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Abstract
The CUTE benchmark showed that LLMs001
struggle with character understanding in En-002
glish. We extend it to more languages with di-003
verse scripts and writing systems, introducing004
EXECUTE. Our simplified framework allows005
easy expansion to any language. Tests across006
multiple LLMs reveal that challenges in other007
languages are not always on the character level008
as in English. Some languages show word-level009
processing issues, some show no issues at all.010
We also examine sub-character tasks in Chi-011
nese, Japanese, and Korean to assess LLMs’012
understanding of character components.013

1 Introduction014

LLMs perform well on many tasks but struggle015

when they are asked to manipulate character se-016

quences, as shown by the CUTE benchmark (Ed-017

man et al., 2024). While CUTE tested Russian,018

showing this issue is not language-specific, it failed019

to consider other linguistic differences that may020

affect results. Language variation extends beyond021

script differences to writing system differences. En-022

glish and Russian use alphabets. Other languages023

use Abugidas, where letters are not strictly ordered024

within syllables, or Abjads, which mark vowels025

with diacritics or not at all. Chinese uses a lo-026

gographic script, where most words are just 1-2027

characters long. Multilingual LLMs allocate to-028

kens unevenly across languages: high-resource lan-029

guages are well represented, but some low-resource030

languages are mainly processed at the byte level.031

We explore these languages in our benchmark032

EXECUTE: the Expandable X(Cross)-Lingual033

Extension of CUTE.1 We mainly look at 8 lan-034

guages, shown in Table 1, which vary in script,035

writing system, tokenization, and resourcedness.036

We also provide a framework for adding languages037

to make this benchmark easily expandable. In our038

results and analysis, we find that:039

1https://anonymous.4open.science/r/EXECUTE

Language Script Writing System c/w t/w c/t

Amharic Ge’ez Abugida 3.71 7.69 0.48
Arabic Arabic Abjad 4.63 2.43 1.90
Chinese Simpl. Han Logographic 1.51 1.25 1.20
English Latin Alphabet 4.04 1.32 3.05
Hindi Devanagari Abugida 3.66 2.80 1.31
Japanese Japanese Mixed 1.54 1.27 1.22
Korean Hangul Featural 3.38 2.71 1.25
Russian Cyrillic Alphabet 5.06 2.36 2.14

Table 1: CWT statistics of EXECUTE’s languages. c, w,
and t denote characters, words, and tokens. c/w refers
to the average characters per word. t is the average
token count across the 5 tokenizers used by the models.

1. Benchmark results for non-English languages 040

often differ from the English results. 041

2. The results correlate with the languages’ CWT 042

(character-word-token) statistics (see Table 1). 043

3. Surprisingly, the less an LLM knows a lan- 044

guage, the better it performs on EXECUTE. 045

4. LLMs struggle with understanding sub- 046

character components (see Figure 1). 047

Our results provide more insight into how LLMs 048

process tokens on different granularities. 049

2 Related Works 050

Our work builds upon the CUTE benchmark (Ed- 051

man et al., 2024), which showed that LLMs strug- 052

gle with character manipulation tasks. CUTE was 053

mainly created for English but also included Rus- 054

sian tasks, showing similar results. Similar studies 055

probe models to spell or modify text on the char- 056

acter level, but either first train the model (Itzhak 057

and Levy, 2022; Kaushal and Mahowald, 2022), 058

or focus on other topics than orthography (Huang 059

et al., 2023; Efrat et al., 2023). 060

Research on error correction, including spelling 061

correction, has been done for many languages. 062

Maxutov et al. (2024) found spelling correction 063

to be “hard” for LLMs in Kazakh. Li et al. (2023) 064

reported that LLMs perform worse than fine-tuned 065

models for Chinese spelling correction. Similarly, 066
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Figure 1: EXECUTE benchmark. Prompts shortened
for brevity. Example of full prompt in Appendix D.

Kwon et al. (2023) showed that fine-tuned models067

outperform prompted LLMs for Arabic. Spelling068

correction requires both character-level and seman-069

tic knowledge to determine the correct replacement.070

EXECUTE, like CUTE, aims to remove contextual071

semantic understanding from the benchmark.072

Our sub-character experiments build on work073

by Wu et al. (2025) who released a detailed analy-074

sis of the information in Chinese characters. Our075

character-to/from-radical tasks resemble theirs, but076

they focus on simplified Chinese, while we also077

examine traditional characters via Japanese Kanji.078

Character-level LLMs have been proposed as a079

solution to CUTE and have been shown to outper-080

form subword LLMs in Pagnoni et al. (2024).081

3 Benchmark082

Figure 1 exemplifies our EXECUTE benchmark.083

We use the same composition and manipulation084

tasks as CUTE but drop the similarity tasks which085

require static embeddings (such as word2vec) and086

fluent speakers to define similarity thresholds,087

which vary by language and lack clear criteria.088

Their removal makes EXECUTE easier to expand.089

Adding a new language X now only requires an090

English→X translation system. As cross-language091

alignment is not crucial, translations do not need092

to be perfect: grammaticality is preferable but not093

necessary. We modify prompt examples and the094

dataset used, so English and Russian results differ095

from CUTE’s.2 Details are in Appendix A.096

Although perfect translations are not required,097

we have fluent speakers verify that most transla-098

tions preserve meaning and grammar. Table 1 lists099

these languages, covering eight major scripts and100

all known writing systems. While some widely101

used languages (e.g. Spanish) are missing, their102

2As our changes are minor, users of the English and Rus-
sian datasets should cite Edman et al. (2024).

script is represented, and Appendix B shows the 103

performance of languages using the same script is 104

highly correlated. 105

We keep the prompt texts in English but use 106

language-specific examples, since fully Russian 107

prompts did not improve performance for Russian 108

(Edman et al., 2024). It also ensures that the LLMs 109

understand the task consistently across languages. 110

Sub-Character Experiments Chinese, Japanese, 111

and to a lesser extent Korean, have few characters 112

per word, so we add language-specific tasks to as- 113

sess their understanding of character components. 114

In Chinese, each character can be broken down 115

into parts known as Kangxi radicals. An example 116

of a decomposition is:晚→ 日免, where indi- 117

cates that日 should be placed to the left of免. The 118

radicals often have a related meaning to the com- 119

posite: 晚 means evening, 日 means sun and 免 120

means avoid. Japanese Kanji characters originate 121

from traditional Chinese characters and can also 122

be decomposed into radicals. Korean Hangul char- 123

acters denote syllables and can be split into Jamo, 124

which correspond to phonemes. For example,둘 125

(dul) becomesㄷ(d),ㅜ(u), andㄹ(l). 126

We test the LLMs’ ability to compose and de- 127

compose CJK characters into their components. 128

For Chinese and Japanese, we ask the model to split 129

characters into Kangxi radicals, and vice versa.3 130

Similarly, we decompose Hangul characters to 131

Jamo and vice versa. These tasks are analogous to 132

the spelling and inverse_spelling tasks. We 133

further add a task (similar to contains) which asks 134

if a character contains a Kangxi radical or Jamo. 135

Japanese can either be written with Kanji charac- 136

ters or with phonetic Hiragana characters. We test 137

LLMs’ ability to convert Kanji in Appendix C. 138

Models We test 5 popular open-source multilin- 139

gual LLMs: Aya Expanse, Gemma 2, Llama 3.1 140

and 3.3, Qwen 2.5, and Mistral (Dang et al., 2024; 141

Gemma Team et al., 2024; Dubey et al., 2024; 142

Qwen et al., 2025; Jiang et al., 2023). Their sizes 143

range from 7B to 70B parameters, and their vocab- 144

ularies contain between 128k and 256k tokens. 145

4 Results 146

We first examine results by language, showing the 147

best model performance for each in Figure 2.4 Rus- 148

3One can further split Kangxi radicals down to strokes, but
this showed very poor performance in initial tests.

4We show the results per task, as well as results for Aya
and Mistral, in Appendix E.
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Figure 2: The best result of all models for each language and task.

Eng

Amh Tzm Sat Cipher Byte Reg

Spell 96.3 100.0 97.6 100.0 85.0 99.5
Inv Spell 99.8 100.0 99.3 100.0 0.0 99.6
Cont Char 91.8 100.0 98.0 98.6 82.8 75.7
Cont Word 99.6 99.2 98.9 99.0 96.7 99.9
Ins Char 97.8 97.8 98.2 98.6 20.9 13.5
Ins Word 92.8 94.3 91.9 97.1 1.4 96.6
Del Char 97.6 99.7 98.7 98.9 78.8 67.5
Del Word 97.6 76.2 88.8 95.6 3.7 96.5
Sub Char 96.6 98.4 98.3 95.5 61.5 51.4
Sub Word 96.2 96.6 90.1 98.4 5.9 98.5
Swap Char 93.7 97.6 92.8 98.3 29.0 12.7
Swap Word 97.3 87.9 90.0 95.9 6.6 90.9

Avg 96.4 95.6 95.2 98.0 39.4 75.2

Table 2: Llama 3.3 on low-resource languages.

sian and Arabic results resemble English results.149

Hindi and Korean perform better at the word level150

than the character level, though the gap is smaller151

than for English, with stronger results in character-152

level insertion and swapping. Japanese and Chinese153

perform better on the character level, which is ex-154

pected since each character is a word or almost a155

word. However, word-level tasks may simply be156

harder in these languages, as they require modify-157

ing multiple tokens instead of just one.158

Amharic and Low-Resourcedness Amharic159

stands out from the rest of the results in that the160

performance is nearly perfect in the best-case sce-161

nario. This is particularly surprising as Amharic162

is the lowest-resource language of the 8, and most163

characters are split into bytes by the tokenizers,164

meaning each character is represented by 3 tokens.165

We suspect that the good performance might ac-166

tually be because of this low-resourcedness. As167

seen in (Edman et al., 2024), and also observed168

in this work, LLMs are biased to generating real169

words and grammatical sentences. Their lack of170

understanding of Amharic might weaken this bias.171

We provide further evidence that language172

Gemma 2 Llama 3.1 Llama 3.3 Qwen 2.5

9B 27B 8B 70B 70B 7B 32B

Amh 80.5 85.3 75.7 95.9 96.4 41.9 74.4
Ara 51.6 62.3 52.1 68.1 67.8 47.2 68.6
Zho 70.2 74.4 71.3 81.1 79.7 70.4 83.6
Eng 64.8 71.6 61.9 75.7 75.2 62.1 77.3
Hin 47.9 47.1 43.8 54.0 56.4 43.5 86.2
Jpn 60.1 65.2 58.8 73.1 74.6 62.1 77.9
Kor 73.6 80.8 62.1 76.9 76.1 60.2 80.8
Rus 53.6 62.6 51.0 67.8 67.8 52.1 71.2

Avg 62.8 68.7 59.6 74.1 74.3 54.9 77.5

Table 3: Average score per language. Best in bold.

knowledge inversely correlates with EXECUTE 173

performance by adding two low-resource lan- 174

guages, Tamazight and Santali. Their unique 175

scripts (Tifinagh and Ol Chiki) are not used by any 176

higher resource languages, forcing LLM tokenizers 177

to operate at the byte level. These languages were 178

likely seen rarely, if ever, during training. We com- 179

pare results on Amharic’s best-performing model, 180

Llama 3.3. Additionally, we test two variations 181

of English: one encodes text using a cipher that 182

maps Latin to Amharic characters, and the other 183

forces the inputs to be byte-level (retaining the 184

Latin alphabet). These experiments assess whether 185

byte-level operation alone improves performance 186

or if eliminating English recognition via cipher- 187

ing is also necessary. We expect ciphered English 188

to perform similarly to Amharic. Table 2 shows 189

that Llama achieves near-perfect results in the low- 190

resource languages, as well as the ciphered English. 191

Byte-level English improves character tasks but 192

fails on word tasks, partly due to bias. The model 193

rarely sees English at the byte level except in so- 194

cial media, leading to random casing and antspeak 195

(extra spacing) in the output. Degenerate output 196

(e.g. “1 1 1 ...”) also occurs. Some fine-tuning 197

with this byte-level approach would likely increase 198

performance considerably. 199
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Aya Expanse Gemma 2 Llama 3.1 Llama 3.3 Qwen 2.5 Mistral

8B 32B 9B 27B 8B 70B 70B 7B 32B 8B 24B

Zho
Char to Rad 0.0 2.0 0.0 0.8 0.0 1.4 1.8 1.4 16.4 0.8 3.5
Rad to Char 1.4 8.2 2.5 0.8 2.5 10.7 11.9 7.6 22.8 2.5 8.2

Contains Rad 55.4 65.5 81.1 79.3 69.4 73.5 72.9 68.0 78.8 62.2 74.5

Jpn
Char to Rad 0.0 0.7 0.7 0.0 0.0 0.0 2.2 2.2 9.2 0.4 3.7
Rad to Char 2.6 8.5 2.2 0.4 1.9 13.7 13.3 5.2 20.3 1.5 7.4

Contains Rad 57.9 61.6 86.4 72.7 69.7 73.1 76.0 73.4 76.0 65.7 83.4

Kor
Hangul to Jamo 7.5 48.1 54.6 65.3 24.5 48.8 45.6 24.7 57.4 35.6 66.4
Jamo to Hangul 24.7 49.0 47.2 63.9 41.7 24.5 24.3 25.9 42.2 28.1 51.5
Contains Jamo 63.7 76.2 93.2 96.6 92.1 87.5 90.3 75.3 93.4 73.2 88.7

Table 4: Sub-character-level results on CJK languages. Best in bold.

Does Amharic’s near-perfect score mean200

character- and word-level processing is solved? No,201

it shows LLMs can perform arbitrary manipulations202

but are hampered by their language understanding.203

As training data increases, Amharic performance204

will likely decline. So, this benchmark should com-205

plement standard NLU benchmarks for a complete206

assessment.207

Language Clusters Table 1 groups languages208

with similar CWT statistics into five categories: 1)209

Arabic & Russian, 2) Hindi & Korean, 3) Japanese210

& Chinese, 4) Amharic, and 5) English. Their simi-211

lar benchmark performance suggests that segmenta-212

tion, whether natural or from tokenization, impacts213

results. As expected, the statistics of Tamazight214

(4.37, 8.83, 0.49) and Santali (3.54, 8.38, 0.42)215

closely align with Amharic.216

Model Performance Table 3 shows model per-217

formance. Larger models generally perform bet-218

ter. However, this trend does not hold across219

model families, as Qwen 2.5 (32B) outperforms220

the larger 70B Llama 3 models. Llama 3.3, de-221

spite its stronger performance than Llama 3.1 on222

standard benchmarks, performs similarly here.223

Edman et al. (2024) found that more training224

data improved results on CUTE, but we find no225

such trend. Among 7-9B models, Gemma was226

trained on 8T tokens, Llama on 15T, and Qwen on227

18T (Gemma Team et al., 2024; Qwen et al., 2025;228

Dubey et al., 2024), yet their performance is in-229

versely correlated. While this may be coincidental,230

results on Amharic, Tamazight, and Santali raise231

doubts about whether more training data improves232

performance on this benchmark.233

Sub-Character Performance Table 4 shows234

sub-character results. For Japanese and Chinese,235

models struggle to translate characters to and from236

their radical components but perform better on the237

Contains task, as it only requires identifying one 238

radical. While some characters, like晚 (evening), 239

have components that clearly contribute to mean- 240

ing, others are more ambiguous. For example,木 241

(tree) is likely easier for models to identify in樟 242

(camphor tree) compared to章 (chapter, seal). 243

LLMs are notably better at converting between 244

Hangul and Jamo, likely due to Hangul’s simpler 245

structure or its more frequent decomposition in 246

training data. However, the conversion still falls 247

short of the near-perfect scores seen in the main 248

Spelling and Inverse Spelling tasks. 249

5 Conclusion 250

We present a multilingual, multi-script extension 251

of the CUTE benchmark to test token understand- 252

ing in a variety of languages. The benchmark is 253

designed to be easily expanded to new languages, 254

allowing the token understanding of LLMs to be 255

tested in any language. Our findings show that ma- 256

nipulation on the character level is challenging in 257

some non-English languages, but word-level ma- 258

nipulation is challenging for some languages too. 259

Understanding the components of characters in Chi- 260

nese, Japanese, and Korean is also lacking. The 261

performance of a language can be somewhat pre- 262

dicted by its character-word-token ratios. Surpris- 263

ingly, LLMs perform better on lower-resourced lan- 264

guages, due to their knowledge of high-resourced 265

languages acting as a bias against the benchmark’s 266

tasks. While Edman et al. (2024) hypothesized 267

that character-level models would be promising for 268

solving the CUTE benchmark, EXECUTE demon- 269

strates an additional need for debiasing models so 270

they can temporarily forget what they know about 271

a language. 272

4



6 Limitations273

We limit ourselves to 8 languages for the majority274

of this work. While we argue that the languages in275

the same scripts as the ones tested will likely have276

similar results, pointing to the correlation in results277

between English, Spanish, German, and Xhosa in278

Appendix B, we cannot know for sure without test-279

ing them all. Several other scripts are not covered280

which may have differing performances.281

We also do not test very large language models282

above 70B parameters due to compute constraints.283

The CUTE benchmark added scores for the 405B284

parameter Llama 3.1 and found it made improve-285

ments across the board, but was still lacking on286

character-level insertion and swapping. We would287

expect similar improvements for our English re-288

sults, but it is unclear how it would perform for289

other languages.290

References291

John Dang, Shivalika Singh, Daniel D’souza, Arash292
Ahmadian, Alejandro Salamanca, Madeline Smith,293
Aidan Peppin, Sungjin Hong, Manoj Govindassamy,294
Terrence Zhao, et al. 2024. Aya expanse: Combin-295
ing research breakthroughs for a new multilingual296
frontier. arXiv preprint arXiv:2412.04261.297

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,298
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,299
Akhil Mathur, Alan Schelten, Amy Yang, Angela300
Fan, et al. 2024. The llama 3 herd of models. arXiv301
preprint arXiv:2407.21783.302

Lukas Edman, Helmut Schmid, and Alexander Fraser.303
2024. CUTE: Measuring LLMs’ understanding of304
their tokens. In Proceedings of the 2024 Confer-305
ence on Empirical Methods in Natural Language306
Processing, pages 3017–3026, Miami, Florida, USA.307
Association for Computational Linguistics.308

Avia Efrat, Or Honovich, and Omer Levy. 2023. LMen-309
try: A language model benchmark of elementary310
language tasks. In Findings of the Association for311
Computational Linguistics: ACL 2023, pages 10476–312
10501, Toronto, Canada. Association for Computa-313
tional Linguistics.314

Ronen Eldan and Yuanzhi Li. 2023. Tinystories: How315
small can language models be and still speak coherent316
english? Preprint, arXiv:2305.07759.317

Gemma Team, Morgane Riviere, Shreya Pathak,318
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-319
raju, Léonard Hussenot, Thomas Mesnard, Bobak320
Shahriari, Alexandre Ramé, Johan Ferret, Peter321
Liu, Pouya Tafti, Abe Friesen, Michelle Casbon,322
Sabela Ramos, Ravin Kumar, Charline Le Lan,323
Sammy Jerome, Anton Tsitsulin, Nino Vieillard,324

Piotr Stanczyk, Sertan Girgin, Nikola Momchev, 325
Matt Hoffman, Shantanu Thakoor, Jean-Bastien Grill, 326
Behnam Neyshabur, Olivier Bachem, Alanna Wal- 327
ton, Aliaksei Severyn, Alicia Parrish, Aliya Ah- 328
mad, Allen Hutchison, Alvin Abdagic, Amanda 329
Carl, Amy Shen, Andy Brock, Andy Coenen, An- 330
thony Laforge, Antonia Paterson, Ben Bastian, Bilal 331
Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu 332
Kumar, Chris Perry, Chris Welty, Christopher A. 333
Choquette-Choo, Danila Sinopalnikov, David Wein- 334
berger, Dimple Vijaykumar, Dominika Rogozińska, 335
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A Preprocessing 456

In this section, we describe the differences in pre- 457

processing steps between our benchmark and the 458

CUTE benchmark. We also release our benchmark 459

in a GitHub repository.5 460

To start, we use an updated subset of 5000 sto- 461

ries from the TinyStories dataset (Eldan and Li, 462

2023), which used GPT-4 to produce outputs rather 463

than the GPT-3.5 outputs, used in CUTE. We find 464

this dataset to be cleaner (with no random foreign 465

characters) and it is purported by the dataset au- 466

thors to also be of higher quality. For non-English 467

languages, we translate all the stories using Google 468

Translate. At this point, for Chinese and Japanese, 469

it is necessary to apply word segmentation. For 470

Chinese, we use jieba6, and for Japanese we use 471

nagisa.7 472

We then generate a character set and vocabulary 473

from the translated stories to use for our tasks. This 474

is unlike what is used in CUTE, which predefined 475

alphabets and vocabularies taken from the Trillion 476

Word Corpus and Wikipedia. This change is neces- 477

sary as it is more difficult to define a strict character 478

set for some languages, and also more difficult to 479

find a vocabulary. 480

In the CUTE benchmark, the vocabulary also 481

removed words less than 3 characters to maintain 482

a level of difficulty for the tasks. We remove this 483

cutoff for Chinese, Japanese, and Korean, as it is 484

too restrictive. 485

As the prompts are few-shot, we require 486

language-specific examples in each prompt. For 487

CUTE, these examples were created manually. In- 488

stead, we generate 4 additional examples in the 489

same manner as our test set, with a few additional 490

stipulations: 491

5https://anonymous.4open.science/r/EXECUTE
6https://github.com/fxsjy/jieba
7https://github.com/taishi-i/nagisa

6

https://doi.org/10.18653/v1/2022.naacl-main.373
https://doi.org/10.18653/v1/2022.naacl-main.373
https://doi.org/10.18653/v1/2022.naacl-main.373
https://doi.org/10.18653/v1/2022.naacl-main.373
https://doi.org/10.18653/v1/2022.naacl-main.373
https://doi.org/10.18653/v1/2022.naacl-main.179
https://doi.org/10.18653/v1/2022.naacl-main.179
https://doi.org/10.18653/v1/2022.naacl-main.179
https://doi.org/10.18653/v1/2022.naacl-main.179
https://doi.org/10.18653/v1/2022.naacl-main.179
https://doi.org/10.18653/v1/2023.arabicnlp-1.9
https://doi.org/10.18653/v1/2023.arabicnlp-1.9
https://doi.org/10.18653/v1/2023.arabicnlp-1.9
https://doi.org/10.18653/v1/2023.arabicnlp-1.9
https://doi.org/10.18653/v1/2023.arabicnlp-1.9
https://arxiv.org/abs/2307.09007
https://arxiv.org/abs/2307.09007
https://arxiv.org/abs/2307.09007
https://aclanthology.org/2024.sigturk-1.8/
https://aclanthology.org/2024.sigturk-1.8/
https://aclanthology.org/2024.sigturk-1.8/
https://arxiv.org/abs/2412.09871
https://arxiv.org/abs/2412.09871
https://arxiv.org/abs/2412.09871
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2410.09013
https://arxiv.org/abs/2410.09013
https://arxiv.org/abs/2410.09013
https://arxiv.org/abs/2410.09013
https://arxiv.org/abs/2410.09013
https://arxiv.org/abs/2410.09013
https://arxiv.org/abs/2410.09013
https://anonymous.4open.science/r/EXECUTE
https://github.com/fxsjy/jieba
https://github.com/taishi-i/nagisa


• At least 2 examples must use a word that con-492

tains duplicate letters.493

• At least 1 example must operate on the dupli-494

cate letters when applicable.495

• For the contains tasks, 2 examples must have496

the label “yes” and 2 “no”.497

We specify the duplicate letter restrictions so that498

the LLM understands that it must modify all of the499

targeted characters. The first two restrictions were500

not applied for Chinese however, as it is exceed-501

ingly rare for a Chinese word to contain duplicate502

characters. The last restriction is intended to ensure503

the model is not biased to answering either “yes”504

or “no” due to its frequency in the examples, a phe-505

nomenon which has been shown to be problematic506

in Zhao et al. (2021).507

Diacritics Abugidas such as Hindi have diacrit-508

ics to mark vowel sounds, aspirations, and nasal-509

izations. Due to the complex rules surrounding510

valid diacritics, which also vary between languages,511

we opt to consider each “character” as the letter512

plus any diacritics attached, also known as the513

grapheme. This is already the case for Amharic, as514

the diacritics have become fused with consonants515

in the Ge’ez script itself.516

A.1 Comparison to CUTE517

In Table 5, we run Llama 3.1 8B on CUTE and518

compare the results to English and Russian EXE-519

CUTE. The results are very similar, with Insert520

Word appearing slightly easier in CUTE. This con-521

firms that our changes did not dramatically alter522

any results.523

EXECUTE CUTE

Eng Rus Eng Rus

Spell 98.7 72.1 99.8 64.5
Inv Spell 96.2 37.9 98.4 74.1
Cont Char 65.1 57.1 67.1 68.4
Cont Word 97.3 97.8 86.8 97.4
Ins Char 4.4 6.7 4.2 7.6
Ins Word 48.2 48.5 62.0 59.2
Del Char 56.1 33.1 56.6 43.7
Del Word 76.2 91.8 83.7 82.3
Sub Char 39.3 29.0 34.4 33.8
Sub Word 94.1 87.0 90.4 76.7
Swap Char 6.6 4.8 6.1 5.2
Swap Word 60.4 46.5 63.7 33.3

Average 61.9 51.0 62.8 53.9

Table 5: EXECUTE versus CUTE with Llama 3.1 8B.

B Language Similarity524

We conduct similarity tests to see how similar the525

trends are across languages. We conduct a Pearson526

correlation between two languages for each task for 527

a given model and average the models’ correlations 528

together. We show the similarity of the languages 529

as determined by the average correlation of the 530

results from the 5 LLMs of size 7-9B in Table 6. 531

The languages are not particularly similar to one 532

another, apart from Japanese and Chinese (which 533

share some characters) and Arabic and Russian. 534

The similarity between Arabic and Russian is not 535

entirely clear, though it could be that their ratios of 536

characters-per-word and characters-per-token are 537

quite similar (such is also the case for Japanese and 538

Chinese). 539

Ara Zho Eng Hin Jpn Kor Rus

Amh 0.64 0.01 0.66 0.33 0.23 0.62 0.60
Ara -0.11 0.76 0.44 0.13 0.85 0.92
Zho 0.17 0.65 0.93 0.26 -0.06
Eng 0.45 0.36 0.77 0.86
Hin 0.75 0.71 0.38
Jpn 0.49 0.17
Kor 0.84

Table 6: Average correlations between the results for
each language pair.

We also correlate the results from English to 540

other Latin-scripted languages, German, Spanish, 541

and Xhosa, in Table 7. Here we see the average 542

correlation is at least 95% between English, Ger- 543

man, and Spanish, and at least 85% to Xhosa. This 544

suggests that the results for other Latin-scripted 545

languages will likely not deviate too much, even if 546

the languages are distant in relation and differing 547

in resourcedness. 548

Deu Spa Xho

Eng 0.96 0.95 0.85
Deu 0.99 0.90
Spa 0.90

Table 7: Average correlations between the results for
Latin-scripted languages.

C Japanese Furigana 549

Aside from Kanji, Japanese has two other writing 550

forms: Hiragana and Katakana. Typical Japanese 551

text will use all three forms, with several words 552

being a combination of Kanji and Hiragana, and 553

even in rare cases, all three. While Kanji is logo- 554

graphic like Chinese, Hiragana and Katakana are 555

syllabaries. Kanji and Hiragana are the most used, 556

while Katakana is typically only used for foreign 557

words or onomatopoeiae. As such, we focus on 558

Kanji and Hiragana. All Kanji characters can be 559
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Figure 3: Performance on Kanji to Hiragana conversion.

written as Hiragana, and Kanji is sometimes anno-560

tated with its corresponding Hiragana as a method561

of learning the pronunciation of Kanji characters.562

This practice is known as Furigana. So we use563

this Furigana method as a test in our benchmark,564

prompting the model to translate Kanji to Hira-565

gana.8 With this, we are essentially testing if the566

LLMs have a phonetic understanding of the Kanji.567

In Figure 3, we see the models’ results on the568

Furigana task. Similar to the Korean Hangul to569

Jamo, the Kanji to Hiragana tasks show that the570

LLMs generally understand the task, but have not571

perfected it. Unlike the other sub-character tasks,572

converting from Kanji to Hiragana cannot be done573

purely visually. This requires knowledge of how a574

Kanji sounds, and which Hiragana denote which575

sounds. From this, we can see a partial understand-576

ing.577

D Full Prompt Example578

We show an example of a full prompt in Figure 4.579

E Full Results580

The complete results on EXECUTE for all the mod-581

els tested are shown in Tables 8 and 9.582

8We do not do the reverse as multiple Kanji can have the
same phoneme, e.g. 考 and好 both denote ko.

[INST] Spell out the word, putting spaces
between each letter, based on the following
examples:

1. Spell out the word “ かわいい ”.
Answer: “ かわいい ”
2. Spell out the word “ 出し ”. Answer: “
出し ”
3. Spell out the word “ 応援 ”. Answer: “
応援 ”
4. Spell out the word “ 親友 ”. Answer: “
親友 ”

Question: Spell out the word “ 実行
する ”. [/INST] Answer: “ 実行する ”

Figure 4: Example of full prompt for Japanese
spelling, with intended output in red. [INST] and
[/INST] denote any tokens added to enable normal be-
havior from each LLM.
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Aya Expanse Gemma 2 Llama 3.1 Llama 3.3 Qwen 2.5 Mistral

8B 32B 9B 27B 8B 70B 70B 7B 32B 8B 24B

Amharic

Spell 25.6 72.4 99.5 91.2 98.6 98.4 96.3 0.9 14.3 97.0 99.8
Inv Spell 77.6 71.5 99.1 91.4 98.8 99.8 99.8 8.2 52.4 99.1 100.0
Cont Char 58.5 85.8 73.0 81.9 90.4 91.8 91.8 63.2 93.5 94.7 95.8
Cont Word 55.9 69.5 97.0 98.3 78.5 99.5 99.6 71.7 99.9 95.9 98.8
Ins Char 35.2 58.2 57.1 65.5 26.1 92.3 97.8 10.3 57.9 60.6 92.2
Ins Word 70.7 66.7 95.6 91.7 28.7 93.3 92.8 58.4 92.6 70.5 87.9
Del Char 54.5 85.0 84.5 89.4 89.6 96.8 97.6 43.5 78.6 85.3 97.7
Del Word 85.8 91.2 63.1 79.2 93.2 99.1 97.6 70.0 91.1 91.9 89.4
Sub Char 63.6 82.9 70.1 85.2 87.5 94.9 96.6 29.6 67.3 76.6 99.1
Sub Word 91.9 98.1 98.1 93.2 91.6 96.7 96.2 79.2 90.9 90.3 96.5
Swap Char 20.2 53.8 53.0 70.7 52.8 91.3 93.7 12.8 65.8 48.8 86.4
Swap Word 60.7 84.5 75.7 86.0 73.0 96.5 97.3 55.0 88.1 66.0 94.9

Arabic

Spell 48.7 74.1 36.0 69.9 50.8 84.7 81.0 20.7 52.8 19.3 40.0
Inv Spell 48.4 64.7 48.3 63.6 44.9 69.7 63.0 39.2 76.4 27.6 60.9
Cont Char 63.9 74.5 70.3 70.0 70.6 77.4 76.4 74.0 90.7 72.0 78.6
Cont Word 88.1 97.9 99.0 98.7 96.9 99.1 99.1 95.5 99.4 88.7 99.4
Ins Char 13.7 8.3 7.6 16.1 2.9 15.7 17.8 11.7 31.4 4.7 12.5
Ins Word 35.8 61.1 90.8 97.5 51.2 89.1 96.4 61.3 96.3 45.1 86.4
Del Char 36.0 56.4 36.3 45.5 45.0 55.8 59.4 40.7 53.1 20.8 29.9
Del Word 74.0 90.4 64.6 83.4 92.5 95.0 88.6 82.0 91.6 63.7 88.8
Sub Char 17.6 26.6 20.7 33.9 24.3 38.7 36.0 23.0 42.2 11.7 20.7
Sub Word 72.7 92.6 95.0 97.3 90.8 97.2 98.0 79.3 95.4 77.1 92.2
Swap Char 5.9 9.1 4.5 8.0 8.1 17.0 16.7 4.0 14.3 2.5 7.5
Swap Word 26.3 55.1 46.3 63.1 47.6 78.0 81.3 34.8 79.8 29.0 62.0

Chinese

Spell 83.2 93.0 84.3 91.3 93.6 98.4 98.0 96.3 98.2 93.4 90.9
Inv Spell 98.5 97.3 95.1 96.2 98.6 98.4 98.7 98.9 99.8 98.8 99.6
Cont Char 84.0 97.2 96.4 95.4 92.5 97.3 91.1 98.7 98.9 96.0 98.7
Cont Word 84.1 99.0 99.4 98.8 91.7 95.1 86.7 94.3 98.1 94.2 94.8
Ins Char 70.0 57.2 78.6 81.4 67.3 90.6 92.6 73.6 95.4 53.2 89.3
Ins Word 28.4 33.2 41.9 53.0 20.5 46.5 47.5 43.7 53.4 34.1 50.5
Del Char 79.6 90.0 85.4 88.1 86.8 97.0 97.6 89.2 97.3 88.3 94.8
Del Word 38.4 57.3 46.8 56.9 59.4 71.1 70.1 54.0 65.1 53.2 67.4
Sub Char 60.6 68.4 69.9 75.1 84.0 94.2 94.8 80.0 94.6 75.0 91.3
Sub Word 40.2 54.9 55.3 64.7 47.5 56.3 53.4 43.1 66.8 46.1 66.5
Swap Char 63.9 71.9 73.3 69.8 90.6 92.0 92.1 62.6 92.0 75.4 90.5
Swap Word 14.2 26.6 15.6 21.9 22.8 36.1 33.3 10.7 43.9 15.1 35.0

English

Spell 96.7 98.5 99.3 99.5 98.7 99.5 99.5 94.7 98.6 97.3 99.0
Inv Spell 95.4 98.5 99.3 99.6 96.2 99.8 99.6 98.3 99.2 91.0 98.7
Cont Char 62.6 73.1 68.0 69.5 65.1 80.3 75.7 81.9 94.8 66.7 83.5
Cont Word 94.3 99.4 99.7 99.7 97.3 100.0 99.9 98.1 100.0 93.3 99.9
Ins Char 11.8 6.0 9.2 7.8 4.4 10.9 13.5 7.1 15.9 7.4 4.4
Ins Word 39.9 60.6 86.7 96.8 48.2 94.9 96.6 70.2 97.6 51.9 72.9
Del Char 35.0 56.3 58.5 80.4 56.1 68.3 67.5 56.8 70.5 33.6 72.4
Del Word 60.3 77.5 53.7 77.7 76.2 97.1 96.5 78.5 95.7 74.3 69.8
Sub Char 27.7 42.2 35.4 60.5 39.3 53.5 51.4 29.0 52.1 27.7 51.7
Sub Word 82.4 96.1 94.9 97.9 94.1 98.1 98.5 92.9 99.0 92.9 97.0
Swap Char 6.0 9.8 6.9 8.9 6.6 14.9 12.7 3.2 11.5 6.8 11.0
Swap Word 22.6 64.5 66.2 60.8 60.4 91.0 90.9 34.7 92.4 42.2 85.9

Table 8: Results for Amharic, Arabic, Chinese, and English.
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Aya Expanse Gemma 2 Llama 3.1 Llama 3.3 Qwen 2.5 Mistral

8B 32B 9B 27B 8B 70B 70B 7B 32B 8B 24B

Hindi

Spell 48.4 69.4 12.6 16.0 46.2 72.5 71.3 20.5 57.7 23.4 58.7
Inv Spell 76.8 83.2 71.9 83.4 76.0 92.7 92.9 71.2 94.6 61.9 87.2
Cont Char 68.4 85.6 75.1 75.7 72.6 87.3 83.2 90.9 98.3 82.4 88.9
Cont Word 89.4 98.7 95.7 98.5 93.3 98.9 93.0 94.7 99.3 81.1 94.8
Ins Char 41.0 10.8 25.8 29.4 15.8 29.0 32.9 45.9 89.0 27.5 36.5
Ins Word 6.3 11.7 77.3 41.8 13.6 25.5 47.6 31.8 95.5 9.1 16.4
Del Char 58.8 66.5 50.9 67.6 66.5 76.9 76.9 50.9 80.7 44.3 79.5
Del Word 6.6 26.6 26.6 24.4 40.6 25.7 31.7 29.4 90.8 13.9 19.7
Sub Char 45.7 66.4 38.2 56.0 42.1 61.4 63.6 50.8 90.2 33.1 65.7
Sub Word 3.7 14.9 62.3 15.9 19.1 23.8 25.4 15.3 93.8 4.9 17.0
Swap Char 14.5 24.5 8.4 29.4 19.5 15.1 22.2 9.9 62.8 21.6 33.6
Swap Word 2.1 16.9 30.6 27.5 20.1 39.4 35.7 10.3 82.2 3.0 11.5

Japanese

Spell 52.9 83.2 68.5 71.0 73.2 93.3 92.2 72.3 86.5 77.2 84.5
Inv Spell 92.4 88.4 87.8 90.5 78.1 96.9 95.1 90.4 95.9 88.5 96.7
Cont Char 67.9 91.6 90.9 88.8 87.0 95.2 93.4 93.7 97.8 86.7 93.0
Cont Word 82.4 92.7 98.8 97.3 90.0 89.4 85.5 89.9 94.8 84.6 93.9
Ins Char 48.3 31.5 58.3 68.8 18.6 72.1 77.6 69.7 86.8 29.3 78.5
Ins Word 21.4 34.2 41.7 61.0 10.6 42.1 47.2 44.0 65.9 30.4 46.2
Del Char 62.0 78.3 60.5 64.4 79.8 88.2 90.0 70.0 84.3 67.1 86.5
Del Word 31.9 60.4 49.3 52.5 62.4 68.5 74.2 52.3 61.4 38.0 63.5
Sub Char 57.2 68.8 58.5 66.3 75.8 83.2 83.7 64.4 85.7 59.3 81.7
Sub Word 32.4 55.1 48.9 58.8 50.9 62.8 65.1 50.9 69.3 38.5 60.6
Swap Char 40.8 52.0 50.2 49.2 66.6 63.9 66.7 40.4 76.6 45.7 70.1
Swap Word 5.9 13.2 8.1 13.3 12.8 21.9 25.0 7.5 29.4 9.3 20.9

Korean

Spell 43.6 71.5 67.5 85.4 51.5 78.0 73.4 42.5 66.6 42.3 56.1
Inv Spell 85.0 93.8 82.6 86.8 71.7 88.9 88.8 84.2 94.8 64.6 92.2
Cont Char 71.1 84.5 81.1 86.2 81.6 85.3 74.4 90.7 95.5 76.4 89.0
Cont Word 92.6 97.2 98.8 99.0 95.6 99.4 99.1 96.7 99.6 84.9 98.7
Ins Char 33.6 20.6 47.4 54.6 21.0 52.5 60.8 39.6 69.7 20.2 41.7
Ins Word 36.4 72.0 93.3 98.6 50.8 91.8 94.1 66.8 92.5 45.0 87.7
Del Char 44.7 64.6 69.1 75.6 62.5 62.2 63.2 44.6 64.1 43.2 56.6
Del Word 56.5 81.8 77.5 88.6 91.9 94.3 86.3 76.7 91.0 75.4 90.7
Sub Char 39.1 62.0 71.4 77.4 56.0 65.5 63.9 50.4 67.6 37.9 53.0
Sub Word 48.9 78.7 90.1 96.7 73.0 91.2 92.1 68.8 90.5 65.1 89.6
Swap Char 27.3 33.3 48.9 47.5 37.3 42.0 44.0 31.4 58.1 20.0 33.0
Swap Word 22.6 48.3 55.8 73.6 52.5 71.1 72.8 29.9 79.3 27.1 61.1

Russian

Spell 40.9 80.4 54.5 88.3 72.1 97.6 96.7 54.0 88.9 79.8 94.8
Inv Spell 54.1 78.7 71.4 90.3 37.9 86.6 86.0 81.9 94.2 39.5 88.0
Cont Char 55.0 68.8 59.7 58.7 57.1 60.2 59.1 75.3 84.9 63.3 77.6
Cont Word 96.9 98.1 99.6 99.8 97.8 99.8 99.9 95.8 99.5 94.7 99.5
Ins Char 10.9 3.8 7.0 9.4 6.7 11.0 12.0 7.2 21.1 5.7 11.3
Ins Word 29.3 61.9 90.6 95.4 48.5 90.7 93.1 77.8 95.1 62.9 84.2
Del Char 12.7 34.7 20.9 38.1 33.1 49.9 50.9 24.8 44.7 18.9 45.1
Del Word 68.6 85.0 75.0 81.0 91.8 97.3 96.7 83.1 90.7 80.1 85.7
Sub Char 15.5 26.0 17.0 35.3 29.0 38.7 40.2 22.6 44.3 16.2 39.7
Sub Word 63.8 86.2 94.5 95.1 87.0 95.6 95.8 80.8 95.2 86.5 95.6
Swap Char 1.3 4.8 2.6 4.0 4.8 12.5 13.6 1.4 16.0 4.4 12.0
Swap Word 26.1 48.1 50.7 55.8 46.5 74.3 70.0 20.7 79.9 32.6 79.5

Table 9: Results for Hindi, Korean, Japanese, and Russian.
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