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ABSTRACT

Creating labeled training sets has become one of the major roadblocks in machine
learning. To address this, recent Weak Supervision (WS) frameworks synthesize
training labels from multiple potentially noisy supervision sources. However,
existing frameworks are restricted to supervision sources that share the same output
space as the target task. To extend the scope of usable sources, we formulate Weak
Indirect Supervision (WIS), a new research problem for automatically synthesizing
training labels based on indirect supervision sources that have different output label
spaces. To overcome the challenge of mismatched output spaces, we develop a
probabilistic modeling approach, PLRM, which uses user-provided label relations
to model and leverage indirect supervision sources. Moreover, we provide a
theoretically-principled test of the distinguishability of PLRM for unseen labels,
along with a generalization bound. On both image and text classification tasks as
well as an industrial advertising application, we demonstrate the advantages of
PLRM by outperforming baselines by a margin of 2%-9%.

1 INTRODUCTION

One of the greatest bottlenecks of using modern machine learning models is the need for substantial
amounts of manually-labeled training data. In real-world applications, such manual annotations are
typically time-consuming, labor-intensive and static. To reduce the efforts of annotation, researchers
have proposed Weak Supervision (WS) frameworks (Ratner et al., 2016; 2018; 2019; Fu et al., 2020)
for synthesizing labels from multiple weak supervision sources, e.g., heuristics, knowledge bases,
or pre-trained classifiers. These frameworks have been widely applied on various machine learning
tasks (Dunnmon et al., 2020; Fries et al., 2021; Safranchik et al., 2020; Lison et al., 2020; Zhou
et al., 2020; Hooper et al., 2021; Zhan et al., 2019; Varma et al., 2019) and industrial data (Bach
et al., 2019). Among them, data programming (Ratner et al., 2016), one representative example
that generalizes many approaches in the literature, represents weak supervision sources as labeling
functions (LFs) and synthesizes training labels using Probabilistic Graphical Model (PGM).

Given both the increasing popularity of WS and the general increase in open-source availability of
machine learning models and tools, there is a rising tide of available supervision sources that WS
frameworks and practitioners could potentially leverage, including pre-trained machine learning
models or prediction APIs (Chen et al., 2020; d’Andrea & Mintz, 2019; Yao et al., 2017). However,
existing WS frameworks only utilize weak supervision sources with the same label space as the
target task. This incompatibility largely limits the scope of usable sources, necessitating manual
effort from domain experts to provide supervision for unseen labels. For example, consider target
task of classifying {“dog”, “wolf ”, “cat”, “lion”} and a set of three weak supervision sources
(e.g. trained classifiers or expert heuristics) with disjoint output spaces {“caninae”, “felidae”},
{“domestic animals”, “wild animals”} and {“husky”, “bengal cat”} respectively. We call these types
of sources indirect supervision sources. For concreteness, we follow the general convention of data
programming (Ratner et al., 2016) and refer to these sources as indirect labeling functions (ILFs).
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Despite their apparent utility, existing weak supervision methods could not directly leverage such
ILFs, as their output spaces have no overlap with the target one.

In this paper, we formulate a novel research problem that aims to leverage such ILFs automatically,
minimizing the manual efforts to develop and deploy new models. We refer to this as the Weak
Indirect Supervision (WIS) setting, a new Weak Supervision paradigm which leverages ILFs, along
with the relational structures between individual labels, to automatically create training labels.

The key difficulty of leveraging ILFs is due to the mismatched label spaces. To overcome this, we
introduce pairwise relations between individual labels to the WIS setup, which are often available
in structured sources (e.g. off-the-shelf Knowledge Bases (Miller, 1995; Sinha et al., 2015; Dong
et al., 2020) or large scale label hierarchies (Murty et al., 2017; The Gene Ontology Consortium,
2018; Partalas et al., 2015) for various domains), or can be provided by subject matter experts in
far less time than generating entirely new sets of weak supervision sources. For example, in the
aforementioned example, we could rely on a biological species ontology to see that the unseen labels
“dog” and “cat” are both subsumed by the seen label “domestic animals”. Based on the label relations,
we can automatically leverage the supervision sources as ILFs. Notably, previous work (Qu et al.,
2020) also leveraged a label relation graph but was focused on relation extraction task in a few-shot
learning setting, while You et al. (2020) proposed to learn label relations given data for each label in
a transfer learning scenario. In contrast, we aim to solve the target task directly and without clean
labeled data.

The remaining questions are (1) how to synthesize labels based on pair-wise label relations and ILFs?
and (2) How can we know whether, given a set of ILFs and label relations, the unseen labels are
distinguishable or not? To address the first question, we develop a probabilistic label relation model
(PLRM), the first PGM for WIS which aggregates the output of ILFs and models the label relations as
dependencies between random variables. In turn, we use the learned PLRM to produce labels for
training an end model. Furthermore, we derive the generalization error bound of PLRM based on
assumptions similar to previous work (Ratner et al., 2016).

The second question presents an important stumbling block when dealing with unseen labels, as we
may not be able to distinguish the unseen labels given existing label relations and ILFs, resulting in
an unsatisfactory synthesized training set. To address this issue, we formally introduce the notion
of distinguishability in WIS setting and theoretically establish an equivalence between: (1) the
distinguishability of the label relation structure as well as the ILFs, and (2) the capability of PLRM
to distinguish unseen labels. This result then leads to a simple sanity test for preventing the model
from failing to distinguish unseen labels. In preliminary experiments, we observe a significant drop
in model performance when the condition is violated.

In experiments, we make non-trivial adaptations for baselines from related settings to the new WIS
problem. On both text and image classification tasks, we demonstrate the advantages of PLRM over
adapted baselines. Finally, in a commercial advertising system where developers need to collect
annotations for new ads tags, we illustrate how to formulate the training label collection as a WIS
problem and apply PLRM to achieve an effective performance.

Summary of Contributions. Our contributions are summarized as follows:

• We formulate Weak Indirect Supervision (WIS), a new research problem which synthesizes
training labels based on indirect supervision sources and label relations, minimizing human efforts
of both data annotation and weak supervision sources construction;

• We develop the first model for WIS, the Probabilistic Label Relation Model (PLRM) with
comparable statistical efficiency to previous WS frameworks and standard supervised learning;

• We introduce a new notion of distinguishability in WIS setting, and provide a simple test of the
distinguishability of PLRM for unseen labels by theoretically establishing the connection between
the label relation structures and distinguishability;

• We showcase the potential of the WIS formulation and the effectiveness of PLRM in a commercial
advertising system for synthesizing training labels of new ads tags. On academic image and
text classification tasks, we demonstrate the advantages of PLRM over baselines by quantitative
experiments. Overall, PLRM outperforms baselines by a margin of 2%-9%.
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2 RELATED WORK

Table 1: Comparisons between the proposed weak indirect supervision (WIS) and related machine
learning tasks. Compared to normal and weakly supervised learning, WIS handles mismatched train
and test label spaces. WIS is similar in spirit to indirect supervision (IS) and zero-shot learning
(ZSL), but distinct in that WIS only takes as input weak or noisy labels and a simple set of logical
label relations, and aims to output a training data set rather than a trained model, affording complete
modularity in which final model class is used.

Task Label Type Ytrain = Ytest Label Information When Label Info. is Required
Supervised Learning (SL) Clean Labels ✓ – –
Weak Supervision (WS) Noisy Sources ✓ – –
Indirect Supervision (IS) Clean Labels Label Trans. Matrix Training

Zero-Shot Learning (ZSL) Clean Labels Label Embed. / Attribute Training & Test

Weak Indirect Supervision (WIS) Noisy Sources Label Relation Training

We briefly review related settings. The comparison between WIS and related tasks is in Table 1.

Weak Supervision: We draw motivation from recent work which model and integrate weak supervi-
sion sources using PGMs (Ratner et al., 2016; 2018; 2019; Fu et al., 2020) and other methods (Guan
et al., 2018; Khetan et al., 2018) to create training sets. While they assume supervision sources
share the same label space as the new tasks, we aim to leverage indirect supervision sources with
mismatched label spaces in a labor-free way.

Indirect Supervision: Indirect supervision arises more generally in latent-variable models for various
domains (Brown et al., 1993; Liang et al., 2013; Quattoni et al., 2004; Chang et al., 2010; Zhang
et al., 2019). Very recently, Raghunathan et al. (2016) proposed to use the linear moment method for
indirect supervision, wherein the transition between desired label space Y and indirect supervision
space O is known, as well as the ground truth of indirect supervisions for training. In contrast,
both are unavailable in WIS. Theoretically, Wang et al. (2020) developed a unified framework for
analyzing the learnability of indirect supervision with shared or superset label spaces, while we focus
on disjoint label spaces and the consequent unique challenge of distinguishability of unseen classes.

Zero-Shot Learning: Zero-Shot Learning (ZSL) (Lampert et al., 2009; Wang et al., 2019) aims to
learn a classifier that is able to generalize to unseen classes. The WIS problem differentiates from
ZSL by (1) in ZSL setting, the training and test data belong to seen and unseen classes, respectively,
and training data is labeled, while for WIS, both training and test data belong to unseen classes
and unlabeled; (2) ZSL tends to render a classifier that could predict unseen classes given certain
label information, e.g., label attributes (Romera-Paredes & Torr, 2015), label descriptions (Srivastava
et al., 2018) or label similarities (Frome et al., 2013), while WIS aims to provide training labels for
unlabeled training data, allowing users to train any machine learning models, and the label relations
are used only in synthesizing training labels.

3 PRELIMINARY: WEAK SUPERVISION

We first describe the Weak Supervision (WS) setting. A glossary of notations used is in App. A.

Definitions and notations. We assume a k-way classification task, and have an unlabeled dataset D
consisting of m data points. Denote by Xi ∈ X the individual data point and Yi ∈ Y = {y1, . . . , yk}
the unobserved interested label of Xi. We also have n sources, each represented by a labeling
function (LF) and denoted by λj . Each λj outputs a label Ŷ j

i ∈ Yλj = {ŷj1, . . . , ŷjkλj
} on Xi, where

Yλj
is the label space associated with λj and |Yλj

| = kλj
. We denote the concatenation of LFs’

output as Ŷi = [Ŷ 1
i , Ŷ

2
i , . . . , Ŷ

n
i ], and the union set of LFs’ label spaces as Ŷ with |Ŷ| = k̂. Note

that k̂ is not necessarily equal to the sum over kλj
, since LFs may have overlapping label spaces. We

call ŷ ∈ Ŷ seen label and y ∈ Y desired labels. In WS settings, we have Y ⊂ Ŷ . Notably, we assume
all the involved labels come from the same semantic space.

The goal of WS. The goal is to infer the training labels for the dataset D based on LFs, and to use
them to train an end discriminative classifier fW : X → Y , all without ground truth training labels.
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def labeling rule:
return label
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Figure 1: An example of WIS problem: the input consists of an unlabeled dataset, a label graph, and
n indirect labeling functions (ILFs). The ILFs represent weak supervision sources such as pretrained
classifiers, knowledge bases, heuristic rules, etc. We can see that the ILFs cannot predict desired
labels i.e., {“dog”, “wolf ”, “cat”, “lion”}. To address this, a label graph is given; here we only
visualize the subsuming relation. Finally, a label model, instantiated as a PGM, takes the ILF’s
outputs and produces probabilistic labels in the target output space, which are in turn used to train an
end machine learning model that can generalize beyond them.

4 WEAK INDIRECT SUPERVISION

Now, we introduce the new Weak Indirect Supervision (WIS) problem. Unlike the standard WS
setting, we only have indirect labeling functions (ILFs) instead of LFs, and an additional label graph
is given. The goal of WIS remains the same as WS. An example of WIS problem is in Fig. 1.

Indirect Labeling Function. In WIS, we only have indirect labeling functions (ILFs), which cannot
directly predict any desired labels, i.e., Ŷ ∩Y = ∅. Therefore, we refer to the desired labels as unseen
labels. To make it possible to leverage the ILFs, a label graph is given, which encodes pair-wise label
relations between different seen and unseen labels.

Label Graph. Concretely, a label graph G = (V, E) consists of (1) a set of all the labels as nodes, i.e.,
V = Ŷ ∪ Y , and (2) a set of pair-wise label relations as typed edges, i.e., E = {(yi, yj , tyiyj

)|tyiyj
∈

T , i < j, ∀yi, yj ∈ V}. Here, T is the set of label relation types and, similar to Deng et al. (2014),
there are four types of label relations: exclusive, overlapping, subsuming, subsumed, notated by
to, te, tsg, tsd, respectively. Notably, for any ordered pair of labels (yi, yj), their label relation should
fall into one of the four types. The rationale behind these label relations is that when treating each
label as a set, there are four unique set relations and each corresponds to one defined label relation
respectively as shown in Fig. 2. For convenience, we denote the set of non-exclusive neighbors of a
given label y in Ŷ as N (y, Ŷ), i.e., N (y, Ŷ) = {ŷ ∈ Ŷ|tyŷ ̸= te}.

A B

Exclusive Overlap

A B

Subsuming

A B  B A

Subsumed
Set relation�
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A % B

Figure 2: The one-to-one mapping between label relations and set relations.

5 PROBABILISTIC LABEL RELATION MODEL

One of the key difficulties in both WS and WIS is that we do not observe the true label Yi. Following
prior work (Ratner et al., 2016; 2019; Fu et al., 2020), we use a latent variable Probabilistic Graphical
Model (PGM) for estimating Yi based on the Ŷi output by ILFs. Specifically, the PGM is instantiated
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as a factor graph model. This standard technique lets us describe the family of generative distributions
in terms of M known dependencies/factor functions {ϕ}, and an unknown parameter Θ ∈ RM as
PΘ(·) ∝ exp(Θ⊤Φ(·)), where Φ is the concatenation of {ϕ}. However, the unique challenge for
WIS is that the dependencies {ϕ} between Yi and Ŷi are unknown due to the mismatches of label
spaces. We overcome these by leveraging the label graph G to build the dependencies for the PGM.

5.1 A BASELINE PGM FOR WIS

In prior work (Ratner et al., 2016; Bach et al., 2017), the PGM for WS is governed by accuracy
dependencies:

ϕAcc
y,j(Y, Ŷ

j) := 1{Y = Ŷ j = y}
which is defined for each λj and y ∈ Yλj

∩Y . However, in WIS, the ILFs cannot predict desired label
y ∈ Y . As a simple baseline approach to start, we leverage the coarse-grained exclusive/non-exclusive
label relation to build a corresponding "accuracy" factor. Specifically, for an ILF λj and one label
ŷ ∈ Yλj

, given a desired label y ∈ Y , if ŷ and y have non-exclusive label relation, i.e., ŷ ∈ N (y,Yλj
)

we expect a certain portion of data assigned ŷ should be labeled as y. Thus, we treat Ŷ j = ŷ as a
pseudo indicator of Y = y and add a pseudo accuracy dependency between them:

ϕAcc
y,ŷ,j(Y, Ŷ

j) := 1{Y = y ∧ Ŷ j = ŷ}

We call the PGM governed by pseudo accuracy dependencies Weak Supervision with Label Graph
(WS-LG). Notably, it can be treated as a simple adaptation of PGM for WS (Ratner et al., 2016; 2019;
Fu et al., 2020) to the WIS problem. However, such a naïve adaptation might have two drawbacks:

1. It does not model specific dependencies ILFs with different undesired labels. For example, two
ILFs outputting “Husky” and “bulldog” respectively would be naively modeled the same as if they
both output “Dog”.

2. It can only directly model exclusive/non-exclusive label relations, ignoring the prior knowledge
encoded in other relation types, i.e., subsuming, subsumed, or overlapping. For example, given
an unseen label “Dog” and some ILFs outputting “Husky” or “Domestic Animals”, WS-LG
would treat all ILFs as indicators of “Dog”. However, we know a “Husky” is of course a “Dog”
(subsumed relation) while a “Domestic Animals” is not necessarily a “Dog” (subsuming relation).

5.2 PROBABILISTIC LABEL RELATION MODEL

To more directly model the full range and nuance of label relations, we propose a new probabilistic
label relation model (PLRM). In PLRM, we explicitly model both (1) the dependency between ILF
outputs and the true labels in their output spaces, i.e. their direct accuracy, and (2) the dependencies
between these labels and the target unseen labels, as separate dependency types, thus explicitly
incorporating the full label relation graph into our model and learning its corresponding weights.

Concretely, we augment the WS-LG model with (1) latent variables representing the assignment
of the data to each seen label, and (2) label relation dependencies which capture fine-grained label
relations between these output labels and desired labels. To model seen label in Ŷ , we introduce
a binary latent random vector Ȳ = [Ȳ 1, . . . , Ȳ k̂], where Ȳ i indicating whether the data should be
assigned ŷi. Then, for ILF λj that could predict ŷi, we have accuracy dependency:

ϕAcc
ŷi,j(Ȳ

i, Ŷ j) := 1{Ȳ i = 1 ∧ Ŷ j = ŷi}

To model fine-grained label relations, for a desired label y ∈ Y and seen label ŷi ∈ Ŷ , we add label
relation dependencies. We enumerate the label relation dependencies corresponding to the four label
relation types, i.e., exclusive, overlapping, subsuming, subsumed, as follows:

ϕe
y,ŷi(Y, Ȳ

i) := − 1{Y = y ∧ Ȳ i = 1}

ϕo
y,ŷi(Y, Ȳ

i) := 1{Y = y ∧ Ȳ i = 1}

ϕsg
y,ŷi

(Y, Ȳ i) := − 1{Y ̸= y ∧ Ȳ i = 1}

ϕsd
y,ŷi(Y, Ȳ

i) := − 1{Y = y ∧ Ȳ i = 0}
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The above dependencies encode the prior knowledge of the label relations, but also allow the model
to learn corresponding parameters. For example, an exclusive label relation dependency ϕe outputs
-1 when two exclusive labels are activated at the same time for the same data, otherwise 0, which
reflects our prior knowledge of the exclusive label relation; and the corresponding parameter can be
treated as the strength of the label relation. Likewise, for any pair of seen labels, we add label relation
dependency following the same convention. Finally, we specify the model as:

PΘ(Y, Ȳ , Ŷ ) ∝ exp
(
Θ⊤Φ(Y, Ȳ , Ŷ )

)
. (1)

Recall that Y is the unobserved true label, Ȳ is the binary random vector, each of whose binary value
Ȳ i reflects whether the data should be assigned seen label ŷi ∈ Ŷ , and Ŷ is the concatenated outputs
of ILFs.

Learning Objective. We estimate the parameters Θ̂ by minimizing the negative log marginal
likelihood PΘ(Ŷ ) for observed ILF outputs Ŷ1:m:

Θ̂ = argmin
Θ

−
m∑
i=1

log
∑
Y,Ȳ

PΘ(Y, Ȳ , Ŷi) . (2)

We follow Ratner et al. (2016) to optimize the objective using stochastic gradient descent.

Training an End Model. Let pΘ̂(Y | Ŷ ) be the probabilistic label (i.e. distribution) predicted by
learned PLRM. We then train an end model fW : X → Y parameterized by W , by minimizing the
empirical noise-aware loss (Ratner et al., 2019) with respect to Θ̂ over m unlabeled data points:

Ŵ = argmin
W

1

m

m∑
i=1

EY ∼p
Θ̂
(Y |Ŷi)

ℓ(Y, fW (Xi)), (3)

where ℓ(Y, fW (Xi)) is a standard cross entropy loss.

Generalization Error Bound. We extend previous results from (Ratner et al., 2016) to bound both
the expected error of learned parameter Θ̂ and the expected risk for Ŵ . All the proof details and
description of assumptions can be found in Appendix.

Theorem 1. Suppose that we run stochastic gradient descent to produce Θ̂ and Ŵ based on Eqs. (2)
and (3), respectively, and that our setup satisfies certain assumptions (App D.2). Let |D| be the size
of the unlabeled dataset. Then we have

E
∥∥∥Θ̂−Θ∗

∥∥∥2 ≤ O

(
M

log |D|
|D|

)
, E

[
ℓ(Ŵ )− ℓ(W ∗)

]
≤ χ+O

(
H

√
log |D|
|D|

)
.

Interpreting the Bound. By Theorem 1, the two errors decrease by the rate Õ(1/|D|) and
Õ(1/|D|1/2) respectively as |D| increases. This shows that although we trade computational effi-
ciency for the reduction of human efforts by using complex dependencies and more latent variables,
we maintain comparable statistical efficiency as previous WS frameworks and supervised learning
theoretically.

6 DISTINGUISHABILITY OF UNSEEN LABELS

Dog

Husky Bulldog

Exclusive
Subsuming

Figure 3: Example of in-
distinguishable unseen labels
“Husky” and “Bulldog”.

One unique challenge of WIS is that there may exist pairs of unseen
labels which cannot be distinguished by the learned model. For
example, as shown in Fig. 3, where “Dog” is a seen label for which
LFs could predict for and “Husky” and “Bulldog” are unseen labels
for which we want to generate training labels; however, we could
not distinguish between “Husky” and “Bulldog” even though the LFs
make correct predictions of seen label “Dog”, because both “Husky”
and “Bulldog” share the same label relation to “Dog”.

To tackle this issue, we theoretically connect the distinguishability of
unseen labels to the label relation structures and provide a testable
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condition for the distinguishability. Intuitively, same label relation
structures could lead to indistinguishable unseen labels as shown in Fig. 3; however, it turns out to be
challenging to prove that different label relation structures could guarantee the distinguishability
with respect to the model. To illustrate, we formally define the distinguishability as below.

Definition 1 (Distinguishability). For any model PΘ(Y, Ȳ , Ŷ ) with parameters Θ, any pair of unseen
labels yi, yj ∈ Y are distinguishable w.r.t. the model, if for a.e. Θ > 0 (element-wisely), there does
NOT exist such a Θ̃ > 0 that, for ∀Ȳ , Ŷ , the following equations hold

PΘ(Y = yi|Ȳ , Ŷ ) = PΘ̃(Y = yj |Ȳ , Ŷ ), PΘ(Y = yj |Ȳ , Ŷ ) = PΘ̃(Y = yi|Ȳ , Ŷ ), (4)

PΘ(Y = y|Ȳ , Ŷ ) = PΘ̃(Y = y|Ȳ , Ŷ ),∀y ∈ Y/{yi, yj}, (5)

PΘ(Ŷ ) = PΘ̃(Ŷ ). (6)

From the definition, we can see that the opposite of distinguishability, i.e., indistinguishability,
describes an undesired model: for any learned parameter Θ > 0, we can always find another Θ̃
which optimizes the loss equally well (Eq. (6)), but Eqs. (4-5) implies whenever PΘ predict yi,
PΘ̃ will predict yj instead, which reflects that the model cannot distinguish the two unseen labels.
Note that the notion of distinguishability is different from the identifiability in PGMs: the generic
identifiability (Allman et al., 2015), the strongest notion of identifiability, requires the model to be
identifiable up to label swapping, while the distinguishability aims to avoid the label swapping.

However, distinguishability is hard to verify since Eqs. (4-5) and (6) need to hold for any possible
configuration of Ȳ , Ŷ , and any pair of unseen labels. Fortunately, for the proposed PLRM, we
prove that distinguishability is equivalent to the asymmetry of the label relation structures when two
conditions hold. To state the required conditions, we first introduce the notations of consistency and
informativeness to characterize the label graph and ILFs.

Consistency. We discuss the consistency of a label graph to avoid an ambiguous or unrealistic label
graph. We interpret semantic labels ya, yb as sets A, B, and then connect the label relations to the set
relations (Fig. 2). Given the set interpretations, we define the consistency of label graph as:

Definition 2 (Consistent Label Graph). A label graph G = (Y, E) is consistent if the induced set
relations are consistent.

For example, assume Y = {ya, yb, yc}, and tab = tbc = tca = tsg. From tab, tbc, we can observe
that A ⫌ B ⫌ C, which contradicts to C ⫌ A implied by tca = tsg . Thus, G is inconsistent.

Informativeness. In addition, we try to describe what kind of ILF is desired. Intuitively, an ILF is
uninformative if it always "votes" for one of the desired labels. For example, if the desired label
space Y is {“Dog”, “Bird”}, then for an ILF λ1 outputting {“Husky”, “Bulldog”}, we know “Dog” is
non-exclusive to “Husky” and “Bulldog”, while “Bird” exclusive to both. In such case, λ1 can hardly
provide information to help distinguish “Dog” from “Bird”, because it always votes for “Dog”. On
the other hand, a binary classifier of “Husky”, i.e., λ2, is favorable since it could output “Not a Husky”
to avoid consistently voting for “Dog”. We can see an undesired ILF always votes for a single desired
label. To formally describe this, we define an informative ILF as:

Definition 3 (Informative ILF). An ILF λj is informative if, for ∀y ∈ Y , there exists Xi ∈ D s.t. the
output of λj on Xi is not in N (y,Yλj ), i.e., Ŷ j

i ̸∈ N (y,Yλj ).

Testable Conditions for Distinguishability. Based on the introduced notations, we prove the
necessary and sufficient condition for learned PLRM being able to distinguish unseen labels:

Theorem 2. For PLRM induced from a consistent label graph, as well as informative ILFs, for any
pair of yi, yj ∈ Y , they are indistinguishable, if and only if tik = tjk for ∀yk ∈ Ŷ .

Theorem 2 provides users with a testable condition: for any pair of unseen labels yi, yj , there should
exist at least one seen label yk such that yk has different label relations to yi and yj , i.e., tik ̸= tjk,
so that PLRM is able to distinguish yi and yj . In preliminary experiments, we observe the violation
of this condition causes a dramatic drop in overall performance (about 10 points). Notably, based on
Theorem 2, users could theoretically guarantee the distinguishability of a pair of unseen labels by
adding only one seen label and corresponding ILFs to break the symmetry.
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7 EXPERIMENTS

We demonstrate the applicability and performance of our method on image classification tasks
derived from ILSVRC2012 (Russakovsky et al., 2015) and text classification tasks derived from
LSHTC-3 (Partalas et al., 2015). Both datasets have off-the-shelf label relation structure (Deng et al.,
2014; Partalas et al., 2015), which are directed acyclic graphs (DAGS) and from which we could
query pairwise label relations. Indeed, there is a one-to-one mapping between a DAG structure of
labels and a consistent label graph (See App. E.1 for an example). The ILSVRC2012 dataset consists
of 1.2M training images from 1,000 leave classes; for non-leave classes, we follow Deng et al. (2014)
to aggregate images belonging to its descendent classes as its data points. The LSHTC-3 dataset
consists of 456,886 documents and 36,504 labels organized in a DAG.

7.1 SETUP

For each dataset, we randomly sample 100 different label graphs, each of which consists of 8 classes,
and use each label graph to construct a WIS task. For each label graph, we treat 3 of the sampled
classes as unseen classes and the other 5 as seen classes. The distinguishable condition in Sec. 6
is ensured for all the WIS tasks, and the performance drop when it is violated can be found in
App. G.1. We sample data belonging to unseen classes for our experiments and split them into
train and test set. For image classification tasks, we follow Mazzetto et al. (2021b;a) to train a
branch of image classifiers as supervision sources of seen classes. For text classification tasks, we
made keyword-based labeling functions as supervision sources of seen classes following Zhang et al.
(2021); each of the labeling functions returns its associated label when a certain keyword exists in
the text, otherwise abstains. Notably, all the involved supervision sources are "weak" because they
cannot predict the desired unseen classes. Experimental details and additional results are in App. F.

7.2 COMPARED METHODS AND RESULTS

In addition to the WS-LG baseline, which is an adaptation of Data Programming (Ratner et al., 2019)
to WIS task, and PLRM, we also include the following baselines. Note that all compared methods
input the same data, ILFs, and label relations throughout our experiments for fair comparisons.

Label Relation Majority Voting (LR-MV). We modify the majority voting method based on the
label’s non-exclusive neighbors: we replace ŷ predicted by any ILF with the set of desired labels
N (ŷ,Y), i.e., the desired labels with non-exclusive relation to ŷ, then aggregate the modified votes.

Weighted Label Relation Majority Voting (W-LR-MV). LR-MV only leverages exclusive/non-
exclusive label relations. To leverage fine-grained label relations, W-LR-MV attaches a weight to
each replaced label. Specifically, if the ILF’s output ŷ is replaced with its ancestor label y (subsumed
relation), then the weight of y equals 1, while for the other relations, the weight is 1

|Y∗(ŷ)| , where
Y∗(ŷ) = {y ∈ Y(ŷ)|tyŷ ̸= tsd}.
For the above methods, we compare the performance of (1) directly applying included models on the
test set and (2) the end models (classifiers) trained with inferred training labels.

Zero-Shot Learning (ZSL). It is non-trivial to apply ZSL methods, because ZSL assumes label
attributes for all classes and a labeled training set of seen classes, while WIS input an unlabeled
dataset of unseen classes, label relations and ILFs. Fortunately, the Direct Attribute Prediction
(DAP) (Lampert et al., 2013) method is able to make predictions solely based on attributes without
labeled data, by training attribute classifier p(ai|x) for each attribute ai. Therefore we include it in
our experiments. The details of applying DAP can be found in App. F.2.

Evaluation Results. For a fair comparison, we fix the network architecture of the classifiers for all
the methods. For image classification, we use ResNet-32 (He et al., 2016) and for text classification,
we use logistic regression with pre-trained text embedding (Reimers & Gurevych, 2019). The overall
results for both datasets can be found in Table 2. From the results, we can see that PLRM consistently
outperforms baselines. The advantages of PLRM show the effect of not just leveraging the label
graph, as the baselines do, but modeling the accuracy of ILFs and the strengths of label relations
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Table 2: Averaged evaluation results over 100 WIS tasks derived from LSHTC-3 and ILSVRC2012.

Method LSHTC-3 ILSVRC2012
Accuracy F1-score Accuracy F1-score

DAP 42.90 ± 13.53 35.98 ± 15.73 33.25 ± 3.68 29.13 ± 4.63

Label Model

LR-MV 58.86 ± 10.50 54.33 ± 11.10 46.88 ± 10.66 40.11 ± 16.44

W-LR-MV 59.28 ± 10.47 54.55 ± 11.36 41.39 ± 10.80 30.19 ± 16.94

WS-LG 62.60 ± 10.12 57.50 ± 11.19 53.68 ± 7.62 52.15 ± 7.94

PLRM 64.65 ± 11.30 60.01 ± 13.39 56.18 ± 7.35 54.94 ± 7.44

End Model

LR-MV 67.17 ± 12.25 62.49 ± 13.95 49.60 ± 12.80 42.83 ± 18.17

W-LR-MV 66.57 ± 11.73 61.80 ± 13.24 42.61 ± 12.46 31.34 ± 18.20

WS-LG 70.69 ± 13.05 67.36 ± 14.24 56.56 ± 9.68 54.57 ± 11.17

PLRM 72.32 ± 13.18 69.37 ± 14.41 58.38 ± 8.27 56.83 ± 8.49

as PLRM does. The reported results have high variance, which actually indicates the 100 different
WIS tasks are diverse and have varying difficulty. Also, we can see the end models are much better
than directly applying the label models on the test set; this shows that the end models are able to
generalize beyond the training labels produced by label models.

7.3 REAL-WORLD APPLICATION

In this section, on a commercial advertising system (CAS), we showcase how to reduce human
annotation efforts of new labeling tasks by formulating them as WIS problems. In a CAS, ads tagging
(classification) is a critical application for understanding the semantics of ads copy. When new ads
and tags are added to the system, manual annotations need to be collected for training a new classifier.
As tags are commonly organized as taxonomies, the label relations between existing and new tags are
readily available or can be trivially figured out by humans; Existing classifiers and the heuristic rules
previously used for annotating existing tags could serve as ILFs. Therefore, given (1) an unlabeled
dataset of new tags, (2) the label relations, and (3) ILFs, we formulate it as a WIS problem.

On such WIS formulation, we apply our method and baselines, to synthesize training labels of new
tags. Specifically, we have two WIS tasks where the tags are under the “Car Accessories” and
“Furniture” categories respectively. For both tasks, we have 3 new tags and leverage 5 existing
tags related to the new ones with given relations. On a test set, we evaluate the performance of
DAP and the quality of labels produced by label models, as shown in Table 3. Note that since we
re-use the existing labeling sources tailored for existing tags as ILFs and obtain label relations from
an existing taxonomy, we achieve these results without any manual annotation or creation of new
labeling functions. This demonstrates the potential of the proposed WIS task in real-world scenarios.

Table 3: Evaluation on product tagging with new tags.

Category Metric DAP LR-MV W-LR-MV WS-LG PLRM

Car Accessories F1 50.62 68.68 68.06 66.85 76.37
Accuracy 52.83 68.17 67.67 66.33 75.83

Furniture F1 30.81 64.70 61.45 70.59 80.57
Accuracy 33.60 72.53 72.13 74.51 82.02

8 CONCLUSION

We propose Weak Indirect Supervision (WIS), a new research problem which leverages indirect
supervision sources and label relations to synthesize training labels for training machine learning
models. We develop the first method for WIS called Probabilistic Label Relation Model (PLRM) with
the generalization error bound of both PLRM and end model. We provide a theoretically-principled
sanity test to ensure the distinguishability of unseen labels. Finally, we provide experiments to
demonstrate the effectiveness of PLRM and its advantages over baselines on both academic datasets
and industrial scenario.
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Reproducibility Statement. All the assumptions and proofs of our theory can be found in App. C
& D. Examples and illustrations of label graph are in App. E. Experimental details can be found in
App. F. Additional experiments are in App. G.
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SUPPLEMENTARY MATERIALS FOR
“CREATING TRAINING SETS VIA WEAK INDIRECT SUPERVISION”

The supplementary materials are organized as follows. In Appendix A, we provide a glossary of
variables and symbols used in this paper. In Appendix B, we provide the details of PLRM model.
In Appendix C and D, we provide the detailed proofs of Theorem 2 and Theorem 1 respectively. In
Appendix E, we provide the detailed examples and illustrations of label graph in WIS. In Appendix F
and G, we provide experimental details and additional experiment resulst respectively.

A GLOSSARY OF SYMBOLS

Table 4: Glossary of variables and symbols used in this paper.

Symbol Simplified Used for

Xi The i-th data point, Xi ∈ X
m Number of data points
Yi The true desired label of the i-th data point, Yi ∈ Y
y A semantic label, e.g., "dog"
Y The set of desired labels, Y = {y1, y2, . . . , yk}
k Cardinality of Y , i.e., k = |Y|
λj The j-th Indirect labeling function (ILF)
n Number of ILF
Ŷ j
i The output label of j-th ILF on i-th data point, Ŷ j

i ∈ Yλj

Ŷi The concatenation of ILFs’ output, Ŷi = [Ŷ 1
i , Ŷ

2
i , . . . , Ŷ

n
i ]

ŷj A semantic label in the label space of λj

Yλj
Yj Label label space of ILF λj , Yλj

= {ŷj1, ŷj2, . . . , ŷjkλj
}

kλj
kj Cardinality of the output space of ILF λ, i.e., kλj

= |Yλj
|

Ŷ Union set of all the Yλj
, Ŷ = {ŷ1, ŷ2, . . . , ŷk̂}

k̂ Cardinality of the Ŷ , i.e., k̂ = |Ŷ|
K Total number of labels, i.e., K = k̂ + k

Ȳ i Latent binary variable indicating whether the data should be assigned ŷi ∈ Ŷ .
Ȳ Concatenation of all latent binary variable, Ȳ = [Ȳ 1, . . . , Ȳ k̂]

G Label graph, G = (Ŷ ∪ Y, E)
E The set of label relations, E = {(yi, yj , tyiyj

)|tyiyj
∈ T , i < j,∀yi, yj ∈ V}

T The set of label relation types, T = {te, to, tsd, tsg}
te Exclusive label relation
to Overlap label relation
tsg Subsuming label relation
tsd Subsumed label relation
N (y, Ŷ) the set of non-exclusive neighbors of a given label y in Ŷ
ϕ A single dependency, or, factor function
Φ Concatenation of all individual dependency
M Number of total dependencies
θ A single parameter of the PGM
Θ Concatenation of all parameters of the PGM, Θ ∈ RM

Θ̂ The learned parameters
Θ∗ The golden parameters
W The parameter of an end model
Ŵ The learned parameters
W ∗ The golden parameters
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B DETAILS OF THE PLRM

We use Y, Ȳ , and Ŷ to represent random vector. Then, we give the formal form of the PLRM as:

PΘ(Y, Ȳ , Ŷ ) ∝ exp
(
Θ⊤Φ(Y, Ȳ , Ŷ )

)
. (7)

Recall that Y is the unobserved true label, Ȳ is the binary random vector, each of whose binary value
Ȳ i reflects whether the data should be assigned seen label ŷi ∈ Ŷ , and Ŷ is the concatenated outputs
of ILFs. Specifically, we enumerate Φ as below:

1. (Pseudo accuracy dependency): ∀j ∈ [n], y ∈ Y/{unknown}, ŷ ∈ Yλj , we have

ϕAcc
y,ŷ,j(Y, Ŷ

j) := 1{Y = y ∧ Ŷ j = ŷ ∧ ŷ ∈ N (y,Yλj
)}1

2. (Accuracy dependency): ∀j ∈ [n], ŷi ∈ Ŷ ∩ Yj we have

ϕAcc
ŷi,j(Ȳ

i, Ŷ j) := 1{Ȳ i = 1 ∧ Ŷ j = ŷi}
3. (Label relation dependency between seen labels): ∀ŷi, ŷj ∈ Ŷ, i < j

(a) if tŷiŷj = te, we have

ϕe
ŷi,ŷj

(Ȳ i, Ȳ j) := − 1{Ȳ i = 1 ∧ Ȳ j = 1}
(b) if tŷiŷj

= to, we have

ϕo
ŷi,ŷj

(Ȳ i, Ȳ j) := 1{Ȳ i = 1 ∧ Ȳ j = 1}
(c) if tŷiŷj = tsg , we have

ϕsg
ŷi,ŷj

(Ȳ i, Ȳ j) := − 1{Ȳ i = 0 ∧ Ȳ j = 1}
(d) if tŷiŷj

= tsd, we have

ϕsd
ŷi,ŷj

(Ȳ i, Ȳ j) := − 1{Ȳ i = 1 ∧ Ȳ j = 0}
4. (Label relation dependency between desired and seen labels): ∀y ∈ Y/{unknown}, ŷi ∈ Ŷ

(a) if tyŷi
= te, we have

ϕe
y,ŷi

(Y, Ȳ i) := − 1{Y = y ∧ Ȳ i = 1}
(b) if tyŷi

= to, we have

ϕo
y,ŷi

(Y, Ȳ i) := 1{Y = y ∧ Ȳ i = 1}
(c) if tyŷi = tsg , we have

ϕsg
y,ŷi

(Y, Ȳ i) := − 1{Y ̸= y ∧ Ȳ i = 1}
(d) if tyŷi = tsd, we have

ϕsd
y,ŷi

(Y, Ȳ i) := − 1{Y = y ∧ Ȳ i = 0}

And example of our PLRM is shown in Fig. 4, where square with difference colors corresond to
different dependency/factor functions in PLRM.
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Figure 4: PLRM.

1When ŷ /∈ N (y,Yλj ), ϕ
Acc
y,ŷ,j is always zero and will not occur in the model. Here we use this form for the

sack of rigorous representation.
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C PROOF OF THEOREM 2

C.1 SIMPLIFYING THE NOTATION

To simplify the indexing of dependencies, we use Φ1 to represent the concatenation of ϕ which
involves both Y and Ȳ , Φ2 to represent the concatenation of ϕ which involve both Y and Λ̂, and Φ3

to represent the concatenation of remaining ϕ which do not involve Y.

Specifically, Φ1 consists of k× k̂ components corresponding to the dependency between the k desired
labels and the k̂ seen labels. We use the subscript i, j to denote the dependency function between the
desired label yi and seen label ŷj , i.e.,

Φ1
i,j = ϕ?

yi,ŷj
,

where ? is the corresponding relation.

Similarly, Φ2 consists of k × (
∑n

j=1 kj) components corresponding to the dependency between the
k desired labels and the kj seen labels output by the ILF λj (j ∈ [n]), and we use Φ2

i,j,l to denote the

dependency of yi and ŷjl , and Φ2
i,j = (Φ2

i,j,l)
kj

l=1to denote the dependency of yi and ŷj .

According to Φ1, Φ2, and Φ3, we also divide the parameter Θ into Θ1 (with elements being Θ1
i,j

correspondingly), Θ2 (with elements being Θ2
i,j = (Θ2

i,j,l)
kj

l=1 correspondingly), and Θ3, and the
joint probability is then given as:

PΘ(Y, Ȳ , Ŷ ) =
exp

(
(Θ1)TΦ1(Y, Ȳ ) + (Θ2)⊤Φ2(Y, Ŷ ) + (Θ3)TΦ3(Ȳ , Ŷ )

)
∑

Y ′,Ȳ ′,Ŷ ′ exp
(
(Θ1)⊤Φ1(Y ′, Ȳ ′) + (Θ2)⊤Φ2(Y ′, Ŷ ′) + (Θ3)TΦ3(Ȳ ′, Ŷ ′)

) (8)

Also, for notation convenience, we adopt following simplifications:

1. ∀yi ∈ Y → ∀i ∈ [k] since |Y| = k, similarly, ∀ŷi ∈ Yj → ∀i ∈ [kj ] and ∀ŷi ∈ Ŷ → ∀i ∈
[k̂];

2. ∀λj → ∀j ∈ [n] since we have n ILFs in total;

3. ϕ
tyiyj
yi,yj → ϕt

yi,yj
where t = tyiyj

and can be seen from the subscript of the dependency.

C.2 PROPOSITIONS AND LEMMAS

First, we state some propositions and lemmas that will be useful in the proof to come.

Proposition 1 (Multi-class classification). For a multi-class classification task, ∀yi, yj ∈ Y , we have
tyiyj

= te. Similarly, ∀ŷa, ŷb ∈ Ŷ , we have tŷaŷb
= te.

Lemma 1. For a consistent label graph G and ∀ŷl ∈ Ŷ,∀yi, yj ∈ Y , if tyiŷl
= to, we have

tyj ŷl
̸= tsg .

Proof. For ∀yi, yj ∈ Y , based on Proposition 1, we know tyiyj
= te, which implies (1) the

intersection of the sets labeled by yi and yj is empty. For ∀ŷl ∈ Ŷ , if tyiŷl
= to, we have (2)

the intersection of the sets labeled by yi and ŷl is not empty. If tyj ŷl
= tsg, which implies (3)

yj ⫌ ŷl. Based on (2)(3), we have yi ∩ yj ̸= ∅, which is contradictory to (1). Thus, we prove when
tyiŷl

= to, tyj ŷl
̸= tsg .

Lemma 2. For an informative ILF λj and given any yd ∈ Y , there exists some ŷl ∈ Yj , such that,
Φ2

d,j,l(yd, ŷ) = 0, ∀l ∈ [kj ].

Proof. Because ILF λj is informative, we know there exists one ŷa ∈ Yj such that ŷa is exclusive to
yd, i.e., ŷa /∈ N (yd,Yj). Therefore, for any ŷl ∈ Ŷ , either ŷa ̸= ŷl, or ŷl = ŷa /∈ Yj , which leads to
the conclusion by the definition of Φ2

d,j,l = ϕAcc
yd,ŷl,j

.
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C.3 DEFINITIONS

Before the main proof, we connect the indistinguishablity of label relation structure with the depen-
dency structure of PLRM by introducing the concept of symmetry as follows:

Definition 4 (Symmetry). For yi, yj ∈ Y , we say yi and yj have symmetric dependency structure if
the following equation holds:

Φ1
i,l = Φ1

j,l,∀l ∈ k̂;

Φ2
i,a,b = Φ2

j,a,b,∀a ∈ [n], b ∈ [ka]. (9)

Based on the construction of PLRM, we know that for ∀yi, yj ∈ Y,∀ŷb ∈ Ŷ , tyiŷb
= tyj ŷb

(the
statement in Theorem 2) is equivalent to yi and yj have symmetric dependency structure.

C.4 EQUIVALENT STATEMENT OF THEOREM 2

Our main result states that asymmetric is equivalent to distinguishable as in the following theorem,
which can readily be seen to be identical to Theorem 2 in the main body of the paper:

Theorem 3. For a probability model defined as Eq. (8) induced from a consistent label graph and
informative ILFs, for any pair of yi, yj ∈ Y , yi and yj are distinguishable if and only if they have
asymmetric dependency structure.

C.5 PROOF OF THE NECESSITY IN THEOREM 3: NECESSARY CONDITION

We first prove that for any yi, yj ∈ Y , yi and yj have asymmetric dependency structure is the
necessary condition of that they are distinguishable.

Proof of Theorem 3. We prove this theorem by reduction to absurdity. Suppose yi and yj are sym-
metric. Then, by Eq. (8), the distribution of Y condition on any Ȳ and Ŷ can be calculated as
follows:

PΘ(Y = yi|Ȳ , Ŷ ) =
PΘ(yi, Ȳ , Ŷ )

PΘ(Ȳ , Ŷ )
.

On the other hand, applying Y = yi in the definition of Φ2 leads to

Φ2
r,a,l(yi, ·) = 0,∀r ∈ [k], r ̸= i,∀a ∈ [n],∀l ∈ [ka].

We further separate Φ1 into (Φ1
i )

k
i=1, where Φ1

i collects all the dependency in Φ1 with yi involved,
i.e.,

Φ1
i = (Φ1

i,j)
k̂
j=1,

with the corresponding parameters respectively denoted as Θ1
i with Θ1 = (Θ1

i )
k
i=1. Similarly, Φ2 is

also divided into (Φ2
i )

k
i=1 following the same routine and Θ2 is respectively divided into (Θ2

i )
k
i=1.

Specifically, if yi and yj are symmetric, we further have

Φ1
i = Φ1

j ,Φ
2
i = Φ2

j .

Based on the notation, PΘ(Y = yi|Ȳ , Ŷ ) can then be represented as

PΘ(Y = yi|Ȳ , Ŷ )

(∑
Y ′

exp
(
(Θ1)⊤Φ1(Y ′, Ȳ ) + (Θ2)⊤Φ2(Y ′, Ŷ ) + (Θ3)TΦ3(Ȳ , Ŷ )

))

=exp

(
k∑

l=1

(Θ1
l )

TΦ1
l (yi, Ȳ ) +

k∑
l=1

(Θ2
l )

TΦ2
l (yi, Ŷ ) + (Θ3)TΦ3(Ȳ , Ŷ )

)
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which further leads to

PΘ(Y = yi|Ȳ , Ŷ )

(∑
Y ′

exp
(
(Θ1)⊤Φ1(Y ′, Ȳ ) + (Θ2)⊤Φ2(Y ′, Ŷ )

))

=exp

(
k∑

l=1

(Θ1
l )

TΦ1
l (yi, Ȳ ) + (Θ2

i )
TΦ2

i (yi, Ŷ )

)
(10)

which is independent of Θ3. Similarly,

PΘ(Y = yj |Ȳ , Ŷ )

(∑
Y ′

exp
(
(Θ1)⊤Φ1(Y ′, Ȳ ) + (Θ2)⊤Φ2(Y ′, Ŷ )

))

=exp

(
k∑

l=1

(Θ1
l )

TΦ1
l (yi, Ȳ ) + (Θ2

j )
TΦ2

j (yj , Ŷ )

)
(11)

and ∀l ∈ [k]/{i, j},

PΘ(Y = yl|Ȳ , Ŷ )

(∑
Y ′

exp
(
(Θ1)⊤Φ1(Y ′, Ȳ ) + (Θ2)⊤Φ2(Y ′, Ŷ )

))

=exp

(
k∑

l=1

(Θ1
l )

TΦ1
l (yi, Ȳ ) + (Θ2

l )
TΦ2

l (yl, Ŷ )

)
(12)

Let Θ̃ be defined as follows:

Θ̃1
i = Θ1

j , Θ̃
1
j = Θ1

i , Θ̃
1
l = Θ1

l ,∀l /∈ {i, j},

Θ̃2
i = Θ2

j , Θ̃
2
j = Θ2

i , Θ̃
2
l = Θ2

l ,∀l /∈ {i, j},
and

Θ̃3 = Θ3.

We then have

PΘ(Y = yi|Ȳ , Ŷ )

PΘ̃(Y = yj |Ȳ , Ŷ )

=

(∑
Y ′ exp

(
(Θ̃1)⊤Φ1(Y ′, Ȳ ) + (Θ̃2)⊤Φ2(Y ′, Ŷ )

))
(∑

Y ′ exp
(
(Θ1)⊤Φ1(Y ′, Ȳ ) + (Θ2)⊤Φ2(Y ′, Ŷ )

))
· exp ((Θ1

i )
T(Φ1

i (yi, Ȳ )− Φ1
j (yj , Ȳ )) + (Θ1

j )
T(Φ1

j (yi, Ȳ )− Φ1
i (yj , Ȳ )) + (Θ2

i )
T(Φ2

i (yi, Ŷ )− Φ2
j (yj , Ŷ )))

=

(∑
Y ′ exp

(
(Θ̃1)⊤Φ1(Y ′, Ȳ ) + (Θ̃2)⊤Φ2(Y ′, Ŷ )

))
(∑

Y ′ exp
(
(Θ1)⊤Φ1(Y ′, Ȳ ) + (Θ2)⊤Φ2(Y ′, Ŷ )

)) .
Similarly,

PΘ(Y = yj |Ȳ , Ŷ )

PΘ̃(Y = yi|Ȳ , Ŷ )

=

(∑
Y ′ exp

(
(Θ̃1)⊤Φ1(Y ′, Ȳ ) + (Θ̃2)⊤Φ2(Y ′, Ŷ )

))
(∑

Y ′ exp
(
(Θ1)⊤Φ1(Y ′, Ȳ ) + (Θ2)⊤Φ2(Y ′, Ŷ )

))
· exp ((Θ1

j )
T(Φ1

j (yj , Ȳ )− Φ1
i (yi, Ȳ )) + (Θ1

i )
T(Φ1

i (yj , Ȳ )− Φ1
j (yi, Ȳ )) + (Θ2

j )
T(Φ2

j (yj , Ŷ )− Φ2
i (yi, Ŷ )))

=

(∑
Y ′ exp

(
(Θ̃1)⊤Φ1(Y ′, Ȳ ) + (Θ̃2)⊤Φ2(Y ′, Ŷ )

))
(∑

Y ′ exp
(
(Θ1)⊤Φ1(Y ′, Ȳ ) + (Θ2)⊤Φ2(Y ′, Ŷ )

)) .
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and ∀l ∈ [k]/{i, j},

PΘ(Y = yl|Ȳ , Ŷ )

PΘ̃(Y = yl|Ȳ , Ŷ )
=

(∑
Y ′ exp

(
(Θ̃1)⊤Φ1(Y ′, Ȳ ) + (Θ̃2)⊤Φ2(Y ′, Ŷ )

))
(∑

Y ′ exp
(
(Θ1)⊤Φ1(Y ′, Ȳ ) + (Θ2)⊤Φ2(Y ′, Ŷ )

)) .
Similarly, we have

PΘ(Y = unknown|Ȳ , Ŷ )

PΘ̃(Y = unknown|Ȳ , Ŷ )
=

(∑
Y ′ exp

(
(Θ̃1)⊤Φ1(Y ′, Ȳ ) + (Θ̃2)⊤Φ2(Y ′, Ŷ )

))
(∑

Y ′ exp
(
(Θ1)⊤Φ1(Y ′, Ȳ ) + (Θ2)⊤Φ2(Y ′, Ŷ )

)) .
Therefore, we have

PΘ(Y = yi|Ȳ , Ŷ )

PΘ̃(Y = yj |Ȳ , Ŷ )
=

PΘ(Y = yj |Ȳ , Ŷ )

PΘ̃(Y = yi|Ȳ , Ŷ )
=

PΘ(Y = y|Ȳ , Ŷ )

PΘ̃(Y = y|Ȳ , Ŷ )
,∀y ∈ Y/{yi, yj}.

Since
PΘ(Y = yi|Ȳ , Ŷ ) + PΘ(Y = yj |Ȳ , Ŷ ) +

∑
l ̸=i,j

PΘ(Y = yl|Ȳ , Ŷ ) = 1,

and
PΘ̃(Y = yj |Ȳ , Ŷ ) + PΘ̃(Y = yi|Ȳ , Ŷ ) +

∑
l ̸=i,j

PΘ̃(Y = yl|Ȳ , Ŷ ) = 1,

we obtain that
PΘ(Y = yi|Ȳ , Ŷ ) = PΘ̃(Y = yj |Ȳ , Ŷ )

PΘ(Y = yj |Ȳ , Ŷ ) = PΘ̃(Y = yi|Ȳ , Ŷ )

PΘ(Y = yl|Ȳ , Ŷ ) = PΘ̃(Y = yl|Ȳ , Ŷ ),

which indicates yi and yj indistinguishable, and leads to a contradictory.

The proof is completed.

C.6 PROOF OF THEOREM 3: SUFFICIENT CONDITION

We then prove that for any yi, yj ∈ Y , yi and yj have asymmetric dependency structure is the
sufficient condition of that they are distinguishable.

Proof. We use the same notations (Θ1
i )

k
i=1, (Θ2

i )
k
i=1, and Θ3 in Appendix C.5 to denote the separation

of the parameter Θ. Let Θ be any parameter satisfying that there exists a parameter Θ̃, such that Eq.
(4-5) holds. By Eqs. (10), (11), and Eq. (12) together with Eqs. (4-5), we have ∀r ∈ [k], r ̸= i, j,

exp ((Θ1
i )

TΦ1
i (yi, Ȳ ) + (Θ1

j )
TΦ1

j (yi, Ȳ ) + (Θ2
i )

TΦ2
i (yi, Ŷ ))

exp ((Θ̃1
i )

TΦ1
i (yj , Ȳ ) + (Θ̃1

j )
TΦ1

j (yj , Ȳ ) + (Θ̃2
j )

TΦ2
j (yj , Ŷ ))

=
exp ((Θ1

i )
TΦ1

i (yj , Ȳ ) + (Θ1
j )

TΦ1
j (yj , Ȳ ) + (Θ2

j )
TΦ2

j (yj , Ŷ ))

exp ((Θ̃1
i )

TΦ1
i (yi, Ȳ ) + (Θ̃1

j )
TΦ1

j (yi, Ȳ ) + (Θ̃2
i )

TΦ2
i (yi, Ŷ ))

=
exp ((Θ1

i )
TΦ1

i (yr, Ȳ ) + (Θ1
j )

TΦ1
j (yr, Ȳ ))

exp ((Θ̃1
i )

TΦ1
i (yr, Ȳ ) + (Θ̃1

j )
TΦ1

j (yr, Ȳ ))
=

exp ((Θ1
i )

TΦ1
i (yj , Ȳ ) + (Θ1

j )
TΦ1

j (yi, Ȳ ))

exp ((Θ̃1
i )

TΦ1
i (yj , Ȳ ) + (Θ̃1

j )
TΦ1

j (yi, Ȳ ))
.

By simple rearranging, we have

((Θ1
i )

TΦ1
i (yi, Ȳ ) + (Θ1

j )
TΦ1

j (yi, Ȳ ) + (Θ2
i )

TΦ2
i (yi, Ŷ ) + (Θ2

j )
TΦ2

j (yi, Ŷ ))

− ((Θ̃1
i )

TΦ1
i (yj , Ȳ ) + (Θ̃1

j )
TΦ1

j (yj , Ȳ ) + (Θ̃2
i )

TΦ2
i (yj , Ŷ ) + (Θ̃2

j )
TΦ2

j (yj , Ŷ ))

=((Θ1
i )

TΦ1
i (yj , Ȳ ) + (Θ1

j )
TΦ1

j (yj , Ȳ ) + (Θ2
i )

TΦ2
i (yj , Ŷ ) + (Θ2

j )
TΦ2

j (yj , Ŷ ))

− ((Θ̃1
i )

TΦ1
i (yi, Ȳ ) + (Θ̃1

j )
TΦ1

j (yi, Ȳ ) + (Θ̃2
i )

TΦ2
i (yi, Ŷ ) + (Θ̃2

j )
TΦ2

j (yi, Ŷ ))

=((Θ1
i )

TΦ1
i (yj , Ȳ ) + (Θ1

j )
TΦ1

j (yi, Ȳ ))− ((Θ̃1
i )

TΦ1
i (yj , Ȳ ) + (Θ̃1

j )
TΦ1

j (yi, Ȳ )). (13)
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By the equality between the second term and the third term in Eq. (13), we obtain that

(Θ1
j )

TΦ1
j (yi, Ȳ )− (Θ̃1

i )
TΦ1

i (yj , Ȳ )

=((Θ1
j )

TΦ1
j (yj , Ȳ ) + (Θ2

j )
TΦ2

j (yj , Ŷ ))− ((Θ̃1
i )

TΦ1
i (yi, Ȳ ) + (Θ̃2

i )
TΦ2

i (yi, Ŷ )). (14)

We further set Ȳ in Eq. (14) respectively to el (the one hot vector with its l-th position being 1) and
0 for any fixed l ∈ [k̂], i.e.,

((Θ1
j )

TΦ1
j (yi, el)− (Θ1

j )
TΦ1

j (yi,0))− ((Θ̃1
i )

TΦ1
i (yj , el)− (Θ̃1

i )
TΦ1

i (yj ,0))

=((Θ1
j )

TΦ1
j (yj , el)− (Θ1

j )
TΦ1

j (yj ,0))− ((Θ̃1
i )

TΦ1
i (yi, el)− (Θ̃1

i )
TΦ1

i (yi,0)),

which by simple rearranging further leads to

Θ1
j,l(Φ

1
j,l(yj , 1)− Φ1

j,l(yj , 0)− Φ1
j,l(yi, 1)) = Θ̃1

i,l(Φ
1
i,l(yi, 1)− Φ1

i,l(yi, 0)− Φ1
i,l(yj , 1)).

Since Θ1
j,l, Θ̃

1
i,l > 0, and by definition we have

|Φ1
j,l(yj , 1)− Φ1

j,l(yj , 0)− Φ1
j,l(yi, 1)| = 1,

and
|Φ1

i,l(yi, 1)− Φ1
i,l(yi, 0)− Φ1

i,l(yj , 1)| = 1,

we obtain Θ1
j,l = Θ̃1

i,l, and

Φ1
j,l(yj , 1)− Φ1

j,l(yj , 0)− Φ1
j,l(yi, 1) = Φ1

i,l(yi, 1)− Φ1
i,l(yi, 0)− Φ1

i,l(yj , 1). (15)

Therefore, either tyj ŷl
∈ {to, tsd, tsg} and tyiŷl

∈ {to, tsd, tsg}, or tyj ŷl
= te and tyiŷl

= te, which
by definition further indicates that Φ2

i = Φ2
j (recall the way we build dependency between Y and Ŷ ).

As l is arbitrarily picked, we then have Θ1
j is equal to Θ̃1

i component-wisely.

By the equality between the first term and the third term in Eq. (13) and following exact the same
routine, we also have Θ̃1

j = Θ1
i .

On the other hand, for any r ∈ [k̂], fixing Ȳ and Ŷ s (∀s ̸= r), and setting Ŷr = ŷrl (l ∈ kr,
ŷrl ∈ N (yj ,Yl)) in Eq. (14), we have

(Θ1
j )

TΦ1
j (yj , Ȳ ) + (Θ̃1

i )
TΦ1

i (yj , Ȳ ) + Θ2
j,r,lΦ

2
j,r,l(yj , ŷ

r
l ) +

∑
s ̸=r

Θ2
j,sΦ

2
j,s(yj , Y

s)

=(Θ1
j )

TΦ1
j (yi, Ȳ ) + (Θ̃1

i )
TΦ1

i (yi, Ȳ ) + Θ̃2
i,r,lΦ

2
i,r,l(yi, ŷ

r
l ) +

∑
s ̸=r

Θ̃2
i,sΦ

2
i,s(yi, Ŷ

s).

On the other hand, by Lemma 2, there exists some p, s.t., ŷrp /∈ N (yj ,Yr) (which by Φ2
i = Φ2

j further
leads to ŷrp /∈ N (yi,Yr)). Setting Ŷr = ŷrl leads to

(Θ1
j )

TΦ1
j (yj , Ȳ ) + (Θ̃1

i )
TΦ1

i (yj , Ȳ ) +
∑
s̸=r

Θ2
j,sΦ

2
j,s(yj , Y

s)

=(Θ1
j )

TΦ1
j (yi, Ȳ ) + (Θ̃1

i )
TΦ1

i (yi, Ȳ ) +
∑
s̸=r

Θ̃2
i,sΦ

2
i,s(yi, Ŷ

s).

Subtracting the above two equations leads to Θ2
j,a,l = Θ̃2

i,a,l. Since a and l are arbitrarily picked, we
conclude that Θ2

j = Θ̃2
i . Following the same routine, we also have Θ2

i = Θ̃2
j .

Therefore, by applying Θ1
j = Θ̃1

i , Θ1
i = Θ̃1

j , Θ2
j = Θ̃2

i , and Θ2
i = Θ̃2

j in Eq. (13), we have

(Θ1
i )

TΦ1
i (yi, Ȳ )− (Θ1

i )
TΦ1

j (yj , Ȳ ) = (Θ1
i )

TΦ1
i (yj , Ȳ )− (Θ1

i )
TΦ1

j (yi, Ȳ ),

(Θ1
j )

TΦ1
j (yj , Ȳ )− (Θ1

j )
TΦ1

i (yi, Ȳ ) = (Θ1
j )

TΦ1
j (yi, Ȳ )− (Θ1

j )
TΦ1

i (yj , Ȳ ).
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Let Ȳ = 1k̂ (i.e., the k̂-dimension all 1 vector), we have

(Θ1
i )

T((Φ1
i (yi,1k̂)− Φ1

i (yj ,1k̂))− ((Φ1
j (yj ,1k̂)− Φ1

j (yi,1k̂)))) = 0, (16)

(Θ1
j )

T((Φ1
i (yi,1k̂)− Φ1

i (yj ,1k̂))− ((Φ1
j (yj ,1k̂)− Φ1

j (yi,1k̂)))) = 0. (17)

Since yi and yj are asymmetric, we have that there exists l, such that tyiŷl
̸= tyj ŷl

. Concretely, by
Eq. (15), we have tyiŷl

∈ {to, tsd, tsg}, tyj ŷl
= {to, tsd, tsg}, and tyiŷl

̸= tyj ŷl
. On the other hand,

Φ1
i,l(yi, 1)− Φ1

i,l(yj , 1)) = Φ1
j,l(yj , 1)− Φ1

j,l(yi, 1),

if and only if tyiŷl
= to, tyj ŷl

= tsg , or tyj ŷl
= to, tyiŷl

= tsg , which contradicts Lemma 1.

Therefore,
Φ1

i,l(yi, 1)− Φ1
i,l(yj , 1)) ̸= Φ1

j,l(yj , 1)− Φ1
j,l(yi, 1).

In this case, solutions of Θ1
i ,Θ

1
j subject to respectively Eqs. (16) and (17) lie along a zero-measure

set.

The proof is completed.

D PROOF OF THEOREM 1

D.1 LEARNING ALGORITHM

We first present the algorithm for producing Θ̂ and Ŵ in Algorithm 1.

Algorithm 1 WIS

Require: Step size η, dataset D ⊂ X , and initial parameter Θ0.
Θ̂→ Θ0.
for all X ∈ D do

Independently sample (Y, Ȳ , Ŷ ) from πΘ̂, and (Y ′, Ȳ ′, Ŷ ′) from πΘ̂ conditionally given Ŷ ′ =

Ŷ (X).
Θ̂← Θ̂ + η(Φ(Y, Ȳ , Ŷ )− Φ(Y ′, Ȳ ′, Ŷ ′)).

Compute Ŵ as described in (3) using Θ̂.
output (Θ̂, Ŵ )

D.2 ASSUMPTIONS

First, the problem distribution π∗ needs to be accurately modeled by some distribution Θ∗ in the
family that we are trying to learn:

∃Θ∗ s.t. ∀(Y, Ŷ ), p(X,Y )∼π∗(Y, Ŷ ) = pθ∗(Y, Ŷ ). (18)

Secondly, given an example (X,Y ) ∼ π∗, we assume Y is independent of X given Ŷ (X):

(X,Y ) ∼ π∗ ⇒ Y ⊥ X | Ŷ (X). (19)

This assumption encodes the idea that while the ILFs can be arbitrarily dependent on the features,
they provide sufficient information to accurately identify the true label vector. Then, for any Θ,
accurately learning Θ from data distribution is possible. That is, there exists an unbiased estimator
Θ̂(D) which is a function of the dataset D of i.i.d from πΘ, such that, for any Θ and some c > 0,

Cov(Θ̂(D)) ⪯ I

2c|D| . (20)

And we are reasonably certain in our guess of latent variables, i.e., Y and Ȳ . That is, for any Θ,Θ∗,

EŶ ∗∼Θ∗

[
k∑

i=1

(ni + k̂)Var(Y,Ȳ ,Ŷ )∼πΘ
(1Y =yi |Ŷ = Ŷ ∗)2 +

k̂∑
i=1

(mi +K − 1)Var(Y,Ȳ ,Ŷ )∼πΘ
(Ȳ i|Ŷ = Ŷ ∗)2

] 1
2

≤ c√
2M

. (21)

21



Published as a conference paper at ICLR 2022

We also assume that the output of the last layer of end model hW has bounded ℓ∞ norm, that is, for
any possible parameter W ,

∥hW ∥∞ ≤ H. (22)

Finally, we assume that solving Eq. (3) has bounded generalization risk such that for some χ > 0,
solution Ŵ satisfies

EŴ

[
ℓΘ̂(Ŵ )−min

W
ℓΘ̂(W )

]
≤ χ. (23)

D.3 PROOF OF THEOREM 1

To begin with, we state two basic lemmas needed for proofs throughout this section:
Lemma D.1. Let x1, x2 be two binary random variable. Then we have variance of product of x1

and x2 can be bounded as

Var [x1x2] ≤ Var [x1] +Var [x2] .

Lemma D.2. Let Y be a random vector and ∥·∥s be the spectral norm. Then we have

∥Cov(Y, Y )∥s ≤
∑
i

Var(Yi).

Then, we borrow two lemmas from (Ratner et al., 2016), which are slightly different from the original
ones but can be easily proved following the same derivations:
Lemma D.3. [Lemma D.1 in (Ratner et al., 2016)] Given a family of maximum-entropy distributions

πΘ(Y, Ȳ , Ŷ ) =
1

ZΘ
exp (ΘTΦ(Y, Ȳ , Ŷ )).

If we let J be the maximum expected log-likelihood objective, under another distribution π∗, for the
event associated with the observed labeling function values Ŷ ,

J(Θ) = E(Y ∗,Ȳ ∗,Ŷ ∗)∼π∗

[
logP(Y,Ȳ ,Ŷ )∼πΘ

(
Ŷ = Ŷ ∗

)]
,

then its Hessian can be calculated as

∇2J(Θ) = E(Y ∗,Ȳ ∗,Ŷ ∗)∼π∗

[
Cov(Y,Ȳ ,Ŷ )∼πΘ

(
ϕ(Y, Ȳ , Ŷ ) | Ŷ = Ŷ ∗

)]
−Cov(Y,Ȳ ,Ŷ )∼πΘ

(ϕ(Y, Ȳ , Ŷ )).

Lemma D.4. [Lemma D.4 in (Ratner et al., 2016)] Suppose that we are looking at a WIS maximum
likelihood estimation problem and the objective function J(Θ) is strongly concave with concavity
parameter c > 0. If we run stochastic gradient descent using unbiased samples from a true
distribution πΘ∗ , then if we set step size as

η =
cϵ2

4
,

and run (using a fresh sample at each iteration) for T steps, where

T =
2

c2ϵ2
log

(
2 ∥Θ0 −Θ∗∥2

ϵ

)
.

We can bound the expected parameter estimation error with

E
∥∥∥Θ̂−Θ∗

∥∥∥2 ≤Mϵ2, (24)

where M is the dimension of Θ.

Based on Lemma D.4, in order to obtain the optimization error with respect to the estimated Θ̂
produced by Algorithm 1, we only need to show that the WIS object function J(Θ)2 is strongly
concave. We prove this through the following lemma, which is a non-trivial extension of Lemma D.3
in (Ratner et al., 2016) given the fact that we have multiple latent variables and relatively complex
dependency structures with comparison to (Ratner et al., 2016):

2Note that, in the Eq. (2) of the main body of the paper, we are minimizing −J(Θ), which is equivalent to
maximizing J(Θ) as discussed here.
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Lemma D.5. [Extension of Lemma D.3 in (Ratner et al., 2016)] With conditions (20) and (21), the
WIS objective function J(Θ) is strongly concave with strong convexity c.

We then come to bound the generalization error of Ŵ produced by Algorithm 1, using the following
non-trivial extension of Lemma D.5 in (Ratner et al., 2016):

Lemma D.6. [Extension of Lemma D.5 in (Ratner et al., 2016)] Suppose that conditions (18)-(23)
hold. Let Ŵ be the learned parameters of the end model produced by Algorithm 1, and ℓ(W ∗) be the
minimum of cross entropy loss function ℓ. Then, we can bound the expected risk with

E
[
ℓ(Ŵ )− ℓ(W ∗)

]
≤ χ+ 4cHϵ.

Finally, we conclude Lemmas (D.4), (D.5) and (D.6) as the following theorem, which is identical to
the Theorem 1 in the main body of the paper:

Theorem 4 (Extension of Theorem 2 in (Ratner et al., 2016)). Suppose that we run Algoirthm 1 on a
WIS specification to produce Θ̂ and Ŵ , and all conditions of Lemmas (D.5) and (D.6) are satisfied.
Then, for any ϵ > 0, if we set the step size to be

η =
cϵ2

4

and the input dataset D is large enough such that

|D| > 2

c2ϵ2
log

(
2 ∥Θ0 −Θ∗∥2

ϵ

)
,

then we can bound the expected parameter error and the expected risk as:

E
∥∥∥Θ̂−Θ∗

∥∥∥2 ≤Mϵ2, E
[
ℓ(Ŵ )− ℓ(W ∗)

]
≤ χ+ 4cHϵ.

D.4 PROOFS OF LEMMAS

Lemma D.1. Let x1, x2 be two binary random variable. Then we have variance of product of x1

and x2 can be bounded as

Var [x1x2] ≤ Var [x1] +Var [x2] .

Proof. Joint distribution of x1 and x2 can be listed as the following table: (where p1+p2+p3+p4 =
1)

x1/x2 0 1
0 p1 p2
1 p3 p4

Then we have
Var [x1x2] = p4 − p24 = p4(p1 + p2 + p3),

while

Var [X1] +Var [X2] = (p2 + p4)(p1 + p3) + (p3 + p4)(p1 + p2) ≥ p4(p1 + p2 + p3).

The proof is completed.

Lemma D.2. Let Y be a random vector and ∥·∥s be the spectral norm. Then we have

∥Cov(Y, Y )∥s ≤
∑
i

Var(Yi).
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Proof. By definition of spectral norm, we have

∥Cov(Y, Y )∥s = max
∥x∥2≤1

xTCov(Y, Y )x

Where x is a constant vector. And by Cauchy-Schwarz inequality,

xTCov(Y, Y )x = E
[
xT(Y − E [Y ])(Y − E [Y ])Tx

]
≤ E

[
∥x∥2 ∥Y − E [Y ]∥2

]
.

Because x is a constant vector and ∥x∥ ≤ 1,

max
∥x∥2≤1

E
[
∥x∥2 ∥Y − E [Y ]∥2

]
= max

∥x∥2≤1
∥x∥2 E

[
∥Y − E [Y ]∥2

]
= max

∥x∥2≤1
∥x∥2

[∑
i

Var(Yi)

]
=
∑
i

Var(Yi).

The proof is completed.

Lemma D.5. [Extension of Lemma D.3 in (Ratner et al., 2016)] With conditions (20) and (21), the
WIS objective function J(Θ) is strongly concave with strong convexity c.

Proof. By Lemma D.3, hessian matrix of J can be decomposed as follows:

∇2J(Θ) = EŶ ∗∼πΘ∗

[
Cov(Y,Ȳ ,Ŷ )∼πΘ

(
Φ(Y, Ȳ , Ŷ ) | Ŷ = Ŷ ∗

)]
−Cov(Y,Ȳ ,Ŷ )∼πΘ

(Φ(Y, Ȳ , Ŷ )).

Basically, to prove that J(Θ) is strongly concave with strong convexity c, we need to show for a real
number c > 0,

∇2J(Θ) ⪯ cI.

We calculate each term separately: for the first term

A = EŶ ∗∼πΘ∗

[
Cov(Y,Ȳ ,Ŷ )∼πΘ

(
Φ(Y, Ȳ , Ŷ ) | Ŷ = Ŷ ∗

)]
,

since A is symmetric, for any real number c, A ⪯ cI, if and only if its spectral norm ∥A∥s ≤ c,
where ∥A∥s equals to the eigenvalue of A with largest absolute value.

Since by definition, vector function Φ(Y, Ȳ , Ŷ ) can be represented as:

Φ(Y, Ȳ , Ŷ ) =



(
ϕAcc
yi,ŷ

j
l ,j

(Y, Ŷ j)
)
i∈[k],j∈[n],ŷj

l ∈N (yi,Yj)(
ϕAcc
ŷi,j

(Ȳ i, Ŷ j)
)
j∈[n],ŷi∈Yj(

ϕt
ŷi,ŷj

(Ȳ i, Ȳ j)
)
i,j∈[k̂](

ϕt
yi,ŷj

(Y, Ȳ j)
)
i∈[k],j∈[k̂]


,
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by Lemma D.2, we have A can be further bounded by

A ≤

EŶ ∗∼πΘ∗

 k∑
i=1

n∑
j=1

∑
ŷj
l ∈N (yi,Yj)

Var(Y,Ȳ ,Ŷ )∼πΘ

(
ϕAcc
yi,ŷ

j
l ,j

(Y, Ŷ j) | Ŷ = Ŷ ∗
)

+ EŶ ∗∼πΘ∗

 n∑
j=1

∑
ŷi∈Yj

Var(Y,Ȳ ,Ŷ )∼πΘ

(
ϕAcc
ŷi,j(Ȳ

i, Ŷ j) | Ŷ = Ŷ ∗
)

+ EŶ ∗∼πΘ∗

 ∑
1≤i,j≤k̂

Var(Y,Ȳ ,Ŷ )∼πΘ

(
ϕt
ŷi,ŷj

(Ȳ i, Ȳ j) | Ŷ = Ŷ ∗
)

+ EŶ ∗∼πΘ∗

 k∑
i=1

k̂∑
j=1

Var(Y,Ȳ ,Ŷ )∼πΘ

(
ϕt
yi,ŷj

(Y, Ȳ j) | Ŷ = Ŷ ∗
)

=A1 +A2 +A3 +A4,

where

A1 =EŶ ∗∼πΘ∗

 k∑
i=1

n∑
j=1

∑
ŷj
l ∈N (yi,Yj)

Var(Y,Ȳ ,Ŷ )∼πΘ

(
ϕAcc
yi,ŷ

j
l ,j

(Y, Ŷ j) | Ŷ = Ŷ ∗
) ;

A2 =EŶ ∗∼πΘ∗

 n∑
j=1

∑
ŷl∈Yj

Var(Y,Ȳ ,Ŷ )∼πΘ

(
ϕAcc
ŷl,j

(Y, Ŷ j) | Ŷ = Ŷ ∗
) ;

A3 =EŶ ∗∼πΘ∗

 ∑
1≤i,j≤k̂

Var(Y,Ȳ ,Ŷ )∼πΘ

(
ϕt
ŷi,ŷj

(Ȳ i, Ȳ j) | Ŷ = Ŷ ∗
) ;

A4 =EŶ ∗∼πΘ∗

 k∑
i=1

k̂∑
j=1

Var(Y,Ȳ ,Ŷ )∼πΘ

(
ϕt
yi,ŷj

(Y, Ȳ j) | Ŷ = Ŷ ∗
) .

We then bound the four terms respectively. As for A1, for fixed Ŷ ∗, we have
k∑

i=1

n∑
j=1

∑
ŷj
l ∈N (yi,Yj)

Var(Y,Ȳ ,Ŷ )∼πΘ

(
ϕAcc
yi,ŷ

j
l ,j

(Y, Ŷ j) | Ŷ = Ŷ ∗
)

=

k∑
i=1

n∑
j=1

∑
ŷj
l ∈N (yi,Yj)

Var(Y,Ȳ ,Ŷ )∼πΘ

(
1Y=yi∧Ŷ j=ŷj

l
| Ŷ = Ŷ ∗

)

=

k∑
i=1

 ∑
j∈[n],ŷj

l ∈N (yi,Yj),(Ŷ ∗)j=ŷj
l

Var(Y,Ȳ ,Ŷ )∼πΘ

(
1Y=yi

| Ŷ = Ŷ ∗
)

=

k∑
i=1

 ∑
j∈[n],ŷj

l ∈N (yi,Yj),(Ŷ ∗)j=ŷj
l

Var(Y,Ȳ ,Ŷ )∼πΘ

(
1Y=yi | Ŷ = Ŷ ∗

)
≤

k∑
i=1

niVar(Y,Ȳ ,Ŷ )∼πΘ

(
1Y=yi

| Ŷ = Ŷ ∗
)
,

where ni is the number of ILFs whose label space contains label that is non-exclusive to label yi, i.e.,
ni = |{j ∈ [n]|N (yi,Yj) ̸= ∅}|.
Therefore, we have

A1 ≤
k∑

i=1

niEŶ ∗∼πΘ∗Var(Y,Ȳ ,Ŷ )∼πΘ

(
1Y=yi

| Ŷ = Ŷ ∗
)
.
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Similarly, for A2, we have

A2 ≤
k̂∑

i=1

miEŶ ∗∼πΘ∗Var(Y,Ȳ ,Ŷ )∼πΘ

(
Ȳ i | Ŷ = Ŷ ∗

)
,

where mi is the number of ILFs whose label space contains the label ŷi.

As for A3, for fixed Ŷ ∗ and any ŷi, ŷj ∈ Ŷ , we further separate the proof into subcases by tŷiŷj

which is simplified as t:

(1). t = to. In this case,

Var(Y,Ȳ ,Ŷ )∼πΘ

(
ϕt
ŷi,ŷj

(Ȳ i, Ȳ j) | Ŷ = Ŷ ∗
)

=Var(Y,Ȳ ,Ŷ )∼πΘ

(
1Ȳ i=Ȳ j | Ŷ = Ŷ ∗

)
=Var(Y,Ȳ ,Ŷ )∼πΘ

(
Ȳ iȲ j | Ŷ = Ŷ ∗

)
(∗)
≤Var(Y,Ȳ ,Ŷ )∼πΘ

(
Ȳ i | Ŷ = Ŷ ∗

)
+Var(Y,Ȳ ,Ŷ )∼πΘ

(
Ȳ j | Ŷ = Ŷ ∗

)
,

where Eq. (∗) is due to Lemma D.1.

(2). t = te. Similarly,

Var(Y,Ȳ ,Ŷ )∼πΘ

(
ϕt
ŷi,ŷj

(Ȳ i, Ȳ j) | Ŷ = Ŷ ∗
)

=Var(Y,Ȳ ,Ŷ )∼πΘ

(
−1Ȳ i=Ȳ j=1 | Ŷ = Ŷ ∗

)
=Var(Y,Ȳ ,Ŷ )∼πΘ

(
1Ȳ i=Ȳ j=1 | Ŷ = Ŷ ∗

)
=Var(Y,Ȳ ,Ŷ )∼πΘ

(
Ȳ iȲ j | Ŷ = Ŷ ∗

)
≤Var(Y,Ȳ ,Ŷ )∼πΘ

(
Ȳ i | Ŷ = Ŷ ∗

)
+Var(Y,Ȳ ,Ŷ )∼πΘ

(
Ȳ j | Ŷ = Ŷ ∗

)
,

(3). t = tsg . In this case,

Var(Y,Ȳ ,Ŷ )∼πΘ

(
ϕt
ŷi,ŷj

(Ȳ i, Ȳ j) | Ŷ = Ŷ ∗
)

=Var(Y,Ȳ ,Ŷ )∼πΘ

(
−1Ȳ i=1,Ȳ j=0 | Ŷ = Ŷ ∗

)
=Var(Y,Ȳ ,Ŷ )∼πΘ

(
(1− Ȳ i)Ȳ j | Ŷ = Ŷ ∗

)
≤Var(Y,Ȳ ,Ŷ )∼πΘ

(
1− Ȳ i | Ŷ = Ŷ ∗

)
+Var(Y,Ȳ ,Ŷ )∼πΘ

(
Ȳ j | Ŷ = Ŷ ∗

)
=Var(Y,Ȳ ,Ŷ )∼πΘ

(
Ȳ i | Ŷ = Ŷ ∗

)
+Var(Y,Ȳ ,Ŷ )∼πΘ

(
Ȳ j | Ŷ = Ŷ ∗

)
,

(4). t = tsd. Similar to (3).,

Var(Y,Ȳ ,Ŷ )∼πΘ

(
ϕt
ŷi,ŷj

(Ȳ i, Ȳ j) | Ŷ = Ŷ ∗
)

=Var(Y,Ȳ ,Ŷ )∼πΘ

(
−1Ȳ i=0,Ȳ j=1 | Ŷ = Ŷ ∗

)
=Var(Y,Ȳ ,Ŷ )∼πΘ

(
(1− Ȳ j)Ȳ i | Ŷ = Ŷ ∗

)
≤Var(Y,Ȳ ,Ŷ )∼πΘ

(
1− Ȳ j | Ŷ = Ŷ ∗

)
+Var(Y,Ȳ ,Ŷ )∼πΘ

(
Ȳ i | Ŷ = Ŷ ∗

)
=Var(Y,Ȳ ,Ŷ )∼πΘ

(
Ȳ i | Ŷ = Ŷ ∗

)
+Var(Y,Ȳ ,Ŷ )∼πΘ

(
Ȳ j | Ŷ = Ŷ ∗

)
,
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Combining (1), (2), (3), and (4), we have

A3 ≤
k̂∑

i=1

(k̂ − 1)EŶ ∗∼πΘ∗Var(Y,Ȳ ,Ŷ )∼πΘ

(
Ȳ i | Ŷ = Ŷ ∗

)
,

As for A4, by similar discussion of A3,

A4 ≤
k̂∑

i=1

kEŶ ∗∼πΘ∗Var(Y,Ȳ ,Ŷ )∼πΘ

(
Ȳ i | Ŷ = Ŷ ∗

)
+

k∑
i=1

k̂EŶ ∗∼πΘ∗Var(Y,Ȳ ,Ŷ )∼πΘ

(
1Y=yi | Ŷ = Ŷ ∗

)
.

Combining estimation of A1, A2, A3, A4, and by condition (21) we have

∥A∥s
≤A1 +A2 +A3 +A4

≤EŶ ∗∼πΘ∗

 k∑
i=1

(ni + k̂)VarY,Ŷ (1Y=yi
|Ŷ = Ŷ ∗) +

k̂∑
i=1

(mi +K − 1)VarY,Ŷ (Ȳ
i|Ŷ = Ŷ ∗)


≤EŶ ∗∼πΘ∗

 k∑
i=1

(ni + k̂)Var2
Y,Ŷ

(Y |Ŷ = Ŷ ∗) +

k̂∑
i=1

(mi +K − 1)Var2
Y,Ŷ

(Ȳ i|Ŷ = Ŷ ∗)

 1
2

·
(

k∑
i=1

(ni + k̂) +

K∑
i=1

(mi +K − 1)

) 1
2

≤ c√
2M
·
√
2M ≤ c,

which further leads to
A ⪯ cI.

For the second term B = Cov(Y,Ȳ ,Ŷ )∼πΘ
(Φ(Y, Ȳ , Ŷ )),

B = E(Y,Ȳ ,Ŷ )∼πΘ

[
(Φ(Y, Ȳ , Ŷ )− E(Y,Ȳ ,Ŷ )∼πΘ

[Φ(Y, Ȳ , Ŷ )])2
]

= EY,Ȳ ,Ŷ∼πΘ


Φ(Y, Ȳ , Ŷ )−

∑
Y ′,Ȳ ′,Ŷ ′ Φ(Y ′, Ȳ ′, Ŷ ′) exp

(
ΘTΦ(Y ′, Ȳ ′, Ŷ ′)

)
∑

Y ′,Ȳ ′,Ŷ ′ exp
(
ΘTΦ(Y ′, Ȳ ′, Ŷ ′)

)
2


= EY,Ȳ ,Ŷ∼πΘ


∇Θ log

(
exp

(
ΘTΦ(Y, Ȳ , Ŷ )

))
−∇Θ log

 ∑
Y ′,Ȳ ′,Ŷ ′

exp
(
ΘTΦ(Y ′, Ȳ ′, Ŷ ′)

)2


= E(Y,Ȳ ,Ŷ )∼πΘ

[(
∇Θ log πΘ(Y, Ȳ , Ŷ )

)2]
,

where E(Y,Ȳ ,Ŷ )∼πΘ

[(
∇Θ log πΘ(Y, Ȳ , Ŷ )

)2]
is the Fisher Information of Θ. By the Cramér-Rao

bound and the condition (20),

I

2c|D| ⪰ Cov(Θ̂) ⪰
(
DE(Y,Ŷ )∼πΘ

[(
∇Θ log πΘ(Y, Ŷ )

)2])−1

,

which further leads to

B = E(Y,Ȳ ,Ŷ )∼πΘ

[(
∇Θ log πΘ(Y, Ȳ , Ŷ )

)2]
⪰ 2cI.

The proof is completed by putting estimation of terms A and B together.
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Lemma D.6. [Extension of Lemma D.5 in (Ratner et al., 2016)] Suppose that conditions (18)-(23)
hold. Let Ŵ be the learned parameters of the end model produced by Algorithm 1, and ℓ(W ∗) be the
minimum of cross entropy loss function ℓ. Then, we can bound the expected risk with

E
[
ℓ(Ŵ )− ℓ(W ∗)

]
≤ χ+ 4cHϵ.

Proof. We begin by rewriting objective of expected loss minimization problem using law of total
expectation as follows:

ℓ(W ) =E(X,Y )∼π∗
[
E(X,Y )∼π∗ [H(Y, σ(h(X,W )))|X]

]
=E(X′,Y ′)∼π∗

[
E(X,Y )∼π∗ [H(Y, σ(h(X,W )))|X = X ′]

]
=E(X′,Y ′)∼π∗

[
E(X,Y )∼π∗ [H(Y, σ(h(X ′,W )))|X = X ′]

]
and by our conditional independence assumption (condition (19)), we have

P(Y |X = X ′) = P(Y |Ŷ (X) = Ŷ (X ′)),

which further leads to

ℓ(W ) =E(X′,Y ′)∼π∗

[
E(X,Y )∼π∗

[
H(Y, σ(h(X ′,W )))

∣∣∣Ŷ (X) = Ŷ (X ′)
]]

=E(X′,Y ′)∼π∗

[
E(Y,Ŷ )∼πΘ∗

[
H(Y, σ(h(X ′,W )))

∣∣∣Ŷ = Ŷ (X ′)
]]

On the other hand, if we are minimizing the model with learned parameter Θ̂, we will be actually
minimizing

ℓΘ̂(W ) = E(X′,Y ′)∼π∗

[
E(Y,Ŷ )∼πΘ̂

[
H(Y, σ(h(X ′,W )))

∣∣∣Ŷ = Ŷ (X ′)
]]

,

where for any X ′, E(Y,Ŷ )∼πΘ̂

[
H(Y, σ(h(X ′,W )))

∣∣∣Ŷ = Ŷ (X ′)
]

can be further calculated as

E(Y,Ŷ )∼πΘ̂

[
H(Y, σ(h(X ′,W )))

∣∣∣Ŷ = Ŷ (X ′)
]

=

k∑
l=1

log (σ(h(X ′,W ))l)P(Y,Ŷ )∼πΘ̂
(Y = yl|Ŷ = Ŷ (X ′)).

For simplification, we rewrite P(Y,Ŷ )∼πΘ̂
(Y = yl|Ŷ = Ŷ (X ′)) as follows with slight abuse of

notations:

P(Y,Ŷ )∼πΘ̂
(Y = yl|Ŷ = Ŷ (X ′)) = PπΘ̂

(yl|Ŷ (X ′)),

and similarly

E(X′,Y ′)∼π∗ = Eπ∗ ,

Let lX′
△
= argminl log (σ(h(X

′,W ))l). The difference between the loss functions will be

|ℓΘ̂(W )− ℓ(W )| =

∣∣∣∣∣Eπ∗

[
k∑

l=1

log
(
σ(h(X ′,W ))l

) (
PπΘ∗ (yl|Ŷ (X ′))− Pπ

Θ̂
(yl|Ŷ (X ′))

)]∣∣∣∣∣
=
∣∣∣Eπ∗

[
log
(
σ(h(X ′,W ))lX′

) (
PπΘ∗ (ylX′ |Ŷ (X ′))− Pπ

Θ̂
(ylX′ |Ŷ (X ′))

)]
+ Eπ∗

 ∑
l ̸=lX′

log
(
σ(h(X ′,W ))l

) (
PπΘ∗ (yl|Ŷ (X ′))− Pπ

Θ̂
(yl|Ŷ (X ′))

)∣∣∣∣∣∣ .
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Furthermore,∣∣∣Eπ∗

[
log
(
σ(h(X ′,W ))lX′

) (
PπΘ∗ (ylX′ |Ŷ (X ′))− PπΘ̂

(ylX′ |Ŷ (X ′))
)]

+ Eπ∗

∑
l ̸=lX′

log (σ(h(X ′,W ))l)
(
PπΘ∗ (yl|Ŷ (X ′))− PπΘ̂

(yl|Ŷ (X ′))
)∣∣∣∣∣∣

=

∣∣∣∣∣∣Eπ∗

log (σ(h(X ′,W ))lX′

)− ∑
l ̸=lX′

PπΘ∗ (yl|Ŷ (X ′)) +
∑

j ̸=lX′

PπΘ̂
(yl|Ŷ (X ′))


+ Eπ∗

∑
l ̸=lX′

log (σ(h(X ′,W ))l)
(
PπΘ∗ (yl|Ŷ (X ′)) − PπΘ̂

(yl|Ŷ (X ′))
)∣∣∣∣∣∣

=

∣∣∣∣∣∣Eπ∗

∑
l ̸=lX′

(
log (σ(h(X ′,W ))l)− log

(
σ(h(X ′,W ))lX′

)) (
PπΘ∗ (yl|Ŷ (X ′))− PπΘ̂

(yl|Ŷ (X ′))
)∣∣∣∣∣∣

=

∣∣∣∣∣∣Eπ∗

∑
l ̸=lX′

(
h(X ′,W )l − h(X ′,W )lX′

) (
PπΘ∗ (yl|Ŷ (X ′)).− PπΘ̂

(yl|Ŷ (X ′))
)∣∣∣∣∣∣ . (25)

Let
h̄(l1, l2) = h(X ′,W )l1 − h(X ′,W )l2 .

By Eq. (22), we have for any l ∈ [k],

0 ≤ h̄(l, lX′) ≤ 2H.

For any fixed X ′, define gX′(Θ) as follows:

gX′(Θ) =
∑
l ̸=lX′

h̄(l, lX′)PπΘ
(yl|Ŷ (X ′)), (26)

based on which we have ∣∣ℓΘ̂(W )− ℓ(W )
∣∣ ≤ ∣∣∣Eπ∗

(
gX′(Θ̂)− gX′(Θ∗)

)∣∣∣
By First Mean Value Theorem,

gX′(Θ̂)− gX(Θ∗) = ⟨∇gX′(ξ), Θ̂−Θ∗⟩ ≤ ∥Θ̂−Θ∗∥∥∇gX′(ξ)∥.

We then bound ∇gX(ξ) element-wisely:

(1). For any i ∈ [k], j ∈ [n], ŷjl ∈ N (yi,Yj), if i = lX′ , Ŷ j(X ′) = ŷjl ,∣∣∣∣∣∣ ∂gX′(ξ)

∂θAcc
yi,ŷ

j
l ,j

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
l ̸=lX′

h̄(l, lX′)
∂Pπξ

(yl|Ŷ (X ′))

∂θAcc
yi,ŷ

j
l ,j

∣∣∣∣∣∣
=

∣∣∣∣∣∣−
∑
l ̸=lX′

h̄(l, lX′)Pπξ
(yi|Ŷ (X ′))Pπξ

(yl|Ŷ (X ′))

∣∣∣∣∣∣
=
∑
l ̸=lX′

h̄(l, lX′)Pπξ
(yi|Ŷ (X ′))Pπξ

(yl|Ŷ (X ′))

≤2HPπξ
(yi|Ŷ (X ′))(1− Pπξ

(yi|Ŷ (X ′)))

=2HVar
[
1Y=yi

|Ŷ (X ′)
]
.
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If i ̸= lX′ , Ŷ j(X ′) = ŷjl ,

∣∣∣∣∣∣ ∂gX′(ξ)

∂θAcc
yi,ŷ

j
l ,j

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
l ̸=lX′

h̄(l, lX′)
∂Pπξ

(yl|Ŷ (X ′))

∂θAcc
yi,ŷ

j
l ,j

∣∣∣∣∣∣
=

∣∣∣∣∣∣−
∑

l/∈{i,lX′}

h̄(l, lX′)Pπξ
(yi|Ŷ (X ′))Pπξ

(yl|Ŷ (X ′))

+ h̄(i, lX′)
(
Pπξ

(yi|Ŷ (X ′))− Pπξ
(yi|Ŷ (X ′))Pπξ

(yi|Ŷ (X ′))
)∣∣∣

≤max

 ∑
l/∈{i,lX′}

h̄(l, lX′)Pπξ
(yi|Ŷ (X ′))Pπξ

(yl|Ŷ (X ′)),

h̄(i, lX′)
(
Pπξ

(yi|Ŷ (X ′))− Pπξ
(yi|Ŷ (X ′))Pπξ

(yi|Ŷ (X ′))
)}

≤2HPπξ
(yi|Ŷ (X ′))(1− Pπξ

(yi|Ŷ (X ′)))

=2HVar
[
1Y=yi |Ŷ (X ′)

]
.

If Ŷ j(X ′) ̸= ŷjl ,

∣∣∣∣∣∣ ∂gX′(ξ)

∂θAcc
yi,ŷ

j
l ,j

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
l ̸=lX′

h̄(l, lX′)
∂Pπξ

(yl|Ŷ (X ′))

∂θAcc
yi,ŷ

j
l ,j

∣∣∣∣∣∣ = 0.

(2). For j ∈ [n], ŷr ∈ Yj , if Ŷ j(X ′) = ŷr,

∣∣∣∣∣∂gX′(ξ)

∂θAcc
ŷr,j

∣∣∣∣∣ =
∣∣∣∣∣∣
∑
l ̸=lX′

h̄(l, lX′)
∂Pπξ

(yl|Ŷ (X ′))

∂θAcc
ŷr,j

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
l ̸=lX′

h̄(l, lX′)
(
Pπξ

(Y = yl, Ȳ
r = 1|Ŷ (X ′))− Pπξ

(Y = yl|Ŷ (X ′))Pπξ
(Ȳ r = 1|Ŷ (X ′))

)∣∣∣∣∣∣ .
Let

f1(l) = Pπξ
(Y = yl, Ȳ

r = 1|Ŷ (X ′))

f2(l) = Pπξ
(Y = yl|Ŷ (X ′))Pπξ

(Ȳ r = 1|Ŷ (X ′)),

and

B1 = {l : f1(l) ≥ f2(l), l ̸= lX′},
B2 = {l : f1(l) < f2(l), l ̸= lX′}.
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Therefore,∣∣∣∣∣∣
∑
l ̸=lX′

h̄(l, lX′)
(
Pπξ

(Y = yl, Ȳ
r = 1|Ŷ (X ′))− Pπξ

(Y = yl|Ŷ (X ′))Pπξ
(Ȳ r = 1|Ŷ (X ′))

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
l ̸=lX′

h̄(l, lX′) (f1(l)− f2(l))

∣∣∣∣∣∣
=

∣∣∣∣∣∑
l∈B1

h̄(l, lX′) (f1(l)− f2(l)) +
∑
l∈B2

h̄(l, lX′) (f1(l)− f2(l))

∣∣∣∣∣
≤max

t=1,2

∣∣∣∣∣∣
∑
l∈BT

h̄(l, lX′) (f1(l)− f2(l))

∣∣∣∣∣∣
=max

{∑
l∈B1

h̄(l, lX′) (f1(l)− f2(l)) ,
∑
l∈B2

h̄(l, lX′) (f2(l)− f1(l))

}
.

On the other hand,

∑
l∈B1

h̄(l, lX′) (f1(l)− f2(l))

=
∑
l∈B1

h̄(l, lX′)
(
Pπξ

(Y = yl, Ȳ
r = 1|Ŷ (X ′)) − Pπξ

(Y = yl|Ŷ (X ′))Pπξ
(Ȳ r = 1|Ŷ (X ′))

)
≤2H

∑
l∈B1

(
Pπξ

(Y = yl, Ȳ
r = 1|Ŷ (X ′)) − Pπξ

(Y = yl|Ŷ (X ′))Pπξ
(Ȳ r = 1|Ŷ (X ′))

)
=2H

(
Pπξ

(Y = yl,∃l ∈ B1, Ȳ r = 1|Ŷ (X ′)) − Pπξ
(Y = yl,∃l ∈ B1|Ŷ (X ′))Pπξ

(Ȳ r = 1|Ŷ (X ′))
)

=2H
(
Pπξ

(Y = yl,∃l ∈ B1, Ȳ r = 1|Ŷ (X ′))Pπξ
(Ȳ r = 0|Ŷ (X ′))

− Pπξ
(Y = yl,∃l ∈ B1, Ȳ r = 0|Ŷ (X ′))Pπξ

(Ȳ r = 1|Ŷ (X ′))
)

≤2H
(
Pπξ

(Ȳ r = 1|Ŷ (X ′))Pπξ
(Ȳ r = 0|Ŷ (X ′))

)
=2HVar

[
Ȳ r|Ŷ (X ′)

]
.

Similarly, we have∑
l∈B1

h̄(l, lX′) (f2(l)− f1(l))−
∑
l∈B2

h̄(l, lX′)
(
Pπξ (Y = yl, Ȳ

r = 1|Ŷ (X ′)) + Pπξ (Y = yl|Ŷ (X ′))Pπξ (Ȳ
r = 1|Ŷ (X ′))

)
≤2HVar

[
Ȳ r|Ŷ (X ′)

]
.

Conclusively, we have ∣∣∣∣∣∂gX′(ξ)

∂θAcc
ŷr,j

∣∣∣∣∣ ≤ 2HVar
[
Ȳ r|Ŷ (X ′)

]
.

If Ŷ j = ŷr, similar to (1), we have ∣∣∣∣∣∂gX′(ξ)

∂θAcc
ŷr,j

∣∣∣∣∣ = 0.
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(3). For any ŷi, ŷj ∈ Ŷ , by the definition of ϕt
ŷi,ŷj

, there exists (a, b) ∈ {0, 1}2, such that
ϕt
ŷi,ŷj

(a, b) ̸= 0. Similar to (2), let

f3(l) = Pπξ
(Y = yl, Ȳ

i = a, Ȳ j = b|Ŷ (X ′))

f4(l) = Pπξ
(Y = yl|Ŷ (X ′))Pπξ

(Ȳ i = a, Ȳ j = b|Ŷ (X ′))

and

B3 = {l : f3(l) ≥ f4(l), l ̸= lX′},
B4 = {l : f3(l) < f4(l), l ̸= lX′}

we have ∣∣∣∣∣∂gX′(ξ)

∂θtŷi,ŷj

∣∣∣∣∣ =max

{∑
l∈B3

h̄(l, lX′) (f3(l)− f4(l)) ,
∑
l∈B4

h̄(l, lX′) (f4(l)− f3(l))

}
≤2HVar

[
ϕt
ŷi,ŷj

(Ȳ i, Ȳ j)|Ŷ (X ′)
]

(∗)
≤2H

(
Var

[
Ȳ i|Ŷ (X ′)

]
+Var

[
Ȳ j |Ŷ (X ′)

])
,

where inequality (∗) comes from Lemma D.1.

(4). For any yi ∈ Y, ŷr ∈ Ŷ , by the definition of ϕt
yi,ŷr

, there exists a ∈ {0, 1}, yj ∈ Y , s.t.,
ϕt
yi,ŷr

(yj , a) ̸= 0. We further divide the proof into two cases: ϕt
yi,ŷr

(yi, a) = 0, and ϕt
yi,ŷr

(yi, a) ̸=
0.

(4a). If ϕt
yi,ŷr

(yi, a) = 0, we have tyiŷr
= tsg and consequently a = 1. Similar to (1-3)., we have

∣∣∣∣∣∂gX′(ξ)

∂θtyi,ŷr

∣∣∣∣∣ =
∣∣∣∣∣∣
∑
l ̸=lX′

h̄(l, lX′)
∂Pπξ

(yl|Ŷ (X ′))

∂θtyi,ŷr

∣∣∣∣∣∣ (•)=
∣∣∣∣∣

k∑
l=1

h̄(l, lX′)
∂Pπξ

(yl|Ŷ (X ′))

∂θtyi,ŷr

∣∣∣∣∣
=

∣∣∣∣∣∣
∑
l ̸=i

h̄(l, lX′)
(
Pπξ

(Y = yl, Ȳ
r = 1|Ŷ (X ′))− Pπξ

(Y = yl|Ŷ (X ′))Pπξ
(Y ̸= yi, Ȳ

r = 1|Ŷ (X ′))
)

− h̄(i, lX′)Pπξ
(Y = yi|Ŷ (X ′))Pπξ

(Y ̸= yi, Ȳ
r = 1|Ŷ (X ′))

∣∣∣ ,
where Eq. (•) is due to Let

f5(l) = Pπξ
(Y = yl, Ȳ

r = 1|Ŷ (X ′))

f6(l) = Pπξ
(Y = yl|Ŷ (X ′))Pπξ

(Y ̸= yi, Ȳ
r = 1|Ŷ (X ′))

and

B5 = {l : f5(l) ≥ f6(l), l ̸= i},
B6 = {l : f5(l) < f6(l), l ̸= i}

Then we have∣∣∣∣∣∂gX′(ξ)

∂θtyi,ŷr

∣∣∣∣∣ ≤ max

{∑
l∈B5

h̄(l, lX′) (f5(l)− f6(l)) ,
∑
l∈B6

h̄(l, lX′) (f6(l)− f5(l)) + h̄(i, lX′)f6(i)

}
.
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On one hand,∑
l∈B5

h̄(l, lX′) (f5(l)− f6(l))

=
∑
l∈B5

h̄(l, lX′)
(
Pπξ

(Y = yl, Ȳ
r = 1|Ŷ (X ′)) − Pπξ

(Y = yl|Ŷ (X ′))Pπξ
(Y ̸= yi, Ȳ

r = 1|Ŷ (X ′))
)

≤
∑
l∈B5

2H
(
Pπξ

(Y = yl, Ȳ
r = 1|Ŷ (X ′)) − Pπξ

(Y = yl|Ŷ (X ′))Pπξ
(Y ̸= yi, Ȳ

r = 1|Ŷ (X ′))
)

=2H
(
Pπξ

(Y = yl,∃l ∈ B5, Ȳ r = 1|Ŷ (X ′)) − Pπξ
(Y = yl,∃l ∈ B5|Ŷ (X ′))Pπξ

(Y ̸= yi, Ȳ
r = 1|Ŷ (X ′))

)
=2H

(
Pπξ

(Y = yl,∃l ∈ B5, Ȳ r = 1|Ŷ (X ′))(1− Pπξ
(Y ̸= yi, Ȳ

r = 1|Ŷ (X ′)))

− Pπξ
(Y = yl,∃l ∈ B5, Ȳ r = 0|Ŷ (X ′))Pπξ

(Y ̸= yi, Ȳ
r = 1|Ŷ (X ′))

)
≤2HPπξ

(Y ̸= yi, Ȳ
r = 1|Ŷ (X ′))(1− Pπξ

(Y ̸= yi, Ȳ
r = 1|Ŷ (X ′)))

=2HVarπξ

[
ϕt
yi,ŷl

(Y, Ȳ r)|Ŷ (X ′)
]

≤2HVarπξ

[
1Y=yi |Ŷ (X ′)

]
+ 2HVarπξ

[
Ȳ r|Ŷ (X ′)

]
.

On the other hand,∑
l∈B6

h̄(l, lX′) (f6(l)− f5(l)) + h̄(i, lX′)f6(i)

=−
∑
l∈B6

h̄(l, lX′)
(
Pπξ

(Y = yl, Ȳ
r = 1|Ŷ (X ′)) + Pπξ

(Y = yl|Ŷ (X ′))Pπξ
(Y ̸= yi, Ȳ

r = 1|Ŷ (X ′))
)

+ h̄(i, lX′)Pπξ
(Y = yi|Ŷ (X ′))Pπξ

(Y ̸= yi, Ȳ
r = 1|Ŷ (X ′))

≤2H
(
−Pπξ

(Y = yl,∃l ∈ B6, Ȳ r = 1|Ŷ (X ′))(1− Pπξ
(Y ̸= yi, Ȳ

r = 1|Ŷ (X ′)))

− Pπξ
(Y = yl,∃l ∈ B6, Ȳ r = 0|Ŷ (X ′))Pπξ

(Y ̸= yi, Ȳ
r = 1|Ŷ (X ′))

+ Pπξ
(Y = yi|Ŷ (X ′))Pπξ

(Y ̸= yi, Ȳ
r = 1|Ŷ (X ′))

)
≤2H

(
Pπξ

(Y = yl,∃l ∈ B6, Ȳ r = 0|Ŷ (X ′))Pπξ
(Y ̸= yi, Ȳ

r = 1|Ŷ (X ′))

+ Pπξ
(Y = yi|Ŷ (X ′))Pπξ

(Y ̸= yi, Ȳ
r = 1|Ŷ (X ′))

)
≤2H

(
Pπξ

(Ȳ r = 0|Ŷ (X ′))Pπξ
(Ȳ r = 1|Ŷ (X ′)) + Pπξ

(Y = yi|Ŷ (X ′))Pπξ
(Y ̸= yi, Ȳ

r = 1|Ŷ (X ′))
)

≤2HVarπξ

[
1Y=yi |Ŷ (X ′)

]
+ 2HVarπξ

[
Ȳ r|Ŷ (X ′)

]
.

Therefore, in this case, we have∣∣∣∣∣∂gX′(ξ)

∂θtyi,ŷr

∣∣∣∣∣ ≤ 2HVarπξ

[
1Y=yi

|Ŷ (X ′)
]
+ 2HVarπξ

[
Ȳ r|Ŷ (X ′)

]
.

(4b). If ϕt
yi,ŷr

(yi, a) ̸= 0, similar to (4a)., we have∣∣∣∣∣∂gX′(ξ)

∂θtyi,ŷr

∣∣∣∣∣ =
∣∣∣∣∣∣−
∑
l ̸=i

h̄(l, lX′)Pπξ
(Y = yl|Ŷ (X ′))Pπξ

(Y = yi, Ȳ
r = 1|Ŷ (X ′))

+ h̄(i, lX′)
(
Pπξ

(Y = yi, Ȳ
l = 1|Ŷ (X ′))− Pπξ

(Y = yi|Ŷ (X ′))Pπξ
(Y = yi, Ȳ

r = 1|Ŷ (X ′))
)∣∣∣ .
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Since

h̄(i, lX′)
(
Pπξ

(Y = yi, Ȳ
r = 1|Ŷ (X ′))− Pπξ

(Y = yi|Ŷ (X ′))Pπξ
(Y = yi, Ȳ

r = 1|Ŷ (X ′))
)

=h̄(i, lX′)Pπξ
(Y = yi, Ȳ

r = 1|Ŷ (X ′))Pπξ
(Y ̸= yi|Ŷ (X ′))

≥0,
we have ∣∣∣∣∣∂gX′(ξ)

∂θtyi,ŷl

∣∣∣∣∣ ≤max
{
h̄(i, lX′)Pπξ

(Y = yi, Ȳ
r = 1|Ŷ (X ′))Pπξ

(Y ̸= yi|Ŷ (X ′)) ,

∑
l ̸=i

h̄(l, lX′)Pπξ
(Y = yl|Ŷ (X ′))Pπξ

(Y = yi, Ȳ
r = 1|Ŷ (X ′))


≤2HVar

[
1Y=yi

|Ŷ (X ′)
]
.

Combining (4a). and (4b)., we have that∣∣∣∣∣∂gX′(ξ)

∂θtyi,ŷl

∣∣∣∣∣ ≤ 2H
(
Varπξ

[
1Y=yi |Ŷ (X ′)

]
+Varπξ

[
Ȳ l|Ŷ (X ′)

])
.

Combining (1-4)., we then have

∥∇gX′(ξ)∥2

≤4H2
k∑

i=1

n∑
j=1

(|N (yi,Yj)| − 1)Varπξ

[
1Y=yi

|Ŷ (X ′)
]2

(27)

+ 4H2
∑

j∈[n],ŷr∈Yj

Varπξ

[
Ȳ r|Ŷ (X ′)

]2
+ 4H2

∑
i,j∈[k̂]

(
Varπξ

[
Ȳ i|Ŷ (X ′)

]
+Varπξ

[
Ȳ j |Ŷ (X ′)

])2
+ 4H2

∑
i∈[k],j∈[k̂]

(
Varπξ

[
1Y=yi |Ŷ (X ′)

]
+Varπξ

[
Ȳ l|Ŷ (X ′)

])2

≤8H2

 k∑
i=1

(ni + k̂)Varπξ
(1Y=yi

|Ŷ = Ŷ ∗)2 +

k̂∑
i=1

(mi +K − 1)Varπξ
(Ȳ i|Ŷ = Ŷ ∗)2

 .

(28)

Therefore, by Eqs. (25), (26), and (28), and Assumption Eq. (21), we have

|ℓ(W )− ℓΘ̂(W )| =

∣∣∣∣∣∣Eπ∗

∑
l ̸=lX′

h̄(l, lX′)
(
PπΘ∗ (Y = yl|Ŷ (X ′))− PπΘ̂

(Y = yl|Ŷ (X ′))
)∣∣∣∣∣∣

=
∣∣∣Eπ∗

[
gX′(Θ∗)− gX′(Θ̂)

]∣∣∣
≤
∣∣∣Eπ∗∥∇gX′(ξ)∥∥Θ∗ − Θ̂∥

∣∣∣
≤ 2cH√

M
∥Θ∗ − Θ̂∥.

Now, we apply the assumption that we are able to solve the empirical problem, producing an estimate
Ŵ that satisfies

E
[
ℓΘ̂(Ŵ )− ℓΘ̂(W

∗
Θ)
]
≤ χ,
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where W ∗
Θ̂

is the true solution to

W ∗
Θ̂
= argmin

W
ℓΘ(W ).

Therefore,

E
[
ℓ(Ŵ )− ℓ(W ∗)

]
= E

[
ℓΘ̂(Ŵ )− ℓΘ̂(W

∗
Θ̂
) + ℓΘ̂(W

∗
Θ̂
)− ℓΘ̂(Ŵ ) + ℓ(Ŵ )− ℓ(W ∗)

]
(∗)
≤ χ+ E

[
ℓΘ̂(W

∗
Θ̂
)− ℓΘ̂(Ŵ ) + ℓ(Ŵ )− ℓ(W ∗)

]
≤ χ+ 4cH

1√
M

E∥Θ̂−Θ∗∥+ E
[
ℓΘ̂(W

∗
Θ̂
)− ℓΘ̂(Ŵ ) + ℓΘ̂(Ŵ )− ℓΘ̂(W

∗)
]

≤ χ+ 4cH
1√
M

E∥Θ̂−Θ∗∥,

where Eq. (∗) comes from condition (23).

With Eqs. (20) and (21), we have Eq. (24) by Lemma D.5, i.e.,(
E∥Θ̂−Θ∗∥

)2
≤ E∥Θ̂−Θ∗∥2 ≤ ε2M.

We can now bound this using the result of Lemma D.6, which results in

E
[
ℓ(Ŵ )− ℓ(W ∗)

]
≤ χ+ 4cHϵ.

The proof is completed.

E EXAMPLES AND ILLUSTRATIONS

E.1 LABEL GRAPH AND LABEL HIERARCHY

Fig 5 shows the mapping between a label hierarchy and the corresponding label graph. Indeed, given
the order of labels, any label structure represented as a (directed acyclic graph) DAG can be converted
to exact one consistent label graph based on the four types of label relations.

Canidae Domestic
Animal

Dog Cat

Husky

Cat

Dog

HuskyCanidae

Domestic
Animal

Exclusive
Overlap
Subsuming
Subsumed

Figure 5: The illustration of mapping between a DAG of labels and a label graph.

E.2 AN EXAMPLE OF INCONSISTENT LABEL GRAPH

Fig. 6 shows an example of an inconsistent label graph. We can see that the label graph is unrealistic
and ambiguous because “Husky” subsumes “Canidae”, but (1) “Canidae” subsumes “Dog” and
(2) “Dog” subsuems “Husky” combined imply that “Husky” should be subsumed by “Canidae”.
Also, from the example, we can see that label graph induced from cyclic label hierarchy must be
inconsistent.
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Dog Husky

Exclusive
Overlap
Subsuming
Subsumed

Canidae

Dog Husky

Canidae

Figure 6: The illustration of inconsistent label graph.

E.3 ENUMERATION OF INCONSISTENT TRIANGLE LABEL GRAPH

For a triangle label graph G, we list all inconsistent label relation structures. The consistency of
larger label graph with more labels can be verified by checking the consistency of every triangle
inside. One example proof of {Exclusive, Overlap, Subsuming} can be found in Lemma 1.

Table 5: Enumeration of Inconsistent Label Relation Triplets.

label relation Triplets
tab tbc tac

Overlap Subsumed Subsuming
Overlap Subsumed Exclusive
Overlap Subsuming Subsumed
Overlap Exclusive Subsumed

Exclusive Subsumed Subsuming
Exclusive Overlap Subsuming
Exclusive Subsuming Subsuming
Exclusive Subsuming Subsumed
Exclusive Subsuming Overlap

Subsuming Exclusive Subsumed
Subsuming Subsumed Exclusive
Subsuming Overlap Subsumed
Subsuming Overlap Exclusive
Subsuming Subsuming Exclusive
Subsuming Subsuming Subsumed
Subsuming Subsuming Overlap
Subsumed Overlap Subsuming
Subsumed Subsumed Exclusive
Subsumed Subsumed Subsuming
Subsumed Subsumed Overlap
Subsumed Exclusive Subsuming
Subsumed Exclusive Subsumed
Subsumed Exclusive Overlap

E.4 AN EXAMPLE OF INDISTINGUISHABLE LABEL GRAPH

Fig. 7 shows an example label graph with indistinguishable label relation structure. Again, red
labels represent desired unseen labels, while gray labels are undesired and seen. We can see that
unseen label “Husky” and “Bulldog” have indistinguishable label relation structures because for all
seen labels, their label relations are equal. For example, seen label “Dog” subsumes both “Husky”
and “Bulldog”. In contrast, for “Husky” and “Bengal Cat”, seen label “Cat” subsumes the latter
but exclusive to the former, which indicates that “Husky” and “Bengal Cat” have distinguishable
label relation structure. Note that “Bengal Cat” and “Persian Cat” also have indistinguishable label
relation structure, but the former is unseen desired label while the latter is seen and can be predicted
by some ILF(s). We are only interested in the distinguishablity of a pair of unseen labels.
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In practice, users could "break the symmetry" by adding new ILFs with new labels. For example, if
we add an ILF that could predict “Arctic Animals”, then the new seen label “Arctic Animals” will be
added into label graph as shown in Fig. 8. We know that “Arctic Animals” subsumes “Husky” but
not “Bulldog”, so we break the indistinguishable label relation structure of “Husky” and “Bulldog”
successfully.

Domestic
Animal

Dog Cat

Husky

Exclusive
Overlap
Subsuming
SubsumedBulldog Bengal

Cat
Persian
Cat

Domestic
Animal

Dog

Cat

Husky

Bulldog

Bengal
Cat

Persian
Cat

…
…

…

Figure 7: An example of an indistinguishable label relation structure (“Husky” and “Bulldog”).
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Cat
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Animal

Dog

Cat

Husky

Bulldog

Bengal
Cat

Persian
Cat

…
…

…
Arctic
Animals

Arctic
Animals

…

Figure 8: An example of fixing an indistinguishable label relation structure (“Husky” and “Bulldog”)
by adding a new label (“Arctic Animals”).

F EXPERIMENTAL DETAILS

F.1 DATASET

Large scale Text Classification Dataset3: LSHTC-3 (Partalas et al., 2015), a large scale hierarchical
text classification dataset, which consists of 456,886 documents and 36,504 categories organized
in a label hierarchy. We filter out the documents with multiple labels, and preserve categories with
more than 500 documents. We use a pre-trained sentence transformer (Reimers & Gurevych, 2019)
to obtain document embeddings for classification. We follow Zhang et al. (2021) to generate 5
keyword-based labeling functions for each seen label as ILFs.

Large scale Image Classification Dataset4: ILSVRC2012 (Russakovsky et al., 2015), a large scale
image classification dataset, which consists of 1.2M training images from 1000 object classes based

3http://lshtc.iit.demokritos.gr/
4http://image-net.org/challenges/LSVRC/2012/index#data
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on ImageNet. Following Deng et al. (2014) we use WordNet as the label hierarchy, and because all
the images are assigned to leave labels in WordNet, for each non-leave label, we aggregate images
belonging to its descendants as its data points (Deng et al., 2014). For weak supervision sources
creation, we follow Mazzetto et al. (2021b;a) to train 10 image classifiers as ILFs. We randomly
sampling 2 or 3 exclusive seen labels from the label graph as well as 500 images for each label to
train a ResNet-32 classifier.

F.2 DESCRIPTION OF APPLYING DAP

To apply DAP, we use both label relations and ILFs to construct attributes for both unseen classes
and unlabeled data points. Then, we train the attribute classifiers, which in turn are used to predict
unseen labels on the test set as in Lampert et al. (2013). To construct attributes for unseen labels and
data points, we leverage the outputs of ILFs and label relations.

First, based on the label relations and basic logistic rules, we enumerate all the possible assignments
of seen labels given a data point. For example, if label A is subsumed by label B, then for a data
point, when it belongs to label A, it must also belong to B; And if label A and B are exclusive, then
one data cannot belong to both at the same time. Let s ∈ S denote one possible label assignment and
S is the set of all possible s. Then we define the attribute as a vector of |S| dimension where each
dimension corresponds to one s.

Second, we define the attribute of unseen labels. For an unseen label A and a label assignment s, if A
is not exclusive to any label in s then we set the corresponding attribute as = 1 for label A, other
wise 0. The intuition is that, if A is not exclusive to labels in s, it’s likely that when a data belongs
to assignment s, it also belongs to label A. For each data point, we use the labels assigned by ILFs
to build their attributes. If a data belongs to assignment s then its corresponding attribute as = 1,
otherwise 0.

Then, we can train attribute classifier p(a|x) for each attribute based on data point attributes. During
inference, we use unseen label attribute as well as attribute classifier as in Lampert et al. (2013):

f(x) = argmax
c

|S|∏
m=1

p(acm|x)
p(acm|x)

(29)

F.3 HYPER-PARAMETERS

For the training of PGMs, we set the learning rate to be 1
n where n is the number of training data. For

training logistic regression model, we use the default parameters in scikit-learn library. For training
ResNet model, we set batch size as 256 and use Adam optimizer with learning rate being 1e-3 and
weight decay being 5e-5.

F.4 HARDWARE AND IMPLEMENTATION DETAILS

All experiments ran on a machine with an Intel(R) Xeon(R) CPU E5-2678 v3 with a 512G memory
and a GeForce GTX 1080Ti-11GB GPU.

All the code was implemented in Python. We use the standard implementation of the logistic
regression model from Python scikit-learn library5 and the ResNet model from torchvision library6.

Our code will be released upon the acceptance.

F.5 DATASET DETAILS OF REAL-WORLD APPLICATIONS

We list the tags we used in the real-world application (Sec. 7.3) and examples of label relations we
query from the existing product category taxonomy.

5https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.
LogisticRegression.html

6https://pytorch.org/docs/stable/torchvision/models.html
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Table 6: The tags and examples of label relations of “Car Accessories” category.

new unseen tags: “Performance Modifying Parts”, “Vehicle Tires & Tire Parts”, “Car Engines & Engine Parts”

existing tags: “Car Modification Parts”, “Car Parts & Accessories”
“Car & Truck Tires”, “Replacement Car Parts”, “Car & Truck Wheels”

label relation examples: “Replacement Car Parts” subsumes “Car Engines & Engine Parts”
“Car & Truck Tires” is subsumed by “Vehicle Tires & Tire Parts”

Table 7: The tags and examples of label relations of “Furniture Accessories” category.

new unseen tags: “Clothing & Shoe Storage”, “Living Room Furniture”, “Beds & Headboards”

existing tags: “Coffee Tables & End Tables”, “Entertainment & Media Centers”
“Bedroom Furniture”, “Sofas & Chairs”, “Mattresses”

label relation examples: “Bedroom Furniture” subsumes “Beds & Headboards”
“Sofas & Chairs” is subsumed by “Living Room Furniture”

G ADDITIONAL EXPERIMENTS

G.1 PERFORMANCE DROP WHEN THE DISTINGUISHABLE CONDITION IS VIOLATED

To validate the effectiveness of the distinguishable condition, we drive another 100 WIS tasks from
LSHTC-3 dataset where each task has at least one pair of unseen labels sharing exactly the same
label relation structure. In Table 8, we report the performance drop on the averaged evaluation results
over the 100 WIS tasks with comparison to the numbers in Table 2. Although the two sets of WIS
tasks are different and therefore are not individually comparable, the averaged performance drop does
indicates that the violation of the distinguishable condition results in undesirable synthesized training
labels, which implicitly demonstrates the effectiveness of the distinguishable condition.

Table 8: Performance drop on averaged evaluation results over 100 WIS tasks derived from LSHTC-3
when the distinguishable condition is violated.

Method Accuracy F1-score

Label Model

LR-MV -11.49 -13.83
W-LR-MV -11.51 -13.47

WS-LG -9.28 -8.63

PLRM -9.66 -9.63

End Model

LR-MV -16.14 -17.08
W-LR-MV -15.27 -15.97

WS-LG -13.13 -13.78

PLRM -13.39 -14.09
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