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Abstract

The process of calibrating computer models of natural phenomena is essential for
applications in the physical sciences, where plenty of domain knowledge can be
embedded into simulations and then calibrated against real observations. Current
machine learning approaches, however, mostly rely on rerunning simulations
over a fixed set of designs available in the observed data, potentially neglecting
informative correlations across the design space and requiring a large amount of
simulations. Instead, we consider the calibration process from the perspective of
Bayesian adaptive experimental design and propose a data-efficient algorithm to
run maximally informative simulations within a batch-sequential process. At each
round, the algorithm jointly estimates the parameters of the posterior distribution
and optimal designs by maximising a variational lower bound of the expected
information gain. The simulator is modelled as a sample from a Gaussian process,
which allows us to correlate simulations and observed data with the unknown
calibration parameters. We show the benefits of our method when compared to
related approaches across synthetic and real-data problems.

1 Introduction

In many scientific and engineering disciplines, computer simulation models form an essential part
of the process of predicting and reasoning about complex phenomena, especially when real data
is scarce. These simulation models depend on the inputs set by the user, commonly referred to
as designs, and on a number of parameters representing unknown physical quantities, known as
calibration parameters. The problem of setting these parameters so as to closely match observations
of the real phenomenon is known as the calibration of computer models.

The seminal work by Kennedy and O’Hagan [1] introduces the Bayesian framework for calibration
of simulation models, using Gaussian processes [2] to account for the differences between the model
and reality, as well as for uncertainty in the calibration parameters. While the simulator is an essential
tool when obtaining real data is expensive or unfeasible, each run of a simulator may itself involve
significant computational resources, especially in applications such as climate science or complex
engineering systems. In this situation, it is imperative to run simulations at carefully chosen settings
of designs as well as of calibration inputs, using current knowledge to optimise resource use [3–5].

In this contribution, we bridge Bayesian calibration with adaptive experimental design [6] and use
information-theoretic criteria [7] to guide the selection of simulation settings so that they are most
informative about the true value of the calibration parameters. We refer to our approach as BACON
(Bayesian Adaptive Calibration and Optimal desigN). BACON allows computational resources to
be focused on simulations that provide the most value in terms of reducing epistemic uncertainty.
Importantly, in contrast to prior work, it optimises designs jointly with calibration inputs in order to
capture informative correlations across both spaces. Experimental results on synthetic experiments
and a robotic gripper design problem demonstrate the benefits of BACON compared to competitive
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baselines in terms of computational savings and the quality of the estimated posterior under similar
computational constraints.

2 Problem formulation

Let f : X → Y represent a mapping of experimental designs x ∈ X to the outcomes of a physical
process f(x) ∈ Y ⊂ R. We are given a set of observed outcomes yR = [y1, . . . , yR]

T and their
associated designs XR := {xi}Ri=1 ⊂ X . Observations are corrupted by noise as yi = f(xi) + νi,
where νi ∼ N (0, σ2

ν) is zero-mean Gaussian noise, for i ∈ {1, . . . , R}. In addition, we have access
to the output of a computer model h : X ×Θ→ R given a design input and simulation parameters.
Given an optimal setting for the calibration parameters θ∗ ∈ Θ, the simulator h(x,θ∗), can be
used to approximate the outcomes of the real physical process f(x). However, θ∗ is unknown, and
evaluations of the simulator h are costly, though cheaper than executing real experiments evaluating
f . Our task is to optimally estimate θ∗ given the real data yR, outputs of the simulator h and a prior
distribution p(θ∗), representing initial assumptions about θ∗.

More concretely, let ŷS := [h(x̂i, θ̂i)]
S
i=1 represent simulated outcomes for a set of designs X̂S :=

{x̂i}Si=1 ⊂ X and simulation parameters Θ̂S := {θ̂i}Si=1 ⊂ Θ. Given the cost of running simulations,
we will associate the simulator h with a latent function (usually referred to as emulator) drawn from
a Gaussian process (GP) prior and assume simulation outputs and real data follow a joint probability
distribution p(yR, ŷS ,θ

∗).

In this setting, the Bayesian experimental design objective is to propose a sequence of simulations
which will maximise the expected information gain (EIG) about θ∗:

EIG(X̂S , Θ̂S) := H(p(θ∗|yR))− Ep(ŷS |X̂S ,Θ̂S ,yR)[H(p(θ∗|yR, ŷS))]

= Ep(ŷS |X̂S ,Θ̂S ,yR) [DKL(p(θ
∗|yR, ŷS)||p(θ

∗|yR))]

= I(θ∗; ŷS | yR, X̂S , Θ̂S) ,

(1)

where H(·) represents the entropy of a probability distribution, DKL(·||·) denotes the Kullback-Leibler
divergence, and I(θ∗; ŷS | yR) is the mutual information between θ∗ and the simulator output ŷS
given the real observations yR and the simulator inputs to be optimized. We note here that, in our
setting, the real observations yR are always fixed. Therefore, intuitively, the EIG above captures the
reduction in uncertainty that will be obtained when selecting (X̂S , Θ̂S) averaged over all the possible
outcomes ŷS .

3 Related work

Our work consists of deriving a Bayesian adaptive experimental design (BAED) approach to the
problem of calibration. Therefore, in the following, we will briefly discuss current literature on these
two main research areas.

3.1 Adaptive experimental design

The problem of experimental design has a long history [8], spanning from classical fixed design
patterns to modern adaptive approaches [9]. Optimal experimental design consists of selecting
experiments which will maximise some form of criterion involving a measure of utility of the
experiment and its associated costs [10]. Under the Bayesian formulation, uncertainty in the outcomes
of the process is considered, and the optimality of a design is measured in terms of its expected utility
[11]. Information theory then allows us to quantify information gain as a utility function, which is
commonly applied in modern approaches to Bayesian experimental design [12].

The estimation of posterior distributions becomes a computational bottleneck for information-theoretic
Bayesian frameworks. Recent work has focused on addressing the difficulties in estimating the
expected information gain by means of, e.g., variational inference [13], density-ratio estimation
[14], importance sampling [15], and the learning of efficient policies to propose designs [16, 17].
These methods, however, usually assume that the simulator is known and inexpensive to evaluate.
In contrast, the simulations themselves are modelled as expensive experiments for us, and we apply
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Gaussian process models as emulators to capture uncertainty over the black-box simulator. In addition,
traditional BAED approaches assume the prior is trivial to sample from and evaluate densities of,
while in our case the starting prior is p(θ∗|yR), which is likely non-trivial. We refer the reader to
the recent review on modern Bayesian methods for experimental design by Rainforth et al. [18] for
further details on BAED.

3.2 Active learning for calibration

Experimental design approaches generally aim towards the selection of designs for physical ex-
periments, whereas we are concerned with the problem of running optimal simulated experiments
for model calibration in the presence of real data. When simulations are resource-intensive, a few
methods have been derived based on the Bayesian calibration framework proposed by Kennedy and
O’Hagan [1]. Busby and Feraille [19] present an algorithm to learn GP emulators for a simulator
which can then be combined with Bayesian inference algorithms, such as Markov chain Monte Carlo
[20], to provide a posterior distribution over parameters. In their approach, the optimised variables
are solely the calibration parameters, and the selection criterion is based on minimising the integrated
mean-square error of the GP predictions. Many other approaches can be applied to this setting by
modelling the simulator or its associated likelihood function as a GP, including Bayesian optimisation
[3, 21, 22] and methods for adaptive Bayesian quadrature [23, 24]. Besides GPs, other algorithms
based on selecting calibration parameters have been derived using ensembles of neural networks [25]
and deep reinforcement learning [26]. These frameworks, however, do not allow for the selection of
design points, keeping them fixed.

Allowing for design point decisions to be included, Leatherman et al. [4] presented approaches for
combined simulation and physical experimental design based on geometric and prediction-error-based
criteria, but using an offline, non-sequential framework. More recently, Marmin and Filippone [5]
derived a deep Gaussian process [27] framework for Bayesian calibration problems and discussed
an application to experimental design among other examples. Their experimental design approach
to calibration was based on choosing simulations that maximally reduce the variational posterior
variance over the calibration parameters, as measured by the derivatives of the evidence lower bound
with respect to (w.r.t.) variance parameters. In contrast, we aim to directly maximise the information
gain w.r.t. the unknown calibration parameters.

4 Gaussian processes for Bayesian calibration

To estimate information gain, we need a probabilistic model which can correlate simulations with real
data and the unknown parameters θ∗. Ideally, the model needs to allow for a computationally tractable
conditioning on the parameters θ∗ and account for the differences between real and simulated data.
Hence, we follow the Bayesian calibration approach in Kennedy and O’Hagan [1] and model:

f(x) = ρh(x,θ∗) + ε(x) , x ∈ X , θ∗ ∼ p(θ∗), (2)

where ε : X → R represents the error (or discrepancy) between simulations and real outcomes, and
ρ ∈ R accounts for possible differences in scale. We place Gaussian process priors on the simulator
h ∼ GP(0, k̂) and on the error function ε ∼ GP(0, kε).

4.1 Bi-fidelity exact Gaussian process model

Since both h and ε are GPs, simulations and real outcomes can be jointly modelled as a single
Gaussian process. In fact, both the simulator h and the true function f can be seen as different
levels of fidelity of the same underlying process, with h representing a coarser version of f . Let
s ∈ S := {0, 1} denote a fidelity parameter. The combined model is then given by:

f̂(x,θ, s) :=

{
h(x,θ), s = 0

ρh(x,θ) + ε(x), s = 1 .
(3)

such that f(x) = f̂(x,θ∗, 1) and h(x̂, θ̂) = f̂(x̂, θ̂, 0), for any x, x̂ ∈ X and θ̂ ∈ Θ. As a result,
for arbitrary points in the joint space z, z′ ∈ Z := X ×Θ× S, the following covariance function
parameterises the combined GP model f̂ ∼ GP(0, k):

k(z, z′) := kρ(s, s
′)k̂((x,θ), (x′,θ′)) + ss′kε(x,x

′) (4)
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where kρ(s, s
′) := (1 + s(ρ− 1))(1 + s′(ρ− 1)), z := (x,θ, s), and z′ := (x′,θ′, s′). Therefore,

any set of real and simulated evaluations are joint normally distributed under a combined GP model.

4.2 Joint probabilistic model and predictions

Let ZR := ZR(θ
∗) := [(xi,θ

∗, 1)]Ri=1 represent the set of partially observed inputs for real data
yR, and let ẐS := [(x̂i, θ̂, 0)]

S
i=1 denote the current set of simulation inputs for the observations ŷS .

Under the GP prior, the joint probability model p(ŷS ,yR,θ
∗) can be decomposed as:

p(ŷS ,yR,θ
∗) = p(ŷS ,yR|θ

∗)p(θ∗) =

∫
f̂

p(ŷS |̂f)p(yR |̂f ,θ
∗)p(f̂ |θ∗)p(θ∗) df̂ , (5)

where f̂ := f̂(Z(θ∗)) ∈ RR+S , and Z(θ∗) := {ZR(θ
∗), ẐS} corresponds to the full set of inputs.

The GP prior then allows us to model real and simulated outcomes jointly as a Gaussian random
vector f̂ :

f̂ |θ∗ ∼ N (0,K(θ∗)) , (6)
where K(θ∗) := k(Z(θ∗),Z(θ∗)) = [k(z, z′)]z,z′∈Z(θ∗) denotes the prior covariance matrix. As-
suming a Gaussian noise model for the observations y = f(x,θ∗) + ε(x) + ν, with ν ∼ N (0, σ2

ν),
the marginal distribution over the observations y := [yT

R, ŷ
T
S ]

T is available in closed form as:

p(ŷS ,yR|θ
∗) = N (y;0,K(θ∗) +Σy) , (7)

where Σy denotes the covariance matrix of the observation noise, i.e., [Σy]ii = σ2
ν for any zi with

si = 1, and [Σy]ij = 0 elsewhere.2

Under the GP assumptions, we can make predictions about ŷ = h(x̂, θ̂) at any pair of x̂, θ̂ ∈ X ×Θ.
Conditioning on θ∗ and a dataset Dt := {XR,yR, X̂t, Θ̂t, ŷt}, let Zt(θ

∗) := {ZR(θ
∗), Ẑt} denote

the set of inputs up to time t conditional on θ∗, and yt the corresponding outputs. We then have that:

p(ŷ|θ∗, x̂, θ̂,Dt) = N (ŷ;µt(ẑ;θ
∗), σ2

t (ẑ;θ
∗)) , (8)

for ẑ := (x̂, θ̂), where:

µt(ẑ;θ
∗) := kT

t (ẑ;θ
∗)T(Kt(θ

∗) +Σyt
)−1yt (9)

kt(ẑ, ẑ
′;θ∗) := k(ẑ, ẑ′)− kt(ẑ;θ

∗)T(Kt(θ
∗) +Σyt

)−1kt(ẑ
′;θ∗) (10)

σ2
t (z;θ

∗) := kt(ẑ, ẑ;θ
∗) , (11)

with kt(ẑ;θ
∗) := k(Zt(θ

∗), ẑ) and Kt(θ
∗) := k(Zt(θ

∗),Zt(θ
∗)). We next describe how to apply

this model to derive a Bayesian adaptive calibration algorithm.

5 Bayesian adaptive calibration and optimal design

In this section, we describe an approach to design experiments for calibration of computer models
that incorporates information gathered during the experiments iteratively. We refer to these types of
designs as adaptive. Thus, we consider the sequential design of experiments setting, where at each
iteration t ∈ N, we optimise:

EIGt(x̂, θ̂) := I(θ∗; ŷ | x̂, θ̂,Dt−1)

= H(p(θ∗|Dt−1))− Eŷ∼p(ŷ|x̂,θ̂,Dt−1)
[H(p(θ∗|ŷ, x̂, θ̂,Dt−1))]

= Ep(ŷ,θ∗|x̂,θ̂,Dt−1)

[
log

p(θ∗|ŷ, x̂, θ̂,Dt−1)

p(θ∗|Dt−1)

]
,

(12)

given the dataset Dt−1 := {XR,yR, X̂t−1, Θ̂t−1, ŷt−1} of observations. Given that the expected
information gain is submodular [28], a sequential approach allows us to get close enough (usually a
factor of at least 1− 1/e [29]) to the optimal EIG over the whole experiment, while also allowing
algorithmic decisions to adapt to current estimates for p(θ∗|Dt).

2In practice, we add a small nugget term to the diagonal of the noise covariance matrix for numerical stability.

4



In general, computing the full EIG objective (1), or its sequential version (12), is intractable, as that
requires estimating the true posterior and its density conditioned on sampled data. Note that both
p(θ∗|ŷ, x̂, θ̂,Dt−1) and p(ŷ,θ∗|x̂, θ̂,Dt−1) depend on the posterior p(θ∗|Dt−1), as:

p(θ∗|ŷ, x̂, θ̂,Dt−1) =
p(ŷ,θ∗|x̂, θ̂,Dt−1)

p(ŷ|x̂, θ̂,Dt−1)
(13)

p(ŷ,θ∗|x̂, θ̂,Dt−1) = p(ŷ|θ∗, x̂, θ̂,Dt−1)p(θ
∗|Dt−1) , (14)

where the conditional predictive density p(ŷ|θ∗, x̂, θ̂,Dt−1) is Gaussian and available in closed form
(Eq. 8). Clearly, in general, the true posterior is intractable, since p(θ∗|Dt) = p(Dt|θ∗)p(θ∗)

p(Dt)
and

p(Dt) =
∫
Θ
p(Dt|θ∗)p(θ∗) dθ∗ involves integration over the entire parameter space Θ, which can

be high dimensional and passed through highly non-linear operations such as inverse covariances.
In addition, the marginal predictive p(ŷ|x̂, θ̂,Dt−1) =

∫
Θ
p(ŷ,θ∗|x̂, θ̂,Dt−1) dθ

∗ is usually also
intractable for the same reasons.

5.1 Variational EIG lower bound

Following Foster et al. [13], we replace the EIG by a variational objective which does not directly
involve the true posterior over θ∗. This formulation allows us to jointly estimate an approximation to
the posterior and select optimal design points x̂ and simulation parameters θ̂. Applying the variational
lower bound by Barber and Agakov [30] to Eq. 12 yields the following alternative to the EIG:

ÊIGt(x̂, θ̂, q) := Ep(ŷ,θ∗|x̂,θ̂,Dt−1)

[
log

q(θ∗|ŷ, x̂, θ̂)
p(θ∗|Dt−1)

]
≤ EIGt(x̂, θ̂), (15)

where q(θ∗|ŷ, x̂, θ̂) is any conditional probability density model. The gap is given by the expected
Kullback-Leibler (KL) divergence between the true and the variational posterior [13]:3

EIGt(x̂, θ̂)− ÊIGt(x̂, θ̂, q) = Ep(ŷ|x̂,θ̂,Dt−1)
[DKL(p(θ

∗|Dt−1, ŷ)||q(θ∗|ŷ))] ≥ 0 . (16)

Maximising the variational EIG lower bound w.r.t. the variational distribution q then provides us
with an approximation to p(θ∗|ŷ, x̂, θ̂,Dt−1). Therefore, we can simultaneously obtain maximally
informative designs and optimal variational posteriors by jointly optimising the EIG lower bound
w.r.t. the simulator inputs and the variational distribution as:

x̂t, θ̂t, qt ∈ argmax
x̂∈X ,θ̂∈Θ,q∈Q

ÊIGt(x̂, θ̂, q) = argmax
x̂∈X ,θ̂∈Θ,q∈Q

Ep(ŷ,θ∗|x̂,θ̂,Dt−1)
[log q(θ∗|ŷ)] , (17)

given a suitable variational family Q of conditional distributions.

5.2 Algorithm

Algorithm 1 summarises the method we propose for Bayesian adaptive calibration and optimal design
(BACON). The algorithm is given an initial dataset D0 containing the real data (and possibly previ-
ously available simulation data) and an estimate of the posterior given the real data p0p(θ

∗|XR,yR).
Posterior estimates in BACON can be represented by samples obtained via Markov chain Monte
Carlo (MCMC) or variational inference over the GP model and the real data D0 := {XR,yR}.
Note that we only need samples from the previous posterior to estimate the expectation in Eq. 17,
with no need to directly evaluate their probability densities. Each iteration starts by optimising the
variational EIG lower bound using the objective in Eq. 17 to jointly select an optimal design x̂t,
simulation parameters θ̂t and variational posterior qt. Given the new design x̂t, we run the simulation
with the chosen parameters θ̂t, observing a new outcome ŷt. The calibration posterior pt(θ∗) and
the GP model are then updated with the new data, potentially including a re-estimation of the GP
hyper-parameters via, for example, maximum likelihood estimation. The process then repeats given
the updated GP and posterior for up to a given number of iterations T . At the end, a final posterior
pT (θ

∗) = p(θ∗|yR, ŷT ) and a conditional density model qT are obtained.

3We will at times write q(θ∗|ŷ) to denote q(θ∗|ŷ, x̂, θ̂) to avoid notation clutter, as it is implicit the
dependence on the inputs (x̂, θ̂) through ŷ.
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Algorithm 1 BACON

input D0 := {XR,yR}; {Real data}
input p0(θ

∗) := p(θ∗|D0) {MCMC or VI prior distribution}
for t ∈ {1, . . . , T} do
x̂t, θ̂t, qt ∈ argmaxx̂,θ̂,q Ept−1(ŷ,θ∗|x̂,θ̂) [log q(θ

∗|ŷ)]
ŷt := h(x̂t, θ̂t) {Run simulation}
Dt := Dt−1 ∪ {x̂t, θ̂t, ŷt} {Update GP model}
pt(θ

∗) = p(θ∗|Dt−1) {Update posterior via MCMC or VI}
end for

output pT (θ
∗) {Final posterior}

5.3 Variational posteriors

Any conditional probability density model q(θ∗|ŷ) estimating probability densities over the parameter
space Θ given an observation ŷ could suit our method. In the following, we describe two possible
parameterisations for this model. The first facilitates marginalising latent inputs in GP regression
[31, 32], while the second better captures multi-modality in the posterior.

Conditional Gaussian models. Assuming we can approximate p(θ∗|Dt) as a Gaussian, we may
set:

qϕ(θ
∗|ŷ, x̂, θ̂) := N (θ∗;mϕ(ŷ, x̂, θ̂),Σϕ(ŷ, x̂, θ̂)) , (18)

where mϕ and Σϕ are given by parametric models, such as neural networks, with parameters
ϕ. To ensure Σϕ(·) is positive-definite, it can be parameterised by its Cholesky decomposition
Σϕ(·) = Lϕ(·)Lϕ(·)T, where Lϕ(·) is a lower-triangular matrix with positive diagonal entries.

Conditional normalising flows Normalising flows [33] apply the change-of-variable formula to
derive composable, invertible transformations gw of a fixed base distribution p0:

gw(ξ0) := g(K)
w ◦ · · · ◦ g(1)

w (ξ0), ξ0 ∼ p0 (19)

The log-probability density of a point ξ = gw(ξ0) under this model can be calculated as:

log pK(ξ;w) = log p0(ξ0)−
K∑
j=1

log
∣∣∣J(j)

w (ξj−1)
∣∣∣ ,

where ξ0 := g−1
w (ξ), ξj := g

(j)
w (ξj−1), and J(j)

w is the Jacobian matrix of the jth transform g
(j)
w , for

j ∈ {1, . . . ,K}. Several invertible flow architectures have been proposed in the literature, including
radial and planar flows [33], autoregressive models [34–36] and models based on splines [37].

To derive a conditional density model qϕ(θ∗|ŷ), conditional normalising flows map the original flow
parameters w via a neural network model rϕ : ŷ 7→ w [38, 39]. In this case, the variational model is
given by:

log qϕ(θ
∗|ŷ, x̂, θ̂) = log pK(θ∗; rϕ(ŷ, x̂, θ̂)) . (20)

5.4 Batch parallel evaluations

Often simulations can be run in parallel by spawning multiple processes in a single machine or
over a compute cluster. In this case, proposing batches of simulation inputs can be more effective
than running single simulations in a sequence. Optimising the EIG w.r.t. a batch of inputs B :=

{x̂i, θ̂i}Bi=1, instead of single points, we obtain a batch version of Algorithm 1. In this case, we are
seeking a batch that maximises the mutual information between the parameters θ∗ and the resulting
observations, i.e.:

EIGt(B) = I(θ∗; {ŷi}Bi=1|B,Dt−1) ≥ Ep({ŷi}B
i=1,θ

∗|B,Dt−1)

[
log

q(θ∗|{ŷi}Bi=1)

p(θ∗|Dt−1)

]
(21)

We approximate this objective by using variational models that accept multiple conditioning obser-
vations q(θ∗|ŷ1, . . . , ŷB). In the case of scalar observations, this simply amounts to replacing the
scalar inputs to the conditional models in Sec. 5.3 by vector-valued inputs.
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(a) MAP error (b) RMSE (c) DKL(pt||p∗) (d) Posterior

Figure 1: Experimental results on synthetic data where the target posterior p∗ is unimodal. The
first 3 plots show estimates for performance metrics as a function of the number of simulations run
(not including the initial data). Estimates were computed based on the posterior estimates for each
method available during their run, with random using p(θ∗), D-optimal and BACON using MCMC
posteriors, and IMSPE using a Dirac delta (reverse KL undefined, not shown) on the MAP estimate
as posterior estimates. Results are averaged over 10 trials, and shaded areas indicate ±1 standard
deviation. The rightmost plot shows the target posterior, with the true θ∗ indicated by a star.

(a) MAP error (b) RMSE (c) DKL(pt||p∗) (d) Posterior

Figure 2: Experimental results on synthetic data where the target posterior p∗ is bimodal. See Fig. 1
for details, with the exception that the rightmost plot now shows the bimodal target posterior.

6 Experiments

In this section, we present experimental results on synthetic and real-data problems evaluating the
proposed variational Bayesian adaptive calibration framework against baselines. Further experiment
details can be found in Appendix A and in our code repository.4

Performance metrics. We evaluated each method against a set of performance metrics, which
we now describe. The maximum-a-posteriori (MAP) approximation error measures the distance
between the mode of the variational distribution and the true parameters θ∗. To measure the quality
of the learnt model in predicting real outcomes, we also evaluated the root mean square error (RMSE)
between the expected GP predictions under the learnt variational distribution and real outcomes:

RMSE :=
√

1
N

∑N
i=1(Eq(θ)[µ(x

∗
i ,θ

∗;θ)]− y∗i )
2, where y∗i = f(x∗

i ) + ν∗i are observations of the
true function over a set of designs {x∗

i }Ni=1 ⊂ X placed on a uniform grid the design space.

Information gain. Lastly, we also evaluated two sample-based estimates of the KL divergence
[40]. Namely, DKL(pT ||p0) corresponds to the KL divergence between the final MCMC posterior
(given all simulations and real data) and the initial one (given only the real data and an initial set
of randomised simulations) both estimated over the learnt GP model. The column DKL(pT ||p∗)
indicates the KL divergence between the final MCMC posterior pT and the posterior p∗ with full
knowledge of the simulator, which can be cheaply evaluated in this synthetic scenario. The average of
DKL(pT ||p0) is an indicator for the expected information gain (1) of an algorithm, given that it is the
expected relative entropy across the possible trajectories of observations. Meanwhile DKL(pT ||p∗)
indicates how far the estimates are from the best possible posterior given the available real data.

4Code available at: https://github.com/csiro-funml/bacon
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DKL(pT ||p0) ↑ DKL(pT ||p∗) ↓
BACON 1.00 ± 0.06 0.76 ± 0.13
IMSPE 0.89 ± 0.11 1.05 ± 0.19

D-optim. 0.42 ± 0.11 1.09 ± 0.15
Random 0.62 ± 0.07 1.18 ± 0.13
VBMC – 0.53 ± 0.02

(a) Unimodal posterior

DKL(pT ||p0) ↑ DKL(pT ||p∗) ↓
BACON 0.40 ± 0.03 0.45 ± 0.06
IMSPE 0.19 ± 0.04 0.70 ± 0.07

D-optim. 0.07 ± 0.02 0.94 ± 0.03
Random 0.28 ± 0.07 0.54 ± 0.07
VBMC – 0.49 ± 0.13

(b) Bimodal posterior

Table 1: Results for 2+2D synthetic problem after T = 50 iterations (batch of B = 4). Here
DKL(pT ||p0) corresponds to the KL divergence between the final posterior (estimated after each
algorithm’s run with all the data it collected) and the starting one (higher is better), while DKL(pT ||p∗)
is the KL between the final posterior and the posterior with full knowledge of the simulator p∗ (lower
is better). All posteriors were sampled via MCMC using 4000 samples. Averages and standard
deviations were estimated from 10 independent runs.

6.1 Baselines

Our algorithmic baselines were chosen to illustrate the main approaches currently available in the
literature. Both are employed as adaptive baselines, in the sense that their GP models are updated
with the latest observations before proceeding to the next iteration.

Random search. This baseline samples simulation designs x̂t ∼ U(X ) from a uniform distribution
over the design space X and calibration parameters from the prior θ̂t ∼ p(θ∗).

IMSPE with MAP estimates. The integrated mean squared prediction error (IMSPE) [41] criterion
chooses designs x̂t and calibration θ̂t parameters by minimising the GP prediction error:

IMSPEt(ẑ) :=

∫
Z
E[(f̂(z)− µt+1(z;θ

∗))2 | f̂(ẑ),Dt] dz =

∫
Z
σ2
t+1(z;θ

∗|Dt, f̂(ẑ)) dz. (22)

The posterior’s MAP estimate θ∗
t ∈ argmaxθ p(θ|Dt−1) is used as a point estimate for the true θ∗.

The integral is approximated as a sum over a uniform grid of designs and samples from the calibration
prior,5 making IMSPE equivalent to active learning Cohn [42] and a form of A-optimality [28].

D-optimal designs. We provide experimental results with an additional baseline following a D-
optimality criterion, a classic experimental design objective. Optimal candidate designs according
to this criterion are points of maximum uncertainty according to the model [28]. If we model the
simulator as the unknown variable of interest, this corresponds to selecting designs where we have
maximum entropy of the Gaussian predictive distribution p(ŷ|x̂, θ̂,Dt−1). This approach, therefore,
simply attempts to collect an informative set of simulations according to the GP prior over the
simulator h only, without considering the information in the real data. Running D-optimality on θ∗,
in contrast, would lead back to the EIG criterion we use.

Variational Bayesian Monte Carlo (VBMC). Acerbi [43] presents an adaptive Bayesian quadra-
ture method to learn posterior distributions over models with black-box likelihood functions. The
method estimates the posterior p(θ∗|yR, h) by modelling the log-joint log p(yR,θ

∗|h) as a sample
from a Gaussian process. VBMC then learns a variational posterior approximation by maximising a
lower-confidence bound over the ELBO given by the GP estimates. Calibration parameter queries
θ̂t are obtained by optimising quadrature-based acquisition functions. Regarding design points,
simulations are always run on the set of real design points XR in the observed data, which is fixed.

6.2 Synthetic experiments

For this experiment, we sampled a function f̂ ∼ GP(0, k) to use as our simulator and compared
different algorithms. Following a sparse GP approach, a function sampled from a GP can be

5The original paper proposed analytic solutions to Eq. 22 tailored for specific kernels. However, we decided
to keep our codebase generic to work with different kernels, and therefore opted for a numerical approximation.

8



DKL(pT ||p0) ↑ DKL(pT ||p∗) ↓
BACON 0.37 ± 0.09 0.07 ± 0.06
IMSPE 0.22 ± 0.11 0.45 ± 0.21

D-optimal 0.21 ± 0.08 0.23 ± 0.10
Random 0.32 ± 0.09 0.20 ± 0.14
VBMC – 5.48 ± 1.66

Table 2: Results on the location finding problem after T = 30 iterations with B = 4, R = 20 “real”
data points and an initial set of 20 simulations. Estimates were averaged over 10 independent runs.

approximated as f̂(z) ≈ k(z,ZM )K−1
M uM , where uM ∼ N (ûM ,ΣM ) is a sample from an M -

dimensional Gaussian, ZM := {zi}Mi=1 ⊂ X ×Θ× {0, 1}, for a given M . As the number of points
M → ∞, if the pseudo-inputs ZM form a dense set, we have that f̂ converges in distribution to a
sample from the Gaussian process GP(0, k). In our case, to sample ZM , we sample designs from
a uniform distribution over the design space, calibration parameters from the prior, and fidelities
from a Bernoulli distribution with parameter set to 0.5. We also set ûM := 0 and ΣM := KM =
k(ZM ,ZM ). We repeatedly run a loop of T iterations for each algorithm, with each repetition
running on independent f̂ sampled from the same GP prior.

We run each algorithm for T := 50 iterations using a batch of B := 4 designs per iteration. Each
of the methods using GP approximations for the simulator are initialised with 20 observations and
R = 5 real data. To configure VBMC, we allow it to run an equivalent maximum amount of objective
function evaluations. The design space is set as the 2-dimensional unit box X := [0, 1]2 and the “true”
parameters for each run are sampled from a standard normal prior p(θ∗) := N (θ∗;0, I) also over a
2D space, totalling a 4-dimensional problem space.

Fig. 1 shows a case where the GP-sampled simulator led to a unimodal target posterior. In this
case, we see that BACON is able to achieve fast convergence in terms of MAP estimates and KL
divergence towards the target posterior, while IMSPE dominates in terms of simulator approximation
error as measured by the RMSE. As the posterior is unimodal and quite concentrated around the true
parameter, it is natural that a method relying on MAP estimates, such as RMSE, would perform well.
In contrast, when the posterior is multimodal, as shown in the bimodal case in Fig. 2, MAP estimates
are not necessarily reliable any more, as they might get stuck on a non-informative mode, leading
to biased estimates for IMSPE and a significant drop in performance. Lastly, note that D-optimal
and random designs can also lead to RMSE approaching the lowest (as determined by the noise level
with σν = 0.5) in some circumstances. However, these approaches do not directly provide posterior
approximations and may fail in more complex scenarios.

In terms of final posterior estimates, Table 1 shows that VBMC estimates reach the closest to the
full-knowledge target posterior p∗ in the unimodal case, while BACON is able to surpass the other
GP-emulation approaches in terms of information gain. For the bimodal case, however, we see
that BACON gains an advantage over VBMC. Recall that VBMC relies on a mixture of Gaussians,
while BACON applies conditional normalising flows for its posterior approximations, which lead to
increased generalisability. In addition, despite the slightly worse performance than VBMC, BACON
also provides a GP model that can be used as an emulator for the simulator (and approximates the
real process), while VBMC’s focus is on approximating the log-likelihood.

6.3 Finding the location of hidden sources

We consider the problem of finding the location of 2 hidden sources in a 2D environment following
the setting in Foster et al. [16]. We are provided with R = 20 initial measurements and an initial
set of S = 20 randomised simulations without knowledge of the true parameters which the data
was generated with. Our results are presented in Table 2, which show a similar tendency in higher
information gain for our method, and a very low KL w.r.t. p∗. Note that a high information gain
indicates a more informative posterior, whose entropy will be much lower relative to the starting
distribution, compared to the other methods. In addition, the ideal p∗, which a GP-based posterior
should converge to in the limit of infinite data, is not known by the methods, only p0. Therefore,
besides obtaining maximally informative data, we have shown that BACON is also efficient in
approximating posteriors over black-box simulators, while also learning a GP emulator model.
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(a) Platform (b) Real grasp (c) Simulation

Figure 3: Soft-robotics grasping experiment. We calibrate a soft materials simulator against real data
from physical grasping from an automated experimentation platform

DKL(pT ||p∗) ↓
BACON 1.32 ± 0.05
IMSPE 1.56 ± 0.08

D-optimal 1.50 ± 0.05
Random 1.48 ± 0.07

Table 3: Soft-robotics simulator calibration final results after T = 10 with B = 16 points per batch.
The target posterior p∗ was inferred using a large set of 1024 random simulations uniformly covering
the design and parameter space. Performance was averaged over 4 independent runs.

6.4 Soft-robotic grasping simulator calibration

For this experiment, we are provided with a dataset containing R = 10 real measurements of the peak
grasping force of soft-robotic gripper designs on a range of testing objects (see Fig. 3). The gripper
designs follow a fin-ray pattern parameterised by 9 geometric parameters [44], and we are interested
in estimating 2 unknown physics parameters, the Young’s modulus of elasticity and the coefficient of
static friction with the objects. To simulate the gripper designs, we use the SOFA framework [45] to
reproduce the grasping scenario and provide an estimate of the peak grasping force. In particular,
for this paper, we focus on the grasping of a spherical object, which provides a simpler geometry
and lower discrepancy with respect to real data measurements compared to more complex objects.
This experiment provides us with a benchmark where simulations are expensive to run, taking from
minutes to a few hours to run (depending on mesh resolution) on a high-performance computing
platform. Therefore, it is important to choose a minimum amount of informative simulations.

Our results are shown in Table 3. Each algorithm was initialised with a set of 123 random simulations
and run for T = 10 iterations. The results show that BACON achieves the closest approximation
to the target posterior. IMSPE highly concentrated its parameter choices around its posterior mode
estimate, while other baselines were too spread, both leading to inferior posterior approximations
(see Fig. 4 in the appendix) and showing the advantage of BACON’s joint optimisation and inference.

7 Conclusion, limitations and future work

We have developed BACON, a Bayesian approach that carries out parameter calibration of computer
models and optimal design of experiments jointly. It does so by optimizing an information-theoretic
criterion so that input designs and calibration parameters are selected to be maximally informative
about the optimal parameters. Our method provides a full posterior over optimal calibration pa-
rameters as well as an accurate Gaussian process based estimation of the computer model (i.e., an
emulator). One of the main limitations of the presented framework is scalability to large datasets,
due to the cubic computational complexity of exact inference with GPs. However, our method
can be extended to work with scalable sparse variational GP models [46] by using a conditional
distribution model for the inducing points (see Sec. B.2). We emphasize that our proposed method is
still applicable to many real practical settings, where the problem constraints do not demand a very
large number of simulation samples. Lastly, we also note that the method can be adapted to work
with multi-output observations by the use of multi-output GP models [47]. Further discussions on
limitations and future work can be found in our appendix (see Appendix B and C).
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Algorithm 2 BACON (split training)

D0 := {XR,yR};
for t ∈ {1, . . . , T} do
µt−1, kt−1 ← UpdateGP(Dt−1)

{θ∗
i }

SA
i=1

MCMC∼ p(θ∗|Dt−1) ∝ p(θ∗)N (yR;µt−1(ZR(θ
∗);θ∗),Σt−1(ZR(θ

∗);θ∗) + σ2
νI)

p(θ∗|Dt−1) ≈ p̂t−1 := 1
SA

∑SA

i=1 δθ∗
i

qt ← TrainFlow(p̂t−1,Dt−1)

{x̂t,i, θ̂t,i}Bi=1 ← OptimiseDesigns(qt, p̂t−1,Dt−1)

ŷt,i := h(x̂t,i, θ̂t,i) (parallel) for i ∈ {1, . . . , B} {Run batch of simulations}
Dt := Dt−1 ∪ {x̂t,i, θ̂t,i, ŷt,i}Bi=1 {Update GP dataset}

end for

A Additional details on the experiments

For all experiments, we use conditional normalising flows as the variational model for BACON.
Our implementation for BACON and most of the baselines, except for VBMC,6 is based on Pyro
probabilistic programming models [48]. Gaussian process modelling code is based on BoTorch7

[49]. The flow architecture is chosen for each synthetic-data problem by running hyper-parameter
tuning with a simplified version of the problem. Most Gaussian process models are parameterised
with Matérn kernels [2, Ch. 4] and constant or zero mean functions. Pyro’s MCMC with its default
no-U-turn (NUTS) sampler [50] was applied to obtain samples from p(θ∗|Dt−1) at each iteration t.
KL divergences are computed from samples using a nearest neighbours estimator implemented in the
information theoretical estimators (ITE) package8 [40].

A.1 Synthetic GP problem

The GP prior was set with k̂ given by a squared exponential kernel and kε given by a Matérn
kernel with smoothness parameter set to 2.5 [2]. The conditional normalising flow was configured
with 2 layers of neural spline flows [37]. Batches of arbitrary size are used for conditioning via a
permutation invariant set encoder, similar to Blau et al. [17], with a 2-layer, 32-units-wide fully-
connected hyperbolic tangent neural network passing through a summation at the end. Gradient-based
optimisation is run using Adam with a learning rate 10−3 for the flow parameters and 0.05 for the
simulation design points, both using cosine annealing with warm restarts as a learning rate scheduler.
256 samples were subsampled from the MCMC posterior to estimate expectations for both this and
the location-finding problem.

Algorithm with split training. For the synthetic GP problem, we provide a more detailed pseudo-
code of our algorithmic implementation using an option for training the conditional normalising flow
and optimising the designs separately. Specifically, we applied MCMC to estimate our posteriors and
had a flexible optimisation loop, where we had the option to separate the training of the conditional
normalising flow model from the optimisation of the design points, as shown in Algorithm 2. This
approach can make the algorithm more stable, though at the cost of a longer runtime. This option
was only applied to the GP-based synthetic experiments, while for the other experiments we ran the
full joint optimisation over both the simulation inputs (x̂, θ̂) and the variational parameters of the
conditional model q.

A.2 Location finding problem

For this experiment we used more up-to-date Zuko9 implementations of the conditional normalising
flow models, which were again set as neural spline flows [37] combined with a set encoder to condition
on arbitrary batch sizes. Further architectural details can be found in our code repository. 256 samples

6For VBMC, we used the author’s Python implementation at: https://github.com/acerbilab/pyvbmc
7BoTorch: https://botorch.org
8ITE package: https://bitbucket.org/szzoli/ite-in-python
9Zuko: https://zuko.readthedocs.io/stable/
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Algorithm 3 TrainFlow

input p̂t, Dt

for n ∈ {1, . . . , N} do
{θ̂i}Bi=1 ∼ (1− ϵ)p̂t + ϵp
{x̂i}Bi=1 ∼ U(X )
{θ∗

i }Si=1 ∼ p̂t
{ŷi,j}S,Bi,j=1 ∼ N (µt({x̂i, θ̂i}Bi=1; {θ

∗
i }Si=1),Σt({x̂i, θ̂i}Bi=1; {θ

∗
i }Si=1))

ϕ← ϕ+ η
S

∑S
i=1∇ϕ log qϕ

(
θ∗
i

∣∣∣ Dt ∪ {x̂j , θ̂j , ŷi,j}Bj=1

)
end for

output qϕ

Algorithm 4 OptimiseDesigns

input qt, p̂t−1,Dt−1

Θ̂ = {θ̂i}Bi=1 ∼ (1− ϵ)p̂t−1 + ϵp

X̂ = {x̂i}Bi=1 ∼ U(X )
for n ∈ {1, . . . , N} do
{θ∗

i }Si=1 ∼ p̂t−1

{ŷi}Si=1 ∼ N (µt−1(X̂, Θ̂; {θ∗
i }Si=1),Σt−1(X̂, Θ̂; {θ∗

i }Si=1))

(X̂, Θ̂)← (X̂, Θ̂) + η
S

∑S
i=1∇X̂,Θ̂ log qt

(
θ∗
i

∣∣∣ Dt ∪ {X̂, Θ̂, ŷi}
)

end for
output {x̂i, θ̂i}Bi=1

were subsampled from the MCMC posterior at each iteration to estimate expectations for EIG lower
bound computations. The simulations kernel k̂ was a Matérn 2.5 kernel. For this experiment we
did not model the error term, leaving it with a zero kernel, since data is generated directly from the
simulator with no further error component, only Gaussian noise with a standard deviation of 0.5.
Final KL estimates were computed using the maximum-a-posteriori hyper-parameters of the GP
model learnt with the random search approach to minimise biases in the estimate of DKL(pT ||p0)
due to differing GP hyper-parameters across baselines.

A.3 Soft-robotics simulation problem

The prior for the calibration parameters p(θ∗) in this experiment consisted of a 2-dimensional
standard normal transformed through a sigmoid and an affine transform composition to provide
a smooth uniform distribution over a pre-specified range for the calibration parameters. Such
smooth approximation allows gradients to be computed near the edges of the parameter space while
not allowing optimisation to take the calibration parameter candidates outside the uniform prior
boundaries, since these would be placed at infinity under the normalised space. The conditional
normalising flow model used Zuko’s implementation of neural spline flows with 10 transform layers.
The set encoder consisted of a 2-layer fully connected 32-unit-wide neural network encoding each
input into an 8-dimensional output which was then summed and passed through as the context input
to condition the flow. Adam again was used for optimisation with a learning rate of 0.001 for the flow
and 0.05 for the simulation inputs. Monte Carlo expectation estimates used 256 samples from the
current MCMC posterior at each joint optimisation step.

A.4 Hyper-parameter tuning

Besides the GP hyperparameters (e.g., lengthscales, noise variance, etc.), which had to be tuned
for the non-GP-based problems, there are optimisation settings (i.e., step sizes, scheduling rates,
etc.), conditional density model hyper-parameters (i.e., normalising flow architecture), and other
algorithmic settings, e.g., the designs batch size B. The latter is dependent on the available computing
resources (e.g., number of CPU cores or compute nodes for simulations in a high-performance
computing system). We tuned optimisation settings and architectural parameters for the conditional
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(a) Reference posterior p∗

(b) BACON final posterior (c) IMSPE baseline final posterior

(d) D-optimal baseline final posterior (e) Random baseline final posterior

Figure 4: Final posterior approximations p(θ∗|DT ) and simulation parameter θ̂ (red crosses) choices
by each method for the soft-robotics simulator calibration problem after one of the runs. The
target/reference posterior (a) was inferred using a large number (1024) of simulations following
a Latin hypercube pattern over the combined design X and calibration parameters space Θ and
a uniform prior p(θ) over the same range as the smooth uniform prior the algorithms used. The
posteriors are plotted as a 2D histogram over the normalised range (after an affine and sigmoid
transform), which the algorithms used for optimisation. The KL divergences in Table 3 are computed
with respect to this reference posterior. Also note that the simulation parameters θ̂ in the plot
correspond to different algorithmic choices for design inputs x̂, which are 9-dimensional variables
that are not plotted here.
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normalising flows via Bayesian optimisation with short runs (e.g., 10-20 iterations) on the synthetic
problem. However, depending on the number of parameters, a simpler approach, like grid search,
might be enough. GP hyper-parameters were optimised online via maximum a posteriori estima-
tion after each iteration’s batch update. Further implementation details can be found in our code
repository.10

B Extensions of the proposed approach

In the following, we present two extensions to deal with limitations of the current approach. Namely,
we can amortise inference over the calibration posterior by reutilising the learnt conditional distribu-
tion models as priors, instead of having to run, for example, MCMC. Secondly, we present derivations
for a scalable sparse GP version of our method.

B.1 Amortisation

We use a conditional variational distribution model for q(θ∗|ŷ). The main advantage of training a
conditional model is that, once new data ŷt is observed, we readily obtain an approximation to the new
posterior as p(θ∗|Dt) = p(θ∗|ŷt, x̂t, θ̂t,Dt−1) ≈ qt(θ

∗|ŷt). There is, therefore, potential to reuse
the variational posterior as the prior for the next iteration, and all the optimisation is concentrated
within a single loop.

Approximate objective. We are still left with terms dependent on the posterior from the previous
iteration p(θ∗|Dt−1) in Eq. 15. Firstly, however, note that the denominator inside the expectation
is constant w.r.t. the optimisation variables, not affecting the maximiser. Secondly, we may replace
the joint predictive distribution p(ŷ,θ∗|x̂, θ̂,Dt−1) by an approximation using the previous optimal
variational posterior qt−1 as:

p(ŷ,θ∗|x̂, θ̂,Dt−1) ≈ qt−1(ŷ,θ
∗|x̂, θ̂) := p(ŷ|θ∗, x̂, θ̂,Dt−1)qt−1(θ

∗) (23)

where qt−1(θ
∗) := qt−1(θ

∗|ŷt−1) ≈ p(θ∗|Dt−1). The following objective then approximately
shares the same set of maximisers as the variational lower bound ÊIGt(x̂, θ̂, q):

x̂t, θ̂t, qt ∈ argmax
x̂∈X ,θ̂∈Θ,q∈Q

Eqt−1(ŷ,θ∗|x̂,θ̂) [log q(θ
∗|ŷ)] . (24)

In practice, reusing the variational conditional posterior may tend to degenerate the approximation
over time. However, that can be corrected by rerunning MCMC or a variational inference scheme
over the data to obtain a fresh new posterior at every few iterations.

B.2 Conditional sparse models for large datasets

Computing the variational EIG requires evaluating expectations with respect to the posterior predictive
distribution p(ŷ|θ∗, x̂, θ̂,Dt). Note, however, that, as θ∗ appears inside a matrix inversion in the
GP predictive (Eq. 8), each sample of p(ŷ|θ∗, x̂, θ̂,Dt) requires a O(N3

t ) computation cost, where
Nt := R+ t is the number of data points at iteration t ∈ N. This cost may quickly become prohibitive
for reasonably large datasets, which are easily obtainable in batch settings (Sec. 5.4), rendering EIG
computations infeasible. To scale our method to handle large amounts of data, we then need GP
models that can reduce this computational complexity, while still allowing us to obtain reasonable
EIG estimates.

B.2.1 Variational sparse GP approximation

We consider an augmentation to the original GP model which allows us to sparsify its covariance
matrix, reducing the computational complexity of GP predictions. Following the variational sparse GP
approach [46], let u := f̂(Zu) ∈ RM denote a vector of M inducing variables representing unknown
function values at a given set of pseudo-inputs Zu. The joint distribution between observations y,

10Code available at: https://github.com/csiro-funml/bacon
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function values f̂ := f̂(Z(θ∗)), inducing variables u and the unknown parameters θ∗ can be written
as:

p(y, f̂ ,u,θ∗) = p(y, f̂ ,u|θ∗)p(θ∗) = p(y|̂f)p(f̂ |u,θ∗)p(u)p(θ∗) , (25)

where p(y|̂f) = N (y; f̂ ,Σy),

p(f̂ |u,θ∗) = N (f̂ ;Kf̂u(θ
∗)K−1

uuu,Kf̂ f̂ (θ
∗)−Kf̂u(θ

∗)K−1
uuKuf̂ (θ

∗)) , (26)

and p(u) = N (u;0,Kuu), using notation shortcuts Kuu := k(Zu,Zu), Kf̂u(θ
∗) := k(Z(θ∗),Zu),

and Kf̂ f̂ (θ
∗) := k(Z(θ∗),Z(θ∗)). We may now formulate an evidence lower bound (ELBO) based

on the joint variational density q(f̂ ,u,θ∗) as:

log p(y) = Eq(f̂ ,u,θ∗)

[
log

p(y, f̂ ,u,θ∗)

q(f̂ ,u,θ∗)

]
+ DKL(q(f̂ ,u,θ

∗)||p(f̂ ,u,θ∗|y))

≥ Eq(f̂ ,u,θ∗)

[
log

p(y, f̂ ,u,θ∗)

q(f̂ ,u,θ∗)

]
.

(27)

Since DKL(q(f̂ ,u,θ
∗)||p(f̂ ,u,θ∗|y)) ≥ 0, and 0 if and only if q(f̂ ,u,θ∗) = p(f̂ ,u,θ∗|y), max-

imising the ELBO above w.r.t. q provides us with an approximation to the joint posterior. Choosing
q(f̂ ,u,θ∗) := p(f̂ |u,θ∗)q(u,θ∗) simplifies the ELBO to [51]:

log p(y) ≥ Eq(f̂ ,u,θ∗)

[
log

p(y|̂f)p(u)p(θ∗)

q(u,θ∗)

]
. (28)

Sparse variational GP approaches can reduce the computational complexity of Bayesian inference on
GPs to O(NM2) or even O(M3) [46, 52], where N is the number of data points.

B.2.2 Structure of the joint variational posterior

If we would take a mean-field approach setting q(u,θ∗) := q(u)q(θ∗), the ELBO above would
further simplify, leading to a few computational advantages, as explored by Bayesian GP-LVM
methods [51, 32, 52]. However, in our experimental design context, this approach leads to a few
issues. Firstly, using the mean-field posterior as a replacement for our joint posterior breaks the
dependence between ŷ and θ∗, leading their mutual information (a.k.a. EIG) to be zero regardless of
the design inputs x̂ and θ̂. Secondly, although u and θ∗ are independent according to their priors
(Eq. 25), they become dependent when conditioned on the data. In fact, the true posterior over u
given the data and the true parameters θ∗ is exactly Gaussian:

p(u|Dt,θ
∗) = N (u;µt(Zu;θ

∗), kt(Zu,Zu;θ
∗)) , (29)

where µt(·;θ∗) and kt(·, ·;θ∗) are given by Eq. 9 and Eq. 10, respectively. Note, however, that the
posterior over θ∗ should not be Gaussian for a general non-linear kernel k. Therefore, it makes more
sense for us to model q(u,θ∗) := q(u|θ∗)q(θ∗). Moreover, learning a Gaussian conditional model
over u and a flexible variational distribution over θ∗ should be enough to allow us to recover the true
posterior, since p(u,θ∗|Dt) = p(u|Dt,θ

∗)p(θ∗|Dt).

Optimal variational inducing-point distribution. Given θ∗ ∈ Θ, we have a standard sparse GP
model. The optimal variational inducing-point distribution is available in closed form following
standard results [46] as:

q∗(u|θ∗) = N (u;µu(θ
∗),Σu(θ

∗)) , (30)
where the distribution parameters are:

µu(θ) := Kuu(Kuu +Ψ2(θ))
−1Ψ1(θ)

Ty (31)

Σu(θ) := Kuu(Kuu +Ψ2(θ))
−1Kuu , (32)

and the conditional Ψ matrices are given by:

Ψ1(θ) := Kf̂u(θ)Σ
−1
y (33)

Ψ2(θ) := Kuf̂ (θ)Σ
−1
y Kf̂u(θ) , (34)

for θ ∈ Θ. The computational cost of sampling predictions with this model then reduces fromO(N3)
to O(NM2).
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Parametric variational inducing distribution. To further reduce the computational cost of pre-
dictions, we may accept a sub-optimal conditional variational inducing-point distribution given by a
parametric model:

qζ(u|θ∗) := N (u;mζ(θ
∗),Σζ(θ

∗)) , (35)
following the architecture in Sec. 5.3. This formulation allows us to approximate the evidence lower
bound in Eq. 28 w.r.t. q(u|θ∗) via mini-batching [see 53]. To do so, we approximate f̂i := f̂(zi) via
conditionally independent samples given u, for i ∈ {1, . . . , N}. As a result, the data-dependent term
in Eq. 28 decomposes as a sum which is amenable to mini-batching:

Eqζ(f̂ ,u|θ∗)[log p(y|̂f)] ≈
N∑
i=1

Eqζ(f̂i,u|θ∗)[log p(yi|f̂i)] (36)

where qζ(f̂i,u|θ∗) = p(f̂i|u,θ∗)qζ(u|θ∗). The variational parameters ζ need to be optimised within
a second optimisation loop after the data update in Algorithm 1 w.r.t.:

ℓt(ζ) := Eqt(θ∗)

[
N∑
i=1

Eqζ(f̂(zi),u|θ∗)[log p(yi|f̂(zi))]

]
− Eqt(θ∗)[DKL(qζ(u|θ∗)||p(u))] . (37)

Although the GP update is no longer available in closed form, we gain computational efficiency for
large volumes of data. Applying mini-batches of size L≪ N to Eq. 37 results in a computational
cost O(LM2) (or O(M3), if M > L), which is smaller than the cost O(NM2) of the optimal
variational distribution q∗(u|θ∗).

C Further discussions on limitations

High-dimensional settings. The dimensionality of our search space consists of the combined
dimensionality of the designs X and calibration parameters space Θ, which can be large in practical
applications. In general, in higher dimensions, one is to expect that the algorithm will require a
larger number of iterations to find suitable posterior approximations due to the possible increase in
complexity of the posterior. The analysis of such complexity, however, is problem-dependent and
outside the scope of this work. In addition, note that we do not mean that the per-iteration runtime is
directly affected, since what dominates the cost of inference is sampling from the GP, whose runtime
complexity is dominated by the cube of the number of data points due to a matrix inversion operation,
while being only linear in dimensionality.

Gaussian assumptions. We make Gaussian assumptions when modelling the simulator and the
approximation errors, which can be seen as restrictive for some applications. However, if the errors are
sub-Gaussian (i.e., its tail probabilities decay faster than that of a Gaussian), as is the case for bounded
errors, we conjecture that a GP model can still be a suitable surrogate, as it would not underestimate
the error uncertainty. If the error function is sampled from some form of heavy-tailed stochastic
process (e.g., a Student-T process), the GP would, however, tend to under estimate uncertainty and
lead to possibly optimistic EIG estimates that make the algorithm under-explore the search space.
Changing from a GP model to another type of stochastic process model that can capture heavier tails
would be possible, though require significant changes to the algorithm’s predictive equations. We,
however, believe that most real-world cases would present errors which are at least bounded (and
therefore sub-Gaussian) with respect to the simulations.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Experimental results confirm.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Justification: In conclusion section
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.
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address problems of privacy and fairness.
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reviewers as grounds for rejection, a worse outcome might be that reviewers discover
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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a complete (and correct) proof?
Answer: [NA]
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
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of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
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• If the paper includes experiments, a No answer to this question will not be perceived
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whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Code (included with submission) will be made public for most of the results,
except soft-robotics data, which is subject to internal restrictions.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Main details are provided and code is included.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification:
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• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: Full experiment details will be provided for camera-ready version.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: No data subject to NeurIPS Code of Ethics has been used in this work.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: This work is of a theoretical nature introduce new methods for a general class
of applications, potentially in science and engineering.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification: There are currently no plans to release any dataset other than synthetic data

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Mostly open-source code has been used to base this project on.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification:
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
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include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
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such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [NA]
Justification:
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
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• We recognize that the procedures for this may vary significantly between institutions
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