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Abstract 

This paper considers methods for extracting blood 
volume pulse (BVP) representations from video of the 
human face. Whereas most previous systems have been 
concerned with estimating vital signs such as average heart 
rate, this paper addresses the more difficult problem of 
recovering BVP signal morphology. We present a new 
approach that is inspired by temporal encoder-decoder 
architectures that have been used for audio signal sepa­
ration. As input, this system accepts a temporal sequence 
of RGB (red, green, blue) values that have been spatially 
averaged over a small portion of the face. The output 
of the system is a temporal sequence that approximates 
a BVP signal. In order to reduce noise in the recovered 
signal, a separate processing step extracts individual pulses 
and performs normalization and outlier removal. After 
these steps, individual pulse shapes have been extracted 
that are sufficiently distinct to support biometric authen­
tication. Our findings demonstrate the effectiveness of 
our approach in extracting BVP signal morphology from 
facial videos, which presents exciting opportunities for 
further research in this area. The source code is avail­
able at https: I /github . com/ Adleof /CVPM-2023-

Temporal-Encoder-Decoder-iPPG. 

1. Introduction 

Physiological signals have been widely used in assessing 
vital metrics. Wearable devices have become increas­
ingly popular because of their ease of use and the 
ability to provide continuous monitoring of physiological 
signals [20]. In recent years, there has been a surge of 
interest in developing non-intrusive methods for remotely 
monitoring vital signs and assessing physiological signals. 
The ongoing COVID-19 pandemic has further highlighted 
the importance of reducing physical contact while moni-

toring vital signs [36]. Recent advances in deep learning 
techniques have made it possible to extract vital signs from 
camera-based systems with relatively high accuracy [21]. 
Unlike traditional methods for monitoring physiological 
signals, camera-based systems have the potential to be less 
intrusive in many situations [29]. They can capture physio­
logical signals using a standard camera or webcam, without 
the need for physical contact with the body. Cameras are 
therefore ideal for remote monitoring applications, as well 
as for situations where the use of other sensors is imprac­
tical or inconvenient. 

Researchers have been actively working on developing 
imaging-based systems that can extract heart rate and other 
vital signs [7, 21 , 32]. These efforts include photoplethys­
mography (PPG), in which light is used to measure changes 
in volume. When measured from a distance, the process is 
called remote image-based photoplethysmography (iPPG). 
In this work, the volumetric changes of interest are blood 
volume pulses (BVP) that result from the pumping action 
of the heart. 

While many existing systems focus on estimating 
average heart rate or other basic vital signs, a more chal­
lenging problem is the recovery of BVP signal morphology 
from a video of the human face. Such information contains 
the shape and features of individual pulses in the BVP 
signal and can be used for a range of applications, such as 
biometric authentication [26], emotion detection [6], and 
stress monitoring [8]. However, recovering BVP signal 
morphology from video data is a difficult problem that 
requires careful temporal processing and signal analysis. 

Bridging this gap, we propose a new approach that helps 
in getting shape morphology through information extraction 
from selected regions of interest (ROI) along with robust 
noise elimination. Whereas most previous methods have 
analyzed the entire face region or some large rectangular 
regions on the face, we have used an approach based on 3D 
face landmark estimation. We have also adapted a temporal 



encoder-decoder model from the audio source separation 
domain to address the noise reduction task. Our results indi­
cate PPG estimation with much higher fidelity than previous 
methods. We also propose a shape morphology metric that 
can be used for comparing PPG signals. Applications such 
as biometric authentication can benefit from such a metric. 

To summarize, our main contributions are the following: 

• This work is the first to apply a I -dimensional temporal 
encoder-decoder model to the problem of iPPG signal 
extraction, and we demonstrate the ability to extract 
pulse shapes using this approach from videos of the 
face. 

• We propose a skin reflection model that accounts for 
positioning noise introduced by the face landmark esti­
mation procedure. 

• We demonstrate that the extracted pulse shapes contain 
enough detail to support biometric authentication. 

2. Background and Related Work 

In recent years, there has been increasing interest in 
extracting and using PPG signals. Due to their easy acquisi­
tion and rich information about the cardiovascular system, 
PPG signals have been explored for such tasks as user 
authentication [13]. Unlike traditional biometric modalities 
such as fingerprints or face recognition, PPG signals are not 
visible to the unaided eye and are relatively difficult to steal 
or spoof [15]. PPG signals contain distinctive patterns of 
pulse waveforms generated by the heart's contractions and 
relaxations. The features specific to an individual's cardio­
vascular system, such as the shapes of diastolic and systolic 
peaks, can be used to create a biometric template for an 
individual that can be compared with templates from other 
individuals for biometric authentication [24-26]. 

Additionally, PPG signals can be obtained remotely 
using standard video cameras, allowing for convenient 
and non-invasive data collection [21]. Whereas traditional 
contact-based sensors provide PPG signals with more accu­
racy, some researchers have argued that remotely obtained 
PPG information is distinctive enough for biometric authen­
tication [15, 26]. However, the problem is challenging 
because camera-based PPG signals are susceptible to noise 
from various sources that can affect the accuracy and 
reliability of the measurements [18]. Apart from the 
primary sources of noise due to lighting conditions, camera 
quality, motion artifacts, etc., noise also results from the 
facial vascular distribution and from differential neural 
controls by the sympathetic and parasympathetic nervous 
systems [10, 35]. As a result, there exist temporal differ­
ences in the cardiovascular activities in different parts of 
the face [1 6, 34]. The commonly used approach of aver­
aging pulsating signals across large portions of the face, by 

considering the face as a single ROI, can thus potentially 
limit the ability to obtain distinctive pulse shapes [16]. We 
use multiple small ROis on the face in an effort to address 
the heterogeneity of the facial vascular network. 

PPG signal extraction from a camera is a challenging 
problem that must address unwanted noise that results from 
respiration, head movements, and variations in lighting 
conditions [1 ,31]. Thus, the problem can be posed as one of 
signal separation. For the separation of multiple signals in 
other domains, several techniques have been explored, such 
as Blind Source Separation [22, 23], Independent Compo­
nent Analysis [9, 28], and non-negative matrix factoriza­
tion [14, 33]. An example application is the separation of 
different sources in a music mixture [11]. Demucs, Deep 
Extractor for Music Sources, is a deep learning model that 
has been developed for music source separation tasks [5]. 

Demucs is a fully convolutional neural network that uses 
a technique called source-specific training to learn to sepa­
rate the different sources in a music mixture. The architec­
ture of Demucs consists of multiple layers of dilated convo­
lutional neural networks, followed by a decoder network 
that uses transposed convolutional layers. The dilated 
convolutions allow the model to have a large receptive field 
while maintaining a small number of parameters, which is 
critical for the efficient processing of audio signals. Lever­
aging the effectiveness of Demucs in music source separa­
tion, a fully convolutional model based on Demucs could be 
trained on a dataset of video recordings to learn to separate 
the PPG signal from noise sources such as head movements 
or variations in lighting conditions. This paper demon­
strates that the model can learn to identify and remove noise 
sources using the spatial and temporal features of the video 
signal, similar to how Demucs separates different musical 
instruments sources in an audio signal. We use our domain­
adapted Demucs model to separate and filter out noise from 
the PPG signals. The extracted PPG signal contains less 
noise than has been demonstrated from previous camera­
based PPG techniques. 

3. Proposed Approach 

The proposed approach presented in this paper can be 
categorized into four key steps: data conversion, data 
preprocessing, encoder-decoder-based extraction, and data 
postprocessing. The overview of our proposed approach is 
depicted in Figure 1. 

3.1. Data Conversion 

The first step, data conversion, involves the extraction 
of the average color intensities from Regions of Interest 
in every frame. The system extracts data from an image 
sequence, which is a 4-dimensional tensor with size 
(num_of _frames, width, height, color _channels) 
into a 2-dimensional color sequence tensor with size 
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Figure 1. Our overall system structure. (a) The input to the system is a video. (b) ROis are detected on individual frames, and (c) average 
values placed into an ROI color data array. (d) The neural network model takes the preprocessed data and generates (e) an estimated PPG 
signal. (f) Finally, in the postprocessing stage, the system extracts normalized PPG pulses from the estimated signal and (g) performs 
authentication using our shape morphology metric. 
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Figure 2. ROI visualization for different subjects. Five regions 
with high hemoglobin concentration were chosen empirically. 
These image frames are from the DEAP dataset [1 2]. 

(num_of-frames, color _channels x num_of _ROI s). 
The purpose of this stage is to remove irrelevant informa­
tion that may interfere with the analysis of the PPG signal, 
such as head movement, hair color, and facial features . By 
extracting the average color of the ROis, we obtain a color 
sequence that is more representative of the underlying PPG 
signal, enabling more accurate analysis in subsequent steps. 

The DEAP dataset [12], used in our experiments, 
contains occlusions resulting from various confounding 
factors such as sensors and glasses. In order to select 
fixed non-occluded ROis over time, we decided to generate 
meshes that are anatomically anchored and responsive to 
movement. The approach that we choose for ROI selec­
tion and data conversion is the MediaPipe Face Mesh [19] 
model by Google. This system fits a 3D triangular mesh to 
an image of the face. The MediaPipe Face Mesh outputs 
the pixel location and the depth of every vertex on the 
face UV map (we only use the pixel location in this work). 
By manually selecting particular vertices in the image, we 
obtain polygonal ROis in the image that track head move­
ments. We have only used selected ROis that are rich in 

hemoglobin [34] and are not occluded by the sensors used 
for data collection. Examples of the ROis on different 
subjects are shown in Figure 2. 

3.2. Algorithm Design 

This section describes our skin reflection model, prepro­
cessing approaches, our temporal encoder-decoder model, 
and details of the experimental setup. 

3.2.1 Skin Reflection Model 

To evaluate the feasibility of iPPG using our approach, we 
need to model the video generation process. In order to 
account for the noise due to face mesh and model the noise 
elimination process with the encoder-decoder approach, the 
Skin Reflection Model from DeepPhys [2] was adapted for 
our task. We define the RGB values at the k-th ROI as a 
time-varying function: 

where Ck(t) denotes a vector of RGB values; J(t) is the 
luminance intensity level; I(t) is modulated by the spec­
ular reflection V8 (t) and the diffuse reflection vd(t); Vnq(t) 
denotes a mixture of the quantization noise and the back­
ground noise of the camera sensor; Vnf ( t) denotes the posi­
tioning noise due to imperfections in face-mesh generation. 
The components v s ( t) and v d ( t) can be decomposed into 
stationary and time-dependent parts: 

Vs(t) = U8 ·(so+ <I>(m(t),p(t))) (2) 
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Figure 3. The network structure of our model, which was inspired by Demucs [5]. (a) Processing is performed by a U-Net structure that 
incorporates skip connections between encoder blocks and decoder blocks. Input to the system is a temporal sequence of (red, green, blue) 
values. The output is a temporal PPG waveform, with the same length as the input sequence. (b) Each encoder block consists of a 1D 
convolution layer with ReLU activation and another 1D convolution layer with gated linear unit (GLU) activation. The GLU activation will 
use the input data to modulate the output, which will introduce more non-linearity. The decoder block is the inverse of the encoder block. 
Inside each decoder block is a 1D convolution layer with GLU activation and a transposed 1D convolution with ReLU activation. 

where Us denotes the unit color vector of the light source 
spectrum; s0 and <I>(m(t),p(t)) denote the stationary and 
varying parts of specular reflections; m(t) denotes all 
the non-physiological variations such as flickering of the 
light source, head rotation and facial expressions; and p(t) 
denotes the PPG signal. Similarly, ud denotes the unit color 
vector of the skin-tissue; d0 denotes the stationary reflec­
tion strength; and up denotes the relative pulsatile strengths 
caused by hemoglobin and melanin absorption [2]. Substi­
tuting (2) and (3) into (1) we get: 

Ck(t) = I(t) ·(us· so+ Ud ·do+ Us· <I>(m(t) ,p(t)) 

+Up· p(t)) + Vnq(t) + Vnj(t) (4) 

In our authentication system we only consider stationary 
subjects with fixed lighting. Therefore I(t) can be approxi­
mated by a constant Io: 

Ck(t) ~Io· (Us· so+ Ud ·do)+ Io· Us· <I>(m(t), p(t)) 

+Io· Up · p(t) + Vnq(t) + Vnj(t) (5) 

This is our final equation for the skin reflection model. Our 
goal is to extract the PPG signal p( t) from the ROI color 
sequences Ck(t). In (5), the first term Io· (us ·so+ud·do) 
is a constant, which will be removed by band-pass filtering. 
The second term Io ·Us· <I>( m(t), p(t)) is non-linear, but this 
term can be assumed to be linear with respect to p(t) when 
m(t) is small [2], which is true under our assumptions of a 
stationary person with fixed illumination. The third term is 
also linear with respect to p(t) . 

The last two terms are the quantization noise and the 
positioning noise. These signals are usually significant with 
respect to p( t) and cannot be ignored. Therefore, after 
preprocessing, the task of the neural network model is to 
extractp(t) from the preprocessed C k(t), which is a combi­
nation of terms that have linear relationship with respect to 
p(t) and the two noise terms. It is our hypothesis that the 
audio source separation model can extract the underlying 
PPG signal from this composite signal. 

3.2.2 Data Preprocessing 

We performed preprocessing of the ground-truth BVP 
signal and of the video sequences. The reason for prepro­
cessing the ground-truth signals was large levels of noise 
from the BVP sensor, primarily low-frequency components 
that we removed through bandpass filtering. An additional 
preprocessing step normalized each pulse to have the same 
starting amplitude, ending amplitude, and same average 
amplitude. 

Similarly, as discussed in section 3.2.1, bandpass 
filtering was applied to data that was obtained from the 
image sequence to remove a large constant term that is not 
related to the BVP signal. 

3.2.3 Temporal Encoder-Decoder Model 

The task of the temporal encoder-decoder neural network 
model stage is to extract the PPG signal from a mixture 
of the noise and terms that have a linear relationship with 



respect to the PPG signal. As our base model, we devel­
oped a variation of Demucs [5], which is an audio source 
separation model. We believe that the audio separation task 
is quite similar to our signal extraction task. 

In our system, the input to the neural network model 
is a data array in JRLx 3N in which N denotes the number 
of ROis and L denotes the sequence length. This array is 
formed by stacking preprocessed data sequences at all ROis 
on their color channels. The output is a vector in JRL which 
is the estimated PPG signal. 

Figure 3a shows the overall structure of our model, 
which is a U-Net structure with skip connections between 
encoder blocks and decoder blocks. The detailed struc­
ture inside each encoder and decoder block is shown in 
Figure 3b. For each encoder block, the first 1D convolution 
layer with ReLU activation will mainly be used as a down­
sampling layer. The second 1D convolution layer with the 
Gated Linear Unit (GLU) [3] activation is the core part of 
data processing. The GLU is a special kind of activation 
function that will use the input data to modulate the activa­
tion. This can introduce more non-linearity, and it is very 
useful in temporal sequence processing. The decoder block 
is the inverse of the encoder block. The aggregated data 
will go through a 1D convolution layer with gated linear 
unit activation and then up-sampled using a transposed 1D 
convolution with ReLU activation. 

3.2.4 Loss Function 

We define our loss function for training as follows : 

L(y, fl) = (1 - .X)IIY - flll 

+ .X(IIRe(Y) - Re(Y)II + lllm(Y) - Im(Y)II) (6) 

where y and f; denote the output and the ground truth, 
respectively; Y and Y denote the Fourier transforms of the 
output and the ground truth. Re(·) and Im(·) denote the 
real part and the imaginary part of the input sequence. This 
loss function is a mixture of the mean squared error (MSE) 
loss and the Fast Fourier Transform (FFT) loss. In the FFT 
loss, we take the Fourier transform of both the output and 
the ground truth, then back propagate the mean squared 
error of the real part and the imaginary part separately using 
the auto-gradient module in PyTorch. We add the FFT loss 
because there are some details in the PPG signal such as 
the diastolic peak that are not obvious in the time domain. 
Therefore, creating a loss function in the frequency domain 
helps the model learn the PPG shape morphology better. 

3.3. Postprocessing 

This section describes the method for quantitatively 
analyzing the shape morphology, along with steps for post­
processing the signals. 

3.3.1 Shape (Morphology) Metric 

The morphology metric is one of the most important parts 
of our authentication process. As mentioned in Section 2, 
cardiovascular signals from each person are unique, and this 
fact motivates us to use the average shape of pulses in the 
PPG signal as one's biometric signature. 

The system will convert the raw PPG signals that have 
been estimated by the neural network model to a PPG 
"pulse group", and then use this pulse group to extract a 
representative identifier of the individual. Figure le shows 
an example PPG signal of a person. Figure 1f shows 
the corresponding pulse group representation of the same 
signal. It is important to note that each pulse in the orig­
inal PPG signal might have a different duration, mean value, 
and ending amplitude. After transformation, the pulses are 
scaled to have the same mean value, and their duration, 
starting, and ending amplitude are also be interpolated to 
be the same. 

We define the pulse group transformation function as 
J9 (-). The input is the PPG signal X E !RN, where N 
denotes the sequence length. After applying transformation 
f (X), we get the transformed signal group X 9 E JRKxL, 

;here K denotes the total number of angular positions, and 
L denotes the number of pulses in the input signal. After the 
pulse group transformation, we further extract a person's 
identifier from the pulse group. In our system, we use the 
mean and the standard deviation at each angular position of 

fi X 1TllKX2 hi h the pulse group as the ID. We de ne Id E JN,. , w c 
refers to 2 numbers in each angular entry of X 1 d repre­
senting the mean and the standard deviation of the same 
angular entry in X 9 . 

With the pulse group representation of the PPG signal, 
we can define the distance between a single pulse with a 
pulse group. Let X 9 be the PPG signal group transformed 
from our estimation model and Y1 d be the ID of the target 
person we want to authenticate. Let Xgi E IRK be a single 
normalized pulse in the pulse group X 9 . We define the 
distance: 

(7) 

The symbol K denotes the total number of angular posi­
tions, Yidj[mean] and Y1dj [var] indicate the mean and vari­
ance on angular entry j, respectively. Using this distance we 
measure how many standard deviations is our new pulses 
away from the reference signal at every angular position. 
Note that the summation excludes the first and the last 
angular positions, because the starting and ending ampli­
tude are interpolated to be zero for all pulses, the variance 
on these two points will always be zero. Figure 4 shows 
two example distance measurements. The graph on the left 
shows an example of a new pulse that closely matches the 
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Figure 4. Example of the pulse distance measure. The left figure shows the case when a new pulse has a shape that is very similar to the 
reference pulse group. The right figure shows a case for which a new pulse has a very different shape compared to the reference pulse 
group. 

reference pulse group Y1 d· The graph on the right shows 
an example of a new pulse with a very different shape 
compared to the reference pulse group. The distance calcu­
lated using our definition is 0.45 for the left pulse and 3.29 
for the right pulse. 

With this definition of distance between a single pulse 
and a pulse group, there are several ways to define group­
to-group distances. For example, we can simply define 
the group-to-group distance as the mean of all pulse-to­
group distances of pulses in X g with Y1 d · An alternate 
way of defining group-to-group distance can be using the 
percentage of pulses-to-group distances that is higher than 
a threshold distance. 

3.3.2 Noise Rejection 

For every single pulse Xgi in Xg, we can calculate the 
pulse-to-group distance d( X gi, X g) and remove pulses with 
a distance larger than some threshold. Note that removing 
pulses from a group can affect the mean and variance of 
Xg, therefore we choose to remove just one pulse in every 
iteration and iterate until no pulse can be removed. 

4. Experiments 

In this section, the experimental settings for our paper 
along with the results are explained. We have done a 
detailed analysis of shape recovery and the model's effec­
tiveness in heart rate estimation. 

4.1. Experimental Setting 

We use the DEAP [12] dataset for training and testing. 
We chose DEAP for several reasons: 

• Videos in this dataset have a high frame rate (50 fps) 
and a low level of compression. 

• Participants did not exhibit significant body move­
ments, and there are no significant lighting changes 
within the videos. 

• The dataset provides an amount of video and ground 
truth PPG signals that is adequate for large-scale DNN 
training. 

The entire dataset consists of 22 different participants with 
874 one-minute videos. Each participant has 39-40 videos. 
We divided our data into training and testing sets with 714 
videos from 18 participants for training, and the rest of the 
160 videos from 4 participants for testing. 

As described previously, we preprocess ground-truth 
PPG signals using bandpass filtering and pulse height 
normalization. The typical frequency band for the PPG 
signal is above 0.75 Hz (45 BPM), and so we use a high 
pass filter with a 0.75 Hz cut-off frequency. We manually 
checked the filtered signals to make sure that they retains 
the PPG pulse shape. Finally, the filtered signals are resam­
pled to fit the sample rate of the video, which in our case is 
50Hz. 

During training, the augmentation method that we used 
was random temporal clipping, so that each time the model 
saw different parts from the same data sequence. We 
adapted the Demucs model to have 15 channels (3 channels 
for each of the 5 ROis) as input and 1 channel as output. We 
used 4 encoder/decoder layers. Each ConvlD/ConvTrlD 
layer in the encoder/decoder block has kernel size 10 and 
stride 2 to cover the entire PPG pulse range. We used the 
Adam optimizer with lr = 0.0003. We trained the model 
for 400 epochs using MSE loss between the estimated signal 
and ground truth. 

4.2. PPG Shape Recovery 

In previous rPPG methods, the raw output signal needs to 
be processed using bandpass filtering and frequency domain 
transformation. But in our method, the raw output from the 
neural network model already has a clear visible PPG shape 
morphology and can be transformed into a PPG pulse group 
directly. As an example, Figure 5 shows a comparison of the 
raw estimated signal morphology from our system and from 
MTTS-CAN [17]. In our output, the starting and the ending 
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Figure 5. Example PPG estimations for the same subject using different methods. On the left is our result, and on the right is the result 
from MTIS-CAN. Our results show clear PPG pulses that could be used directly in applications such as instantaneous HR estimation. 
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Figure 6. (a) The transformed PPG pulse group for the same test subject but with different amounts of training. With more and more 
training, our model gradually learns the correct PPG shape with lower variance. (b) Two transformed PPG pulse groups for 2 different 
subjects from the testing set. 

points of each pulse are clear, while in many other previous 
methods the separate PPG pulses are not easily identified. 

The ability to output clear PPG signals facilitates several 
possible research directions. One of them is biometric 
authentication using PPG. Previous research had found 
that the normalized PPG pulse shape from each person 
is unique [26], which implies that PPG may be a good 
modality for biometric authentication. Our method allows 
us to estimate the normalized pulse shape by applying the 
pulse group transform on the raw output directly. Figure 6 
shows examples of estimated normalized PPG shapes from 
our model. Figure 6a shows the shapes for the same subject 
with increasing numbers of training epochs. With more 
and more training, the model gradually learns the correct 
PPG shape with lower variance. Similarly, Figure 6b shows 
two transformed PPG pulse groups for 2 different subjects 

from the testing set. The result demonstrates that the model 
is able to learn distinct shape morphology from different 
subjects. 

4.3. Authentication 

Using the recovered normalized pulse shapes from the 
model, we explored the feasibility of biometric authentica­
tion based on BVP shape alone. Figure 7 shows the ROC 
curve of the result. In this experiment, the authentication 
target is one particular subject from the test set using the 
PPG sensor data. All other subjects from the test set are 
compared with the target using their estimated pulse group 
from the model. The similarity score is calculated using 
the pulses in the pulse group that have a shape distance 
smaller than dthr eshold = l.3. The AUC value for this 
curve was approximately 0. 77. Although this result is not 



adequate for practical authentication tasks, the work clearly 
shows the potential for using rPPG-based methods as a new 
authentication method. It is our belief that some amount 
of overfitting to the dataset has limited the authentication 
performance, and additional training with a larger dataset 
will improve these results. 

dthreshold = 1.3, AUC = 0. 77 

Figure 7. Using rPPG for biometric authentication. The authen­
tication target is sl9_trial06 [12] from the DEAP test set using 
PPG sensor data. The similarity scores were calculated using the 
pulses in the pulse group that have a shape distance smaller than 
the threshold distance dthreshota = 1.3. Distance was calculated 
using (7). 

4.4. Estimating Heart Rate 

The main objective of this paper has been to describe 
a new method for extracting PPG signals; however, our 
model's effectiveness has also been evaluated for the esti­
mation of heart rate. We have compared our model's result 
to other systems using traditional heart-rate metrics using 
units of beats per minute. Detailed results of our technique 
with two ROis (ROI 1 and ROI 2 from Figure 2) and five 
ROis along with a comparison to state-of-the-art models are 
shown in Table 1. In our evaluation, a first-order Butter­
worth filter with cut-off frequencies of 0.7 and 2.5 Hz was 
applied to the model outputs. Then the filtered signals were 
divided into 5-second windows, and three standard metrics 
were computed over all windows of all the test videos in 
the dataset: mean absolute error (MAE), root mean square 
error (RMSE), and signal-to-noise ratio (SNR) of the esti­
mated physiological signals averaged among all windows. 
The SNR is calculated in the frequency domain as the ratio 
between the energy for 0.2 Hz frequency bins around the 
gold-standard heart rate, and 0.05 Hz frequency bins around 
the gold-standard breathing rate [2]. 

The comparative results of our model with other models 
in terms of determining heart rate show that our model is 
also capable of estimating heart rate better than existing 
state-of-the-art models. Our model was trained on a unique 
loss function, which is a combination of MSE loss and FFT 

Method MAEbpm .J, RMSEbpm .J, SNR (dB)t 

GREEN [30] 11.22 13.89 -8.07 
CHROM [4] 9.70 12.45 -6.04 

POS [31] 12.92 16.14 -9.46 
HR-CNN [27] 15.91 18.75 -10.38 

MTTS-CAN [17] 11.52 14.22 -7.65 
Ours (2-ROI) 14.51 17.48 -9.99 
Ours (5-ROI) 9.41 11.26 -5.36 

Table 1. Heart rate recovery results using the DEAP dataset. The 
bottom rows indicate a significant performance improvement for 
our system when using 5 ROis as input, compared with initial 
attempts using only 2 ROis. (MAE = Mean Absolute Error, MSE 
= Mean Square Error, SNR = Signal-To-Noise Ratio) 

loss. This compound loss function helped the model to learn 
both heart rate estimation as well as shape morphology. 

4.5. Dataset Limitations 

Currently, our model is capable of extracting clean 
PPG signals with good shape morphology using the DEAP 
dataset. Our proposed system can easily be adjusted to 
accept more ROis and potentially achieve better perfor­
mance. However, many potential ROis in the DEAP dataset 
are occluded due to sensors worn on the face. We are 
currently working to create a novel dataset with fewer 
occlusions of the face 1. The new dataset should be of value 
in further research that involves camera-based PPG sensing. 

5. Conclusion 

This paper has introduced a new approach for PPG 
signal shape extraction from RGB videos of a person's face. 
The system is the first to utilize a I-dimensional temporal 
encoder-decoder model for remote (camera-based) PPG 
sensing. We also proposed a method to quantitatively 
measure the pulse morphology similarity between PPG 
signals. 

Our experiments demonstrated good potential for using 
recovered PPG signals for the task of biometric authenti­
cation. In addition, the recovered PPG signals allowed us 
to estimate heart rate with better accuracy than previous 
state-of-the-art systems. Overall, our model's ability to esti­
mate heart rate and to recover signal morphology makes it 
a promising tool for both health monitoring and authentica­
tion tasks. 
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