

• We provide LongCap-700k, a highly descriptive image caption dataset for text-to-image genera-
tion, enabling the generation model to "understand" rich, detailed textual descriptions, fine-grained
semantics and their relationship. Within our auto-encoder framework, the intermediate text repre-
sentation is inherently long to preserve maximal visual information.
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2 UAE METHODOLOGY

2.1 ARCHITECTURE

Overview. Our system follows a compact encode–project–decode AE-based design, the most
simple and intuitive way to implement our "Auto-Encoder framework", which couples a Large
Vision–Language Model (LVLM) for multimodal understanding with a strong diffusion transformer
(DiT) for image synthesis. The LVLM converts the input (image and optional prompt) into a rich
semantic representation; a lightweight projector then maps this representation to the decoder’s
conditioning space; finally, the diffusion model expands this condition into pixels. This separation
keeps the interface minimal, preserves the strengths of each component, and makes the system
modular and scalable. We show the details of the encoder and decoder used in our paper below. More
detailed description of the dataset can be seen in Appendix Sec. B.

Encoder. We adopt Qwen-2.5-VL 3B (Bai et al., 2025) as the base LVLM encoder. It consists of a
visual encoder paired with an autoregressive language model capable of processing vision–language
inputs. For generation, the LVLM autoregressively processes the prompt and multimodal context to
produce a high-dimensional, context-rich representation. Rather than passing raw text to the decoder,
we extract the last hidden state from the LLM and feed it to a small MLP projector. The projected
embedding serves as the decoder’s conditioning signal, providing a compact semantic summary
grounded in the LVLM’s learned world knowledge. Decoder. For the visual decoder, we use a
well-pretrained diffusion model to reconstruct image pixels from the LVLM’s semantic representation.
Concretely, we employ SD3.5-large (Esser et al., 2024) and add a minimal projector head (two linear
layers) to match the LVLM embedding dimension to the conditioning channels expected by SD3.5.
During synthesis, the diffusion decoder takes the projected semantic condition as input and then
generates images. The detailed architecture can be seen in Appendix Sec. C.

2.2 PRE-TRAINING

Stage-1: Long-Context Pretraining.

The initial pre-training stage aims to align a DiT decoder with a frozen LVLM encoder. Our training
objective is based on a Rectified Flow (RF) formulation (Lipman et al., 2022), which operates within
the latent space of a pre-trained VAE. The image x is first encoded into a latent representation
z1 = E(x). We define a linear path between a standard Gaussian noise vector z0 and the target latent
z1 as zt = (1− t)z0 + tz1 for t ∈ [0, 1]. The DiT, framed as a conditional velocity predictor vθ, is
trained to estimate the constant velocity vector of this path, z1 − z0. The parameters θ are optimized
by minimizing the mean squared error between the predicted and target vectors:

L(θ) = Ez1∼E(x), z0∼N (0,I), t∼U [0,1]

[ ∥∥vθ(zt, t, c)− (z1 − z0)
∥∥2 ] . (1)

This process trains the DiT decoder to be semantically aligned with the LVLM’s descriptive captions,
providing a robust foundation for subsequent post-training RL.

2.3 POST-TRAINING: UNIFIED-GRPO

Preliminary of Group Relative Policy Optimization (GRPO). In GRPO Shao et al. (2024), for a
given input, a policy model π generates a set of G trajectories, denoted {oi}Gi=1. The estimation of

an advantage Ãi for each trajectory is Ãi =
Ri−mean({Rk}G

k=1)

std({Rk}G
k=1)

. The policy’s parameters θ are then
updated by maximizing the GRPO objective function:

J (θ) = Ec∼C, {oi}G
i=1∼πθold (·|c)[

1

G

G∑
i=1

1

Ti

Ti−1∑
t=0

(
min

(
rit(θ) Ãi, clip(r

i
t(θ), 1− ε, 1 + ε) Ãi

)
− β DKL(πθ ∥πθref )

)]
,

(2)

where rit(θ) is the probability ratio between the current and old policies, and Ti is the length of i-th
trajectory. In Stage-2 and 3, we introduce the specific instantiations of the policy and the trajectory.

Stage-2: Generation for Understanding. In this stage, the LVLM πϕ serves as the policy, while
the DiT pθ is frozen and functions as part of the reward evaluation environment alongside the CLIP
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encoder. For each input image x, we sample a group of G caption sequences {y(i)}Gi=1 from the old
policy πϕold(· | x). From each sequence y(i), we extract the last hidden state h

(i)
T to form a condition

c(i) = g(h
(i)
T ), which is subsequently used to synthesize an image x̃(i)∼pθ(· | c(i)). The LVLM’s

parameters ϕ are then updated by maximizing the GRPO objective in Equation equation 2. In this
context, each trajectory oi corresponds to a sampled caption sequence y(i) = (y

(i)
1 , . . . , y

(i)

T (i)). The

probability ratio is thus defined as rit(ϕ) =
πϕ(y

(i)
t |x,y(i)

<t)

πϕold (y
(i)
t |x,y(i)

<t)
. This stage trains the LVLM to emit

last-hidden representations that maximize the decoder’s reconstruction quality.

Stage-3: Understanding for Generation. The roles are now reversed: the image generation model
pθ (e.g., DiT) acts as policy, while the LVLM is frozen, serving to provide conditions c = {ctext, cimg}
for generation. Note that cimg is an alternative option, as we find that it produces very similar
results to those using only the LVLM output caption. We optimize pθ using the GRPO by sampling
reverse-time generation trajectories. For a given condition c, the policy pθ generates a group of
G images {xi

0}Gi=1. In this context, each trajectory oi corresponds to a full reverse-time sequence
(xi

T , x
i
T−1, . . . , x

i
0), representing the denoising process from an initial noise sample xi

T to the final
image xi

0. The parameters θ of the generation model are then updated by maximizing the GRPO
objective in Equation equation 2. For this stage, the per-step likelihood ratio is given by:

rit(θ) =
pθ(x

i
T−1 | xi

T , c)

pθold(x
i
T−1 | xi

T , c)
. (3)

The stochasticity arises from the SDE sampling of the reverse process.

3 Unified-Bench: A BENCHMARK TAILORED FOR EVALUATING THE UNIFIED
MODELS

Motivation. As illustrated in Fig. 1, we view understanding (I→T) and generation (T→I) as a
closed loop whose two halves should mutually enhance each other. Judging image realism alone
or caption fidelity alone cannot reveal whether a system is truly unified. We therefore adopt a
reconstruction-based similarity, our unified-score, to directly test whether the semantics distilled
during understanding are sufficient for faithful regeneration, and whether regeneration in turn validates
the completeness of the understanding.

Protocol-1: Evaluation of the unified score from the reconstruction similarity. To quantify the
unified score, we start from 100 diverse source images. The prompt, used to allow the model to
generate cpation, is detailed in appendix, Sec. C. The same model then synthesizes an image from its
own caption. We compute unified scores between the reconstruction and the source using four widely
adopted vision backbones, CLIP (Radford et al., 2021), LongCLIP (Zhang et al., 2024), DINO-
v2 (Oquab et al., 2023), and DINO-v3 (Siméoni et al., 2025), and report per-backbone similarities
and an overall summary.

Protocol-2: Quality Evaluation of the model’s output caption for reconstruction. We further
evaluate caption quality through pairwise comparisons against various baselines, using four com-
mercial LLM judges: Claude-4.1, GPT-4o, Grok-4, and o4-mini. The prompting strategy is detailed
in Appendix Sec. E. For evaluation, we use pairwise winning rate (%), the percentage of times our
model is preferred over baselines as the main metric.

4 RESULTS

4.1 UNIFIED EVALUATION

We assess the unified degree with the proposed Unified-Bench. Tab. 1 shows that our UAE achieves
the best Overall unified score (86.09), surpassing GPT-4o-Image (85.95). Specifically, UAE obtains
the top results on CLIP (90.50), DINO-v2 (81.98), and DINO-v3 (77.54), and statistical parity
on LongCLIP (94.35 vs. 94.37). These consistent gains across contrastive (CLIP-family) and
self-supervised (DINO-family) features suggest that our UAE framework can preserve layout- and
texture-level semantics that translate into more faithful reconstructions.
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Table 1: Protocol-1 of Unified-Bench: comparing of unified score of different methods on Unified-
Bench, the tailored benchmark for evaluating the unification between understanding and generation
models in the UMMs. Bold indicates the best result, and underlined denotes the second best.

Method CLIP LongCLIP DINO-v2 DINO-v3 Overall

GPT-4o-Image (OpenAI, 2025) 90.42 94.37 81.74 77.27 85.95

BAGEL (Deng et al., 2025) 88.97 93.35 78.55 73.05 83.48
BLIP-3o (Chen et al., 2025a) 84.84 90.24 68.31 62.86 76.56
Janus-Pro (Chen et al., 2025b) 88.72 93.45 78.30 70.61 82.77
OmniGen2 (Wu et al., 2025b) 88.36 93.11 77.70 74.07 83.31
Show-o (Xie et al., 2024a) 80.18 86.75 58.20 51.51 69.16
UniWorld-V1 (Lin et al., 2025) 85.49 91.53 72.12 66.83 78.99
UAE 90.50 94.35 81.98 77.54 86.09

Table 2: Benchmarking results of text-to-image generation capability. We compare our method
with other unified multimodal models on GenEval (Ghosh et al., 2024) benchmark. ‘†’ refers to the
methods using LLM rewriter. Bold indicates the best result, and underlined denotes the second best.

Method Single object Two object Counting Colors Position Color attribution Overall

Janus Pro (Chen et al., 2025b) 0.99 0.89 0.59 0.90 0.79 0.66 0.80
MetaQuery-XL† (Pan et al., 2025) - - - - - - 0.80
BLIP3-o 8B (Chen et al., 2025a) - - - - - - 0.84
UniWorld-V1 (Lin et al., 2025) 0.99 0.93 0.79 0.89 0.49 0.70 0.80
UniWorld-V1† (Lin et al., 2025) 0.98 0.93 0.81 0.89 0.74 0.71 0.84
OmniGen2 (Wu et al., 2025b) 1.00 0.95 0.64 0.88 0.55 0.76 0.80
BAGEL (Deng et al., 2025) 0.99 0.94 0.81 0.88 0.64 0.63 0.82
BAGEL† (Deng et al., 2025) 0.98 0.95 0.84 0.95 0.78 0.77 0.88
UAE 1.00 0.89 0.84 0.90 0.71 0.79 0.86
UAE† 1.00 0.97 0.82 0.95 0.73 0.84 0.89

Figure 3: Qualitative results on the complex and long-context generation. Our method can recover
very detailed semantics from the highly descriptive input caption over the baseline, demonstrating
that improved understanding can notably benefit generation.

4.2 MULTIMODAL GENERATION EVALUATION

We evaluate UAE on two standard benchmarks: GenEval and its improved version GenEval++, which
probe compositional understanding and instruction-following in increasingly challenging settings.
More text-to-image evaluations are in Appendix Sec. E.

GenEval. As shown in Tab. 2, without considering LLM rewriting, our UAE attains the best Overall
score among unified models (0.86). It leads on Counting (0.84) and Color attribution (0.79; +16
points vs. Bagel’s 0.63 and +3 vs. OmniGen2’s 0.76), co-leads on Colors (0.90), is second-best on
Position (0.71), and reaches 0.89 on Two object (below the strongest 0.94–0.95). When considering
LLM rewriting, e.g., using the same rewritten prompts with Bagel, our UAE achieves an overall score
of 0.89 on average, demonstrating the SOTA performance in the image generation task.
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Figure 4: Reconstruction results vs. RL training steps. With the RL steps increasing, the
understanding model (encoder) achieves better caption capability to produce a longer, detailed, yet
accurate caption to reconstruct the original image comprehensively; while the generation model
(decoder) can take the detailed caption as input for better generation. See appendix for more examples.

Table 3: Comparisons of challenging instruction following generation ability with other unified
multimodal models on Geneval++ (Ghosh et al., 2024). Bold indicates the best result, and underlined
denotes the second best.

Method Color Count Color/Count Color/Pos Pos/Count Pos/Size Multi-Count Overall

Janus-Pro (Chen et al., 2025b) 0.450 0.300 0.125 0.300 0.075 0.350 0.125 0.246
T2I-R1 (Jiang et al., 2025) 0.675 0.325 0.200 0.350 0.075 0.250 0.300 0.311
BLIP3-o 4B (Chen et al., 2025a) 0.125 0.225 0.100 0.450 0.125 0.550 0.225 0.257
BLIP3-o 8B (Chen et al., 2025a) 0.250 0.250 0.125 0.600 0.125 0.575 0.225 0.307
OmniGen2 (Wu et al., 2025b) 0.550 0.425 0.200 0.275 0.125 0.250 0.450 0.325
Bagel (Deng et al., 2025) 0.325 0.600 0.250 0.325 0.250 0.475 0.375 0.371
UAE 0.550 0.525 0.550 0.550 0.450 0.400 0.400 0.475

Table 4: Protocol-2 of Unified-Bench: evaluating the quality of output caption of our trained
understanding model (3B) against different opponents on Unified-Bench, evaluated by four judge
models (using official commercial API). We use the metric of Pairwise winning rate (%) for
evaluation. The Avg column reports the mean score across judges.

Opponent # Param Our Wining Rate (%)

Claude-4.1 GPT-4o Grok-4 o4-mini Avg

GPT-4o (OpenAI, 2025) - 47.4 89.4 30.6 21.2 47.2
Bagel (Deng et al., 2025) 7B 57.7 92.9 58.3 48.2 64.3
OmniGen2 (Wu et al., 2025b) 3B 67.9 97.6 63.5 56.5 71.4
Show-o (Xie et al., 2024a) 1.3B 97.8 100.0 89.8 91.0 94.7

Qwen-2.5-VL-3B (Bai et al., 2025) 3B 76.3 99.0 67.0 63.0 76.3
Qwen-2.5-VL-7B (Bai et al., 2025) 7B 68.8 99.0 62.0 56.0 71.5

GenEval++ (harder compositional control). GenEval++ (Ye et al., 2025) extends GenEval to
prompts with three or more objects, each bearing distinct attributes and spatial relations, demanding
comprehensive, multi-constraint satisfaction. In Tab. 3, UAE achieves the best Overall score (0.475),
leading on Color/Count (0.550) and Pos/Count (0.450), with runner-up performance on Color/Pos
(0.550) and Multi-Count (0.400). Qualitative visualizations in Fig. 3 further show accurate attribute
binding, disambiguation across multiple entities, and robust position–count consistency under long,
constraint-heavy prompts.
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Table 5: Evaluating how “friendly” the output caption is for image generation. We use the data
from Unified-Bench to assess the quality of the captions produced by the understanding model for
better text-to-image generation. Bold indicates the best result.

Method CLIP LongCLIP DINO-v2 DINO-v3 Overall

Qwen-2.5-VL-3B (Bai et al., 2025) 88.34 92.62 73.91 70.02 80.85
Qwen-2.5-VL-7B (Bai et al., 2025) 88.26 92.89 76.12 70.96 81.92
UAE 90.50 94.35 81.98 77.54 86.09

Table 6: High-level meta-tasks evaluation results on the comprehensive multimodal understand-
ing benchmark: MMT-Bench (Ying et al., 2024). Accuracy is the metric, and the Overall score is
computed as the mean of all displayed subtasks.

Model Overall VR Loc Count HLN VC VG AR PLP I2IT RR Emo VI OCR DU IR 3D

Frequency Guess 32.3 30.0 28.2 28.2 43.4 28.2 29.1 30.0 29.4 30.8 33.5 30.1 52.1 30.4 37.6 29.9 26.5
Random Guess 27.9 27.1 28.1 25.0 41.6 25.0 24.8 26.6 21.2 33.4 10.5 25.4 50.8 27.2 30.3 24.3 25.5

InternVL-Chat-v1.2-34B 58.7 81.3 59.4 66.4 82.4 82.3 49.4 52.6 37.4 32.8 55.0 48.7 61.5 60.5 68.3 56.3 45.5
Qwen-VL-Plus 56.8 82.6 55.3 61.1 69.9 86.5 43.6 53.4 43.1 37.8 53.0 41.6 50.3 65.6 77.3 40.7 46.5
GPT-4V 54.1 85.3 55.6 51.6 69.6 80.3 25.0 47.7 48.2 31.8 52.5 45.1 47.9 68.0 69.8 44.9 42.0
GeminiProVision 56.2 84.7 43.6 56.4 65.9 80.1 33.0 57.4 40.3 31.5 58.5 55.2 47.5 59.5 71.6 68.4 45.2
DeepSeek-VL-7B 48.0 75.6 42.0 44.5 60.6 69.1 38.4 44.8 38.3 23.5 48.8 43.8 47.7 61.1 51.9 30.5 47.2
Claude3V-Haiku 47.4 74.3 44.8 51.1 63.6 67.6 26.9 46.2 35.5 22.8 50.0 35.2 42.9 54.4 69.8 34.6 38.2
ShareGPT4V-7B 47.8 74.2 36.0 50.9 62.4 71.6 35.4 46.2 39.2 21.8 59.8 44.3 54.5 47.8 47.9 27.8 45.2
LLaVA-v1.5-7B 46.1 72.8 34.3 47.5 61.6 68.1 34.0 46.6 36.0 22.2 58.0 42.5 57.6 45.0 40.8 26.1 44.8

Qwen-2.5-VL-3B 56.3 78.7 40.3 42.8 72.5 83.6 46.2 53.0 40.8 32.5 71.3 47.5 48.4 75.0 70.0 56.8 42.5
Ours (Qwen-3B) 56.5 80.1 47.3 44.7 72.8 84.1 47.1 53.5 46.6 32.7 71.3 48.3 57.6 68.8 58.4 50.6 40.0
vs. Baseline +0.2 +1.4 +7.0 +1.9 0.3 +0.5 +0.9 +0.5 +5.8 +0.2 +0.0 +0.8 +9.2 -6.2 -11.6 -6.2 -2.5

4.3 MULTIMODAL UNDERSTANDING EVALUATION

Caption quality evaluation by commercial LLMs. As shown in Tab. 4, our understanding model
(using Qwen-2.5-VL-3B as the baseline) attains high average win rates: 94.7 vs. Show-o, 71.4 vs.
OmniGen2, 64.3 vs. Bagel, and 76.3/71.5 vs. Qwen-2.5-VL (3B/7B), while remaining competitive
with GPT-4o (47.2). The cross-judge agreement suggests our captions improve along multiple axes,
completeness, attribute binding, relational and spatial fidelity, precisely the properties rewarded by
the reconstruction-driven training signal.

Improving the understanding model as a better captioner suitable for generation. Under the
Unified-Bench "caption→generate→compare" protocol, captions produced by our trained under-
standing model yield the highest reconstruction similarity across all four backbones (Tab. 5): 90.50
(CLIP), 94.35 (LongCLIP), 81.98 (DINO-v2), 77.54 (DINO-v3), with 86.09 Overall. These results
indicate that the caption generated by our understanding model is more suitable for generation.

Evaluation on the multimodal understanding benchmark. We evaluate on MMT-Bench (Ying et al.,
2024), which comprises high-level meta-tasks—VR (Visual Recognition), Loc (Spatial Localization),
OCR (Text Reading), Count (Object Counting), HLN (Hallucination), IR (Image Retrieval), 3D, VC
(Visual Caption), VG (Visual Grounding), DU (Document Understanding), AR (Action Recognition),
PLP (Pixel-Level Perception), I2IT (Image-to-Image Translation), RR (Relation Reasoning), Emo
(Emotion), and VI (Visual Illusion). The overall score remains essentially unchanged with a marginal
improvement over the baseline (+0.2%; Tab. 6). However, if we zoom in to observe fine-grained
visual recognition suite (Tab. 7), the benefits of our generation-augmented training for perception
become pronounced: we observe large absolute gains in Small Object Detection (+40.0%) and Person
Re-ID (+60.0%), yielding a +24.4% increase in the fine-grained overall. These results indicate
that generation does not inherently harm understanding, but can instead notably enhance
fine-grained visual perception capability.

4.4 ABLATION ON PRE-TRAINING AND POST-TRAINING

We disentangle the effects of two stages: (i) pre-training on our proposed 700k long-context dataset
and (ii) post-training with the unified-GRPO algorithm. Pre-training primarily benefits the generation
side, lifting GenEval from 0.71 (Baseline-Decoder) to 0.82 and GenEval++ from 0.296 to 0.401
(reported gains of +11% and +10.5 respectively), while also establishing a strong cross-modal linkage
with a Unified-Score of 0.808. Building on this, unified-GRPO yields consistent, broad improvements
across both understanding and generation: visual perception metrics rise markedly relative to
the Baseline-Encoder (e.g., Small-Obj: 0.45, +40%; ReID: 0.75, +60%), and generation further
improves to 0.86/0.475 on GenEval/GenEval++ (+4%/+7.4% vs. Baseline-Decoder). Crucially,
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Table 7: Evaluation results on fine-grained visual perception oriented sub-tasks on MMT-
Bench (Ying et al., 2024). Accuracy is the metric, and the Overall score is computed as the mean of
all displayed subtasks. We show notable improvements across various fine-grained understanding
tasks, highlighting the positive impact of generation on understanding.

Fine-grained Visual Recognition Color and Geometry Perception

Model Overall Salient Obj.
Detection RGBD

Transparent
Object Det.

Small Object
Detection

Rotated Object
Detection

Person
Re-ID

Color
Constancy

Color
Assimilation

Geometrical
Relativity

Geometrical
Perspective

Polygon
Localization

InternVL-Chat-V1.2-34B 63.4 28.5 66.5 64.5 46.7 60.0 34.5 44.5 82.5 75.0 46.1
Qwen-VL-Plus 62.3 44.5 47.5 59.5 60.0 50.5 47.5 29.0 58.3 43.0 63.8
GPT-4V 62.0 42.0 56.5 52.0 79.0 49.0 65.0 24.7 43.3 35.7 66.0
GeminiProVision 61.6 45.0 38.5 43.0 50.0 72.5 38.9 53.5 46.0 43.3 36.0
DeepSeek-VL-7B 53.2 40.0 53.5 43.5 36.7 32.5 27.5 52.0 54.2 56.0 23.4
Claude3V-Haiku 52.2 43.0 19.5 44.0 46.7 35.0 38.5 58.5 55.8 56.5 66.7
ShareGPT4V-7B 51.5 40.5 39.0 37.5 27.8 24.0 52.8 26.5 60.0 65.8 32.0
LLaVA-v1.5-7B 49.5 37.5 40.0 31.5 30.0 23.0 56.9 28.0 64.0 70.0 34.0
Frequency 31.7 26.0 26.0 27.5 28.9 30.0 52.8 51.0 50.5 53.3 31.5
Random 28.5 28.5 29.0 27.0 24.4 26.0 48.6 50.0 50.5 51.7 27.5

Qwen-2.5-VL-3B 32.5 25.0 15.0 5.0 33.3 15.0 28.6 50.0 60.0 58.3 35.0
Ours (Qwen-3B) 56.9 45.0 45.0 45.0 55.6 75.0 42.9 60.0 65.0 75.0 60.0
vs. Baseline +24.4 +20 +30 +40 +22.3 +60 +14.3 +10 +5 +16.7 +25

Table 8: Ablation study on the proposed pre-training and post-training strategies. † refers to the
methods using the LLM rewriter. "×" indicates the model is incapable of performing the task, and "–"
denotes that the model is frozen during training, thus unchanged performance.

Model Visual Perception Visual Generation Unification
Small-Object-Det. Color-Con. ReID Polygon GenEval GenEval++ Unified-Score

Baseline
Baseline-Encoder 0.05 0.28 0.15 0.35 × × ×
Baseline-Decoder × × × × 0.71 0.343 ×

w/ pre-training
Ours (w/ stage-1) 0.05 0.28 0.15 0.35 0.82 0.401 0.808
vs. Baseline – – – – +11% +5.8% –

w/ Post-training
Ours (w/ stage-1,2,3) 0.45 0.42 0.75 0.60 0.86 0.475 0.861
vs. Stage-1 +40% +14.3% +60% +25% +4% +7.4% +5.3%

Unified-GRPO strengthens the mutual promotion between understanding and generation, reflected
by a higher Unified-Score (0.861, +5.3% over the pre-trained model), indicating that our proposed
reconstruction-based RL objective can serve as a unified goal to optimize both.

5 LIMITATION AND FUTURE WORK

In our experiment, we observe an unexpected decrease in understanding performance on text-related
recognition tasks (Tab. 6), with accuracy dropping by approximately 10% on Document Understand-
ing (DU) and OCR. We attribute this to the inherent limitations of current generation models, which
struggle with accurate text rendering, a well-known challenge in generative modeling (Ramesh et al.,
2022). We hypothesize that our generation model may provide "misleading" reward signals during
training (fail to reconstruct the correct text), which negatively affects the encoder’s recognition of
textural content. This suggests that, conceptually, understanding and generation should ideally benefit
one another, but the gains are now mainly constrained by the "imperfections" of the generation
component. We acknowledge this limitation and leave its mitigation for future work.

6 CONCLUSION

We show that an Auto-Encoder is a viable core for unifying multimodal understanding and generation.
Building on this idea, we introduce UAE, which warms up the decoder on long-context captions. We
then propose Unified-GRPO, a new RL-based post-training method that jointly optimizes caption
informativeness and reconstruction fidelity. To quantify progress toward unification, we present
Unified-Bench, the evaluation tailored to the bidirectional nature of UMMs. During training, we
observe an "aha moment": captions become longer and more precise while reconstructions sharpen,
evidencing coherent, bidirectional information flow. Extensive experiments demonstrate that the
generation and understanding can truly benefit together to a certain extent but are still constrained
by the scope of the generation model. Together, these efforts offer a clear recipe and measurement
protocol for building truly unified multimodal models.
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APPENDIX OVERVIEW

• Section A: Related work.

• Section B: Dataset details.

• Section C: Training settings.

• Section D: Qualitative examples.

• Section E: Additional experimental results.

• Section F: The usage of large language models.

• Section G: Reproducibility statement.

A RELATED WORK

Unified Multimodal Generation and Understanding. Recent advancements in multimodal AI
have led to the development of Unified Multimodal Models (UMMs), a new class of frameworks that
integrate both perception and generation capabilities across modalities through a unified, end-to-end
trainable architecture (Zhang et al., 2025). The architectural designs of current UMMs can be broadly
categorized into two paradigms: (1) AR-based Approaches: In this setup, all modalities, including
images and text, are tokenized and processed sequentially using an autoregressive transformer.
Systems like Chameleon and EMU generate image tokens akin to language modeling by predicting the
next token in a sequence (Team, 2024; Qu et al., 2024; Wu et al., 2025a; Chen et al., 2025b; Wu et al.,
2024; Li et al., 2024c). An evolution of this idea is seen in Show-o (Xie et al., 2024a), which enhances
token prediction with a discrete diffusion mechanism, introducing a structured denoising process
during generation. (2) Hybrid AR-Diffusion Architectures: Some models combine autoregressive
modeling with diffusion-based image synthesis Yan et al. (2025). For instance, Transfusion and
similar systems (Zhou et al., 2024; Deng et al., 2025; Ma et al., 2024; Shi et al., 2024; Xie et al.,
2025) extend a shared transformer backbone with a dedicated diffusion or flow-matching head for
high-fidelity image generation. Alternatively, other approaches freeze a pre-trained MLLM and use
learnable query modules or MLPs to extract and route intermediate representations to an external
image generator (Pan et al., 2025; Chen et al., 2025a; Lin et al., 2025). A more recent direction
integrates standard autoregressive language processing with masked-autoregressive reconstruction for
visual data. MAR (Li et al., 2024d) enables image generation without relying on vector quantization,
instead reconstructing patches in a flexible order. This approach has been adopted in models such
as Harmon (Wu et al., 2025c; Fan et al., 2025; Wang et al., 2025a). Meanwhile, some works (Geng
et al., 2025; Chen et al., 2025a) use a discretized SigLIP (Tschannen et al., 2025) to convert images
into tokens, training a single autoregressive model over these visual and language tokens, while
employing a diffusion model for the final image decoding.

Reinforcement Learning in Generative Models. The widespread success of Reinforcement
Learning from Human Feedback (RLHF) in aligning large language models (LLMs) with human
intent (Christiano et al., 2017; Hu et al., 2022) has inspired its application to text-to-image generation.
In this context, a common strategy involves first training a reward model (RM) that learns from human
judgments—either general aesthetic preferences (Xu et al., 2024) or alignment between prompts and
generated images (Xu et al., 2023), followed by reinforcement learning to optimize the generative
model accordingly (Black et al., 2023). Despite its promise, this two-stage approach faces significant
limitations when applied to image editing tasks. Reward models are often brittle and challenging to
design robustly (Miao et al., 2024), and they can be gamed through superficial changes that maximize
reward without improving actual quality—a phenomenon known as "reward hacking" (Wang et al.,
2025b). More recently, alternative optimization frameworks like GRPO (Shao et al., 2024) have
emerged as viable solutions, demonstrating effectiveness in tuning both diffusion and flow-matching
based models. Extensions such as FlowGRPO (Liu et al., 2025) and DanceGRPO (Xue et al., 2025)
illustrate the adaptability of these algorithms to complex generative processes, offering a more
stable and fine-grained path toward aligning visual outputs with human expectations—particularly in
dynamic, iterative editing scenarios where traditional methods fall short.

Benchmarking Multimodal Understanding, Generation, and Unification. Evaluating unified
multimodal models (UMMs) typically involves aggregating performance across multiple specialized
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benchmarks, each targeting distinct capabilities. For assessing visual understanding, widely adopted
benchmarks include ScienceQA (Lu et al., 2022), MMMU (Yue et al., 2024), VQA (Antol et al.,
2015), GQA (Hudson & Manning, 2019), and MM-Bench (Liu et al., 2024), all of which rely heavily
on large-scale datasets with human-annotated images and labels. In contrast, our proposed UniBench
introduces a novel paradigm as a VQA-style benchmark specifically designed for generated images,
eliminating the dependency on real-image annotations by evaluating comprehension directly on
synthesized content. For generative capability assessment, image quality is commonly measured
using metrics such as FID (Heusel et al., 2017), ImageReward (Xu et al., 2023), and LIQ (Tian
et al., 2025), often evaluated on standard image corpora like MSCOCO (Lin et al., 2014) or LAION-
5B (Schuhmann et al., 2022). Additional factors such as text-image alignment (Hessel et al., 2021),
fairness (Lee et al., 2023), and stylistic consistency (Peng et al., 2024) are also considered, drawing
from benchmarks like HRS (Bakr et al., 2023). However, unified models place greater emphasis
on instruction-following and coherent joint reasoning across perception and generation. As such,
evaluation frameworks tailored to text-to-image synthesis, such as GenEval (Ghosh et al., 2023), DPG-
Bench (Hu et al., 2024), and T2I-CompBench++ (Huang et al., 2025), which are particularly relevant.
These assess fine-grained attributes including object presence, spatial relations, counting accuracy,
color fidelity, and positional reasoning (Bakr et al., 2023; Li et al., 2024a; Cho et al., 2024). Despite
their utility, existing benchmarks are not specifically designed for the dual perception-generation
nature of UMMs, leaving a gap in comprehensive, integrated evaluation. To address world-knowledge
grounding in image synthesis, WISE (Niu et al., 2025) was recently introduced to evaluate models’
implicit understanding of real-world constraints across domains such as food preparation, material
physics, and object affordances. More recently, UniEval (Li et al., 2025) proposes a new benchmark
dedicated to unified multimodal modeling, covering a broader range of semantic, structural, and
logical challenges with increased task difficulty and potential for model improvement.

B DATASET DETAILS

SFT (long-context T2I). We construct a large-scale, high-quality text–image pre-
training corpus consisting of approximately 700k image-caption pairs to effectively
warm up the diffusion transformer decoder for long-context understanding and gener-
ation. Each sample in this dataset pairs a 1024×1024 resolution image with an ex-
ceptionally detailed natural language caption exceeding 250 English words in length.

Figure 5: The illustration of the distribution of our
proposed 700k long-context dataset.

These captions are generated using InternVL-
78B (Chen et al., 2024), a state-of-the-art vision-
language model, over a diverse private collec-
tion of images curated to cover a broad range of
scenes, including urban landscapes, indoor envi-
ronments, human activities, object interactions,
and complex multi-subject compositions. The
captioning process is specifically optimized to
emphasize fine-grained descriptions of objects,
their visual attributes (e.g., color, texture, ma-
terial, shape), spatial relationships (e.g., “a red
backpack rests on the wooden bench beneath
a streetlamp”), and global scene layout (e.g.,
lighting conditions, depth cues, foreground-
background structure). This ensures that the
textual input contains the rich semantic struc-
ture necessary for training the model to map
extended linguistic descriptions into coherent vi-
sual outputs. Two representative examples from
this dataset are illustrated in Fig. 8 and Fig. 9,
showcasing both the complexity of the imagery
and the descriptive density of the correspond-
ing captions. During the supervised pretraining

phase, the full long-form caption is used as the input prompt, and the diffusion transformer is trained
end-to-end to denoise and generate the matching high-resolution image, thereby learning precise
alignment between nuanced textual semantics and pixel-level visual details.
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Figure 6: The detailed illustration of our framework design. Our framework employs an autoregressive
LVLM to process the input image embedding derived from the original image. The model generates
a text caption, which is then fed into the autoregressive LLM. From this, we extract the final hidden
state and project it through a connector into the decoder’s feature space, where it serves as the
condition for image generation.

GPT-4o distillation (50K). To further enhance the linguistic quality, coherence, and stylistic consis-
tency of the training captions, particularly for challenging or ambiguous visual content, we perform
knowledge distillation using GPT-4o (OpenAI, 2025). This 50K data is a part of our total 700k data.
Leveraging the auto-script pipeline introduced in GPT-ImgEval (Yan et al., 2025), we select a subset
of 50,000 particularly complex or semantically dense images from our broader corpus and re-generate
their captions through carefully designed prompting strategies that encourage narrative fluency,
logical flow, and comprehensive coverage of visual elements. These distilled captions average around
300 words and exhibit superior grammatical correctness, richer vocabulary, and more consistent
syntactic structure compared to the base InternVL-generated annotations. Importantly, they also
demonstrate improved reasoning about occluded objects, inferred actions, and contextual implications
(e.g., weather, time of day, emotional tone). These 50K high-fidelity text–image pairs are then
integrated into the main pretraining mix with elevated sampling weight, serving as semantic anchors
that guide the model toward generating images with greater anatomical accuracy, environmental
plausibility, and adherence to subtle instruction cues embedded in long prompts.

RL stage data (1K). For the reinforcement learning (RL) phase, we curate a compact but highly
refined dataset of 1,000 real-world photography images selected for exceptional compositional
quality, visual clarity, and semantic richness. These images span diverse domains such as portrait
photography, architectural shots, nature scenes, and dynamic street photography, all captured under
realistic lighting and perspective conditions. In addition to these hand-picked photographs, we
incorporate a specialized subset of synthetic yet photorealistic data from Echo-4o (Ye et al., 2025),
which provides tightly aligned text-image pairs with expert-level captions and controlled visual
variations. This combined RL dataset is used in a reconstruction-driven optimization framework:
given a caption derived from one of these target images, the model is tasked with generating a new
image, and its output is evaluated against the original using a learned reward model that assesses
fidelity, detail preservation, and semantic alignment. Through this closed-loop paradigm, improved
captioning leads to better reconstruction, which in turn refines generation capabilities.

Data for evaluation in Unified-Bench. To evaluate the model’s performance on the proposed Unified-
Bench, we randomly sample 100 images from the LAION-5B dataset (Schuhmann et al., 2022) to
serve as a dedicated test split. These images are selected without any filtering or curation based
on content or aesthetic score, ensuring a representative and unbiased distribution across categories,
styles, and complexity levels.
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C TRAINING SETTINGS

Custom settings for Stable-Diffusion In this work, we employ Stable-Diffusion-3.5-large (Esser
et al., 2024) as the image decoder to generate high-quality images from textual inputs. To enhance
long-context understanding and inject richer world knowledge into the generation process, we replace
the original T5 text encoder of Stable Diffusion with the powerful vision-language text encoder from
Qwen-2.5-VL, following a strategy similar to UniWorld-V1 (Lin et al., 2025); consequently, the T5
encoder is no longer used in our pipeline. Additionally, we retain the original CLIP text encoder
of Stable Diffusion solely for producing unconditional (null) embeddings: during both training and
inference, an empty prompt (i.e., a blank or null string) is passed through this CLIP encoder to obtain
the corresponding text embedding for classifier-free guidance (CFG). During inference, we set the
CFG scale to 5.0 and use 40 denoising steps for the sampling process, same to the settings used
in FlowGRPO (Liu et al., 2025). LoRA-Adaptation. Following previous works (Liu et al., 2025;
Dettmers et al., 2023; Yan et al., 2024; Jin et al., 2024), we apply LoRA (Hu et al., 2022) adaptation
for both the encoder and decoder for RL post-training, as it can help preserve the rich semantic
knowledge learned from pre-training while efficiently and effectively learning novel knowledge from
the new task. We maintain the same settings of LoRA with Flow-GRPO (Liu et al., 2025).
Training details of stage-1. For long-context pretraining, we conduct large-scale training using 8
H800 nodes, each equipped with 8 GPUs, resulting in a total of 64 GPUs. The full pretraining phase is
performed on these 8 nodes, while the subsequent reinforcement learning (RL) stage utilizes a reduced
setup of 4 nodes (32 GPUs). During the initial pretraining phase, the model is trained for 10,000 steps
at a resolution of 512× 512 with a batch size of 32 and a learning rate of 2× 10−4. This is followed
by an additional fine-tuning phase of 5,000 steps at a higher resolution of 1024 × 1024, using a
smaller batch size of 16 and a reduced learning rate of 8×10−5, while continuing to train on the same
dataset to refine image fidelity and detail generation. We employ the AdamW optimizer Loshchilov
& Hutter (2017) with standard hyperparameters: β1 = 0.9, β2 = 0.999, and ϵ = 1 × 10−8. To
enable efficient distributed training with large models and batch sizes, we implement the ZeRO-2
parallelization strategy (Rajbhandari et al., 2020), which significantly reduces memory consumption
across devices while maintaining high computational throughput.
Training details of stage-2. In Stage-2, we employ the GRPO RL algorithm (Shao et al., 2024) to
fine-tune the LLM while keeping the corresponding visual encoder frozen. We empirically observe
that updating the visual encoder during RL training can lead to instability and degradation in image
quality such as anomaly artifacts, structural collapse, or semantic inconsistency, so we disable its
gradient updates to preserve visual feature integrity. To enable effective sampling for RL-based image
generation, we treat the combination of the DiT and a pre-trained CLIP model (Radford et al., 2021)
as a unified, frozen reward module. This composite model operates purely in inference mode: given
a generated image and its corresponding reconstructed image from the input caption, it computes
a similarity score that serves as the final reward signal in the GRPO framework. Specifically, we
adopt LongCLIP (Zhang et al., 2024) in place of the standard CLIP encoder, as our setting involves
significantly longer textual contexts, often exceeding hundreds of words, whereas standard CLIP is
limited to 77 tokens, making it insufficient for capturing extended descriptions. LongCLIP’s extended
context capacity allows more accurate alignment between long-form captions and generated images,
thereby providing more reliable and nuanced rewards. During training, we use a learning rate of
1× 10−6 and a batch size of 1 due to the high computational cost of diffusion-based RL. For each
prompt, we generate 4 sampled images to estimate the policy gradient in GRPO, and we set the KL
regularization coefficient 1× 10−6, indicating that we do not apply any penalty for divergence from
the reference policy (i.e., no KL control), focusing solely on reward maximization. The temperature
of LLM is set to be 1.0. The prompt used to do the LLM sampling is shown below.

Prompt for the LLM Sampling

System Prompt: You are an expert vision-language model.
User Prompt: Your task is: Given an input image, generate a textual description of the
image. If there is text in the image, transcribe it inside double quotes.

Now, carefully analyze the input image and output the full description.

Input Image: {{image_path}}
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Note that we do not explicitly require the LLM to generate descriptive or comprehensive captions
during training. After RL, the LLM autonomously produces longer and richer captions that are
more conducive to high-fidelity image generation, even though no explicit supervision or loss is
applied to the caption content itself. This emergent behavior suggests that the RL signal from
image reconstruction quality implicitly guides the LLM toward generating more detailed and
image-friendly textual descriptions.

Training details of stage-3. Similar to Stage-2, in Stage-3, we also employ the GRPO objective
for optimization, but with a key difference: we use it to finetune the DiT while keeping the entire
LVLM frozen, including both the LLM and the visual encoder. To introduce stochasticity during
sampling, inspired by FlowGRPO Liu et al. (2025), we adopt an SDE-based (Stochastic Differential
Equation) noise sampling strategy, which injects diverse random noise trajectories into the diffusion
process and enhances exploration during training. Specifically, we fix the caption output from the
frozen LLM for each input prompt, and for every such caption, the DiT generates 8 different images
to estimate the policy advantage in GRPO. We set the global batch size to 4 (accumulated over
multiple steps if necessary), and use a KL regularization coefficient β = 0.01 to mildly constrain the
DiT’s output distribution from deviating too far from the reference generator, thus improving training
stability. For computational efficiency, we use 20 denoising steps during training, while increasing
to 30 steps during validation to obtain higher-quality samples for evaluation. The prompt used to
generate caption from LLM is the same with the Stage-2.

D QUALITATIVE EXAMPLES

GenEval++ visualizations. Fig. 11 presents six representative prompts from GenEval++ (Ye et al.,
2025), where each instruction contains three or more entities with distinct attributes and spatial
relations. Across these examples, UAE shows three recurring strengths. First, it preserves attribute
binding under multi-entity scenes: for “three purple hair dryers and one pink surfboard,” UAE attaches
colors to the correct categories without leakage, whereas baselines often color a surfboard purple or
mix pink/purple across objects. Second, UAE is more reliable on discrete counts while respecting
co-occurring constraints: for “three beds on the above and three parking meters on the below,” UAE
maintains the 3+3 cardinality and the vertical arrangement; competing models tend to be off-by-one
or satisfy the layout but drop a meter/bed. Third, UAE handles left/right and grouping more faithfully:
for “an orange laptop on the left and a purple knife on the right,” our outputs keep the polarity and
avoid color–object swaps that are common failure modes. Similar advantages emerge in the “two
cows, two books, and one donut” and “six vases” prompts: UAE balances global composition with
local details, maintaining counts while rendering plausible object geometry and material. These
observations align with Tab. 3: UAE leads on Color/Count and Pos/Count, and is competitive on
Color/Pos and Multi-Count, reflecting robust satisfaction of joint constraints rather than excelling on
a single dimension.

Enhancing model’s comprehensive perception by the generation model. Fig. 12 contrasts
captions used for reconstruction on a challenging example (small black dog wearing a yellow beanie
and glasses). Baselines reveal three typical errors. (i) Category drift: some misidentify the subject as
a monkey, causing the generator to synthesize an incorrect species. (ii) Attribute omissions or swaps:
descriptions drop key items (beanie, glasses) or mismatch apparel colors, leading to reconstructions
that caricature the outfit. (iii) Under-specified scenes: vague backgrounds and missing lighting
cues prevent consistent photographic style at inference. UAE’s caption, in contrast, enumerates
the full set of semantics—species, apparel type and color, eyewear, pose, occlusions (“ears are not
visible”), background style (“blurred, park-like”), and lighting—producing a reconstruction that
preserves identity, attire, and overall aesthetic. This example typifies the mechanism by which better
understanding (denser, better-bound descriptions) yields better generation, echoing our Unified-Bench
gains in Tab. 5.
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Prompt for Generating Long-Context Image Captions

System Prompt:
You are a top-tier visual descriptive author. Your mission is to generate a comprehensive,
high-information-density, and meticulously detailed text description for a given image.
Your description must achieve sufficient precision and detail to support a state-of-the-art
text-to-image model in accurately and faithfully reconstructing the original image. You must
strictly adhere to all of the following format requirements and detailed guidelines.

User Prompt:
Task Description:
Please carefully observe and analyze the following image, and generate a high-fidelity
description in accordance with the established rules and format requirements.

Description Guidelines:
1. Subject Identification: Clearly identify all core subjects (e.g., persons, vehicles, text). If
a public figure is involved, they must be accurately named. The race, estimated age, and
facial expression should be described if visually discernible and can be determined with high
confidence.
2. Exhaustive Detail Features: Provide a complete inventory of visible attributes for every
subject and element. This includes, but is not limited to: precise colors, materials, textures,
and shapes (e.g., the specific way bangs fall, the flow of hair at the back). If text is present, it
must be transcribed verbatim, and its typography (font, style, color, size) and exact location
must be described.
3. Quantity & Spatial Positioning (Critical Requirement): This is of utmost importance. The
quantity of all subjects and their spatial arrangement must be precisely stated. A combination
of absolute positioning (e.g., "in the left side of the frame") and relative positioning should be
used, especially when multiple subjects have a relational layout (e.g., "Subject A is to the left
of Subject B, who is to the left of Subject C").
4. Kinetics, Posture & Environment: Describe the subject’s behavior or actions with extreme
granularity (detailing the posture of each arm and leg). In parallel, provide a detailed
description of the background scene and the overall atmosphere of the image (e.g., "a city
skyline under backlighting").
5. Artistic Style & Technique: Identify the specific style (e.g., anime, photorealistic, Makoto
Shinkai-style), lighting effects (e.g., soft light, Tyndall effect), and shot type, including
the overall camera perspective (e.g., top-down view, low-angle shot, centered composition,
symmetrical composition).
6. Language Requirements: Maintain objectivity throughout the description. Describe only
visible content. Avoid speculation (e.g., "they might be a couple") or introducing irrelevant
external information (e.g., historical context).
7. Conciseness & Informational Density: Use precise and concise language to cover all core
information, avoiding redundancy. The goal is to maximize the information-to-word ratio
while ensuring grammatical correctness and a logical structure.

The output format:
1. Overall Structure: The entire description must be consolidated into a single, cohesive, and
complete paragraph.
2. Opening Summary: The first sentence of the paragraph must be a high-level summary that
encapsulates the entire scene, setting, and core subject(s).
3. Hierarchical Description: If the image can be clearly divided into multiple logical re-
gions (e.g., foreground, midground, background, or multiple scenes), each region should be
described sequentially and independently within the single-paragraph structure.
4. Word Count: The total description must be no less than 500 words.

Reference Examples:
Example 1: {{example-1}}
Example 2: {{example-2}}
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Figure 7: Illustration of the reconstruction results when unfreezing ViT (the visual encoder of the
MLLM) for joint training. We observe that the generated output collapses, semantically important
details such as "two pumpkins" and "one candle" are missing. This degradation motivates us to keep
the ViT frozen during finetuning across all experiments.

Prompt Used to Perform LLM Judge for Caption Quality

User Prompt:
You will conduct a multi-dimensional analysis of each caption based on the specific criteria
listed below. For each criterion, you will assign a score from 1 (very poor) to 10 (excellent).
After scoring, you must provide a detailed, structured comparative analysis and declare a final
winner.
Evaluation Criteria & Scoring:
Please evaluate each caption against the following four criteria. Provide your scores in a
markdown table.
1. Comprehensiveness, Descriptive Richness, and Accuracy:

• How deeply does the caption describe the image? Does it go beyond a superficial
glance to include important, specific details (e.g., colors, textures, materials, lighting,
background elements, expressions)?

• Does it effectively and accurately describe the context (e.g., a black dog not a
monkey, or brown eyes not black), environment (background description)?

• Does the caption capture subtle nuances that a casual observer might miss?
2. Linguistic Fluency and Naturalness:

• Is the caption grammatically correct and well-written in natural-sounding English?
• Does it flow like a human would describe the scene, or does it sound robotic,

disjointed, or like a list of keywords?
• Is the vocabulary choice sophisticated, appropriate, and engaging?

3. Semantic and Compositional Insight:
• Does it effectively capture and convey the overall mood, atmosphere, emotion, or

narrative implied by the scene?
• Does it demonstrate an understanding of the image’s composition (e.g., what is in

the foreground vs. background)?
Based on the above rules, provide a comprehensive, head-to-head comparison of the two
captions. Structure your analysis with subheadings for each of the four criteria. For each
criterion, explicitly quote phrases from both Caption A and Caption B to illustrate your points
and justify the difference in their scores. Explain not just what is different, but why one
caption’s approach is superior for describing the provided image.

Finally, please declare the winner based on your detailed comparative analysis above. This
section must contain only a single letter.

Final Answer: [A or B].
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Figure 8: Visual example of the proposed 700k long-context text-to-image dataset.

E ADDITIONAL EXPERIMENTAL RESULTS

The text-to-image generation results on DPG-Bench. On DPG-Bench (Tab. 9), UAE achieves
the top scores on Entity (91.43), Attribute (91.49), and Relation (92.07), and ranks second overall
with 84.74, closely trailing Bagel (85.07). The sub-score pattern suggests UAE’s advantages come
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Table 9: Comparisons of text-to-image generation ability on DPG-Bench (Hu et al., 2024) benchmark.
Bold indicates the best result, and underlined denotes the second best.

Method Global Entity Attribute Relation Other Overall

Dedicated T2I
SDXL Podell et al. (2023) 83.27 82.43 80.91 86.76 80.41 74.65
PlayGroundv2.5 Li et al. (2024b) 83.06 82.59 81.20 84.08 83.50 75.47
Hunyuan-DiT Li et al. (2024e) 84.59 80.59 88.01 74.36 86.41 78.87
PixArt-Σ Chen et al. (2023) 86.89 82.89 88.94 86.59 87.68 80.54
DALLE3 OpenAI (2024) 90.97 89.61 88.39 90.58 89.83 83.50
SD3-medium AI (2024) 87.90 91.01 88.83 80.70 88.68 84.08
FLUX.1-dev Labs (2024) 82.1 89.5 88.7 91.1 89.4 84.0
OmniGen Xiao et al. (2025) 87.90 88.97 88.47 87.95 83.56 81.16

Unified Model
Show-o Xie et al. (2024a) 79.33 75.44 78.02 84.45 60.80 67.27
EMU3 Wang et al. (2024b) 85.21 86.68 86.84 90.22 83.15 80.60
TokenFlow-XL Qu et al. (2025) 78.72 79.22 81.29 85.22 71.20 73.38
Janus Pro Chen et al. (2025b) 86.90 88.90 89.40 89.32 89.48 84.19
BLIP3-o 4B Chen et al. (2025a) - - - - - 79.36
BLIP3-o 8B Chen et al. (2025a) - - - - - 81.60
UniWorld-V1 Lin et al. (2025) 83.64 88.39 88.44 89.27 87.22 81.38
OmniGen2 Wu et al. (2025b) 88.81 88.83 90.18 89.37 90.27 83.57
BAGEL Deng et al. (2025) 88.94 90.37 91.29 90.82 88.67 85.07
UAE 83.11 91.43 91.49 92.07 84.32 84.74

from faithful entity grounding and relation handling under long prompts, translating into competitive
end-to-end generation quality within a unified architecture.

Prompt list used in Fig. 10. We provide the full caption for each sample in generation order,
reading from left to right and top to bottom, row by row.

• Sample-1. A close-up portrait of a ginger tabby cat, its fur a rich tapestry of warm amber and deep
russet stripes that catch the soft, directional light illuminating its face from the side, highlighting
the velvety texture of its coat and the subtle contours of its cheekbones, while its large, luminous
green eyes gaze intently off-camera with an expression of quiet contemplation and alert curiosity,
framed by long, delicate white whiskers and perked ears that suggest attentiveness, all set against
a dark, shadowy background that isolates the feline subject and enhances the dramatic, almost
painterly quality of the image, emphasizing the cat’s regal poise and enigmatic presence.

• Sample-2. The building on the left is a light beige color with a series of rectangular windows
framed in red, some with small white panes. These windows have simple brick or mortar surrounds
and are uniformly spaced, creating a rhythmic pattern across the facade. The ground floor features a
small shop area with a white canopy providing shade for outdoor seating. The canopy is supported
by metal poles and holds a few tables under its shelter. Behind this canopy, various items can
be seen, including a few chairs and tables, indicating a café or small eatery. A white umbrella
stands next to the shop entrance, adding to the cozy atmosphere.Above the shop, the building has a
series of small balconies with metal railings, each adorned with potted plants and hanging baskets,
contributing to the pedestrian-friendly urban design. The ground floor has a mix of business signs,
some of which are partially visible but not legible, suggesting a bustling commercial area. There’s
a dark green signboard affixed to one of the windows, possibly indicating a specialty shop or
restaurant. The neighboring building on the right is a lighter shade of beige with a pastel green
section near the top. Its windows are similarly framed in red, with larger panes and a more varied
arrangement compared to the first building. This building features balconies with metal railings
and small rectangular windows. The exterior walls show some wear and tear, with subtle moldings
and patches of weathering, adding character to the structures. In front of these buildings lies
a cobblestone street, which is partially shaded by the shadows cast by the buildings. A large
stone fountain occupies the foreground, its base circular and gray, with a worn, dark surface. The
pavement around the fountain is paved with irregularly shaped stones, creating a rustic, old-world
feel. The sunlight creates dramatic contrasts, with deep shadows and bright highlights accentuating
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the textures of the buildings and the cobblestones. The street is quiet, devoid of people, which
enhances the serene and timeless atmosphere of the scene.

• Sample-3. A photo of hearty Chinese meal.
• Sample-4. This serene watercolor painting evokes the tranquil spirit of a traditional Chinese

riverside village, where mist-laden mountains recede into a soft, pale sky, their layered silhouettes
rendered in gentle washes of gray and muted green that dissolve into atmospheric haze; along the
calm, reflective riverbank, white-walled houses with dark-tiled, upturned eaves nestle among lush
trees, their architecture echoing classical Jiangnan aesthetics, while two slender wooden boats
glide silently on the glassy water—one closer to the foreground with its simple mast and open
cabin, the other a distant speck fading into the fog—imbuing the scene with quiet movement and
timeless stillness, as the interplay of light and shadow across the rippling surface and the subtle
gradations of ink suggest not only depth and distance but also a meditative harmony between nature
and human habitation, capturing the essence of poetic rural life suspended in a dreamlike, almost
ethereal moment.

• Sample-5. A vibrant blue skateboard with bold, graffiti-style graphics—featuring swirling red and
yellow patterns and stylized lettering—stands upright on cracked concrete, its bright red wheels
and silver trucks catching the sunlight, casting a sharp shadow on the ground, while in the blurred
background, a weathered wall adorned with colorful street art and a partially visible skate ramp hint
at an urban skate park setting, blending raw energy with artistic expression under a clear, sunlit sky.

• Sample-6. A solitary, gnarled tree with twisted, leafless branches stretches skyward like a skeletal
sentinel in the heart of a vast desert landscape, its weathered trunk rooted firmly in the ochre sands
that stretch to the horizon, dotted sparsely with low-lying shrubs; above, a dramatic expanse of
billowing cumulus clouds drifts across a brilliant blue sky, casting shifting shadows over the arid
terrain, while in the distance, the imposing silhouette of red rock mesas rises majestically against
the horizon, lending a sense of ancient grandeur and timeless solitude to the scene, where nature’s
raw resilience and stark beauty are captured in perfect harmony under the vast, open heavens.

• Sample-7. A striking traditional East Asian ink painting captures the vibrant essence of a blossom-
ing plum tree, its gnarled, darkly rendered branches—executed with bold, expressive brushstrokes
of sumi ink—arching gracefully across the stark white paper to cradle clusters of vivid crimson
flowers, each petal delicately shaped with fluid washes of red that convey both vitality and fragility,
while subtle hints of green foliage at the lower left suggest the quiet emergence of new life; the
composition balances dynamic movement with serene stillness, evoking themes of resilience and
renewal as the blossoms defiantly bloom against the void, enhanced by the faint calligraphic
inscription near the trunk and the small red seal in the corner, which together anchor the piece in
cultural tradition and artistic intention.

• Sample-8. In a breathtaking, sun-drenched meadow of lush rolling hills dotted with wildflowers
and scattered boulders, a young boy with soft silver-gray hair and wide, awestruck blue eyes gazes
upward in wonder as he gently cradles a radiant, living flame between his outstretched palms—a
glowing, teardrop-shaped orb of golden-orange fire that pulses with warmth and light, its edges
flickering with delicate embers against the backdrop of a brilliant blue sky streaked with fluffy
white clouds and distant snow-capped mountains; dressed in a simple light-blue jacket over a crisp
white shirt, the child embodies innocence and quiet awe, as if he has just summoned or discovered
this mystical force, transforming the idyllic pastoral landscape into a realm where magic feels
not only possible but tenderly held, evoking a sense of harmony between nature, wonder, and the
boundless imagination of youth.

• Sample-9. A vibrant, sun-drenched tropical beach unfolds under a brilliant azure sky dotted
with fluffy white clouds, where the crystal-clear turquoise waters gently lap against golden sands
lined with swaying palm trees casting dappled shadows on the shore, and at the heart of this
serene paradise, the bold, three-dimensional white letters spelling “KEEP CALM” rise majestically
from the sea’s edge, their clean, modern font contrasting with the organic beauty of nature while
reinforcing the tranquil mood, as if the very landscape itself is whispering a soothing mantra of
peace, relaxation, and escape from the chaos of everyday life.

• Sample-10. A dazzling, multifaceted purple diamond rests regally upon a shimmering bed of
iridescent violet sand, its precisely cut facets catching and refracting beams of ethereal light that
radiate from behind, casting a luminous glow across the scene and accentuating the gem’s deep
amethyst hue with flashes of electric violet and cool silver highlights; the background dissolves
into a dreamy, softly diffused gradient of lavender and indigo, enhancing the jewel’s otherworldly
brilliance and making it appear almost suspended in a mystical twilight realm, where every angle
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of its polished surface seems to whisper secrets of rare beauty and enchanted allure, evoking both
luxury and fantasy in a single, captivating moment.

• Sample-11. In a rain-slicked, neon-drenched cyberpunk cityscape at night, a mysterious hooded
figure stands silhouetted against a kaleidoscope of glowing skyscrapers and pulsating billboards,
their face obscured by shadow as they hold aloft a luminous rectangular sign that boldly proclaims
“UAE” in vibrant, electric-blue neon lettering, casting an otherworldly glow on their gloved hands
and the wet pavement below, where reflections of magenta, cyan, and violet lights ripple across
the glossy street like liquid electricity, evoking a futuristic vision of the United Arab Emirates as a
nexus of technology, mystery, and urban energy under a dark, rain-streaked sky.

• Sample-12. A cybernetic warrior stands resolute in the heart of a rain-lashed, neon-soaked
metropolis, his face etched with intricate biomechanical tattoos that glow faintly under the pulsating
pink and blue lights of towering holographic billboards, while his eyes are hidden behind sleek,
futuristic visor goggles radiating a cool violet-blue luminescence that mirrors the city’s electric
pulse; clad in a high-collared, armored black jacket accented with glowing orange circuitry along
its seams, he exudes an aura of stoic intensity and technological prowess, as blurred silhouettes of
passersby dissolve into the background, their forms swallowed by the misty haze and shimmering
reflections on wet pavement, immersing him in a world where humanity and machine merge
beneath the ceaseless drizzle and chromatic glow of a dystopian urban dreamscape.

• Sample-13. As the sun dips below the horizon, casting a warm golden glow across the sky that
fades into soft blues and purples, Shanghai’s iconic Oriental Pearl Tower stands tall and radiant, its
spherical sections glowing with pink and purple hues that mirror the twilight, anchoring the city’s
futuristic skyline against a backdrop of sleek glass skyscrapers and modern high-rises; below, the
Huangpu River flows gently, reflecting the fading light and the silhouettes of bridges and riverside
trees, while lush green foliage along the embankment frames the scene, adding a touch of nature
to the urban grandeur, creating a serene yet dynamic panorama where technological marvels and
natural beauty converge in perfect harmony at dusk.

• Sample-14. Under a brooding, leaden sky that looms heavy with the promise of storm, a colossal
wave rises in furious majesty—its dark, churning body sculpted by unseen winds into a towering,
curling crest that crashes forward in a froth of white foam and spray, its deep indigo and slate-gray
depths hinting at the ocean’s raw, untamed power; above the tumult, a scattered flock of seabirds
soars with outstretched wings, their silhouettes stark against the gloom as they ride the turbulent
air currents, embodying both freedom and resilience amid nature’s overwhelming force, while the
horizon vanishes beneath the swell, leaving only the primal drama of sea and sky locked in eternal,
awe-inspiring conflict.

• Sample-15. The image showcases a delectable pepperoni pizza presented on a rustic wooden board,
set against a dark, textured background that adds a touch of sophistication. The pizza boasts a
golden-brown crust with visible char marks from being cooked in a wood-fired oven, indicating
a crispy texture. The cheese, melted and slightly browned in spots, blankets the pizza evenly,
with some areas showcasing a rich, gooey appearance. The toppings are predominantly pepperoni
slices, arranged in a somewhat circular pattern around the edges, while others lie scattered across
the surface in various orientations. Each slice of pepperoni is glossy, indicating a fresh, juicy
texture, and they are generously placed, making the pizza look hearty and appetizing. Interspersed
among the pepperoni slices are small flecks of herbs, likely basil, adding a burst of green color
and freshness to the dish. To the right side of the pizza, two fresh basil leaves are artistically
placed, their vibrant green hues contrasting beautifully against the warm tones of the pizza and the
wooden board. A few more basil leaves can be seen in the foreground at the bottom left corner,
scattered more casually than the ones on the pizza itself. There are also a couple of slices of
pepperoni lying outside the pizza, further enhancing the visual appeal of the presentation. The
overall composition of the image is balanced, with the pizza centrally located, drawing the viewer’s
attention immediately. The lighting is subtle yet adequate to highlight the textures and colors of the
pizza, making it look inviting and mouth-watering. The slight shadows cast by the pizza and basil
leaves add depth to the image, creating a three-dimensional feel.

• Sample-16. The image depicts a serene night scene at a lively port town. The sky is filled with
a bright starry Milky Way galaxy, casting a soft glow over the entire scene. The town features
quaint, charming houses with warm yellow lights emanating from their windows, creating a cozy
ambiance. At the forefront, there is a group of people gathered around wooden tables, enjoying
their time together. They are engaged in conversation and laughter, with cups of coffee or tea in
hand. A golden retriever dog sits by one of the tables, adding to the homely atmosphere. To the
right, there is a tall streetlight and a small flower arrangement in a pot, further enhancing the quaint
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charm of the setting. In the background, a harbor is visible with boats anchored, and the town
extends with more houses and shops lining the streets, including a bakery sign.

• Sample-17. From a high vantage point, the sun rises—or sets—in a blaze of golden-orange light
that pierces through a dramatic sky streaked with soft pink, lavender, and deep blue clouds, casting
long, ethereal shadows across a vast, snow-blanketed landscape of rolling hills and undulating
valleys where a winding road snakes like a ribbon through the serene white expanse; frost-kissed
shrubs dot the foreground, their dark branches dusted with snow and catching the warm glow, while
the distant horizon fades into a hazy, dreamlike mist, blending earth and sky in a tranquil, almost
otherworldly winter tableau that evokes both solitude and sublime beauty beneath the celestial
spectacle of dawn or dusk.

• Sample-18. The image captures the majestic Forbidden City in Beijing, China, bathed in the warm
hues of a setting sun. The scene is dominated by several large, traditional Chinese buildings with
elegant, ornate roofs painted in vibrant reds and golds. These buildings feature numerous golden
dragons and intricate carvings, typical of imperial architecture. The main structure in the center is
an imposing palace with multiple eaves and large golden pillars, its entrance flanked by smaller
pavilions. The central building’s roof is adorned with intricate patterns and two large, pointed
gables, adding to its grandeur. In front of the palace, a wide, open courtyard stretches out, paved
with smooth, light-colored stones and bordered by white stone balustrades. These balustrades are
decorated with sculpted figures and floral designs, providing a stark contrast to the dark stone
of the buildings behind them. The courtyard is devoid of people, emphasizing the serene and
historical atmosphere of the site. To the left, more buildings can be seen, each with their own
distinct architectural features, though slightly obscured due to the architectural layout. The sky
above is a soft gradient from pale blue at the horizon to a warm orange near the sun, which casts a
gentle glow over the entire scene. A few wispy clouds are scattered across the sky, adding depth
and dimension to the panoramic view. In the foreground, there is a series of white, stone railings
and steps leading up to the palace, guiding the viewer’s eye towards the impressive structure. The
entire area is bathed in the soft, golden light of the sunset, creating a peaceful and timeless quality
that highlights the historical significance of this famous landmark.

• Sample-19. In this serene, sunset-hued beach scene, a woman stands with her back to the viewer,
gazing out at the ocean. She has long brown hair tied loosely behind her head and wears a flowing
white sleeveless dress that reaches her ankles. She carries a pair of black flip-flops in her right
hand. Her light brown and white dog sits attentively beside her on the sandy shore, their brown and
white fur contrasting with the warm, golden tones of the setting sun. The beach is bathed in the
soft, orange glow of the setting sun, casting long shadows and highlighting the texture of the sand.
In the distance, the gentle waves roll onto the shore, with the sun’s reflection shimmering on the
water. To the left, a sailboat sails across the calm sea, its silhouette silhouetted against the warm
sky. A wooden lifeguard chair with a red life buoy stands near the center-right of the scene, next to
a blanket with a floral pattern draped over its legs. The beach is dotted with footprints, and tall
grasses and shrubs frame the scene. A couple of seagulls fly low in the orange sky, adding to the
tranquil atmosphere. In the background, a cliff rises, partially obscuring the view, and a few more
sailboats are visible on the horizon.

• Sample-20. An ancient Greek philosopher is talking on a wireless headset.
• Sample-21. A serene elven woman with pointed ears and intricate silver face art gazes thoughtfully,

clad in a dark green gown with gold trim. She stands in a mystical, moonlit forest where glowing
blue mushrooms illuminate the shadowy trees around her.

• Sample-22. The image depicts a small, well-lit home office setup in a cozy room with beige
carpeting. The primary focus is a compact wooden desk positioned against a pale wall. The desk
has a simple, light-colored finish and is supported by two metal legs, which appear to be adjustable
for height. On the desk, there is a black keyboard and a laptop computer on the right side, along
with a closed, black-framed flat-screen monitor to the left of the laptop. A white mouse and a
pair of sunglasses rest on the keyboard. A single table lamp with a black shade stands next to
the keyboard, casting a warm light over the workspace. To the left of the lamp, a small stack of
books or papers rests on the desk surface. A black rolling chair with height-adjustable arms is
stationed directly in front of the desk. The chair’s wheels are visible, indicating its portability. The
computer monitor is accompanied by a webcam mounted above it on the wall. Below the desk,
the floor is partially covered with a light-colored rug that contrasts with the carpeting. Adjacent
to the desk, there is a potted plant with lush green leaves placed on a small round table or stand.
The room’s background features a bookshelf filled with various books, some of which are visible
through open shelves. A white cushioned armchair sits to the left of the desk, suggesting a cozy
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nook for relaxation or additional seating. On the wall behind the desk, near the corner, a rectangular
mirror reflects part of the room, adding depth to the space. An overhead lighting fixture casts a soft
yellow glow from above, highlighting the desk area while keeping the rest of the room dimly lit.
The overall color palette includes neutral tones—beige, white, and shades of brown—creating a
calming and functional workspace atmosphere.

• Sample-23. In a vibrant, arid desert landscape bathed in warm, golden hues of sunset, a group of
three individuals ventures through a rugged, canyon-like terrain. The woman at the center, dressed
in a practical olive-green safari outfit with rolled-up sleeves, khaki pants, and a belt bag slung over
her shoulder, walks confidently towards the camera. Her dark hair is tied up in a bun, and she has a
focused expression on her face as she gazes at the ground. A small, playful fox stands beside her,
attentively looking ahead. The woman’s right hand holds a stainless steel water bottle, and her left
arm is relaxed by her side. On the right, a man wearing a wide-brimmed straw hat, beige shirt, and
cargo pants stands observing the surroundings, while his young son, dressed in an orange t-shirt
and black shorts, looks back at them with a curious expression. The man and his son are positioned
slightly behind the woman, who appears to be leading the way. In the foreground, a cactus plant
with a yellow bloom adds to the desert ambiance. The background features towering red rock
formations and sparse vegetation, including a few Joshua trees and desert scrub. A large eagle soars
high above, its wings spread wide against the backdrop of a sky painted with swirling clouds in
shades of orange, pink, and purple. The sand beneath their feet is dotted with footprints, suggesting
they have been walking for some time. The entire scene is imbued with a sense of adventure and
exploration, set against the timeless beauty of a desert canyon under a dramatic sunset sky.

• Sample-24. Please generate a realistic image of the traditional Chinese Hotan Jade pendant. The
pendant is a round jade brand, with a full color of turquoise. The jade is warm and delicate, and
the surface is highly polished but not excessively reflective, showing the oily texture of real jade.
A traditional Jiangnan garden landscape painting is carved in relief on the jade plaque: the upper
half of the picture shows a group of Chinese style buildings arranged in a staggered manner, with
roofs featuring upturned eaves and horsehead walls, and rich details. The buildings are interspersed
with delicate elements such as small bridges, flowing water, weeping willows, and rockeries. The
overall composition is complex but not messy, presenting a freehand feeling of traditional Chinese
painting style. The lower part of the screen is relatively blank, with only winding rivers flowing
from bottom to right, enhancing the spatial hierarchy. The pendant is hung on a gray green Chinese
woven rope, with a simple and natural knot, tightly woven from multiple strands of fine thread,
with a tough texture. It is decorated with a small red coral bead directly above it. The background
of the picture is a light gray cloth in the style of physical photography as a reference, which is
overall realistic and realistic. The style is modern high-quality still life photography, with clear
composition, soft lighting, and focus on the center of the jade plaque, blurring the background
details.

• Sample-25. A portrait of profound wisdom and quiet contemplation, this elderly man with a long,
flowing white beard and deeply lined face is captured in dramatic chiaroscuro lighting against a
dark void, his gaze fixed on something unseen beyond the frame.

More "Image-Text-Image" reconstruction results by our method. Here, we provide more visual
examples of the "image-text-image" pipeline using our method, i.e., our encoder processes the input
image, generate the output descriptive caption, and then pass it through our decoder to recover it to
pixel. See Fig. 13, Fig. 14, and Fig. 15 for details.
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Figure 9: Visual example of the proposed 700k long-context text-to-image dataset.
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Figure 10: Visualization results of UAE at 1024×1024 resolution.
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Figure 11: Qualitative analysis of the results from GenEval++, where our UAE demonstrates visually
consistent results aligned with the input captions, and performs reasonable composition for each
element.
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Figure 12: Case study of the results from the proposed Unified-Bench, we see that our UAE enables
to produce a more detailed, accurate, comprehensive description based on the input image, and
reconstructs a similar result to the original image, showcasing the improved understanding and
generation capabilities, and the better unification of the system.
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Figure 13: Example of the "image-text-image" reconstruction result by our encoder and decoder.
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Figure 14: Example of the "image-text-image" reconstruction result by our encoder and decoder.
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Figure 15: Example of the "image-text-image" reconstruction result by our encoder and decoder.
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F THE USAGE OF LARGE LANGUAGE MODELS

In this paper, large language models (LLMs), like ChatGPT, are used only for writing refinement
and grammar correctness. We do not use it for idea proposal, research design, data analysis, or
interpretation of results.

G REPRODUCIBILITY STATEMENT

To ensure the reproducibility of this work, we have made significant efforts to provide comprehensive
details of our methodology and experiments (see Appendix Sec. C for details). To facilitate the
reproduce, we promise we will make our proposed dataset, benchmark, complete source code,
pre-trained model weights, and experiment configurations publicly available upon publication.
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