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Abstract

Large language models (LLMs) have demon-001
strated impressive capabilities in mathemati-002
cal problem-solving, particularly in single-turn003
question-answering formats. However, real-004
world scenarios often involve mathematical005
question-answering that requires multi-turn or006
interactive information exchanges, and the per-007
formance of LLMs on these tasks is still under-008
explored. This paper introduces MathChat,009
a comprehensive benchmark specifically de-010
signed to evaluate LLMs across a broader spec-011
trum of mathematical tasks. These tasks are012
structured to assess the models’ abilities in013
multi-turn interactions and open-ended genera-014
tion. We evaluate the performance of various015
state-of-the-art LLMs on the MathChat bench-016
mark, and we observe that while these models017
excel in single-turn question answering, they018
significantly underperform in more complex019
scenarios that require sustained reasoning and020
dialogue understanding. To address the above021
limitations of existing LLMs when faced with022
multi-turn and open-ended tasks, we develop023
MathChatsync, a synthetic dialogue-based math024
dataset for LLM fine-tuning, focusing on im-025
proving models’ interaction and instruction-026
following capabilities in conversations. Experi-027
mental results emphasize the need for training028
LLMs with diverse, conversational instruction029
tuning datasets like MathChatsync. We believe030
this work outlines one promising direction for031
improving the multi-turn mathematical reason-032
ing abilities of LLMs, thus pushing forward the033
development of LLMs that are more adept at034
interactive mathematical problem-solving and035
real-world applications.036

1 Introduction037

Mathematical reasoning has been an essential task038

for computers for decades (Boblow, 1968). With039

the explosion in Large Language Model (LLM)040

development (Brown et al., 2020; Achiam et al.,041

2023; Touvron et al., 2023a,b; Jiang et al., 2023;042

Team et al., 2024), mathematical reasoning has 043

been widely recognized as a key ability for assess- 044

ing these models. Most math reasoning bench- 045

marks such as GSM8K (Cobbe et al., 2021), MATH 046

(Hendrycks et al., 2021), SVAMP (Patel et al., 047

2021), MAWPS (Koncel-Kedziorski et al., 2016), 048

ASDiv (Miao et al., 2020) and MathVista (Lu et al., 049

2024) feature the format of single-turn question an- 050

swering (QA), where the input is a single question 051

and the output is the solution. Recent studies (Yu 052

et al., 2024; Yue et al., 2024; Gou et al., 2024; Luo 053

et al., 2023; Tang et al., 2024; Albalak et al., 2025; 054

Li et al., 2024; Mahdavi et al., 2025) have scaled 055

up such QA data by distilling synthetic data from 056

stronger LLMs like GPT-4 (Achiam et al., 2023) 057

or utilizing human-annotated datasets of rationales 058

in diverse formats (Yue et al., 2024; Liang et al., 059

2023), continually pushing the limits of math QA 060

accuracy. For example, on one of the most widely 061

recognized benchmarks, GSM8K, accuracy has in- 062

creased from 10.4% with a 175B-parameter model 063

(Brown et al., 2020) to 88.2% achieved by a 7B- 064

parameter model (Shao et al., 2024). 065

While math-specialized LLMs have shown 066

promising progress on single-round QA bench- 067

marks, their mathematical capabilities have not 068

been verified in more complex scenarios. For in- 069

stance, in real-world applications, such as interac- 070

tive chatbots (Lee and Yeo, 2022; Jančařík et al., 071

2022; Wang et al., 2024) and problem-solving as- 072

sistants (Nguyen et al., 2019; Macina et al., 2023b), 073

math tasks extend beyond single-round QA and 074

require much more advanced reasoning and instruc- 075

tion following abilities such as dialogue understand- 076

ing, diagnostic reasoning, educational feedback, 077

etc. Can the established math-specialized LLMs 078

perform as well on multi-round math reasoning as 079

they do on single-round tasks? This question has 080

not been comprehensively studied, although many 081

recent studies have identified critical weaknesses of 082

state-of-the-art LLM reasoners that could happen 083

1



Math Problem 

Solving

Math
 In

stru
ctio

n 

Follo
wing

In
str

uc
tio

n 
Fo

llo
wing

Problem 
Solving

&

Follow-up QA

Error 
Correction

Er
ro

r 
Ana

lys
is

Problem
 

Genera
tio

n

Dialogue 

Understanding

Progressive 

Reasoning
Long-term 

Dependencies

Pr
ob

lem
 

Ab
str

ac
tio

n

Creativity and 

Variation
Diagnostic Reasoning

Solution 

Refinem
ent

Er
ro

r 
Id

en
tif

ic
at

io
n

Educat
ional 

Feed
back

Figure 1: Taxonomy of MathChat. The inner ring rep-
resents the task categories involved in MathChat. The
intermediate ring lists the evaluation tasks in MathChat.
The outer ring shows the tested capabilities in our tasks
beyond simple math problem solving. See detailed de-
scriptions in Section 2.

in multi-round interactions, such as long-context084

reasoning (Chen et al., 2024), self-reflection ability085

(Huang et al., 2023), error identification (Authors,086

2024; Daheim et al., 2024), and educational con-087

tent generation (Shridhar et al., 2022; Kasneci et al.,088

2023; Macina et al., 2023a).089

Therefore, in this paper, we advance the explo-090

ration of LLMs’ mathematical reasoning abilities091

by introducing a new benchmark, MathChat. Fig-092

ure 1 shows the hierarchical ability taxonomy de-093

rived from the tasks in MathChat (e.g., those in094

Figure 3), which are more advanced than the capa-095

bilities tested by single-round QA and addresses the096

above limitations noted in state-of-the-art LLMs.097

Based on our MathChat benchmark, we find098

that current state-of-the-art math-specialized LLMs099

that are fine-tuned on extensive mathematical QA100

data struggle to reliably answer multi-turn ques-101

tions and understand instructions that extend be-102

yond single-round QA. Specifically, on open-ended103

tasks like ERROR ANALYSIS and PROBLEM GEN-104

ERATION in Figure 3, the fine-tuned LLMs fail105

catastrophically since they can hardly understand106

the provided instructions. These shortcomings are107

perhaps unsurprising for models like MetaMath108

(Yu et al., 2024), which was trained exclusively on109

augmented question-answer pairs from single-turn110

math datasets GSM8K and MATH. The tasks in111

MathChat obviously represent a shift in distribu-112

tion that challenges such models. However, even113

models like WizardMath (Luo et al., 2023) that114

were trained on more diverse data including open-115

ended dialogues and evolving instructions fail to116

Mistral

WizardMath-Mistral

DeepSeek-Math

InternLM2- Math

GPT3.5-turbo

GSM8k

Follow-up
QA

Error CorrectionError Analysis

Problem 
Generation

Figure 2: The performance comparison among vari-
ous LLMs. Math LLMs (e.g., Deepseek-Math) have
great performance on single-round QA dataset GSM8K,
achieving similar performance to GPT-3.5. However,
they significantly underperform GPT3.5 on MathChat,
which requires more advanced reasoning abilities. We
average the evaluation metrics in each task and scale all
values into 0-1 for better visibility.

achieve satisfactory performance on MathChat. We 117

have also tried to reform our multi-turn math rea- 118

soning problem into a one-round math QA task 119

by including all dialogue history in the question 120

part, no significant performance improvement is 121

observed. These results indicate potential over- 122

tuning and data saturation towards the single-turn 123

QA data inside current math LLMs, and also high- 124

light a crucial open problem for the field of LLM 125

development: 126

How can we empower math-focused LLMs to 127

engage in multi-turn dialogues and follow diverse 128

instructions without significantly compromising 129

their problem-solving abilities? 130

To address the identified research challenge, we 131

conduct an exploratory study to investigate vari- 132

ous training data mixture strategies by leveraging 133

extensive public math QA data, general-domain 134

instruction tuning data, general-domain dialogue 135

data, and our constructed synthetic dialogue-based 136

math data (MathChatsync). The results indicate that 137

the model trained with MathChatsync significantly 138

outperforms the baselines fine-tuned on other mix- 139

ture datasets on open-ended tasks and surpasses the 140

base LLMs on problem-solving tasks (see Section 141

4 for more details). 142

In summary, this paper makes two main contri- 143

butions. First, we introduce and release a bench- 144

mark MathChat dedicated to multi-turn math rea- 145

soning and conversation, aimed at advancing the 146

development of a more generalized reasoner and 147

assistant in mathematical contexts—a capability 148

that existing math-specific LLMs currently lack. 149

Second, we demonstrate that integrating synthetic 150
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math-dialogue dataset MathChatsync with super-151

vised fine-tuning (SFT) markedly enhances per-152

formance on open-ended tasks within MathChat,153

without compromising much accuracy on direct154

problem-solving tasks. The resulting fine-tuned155

LLMs surpass their counterparts trained on various156

combinations of existing datasets. We believe this157

paper offers a new perspective on the evaluation158

of math-specific LLMs and advances the goal of159

developing a general math reasoning assistant.160

2 MathChat161

We introduce MathChat, designed to provide a162

deeper and more comprehensive examination of163

LLMs’ abilities in multi-turn mathematical reason-164

ing and instruction-following. MathChatcontains165

four important tasks that have been under-explored166

by the community. (FOLLOW-UP QA, ERROR COR-167

RECTION, ERROR ANALYSIS, and PROBLEM GEN-168

ERATION) inspired by previous studies in the educa-169

tion domain that reveal the importance of following170

a sequence of Initiate-Response-Follow-up (Lim171

et al., 2020), learning from self-made errors (Heem-172

soth and Heinze, 2016), and posing new problems173

with solutions (Silver, 1994). The first two tasks174

focus on multi-turn mathematical problem-solving175

and reasoning, whereas the final two tasks eval-176

uate the models’ ability to follow mathematical177

instructions and respond to open-ended questions.178

All tasks within MathChat are sourced from the179

testing set of GSM8K, which we expanded using180

GPT-4 (we use gpt-4-0125-preview version in this181

paper.) to suit our specific requirements. While182

our benchmark is based on GPT-4, we have imple-183

mented robust quality assurance measures. We use184

the human-annotated GSM8k dataset as a seed for185

generating new tasks, ensuring that the foundation186

of our benchmark is rooted in high-quality data.187

Additionally, additional verification are involved188

in verifying the correctness of reference responses,189

especially for the first two tasks with deterministic190

answers. As a result, each task category contains191

the same number of samples as the GSM8K testing192

set—1,319. Table 1 shows some basic statistics of193

our benchmark and Figure 3 shows some examples.194

All prompts used to generate the task data can be195

found in the Appendix A.8.196

Follow-up QA In this task, we form a three-197

round dialogue between a human user and an AI198

assistant. The initial round consists of a question199

from the original GSM8K testing dataset, with its200

Follow-up QA Question (First Round) 46.25
Follow-up QA Question (Second Round) 34.43
Follow-up QA Question (Third Round) 41.60
Follow-up QA Answer (First Round) 52.78
Follow-up QA Answer (Second Round) 87.16
Follow-up QA Answer (Third Round) 93.84

Error Correction Wrong Attempt 54.82
Error Correction Mistake Correction 75.27

Error Analysis Wrong Attempt 66.17
Error Analysis Mistake Analysis 94.69

Problem Generation New Problem 55.37
Problem Generation New Answer 105.13

Table 1: Average lengths in MathChat benchmark. The
first-round QA is essentially GSM8k testing set. We can
find that our MathChat has more informative answers
than GSM8k.

ground truth answer. We then use GPT-4 to gener- 201

ate two additional questions that require a deeper 202

understanding of the original question. The correct 203

answers are produced by GPT-4. To prevent over- 204

confidence in self-generated content by GPT-4, we 205

use two LLMs (GPT-4 and Claude) to verify the 206

correctness of the generated answers. Both models 207

are asked to verify if the answer is correct. If it 208

is not, we revise the answer based on their feed- 209

back. This process is iterated for three rounds for 210

both GPT-4 and Claude. As a result, the accep- 211

tance rate of generated answers by both models 212

improves from 70% to 92.4%. For the remaining 213

7.6% of the problems, the authors manually revised 214

the answers. Finally, we sampled 100 problems 215

from the 1319 test samples and confirmed that all 216

of them were correct, further verifying the overall 217

quality of the data. During the evaluation phase, 218

we present only the questions to the models, and 219

the answers generated by the evaluated LLM are 220

used in the subsequent round as shown in Figure 3, 221

following methodologies similar to general-domain 222

benchmarks like MT-bench (Zheng et al., 2023). 223

Error Correction In this task, we present a ques- 224

tion to GPT-4 and instruct it to intentionally gener- 225

ate an incorrect answer. The incorrectness of this 226

response is easily verified by comparing it to the 227

original correct answer. We use this incorrect QA 228

pair as the dialogue history and clearly state that 229

the solution is incorrect, and then we prompt the AI 230

assistant to correct the wrong answer. Quality con- 231

trol is simpler for this task because we can directly 232

check whether the final answers align with the orig- 233

inal answers in GSM8k. To ensure our benchmark 234

contains a diverse set of error types, we conduct an 235

analysis in Appendix A.6. 236
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Follow-up QA

<User>: A robe takes 2 bolts of blue fiber and half that much white fiber.  How 
many bolts in total does it take?
<Assistant>: It takes 2/2=<<2/2=1>>1 …[14 words omitted] …The answer is 3.
<User> : If making the same robe requires twice as much white fiber as initially 
stated, how many bolts of fabric are needed now for one robe?
<Assistant>: Initially, it was stated …[61 words omitted] … The answer is 6.
<User>: If one robe requires 3 bolts of fabric and the production of each 
subsequent robe requires one additional bolt of fabric, how many bolts are needed 
for 3 robes?
<Assistant>: The first robe requires … [56 words omitted] … The answer is 12.

Error Correction

<User>: John buys 2 pairs of shoes for each of his 3 children.  They 
cost $60 each.  How much did he pay?
<Assistant>: Let's see. If John buys 2 pairs of shoes for $60, then 
for 3 children, that's 3 times $60. So, he would have spent $180.
<User>: That's not quite right. Could you check your calculation 
again?
<Assistant>: Oh, I see the mistake now. … [38 words omitted] … 
The answer should be $360.

Problem Generation

<User>: Your task is to create a similar math problem based on a given seed 
problem. The generated problem should be accompanied by a detailed solution.
<Assistant>: Understood, please give me the seed problem.
<User> : Seed problem: A robe takes 2 bolts of blue fiber and half that much white 
fiber.  How many bolts in total does it take?
Seed Solution:  It takes 2/2=<<2/2=1>>1 …[14 words omitted] … Answer is 3.
<Assistant>: New Problem: A bakery uses 4 pounds of flour to make a batch 
of 24 cupcakes and twice that amount of sugar in ounces. How many ounces 
of sugar does the bakery use?
Solution: First, we convert the… [42 words omitted] …The answer is 128.

Error Analysis

<User>: Please give me a math problem and I will answer that. You 
need to analyze my solution and correct it if I make errors.
<Assistant>: John buys 2 pairs of shoes for each of his 3 children.  
They cost $60 each.  How much did he pay?
<User>: If he bought 2 pairs for each of his 3 children, that's 2 + 3 
= 5 pairs of shoes. And if each pair costs $60, then he must have 
spent 5 * $60 = $300 in total.
<Assistant>: You're on the right track, but there seems to be a 
mistake … [76 words omitted] … The answer should be $360.

MathChat Examples

Figure 3: The examples of the four tasks in our MathChat benchmark. We place all tasks under a scenario of a
dialogue between the user and the assistant. The part with a italics font is the input to the LLMs and the highlighted
parts are generated by LLMs and to be evaluated.

Error Analysis LLMs have been proven to have237

weak error analysis abilities (Huang et al., 2023;238

Authors, 2024; Zhou et al., 2024; Yang et al., 2024;239

Miao et al., 2023). The initial QA pair for the ER-240

ROR ANALYSIS task is similar to that used in the241

ERROR CORRECTION task, where the evaluated242

LLM is presented with an incorrect solution to a243

problem. However, the tasks diverge from the sec-244

ond round: while ERROR CORRECTION focuses on245

rectifying the answer, ERROR ANALYSIS further246

requires the model to first recognize that an error247

exists, then analyze the error and correct it. Al-248

though the two tasks share similarities in targeting249

errors, they pose distinctly different challenges for250

LLMs, especially those specialized in mathemat-251

ics. These models are trained to solve problems252

directly, aligning well with the goal of ERROR COR-253

RECTION. In contrast, ERROR ANALYSIS demands254

that the model not only understand the instructions255

but also identify and articulate the cause of errors256

before correcting them. To enhance data diversity257

in our benchmark, we generate a different batch of258

incorrect attempts for the ERROR ANALYSIS task,259

separate from those used in ERROR CORRECTION.260

Problem Generation The final task in MathChat,261

Problem Generation, has been a direction of in-262

terest in both computer science and education for263

many years (Polozov et al., 2015; Wang et al., 2021;264

Zhou et al., 2023b; Shah et al., 2024; Jia et al.,265

2024; Liu et al., 2025). In this task, we provide the266

LLM with an original question-solution pair from 267

the source dataset as part of the dialogue history. 268

We then ask the LLM to create a new problem- 269

solution pair that either delves deeper into the same 270

topic or applies the same mathematical principles 271

in a different context. This task is notably different 272

from the typical mathematical QA, as it requires a 273

model to generate questions rather than solve them. 274

It challenges models to exhibit both creative and 275

reasoning capabilities. 276

3 Evaluation of Existing LLMs on 277

MathChat 278

We assess a variety of baseline LLMs using the 279

MathChat benchmark. Detailed experimental set- 280

tings such as the descriptions of baseline models 281

are located in Appendix A.5.1. 282

3.1 Evaluation Metrics 283

For the problem-solving tasks (FOLLOW-UP QA 284

and ERROR CORRECTION), we extract the last nu- 285

merical value that appeared in the model’s response 286

and compare it to the ground truth number. This 287

approach aligns with the evaluation metrics used 288

in most prior studies on math word problem solv- 289

ing. For the instruction-following tasks (ERROR 290

ANALYSIS and PROBLEM GENERATION), we uti- 291

lize GPT-4 to assign scores from 1 to 5 (higher 292

is better) based on three carefully designed multi- 293

dimensional criteria, similar to (Zheng et al., 2023; 294

Kim et al., 2024). The ERROR ANALYSIS task 295
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evaluates instruction following (IF), error diagnosis296

(ED), and solution accuracy (SA). The PROBLEM297

GENERATION task assesses IF, SA, and problem298

quality (PQ). A detailed description of these evalua-299

tion rubrics is available in Appendix A.9. All these300

metrics are measured on a scale of 1 to 5. Empiri-301

cally, for instruction following tasks, a score of 1 to302

2 indicates the failure to understand the instructions.303

A score of 2 to 3 signifies a basic understanding304

of the instructions, but the generated responses are305

often wrong. A score of 3 to 4 means the model has306

a good understanding of the instructions and can307

generate corresponding answers, though mistakes308

may still occur sometimes. A score higher than 4309

indicates a very good response, which is usually310

fluent and relevant, with mistakes being rare.311

3.2 Prompting Template312

For math-specific LLMs like MetaMath and Wiz-313

ardMath, which are typically trained on specific314

QA templates, our MathChat involves multi-turn315

dialogues that do not strictly adhere to the formats316

of their training data. To fully exploit their potential317

in evaluation, we test these models in two settings:318

(i) using the chat template of their instruct mod-319

els, and (ii) adapting their specific QA templates320

to include our dialogue history in the question part,321

i.e., reforming our multi-turn math reasoning prob-322

lem to a one-round math QA task. For each task,323

we report results from the better-performing set-324

ting. Empirically, we find that for tasks requir-325

ing problem-solving skills, such as FOLLOW-UP326

QA and ERROR CORRECTION, the second setting327

significantly outperforms the first. However, per-328

formance is nearly identical across both settings329

for the instruction following tasks. These results330

reveal that solving the tasks in our benchmark re-331

quires models to possess deeper understanding and332

comprehension abilities. For models that cannot333

perform well on our tasks, it is not merely due to334

their unfamiliarity with chat-template data.335

3.3 Result Analysis and Observations336

Overall, while most math-specific LLMs (except337

for MAmmoTH) outperform GPT-3.5-turbo only in338

the Round1 of Follow-up QA (see the first column339

in Table 2), they fall short in all other tasks (other340

columns in Table 2). These outcomes suggest that341

current math-specific models are overly tuned to342

single-round QA data, and the significant perfor-343

mance drop in multi-round and complex tasks fur-344

ther validates the challenging nature of our bench-345

mark, testing the models’ diverse capabilities in 346

mathematical reasoning, as illustrated in Figure 1. 347

We further investigate the models’ performance in 348

each task: 349

Follow-up QA. In Rounds 2 and 3 of the 350

FOLLOW-UP QA tasks, models face significant 351

challenges in multi-round math reasoning, with 352

accuracy reductions ranging from 20% to 50%. 353

This decline indicates that while math-specific 354

LLMs initially outperform general-purpose LLMs 355

and even GPT-3.5-turbo in Round 1, their per- 356

formance deteriorates more significantly in sub- 357

sequent rounds. Theoretically, if a model main- 358

tains consistent accuracy across all dialogue rounds, 359

with a first-round accuracy of x1, the expected 360

second-round accuracy would be x21 due to error 361

propagation. Interestingly, when comparing the 362

square of the first-round accuracy (x21) with the 363

actual second-round accuracy (x2), we observe a 364

contrasting pattern: x21 > x2 for all math-specific 365

LLMs, indicating a decline, whereas x21 < x2 for 366

all other general-purpose models. This finding 367

demonstrates that while math-specific LLMs ex- 368

cel at solving math problems in a single round, 369

they show weaker progressive reasoning capabili- 370

ties within dialogues. 371

Error Correction. In the ERROR CORRECTION 372

task, a clear distinction also exists between math- 373

specific LLMs and general-purpose LLMs. No- 374

tably, general LLMs exhibit higher accuracy in 375

correcting errors than in directly solving problems 376

(i.e., the first-round follow-up QA), whereas the 377

reverse is true for math-specific LLMs. This adap- 378

tive behavior is evident in general-purpose LLMs 379

but is noticeably lacking in math-specific LLMs, 380

suggesting their weak ability to learn and reason 381

from errors due to the over-tuning on single-round 382

QA tasks. The difficulty of this task in our bench- 383

mark further emphasizes the need for models to go 384

beyond single-round accuracy and develop robust 385

error-correction abilities. 386

Error Analysis. The ERROR ANALYSIS task re- 387

quires that models first identify errors in a given 388

solution before proceeding to analyze and correct 389

them. In practice, we find that math-specialized 390

LLMs often misinterpret the task’s instruction 391

about analyzing the solution and instead simply 392

repeat the previous answer, or just validate the in- 393

correct solution as correct. Conversely, only GPT- 394

3.5-turbo relatively performs well in verifying the 395
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Follow-up QA
R1* R2 R3

Error
Correction Error Analysis Problem Generation

Acc. Acc. IF ED SA IF PQ SA

General-Purpose 7B LLMs:
LLaMA2-chat 15.09 11.67 8.12 38.82 2.64 1.83 1.87 4.02 3.83 3.33

Mistral-Instruct 32.06 20.40 13.70 51.20 3.50 2.82 2.77 4.44 4.30 3.80
Gemma-it 37.60 17.65 10.57 46.15 3.07 2.05 3.11 3.09 3.75 2.48

Math-specialized 7B LLMs:
MAmmoTH 66.85 32.16 19.31 54.15 2.55 1.75 1.79 2.03 1.95 2.42
MetaMath 77.18 43.98 32.16 56.30 2.51 1.26 1.34 2.28 2.32 2.35

WizardMath 83.20 44.81 36.86 68.22 2.62 1.81 1.95 1.53 1.54 1.60
DeepSeek-Math 79.40 48.19 35.70 74.34 1.87 1.38 1.47 1.95 1.96 2.08
InternLM2-Math 83.80 40.20 28.64 72.70 2.88 2.24 2.35 4.31 4.31 3.50

GPT-3.5-turbo 74.68 55.26 45.59 75.90 4.12 3.64 3.71 4.62 4.62 4.23
GPT-4-turbo 94.62 76.36 73.41 81.11 4.60 4.35 4.45 4.94 4.94 4.87

GPT-4o 95.68 77.67 73.03 83.09 4.84 4.60 4.68 4.91 4.94 4.82
* The first round performance is essentially the performance on the original GSM8K dataset.

Table 2: The performance of three open-sourced general-purpose LLMs, five math-specialized LLMs,
and GPT-3.5-turbo on MathChat. All open-sourced models are in the size of 7B. R1, R2, and R3
denote different rounds in Follow-up QA. Evaluation metrics: Acc. (%), and others from 1 (lowest)
to 5 (highest), such as IF = Instruction Following, ED = Error Diagnosis, SA = Solution Accuracy
and PQ = Problem Quality. We bold the best performance achieved by open-sourced models.

solution and pinpointing errors. This task presents396

a significant challenge for open-source mathemat-397

ical LLMs, indicating a common limitation: their398

ability to identify and analyze errors. The high399

failure rate in this task also shows the challenging400

nature of our benchmark.401

Problem Generation. The PROBLEM GENERA-402

TION task, similar to ERROR ANALYSIS, requires403

models to understand instructions that go beyond404

answering the given question. This task assesses405

several abilities: a model must accurately compre-406

hend the given instruction, understand the provided407

problem-solution pair, and generate a new and rel-408

evant problem-solution pair. We observe that all409

general-purpose LLMs and only one math-specific410

model InternLM2-Math perform well. Other math411

LLMs, which are heavily optimized for problem-412

solving, struggle with this task. Empirically, we413

find that those models still consistently attempt to414

solve problems even when clearly instructed to cre-415

ate new problems. The difficulty of adapting to416

problem generation highlights the rigidity of cur-417

rent math-specific models, suggesting that these418

models are overly tuned to solve problems and, as419

a result, find it challenging to adapt to other tasks.420

4 Enhancement via SFT421

In this section, we explore the performance im-422

provements of general-purpose models enhanced423

by various supervised fine-tuning (SFT) strategies.424

See Appendix A.7 for case studies.425

4.1 Baselines 426

We first build a series of Mistral 7B baseline models 427

by applying supervised fine-tuning with existing 428

datasets. First, Mistral-Math is developed to spe- 429

cialize Mistral-Instruct in math reasoning. This 430

is achieved via fine-tuning the model by Arithmo 431

(akjindal53244, 2023) compilation, which includes 432

three existing datasets: MetaMath (Yu et al., 2024), 433

MathInstruct (Yue et al., 2024), and Lila-OOD 434

(Mishra et al., 2022). These dataset totally com- 435

prises about 540,000 entries. Second, Mistral- 436

Math-IT is then built for enhancing the instruc- 437

tion following ability of Mistral-Math. We uti- 438

lized the Alpaca-GPT4 dataset (Peng et al., 2023), 439

which includes 52,000 instruction-following in- 440

stances generated by GPT-4. We also use LIMA 441

(Zhou et al., 2023a), which contains 1,000 high- 442

quality prompts and responses from human inter- 443

actions. Last, Mistral-Math-IT-Chat gains the 444

ability to engage in conversation by tuning with a 445

dialogue dataset. We subsample the Ultra-chat200k 446

(Ding et al., 2023) to 50,000 dialogues to minimize 447

the training workload. Empirically, we find that 448

this subsampling does not significantly affect per- 449

formance on MathChat compared to using the en- 450

tire Ultrachat-200k dataset. Similarly, a series of 451

Gemma 7B models are developed using the same 452

SFT setting, and named following the same format. 453

4.2 Dialogue Dataset MathChatsync 454

While the Ultra-chat200k dataset includes dia- 455

logues spanning a variety of topics, math-related 456
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conversations should be specifically highlighted457

and incorporated into the SFT process. We thus in-458

troduce and release a new dataset MathChatsync,459

which is created by sampling QA pairs from460

Arithmo as seed examples. We then tasked GPT461

models to engage in real-world dialogues based462

on these seeds, enriching the dataset with diverse463

and contextually relevant mathematical discus-464

sions. The details of the generation prompts are465

provided in the Appendix A.9. Due to budget466

constraints, we generated 16,132 dialogues using467

GPT-4 and 131,346 dialogues using GPT-3.5-turbo,468

resulting in a total of 147,478 dialogues in the469

MathChatsync dataset. This dataset can serve as an470

augmented resource during the SFT stage for future471

math LLMs, enabling them to engage in dialogues472

without compromising their ability to reason in473

single-round QA. Since MathChatsync already in-474

cludes samples in forms of instruction and dialogue,475

Mistral and Gemma are tuned using both Arithmo476

and MathChatsync, resulting in Mistral-MathChat477

and Gemma-MathChat models, respectively.478

4.3 Result Analysis and Observations479

Table 3 presents the results of two series of LLMs480

that have been fine-tuned from Mistral and Gemma481

models. The evaluation follows the same settings482

on MathChat as presented in Table 2. Generally,483

the results suggest that our method of augmenting484

the training corpus enhances performance across485

all tasks. Notably, incorporating general-purpose486

instruction tuning data from sources such as Al-487

paca and UltraChat can improve performance on488

mathematical tasks. This improvement may stem489

partly from the inclusion of mathematical con-490

tent within these datasets. The addition of high-491

quality instruction data predominantly may also492

boost the LLMs’ natural language comprehension,493

thereby enhancing their ability to solve math prob-494

lems. Moreover, the model fine-tuned with our495

MathChatsync dataset demonstrates markedly su-496

perior overall performance. Appendix A.1 shows497

how we scale and calculate the overall score and498

Table 4 contains a more comprehensive compar-499

ison in terms of the overall performance. Since500

MathChatsync is created in a very simple and501

straightforward way, we believe that scaling up502

the quality and amount of such math dialogue data503

can bring more performance improvement, which504

we leave as our future work. Detailed analysis on505

each task follows.506

Follow-up QA. When performing SFT with ex- 507

isting datasets, adding instruction-following, dia- 508

logue or our MathChatsync datasets generally en- 509

hances the performance on follow-up QA tasks. 510

Notably, we observe that performance improve- 511

ments in the second and third rounds are signif- 512

icantly greater compared to the initial round of 513

the original GSM8K QA. A likely explanation is 514

that these datasets contain longer-context QA pairs, 515

which enable the model to reason based on the dia- 516

logue history rather than focusing predominantly 517

on more immediate contexts. 518

Error Correction. Fine-tuned models exhibit 519

better accuracy than base LLMs in error correction, 520

yet integrating additional datasets has not markedly 521

boosted performance. This limited improvement 522

suggests that essential skills such as DIAGNOSTIC 523

REASONING and SOLUTION REFINEMENT, indi- 524

cated in Figure 1, are not effectively learned from 525

the used datasets. Additionally, we observed that 526

our MathChatsync data negatively affects this task. 527

Upon examining the error cases, we discovered 528

that models trained with MathChatsync indeed have 529

a better understanding of “correcting the error”, 530

where they try to make improvements over previ- 531

ous incorrect attempts rather than simply making 532

new attempts. This contrasts with models trained 533

purely on problem-solving datasets, which tend to 534

give completely new solutions. The lower perfor- 535

mance of the model trained with MathChatsync may 536

be attributed to the dataset’s lack of manual filter- 537

ing of incorrect cases. We leave the quality control 538

problem and analysis to future work. 539

Error Analysis. Similar to Error Correction, 540

learning the ability to perform error analysis is 541

challenging when using SFT with math QA and 542

general instruction tuning datasets. Although the 543

performance on this task is not exceptionally high, 544

the inclusion of math-dialogue data in SFT has 545

proven to be a viable method for enhancing LLMs’ 546

capabilities in error analysis. Our analysis in Fig- 547

ure 5 also reveals that the models fine-tuned with 548

existing datasets (i.e., three baselines) typically af- 549

firm the correctness of previous answers and termi- 550

nate their responses prematurely. In contrast, our 551

MathChatsync dataset aids LLMs in understanding 552

how to conduct error analysis. 553

Problem Generation. On problem generation 554

task, we observe that the base models already 555

have reasonable performance and SFT without 556
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Follow-up QA
R1* R2 R3

Error
Correction Error Analysis Problem

Generation
(Scaled)
Overall

Acc. Acc. IF ED SA IF PQ SA Average

Mistral 7B Series:
Mistral-Instruct 32.06 20.40 13.70 51.20 3.50 2.82 2.77 4.44 4.30 3.80 0.550
Mistral-Math 70.20 32.31 24.60 70.22 2.18 1.60 1.71 3.54 3.28 3.75 0.519

Mistral-Math-IT 70.73 40.59 27.74 69.54 2.34 1.65 1.76 4.08 3.81 4.16 0.565
Mistral-Math-IT-Chat 71.79 39.22 27.36 69.15 2.31 1.50 1.63 4.39 4.20 4.28 0.574

Mistral-MathChat (Ours) 71.02 41.02 27.97 67.96 3.40 2.89 2.67 4.70 4.58 4.43 0.661

Gemma 7B Series:
Gemma-it 37.60 17.65 10.57 46.15 3.07 2.05 3.11 3.09 3.75 2.48 0.463

Gemma-Math 70.73 29.70 19.92 62.68 1.69 1.29 1.32 3.24 3.09 3.44 0.464
Gemma-Math-IT 72.02 43.36 32.57 62.60 1.76 1.40 1.46 3.34 3.32 3.61 0.508

Gemma-Math-IT-Chat 74.68 46.35 33.64 63.85 2.05 1.64 1.70 3.64 3.48 3.99 0.549
Gemma-MathChat (Ours) 72.14 47.10 32.64 61.86 3.43 2.90 2.90 3.77 3.72 3.74 0.623

Table 3: Performance of LLMs that are fine-tuned with different datasets. The best performance is
bold and the second best is underlined for each series.

MathChatsync generally hurts the performance.557

However, a notable finding is the increase in Solu-558

tion Accuracy (SA) scores following SFT, which559

suggests that fine-tuning on mathematical data560

helps the model recognize the importance of solu-561

tion correctness and extend this awareness to gener-562

ation tasks. Furthermore, our MathChat-enhanced563

SFT model records the best performance on this564

task, demonstrating the versatile utility of dialogue-565

enhanced training in mathematical contexts.566

5 Related Work567

Mathematical Reasoning. Recently, LLMs have568

demonstrated success in solving math word prob-569

lems through techniques like Chain of Thought570

(CoT) (Wei et al., 2022; Kojima et al., 2022), Pro-571

gram of Thought (PoT) (Chen et al., 2023), and572

sampling methods (Wang et al., 2022). These573

studies primarily focus on improving performance574

via better prompting design or inference strate-575

gies. Some researchers also attempted exten-576

sive pre-training on math-related corpora to ob-577

tain foundational mathematical LLMs (Lewkowycz578

et al., 2022; Taylor et al., 2022; Azerbayev et al.,579

2024). As for the evaluation of mathematical580

reasoning, popular benchmarks include GSM8K,581

MAWPS (Koncel-Kedziorski et al., 2016), MATH582

(Hendrycks et al., 2021), SVAMP (Patel et al.,583

2021), MathVista (Lu et al., 2024), MathVerse584

(Zhang et al., 2024), etc., and all of them are in585

single-round QA format. State-of-the-art (SOTA)586

models such as MetaMath (Yu et al., 2024), Wiz-587

ardMath, MathInstruct (Yue et al., 2024), ToRA588

(Gou et al., 2024), OpenMathInstruct (Toshniwal589

et al., 2024) augment extensive amount of math590

QA pairs from LLMs or humans as the additional591

training set to boost the performance. 592

Multi-Turn Dialogues in Reasoning. The ad- 593

vancement of dialogue capabilities in LLMs, par- 594

ticularly their proficiency in multi-turn interactions, 595

has been a key focus in LLM research (Ding et al., 596

2023; Tunstall et al., 2023; Zheng et al., 2023). 597

These are many studies on the intersection of math 598

reasoning and interaction. Frieder et al. (2024) ex- 599

plores error types within ChatGPT-generated math 600

solutions, including reasoning errors and miscal- 601

culations. An et al. (2023) proposes using error 602

analysis to improve the accuracy of final solutions. 603

CheckMate (Collins et al., 2024) a prototype plat- 604

form for human-LLM interaction focused on qual- 605

itative evaluation. Our work distinguishes itself 606

by examining an under-explored direction of open- 607

ended multi-turn dialogues: the benchmarking and 608

analysis of combined mathematical reasoning and 609

instruction-following on LLMs. 610

6 Conclusion 611

This paper introduces the MathChat benchmark 612

as a new evaluative framework for assessing the 613

capabilities of large language models (LLMs) in 614

mathematical problem-solving and open-ended QA 615

within multi-turn dialogue contexts. We demon- 616

strate that while existing math-specialized LLMs 617

excel at single-turn question-answering tasks, they 618

significantly struggle with more complex, open- 619

ended tasks that require understanding and fol- 620

lowing multi-turn instructions. We also collect 621

and release a fine-tuning dataset MathChatsync with 622

math-centered dialogue interactions. LLMs trained 623

with MathChatsync show marked improvements in 624

handling complex tasks in MathChat that require 625

higher levels of comprehension and adaptability. 626
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Limitation627

One consideration of our work is that the MathChat628

dataset is generated using LLMs. To address this629

concern, we have taken proactive measures to en-630

hance data quality and reliability. Instead of solely631

relying on GPT-4, we designed an augmentation632

strategy that builds upon the high-quality, human-633

annotated GSM8K dataset to generate novel tasks.634

This approach has been effective in expanding train-635

ing data and creating robust evaluation benchmarks.636

Additionally, for the two problem-solving tasks637

with deterministic answers, we integrated human638

verification alongside model validation to ensure639

response accuracy. These measures collectively640

strengthen the integrity of MathChat, providing a641

comprehensive and reliable benchmark for evaluat-642

ing multi-turn mathematical reasoning in LLMs.643

Importantly, the core contribution of MathChat644

extends beyond data generation—it establishes a645

structured evaluation framework for multi-turn rea-646

soning, advancing a crucial yet under-explored re-647

search direction.648

Broader Impact649

MathChat has the potential to significantly impact650

AI-driven education by enabling more interactive651

and adaptive tutoring systems. Applications of our652

work include intelligent tutoring assistants, educa-653

tional chatbots, and AI-powered problem-solving654

tools that can support students in developing math-655

ematical reasoning skills.656
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Antonín Jančařík, Jarmila Novotná, and Jakub Michal.759
2022. Artificial intelligence assistant for mathemat-760
ics education. In Proceedings of the 21st European761
Conference on e-Learning-ECEL, pages 143–148.762

Jiyou Jia, Tianrui Wang, Yuyue Zhang, and Guangdi763
Wang. 2024. The comparison of general tips for764
mathematical problem solving generated by genera-765
tive ai with those generated by human teachers. Asia766
Pacific Journal of Education, 44(1):8–28.767

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-768
sch, Chris Bamford, Devendra Singh Chaplot, Diego769
de las Casas, Florian Bressand, Gianna Lengyel, Guil-770
laume Lample, Lucile Saulnier, et al. 2023. Mistral771
7b. arXiv preprint arXiv:2310.06825.772

Enkelejda Kasneci, Kathrin Seßler, Stefan Küchemann,773
Maria Bannert, Daryna Dementieva, Frank Fischer,774
Urs Gasser, Georg Groh, Stephan Günnemann, Eyke775
Hüllermeier, et al. 2023. Chatgpt for good? on op-776
portunities and challenges of large language models777
for education. Learning and individual differences,778
103:102274.779

Seungone Kim, Juyoung Suk, Shayne Longpre,780
Bill Yuchen Lin, Jamin Shin, Sean Welleck, Graham781
Neubig, Moontae Lee, Kyungjae Lee, and Minjoon782
Seo. 2024. Prometheus 2: An open source language783
model specialized in evaluating other language mod-784
els. arXiv preprint arXiv:2405.01535.785

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu- 786
taka Matsuo, and Yusuke Iwasawa. 2022. Large 787
language models are zero-shot reasoners. NeurIPS, 788
35:22199–22213. 789

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate 790
Kushman, and Hannaneh Hajishirzi. 2016. Mawps: 791
A math word problem repository. In NAACL, pages 792
1152–1157. 793

Dabae Lee and Sheunghyun Yeo. 2022. Developing an 794
ai-based chatbot for practicing responsive teaching in 795
mathematics. Computers & Education, 191:104646. 796

Aitor Lewkowycz, Anders Andreassen, David Dohan, 797
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh, 798
Ambrose Slone, Cem Anil, Imanol Schlag, Theo 799
Gutman-Solo, et al. 2022. Solving quantitative rea- 800
soning problems with language models. Advances 801
in Neural Information Processing Systems, 35:3843– 802
3857. 803

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lip- 804
kin, Roman Soletskyi, Shengyi Huang, Kashif Rasul, 805
Longhui Yu, Albert Q Jiang, Ziju Shen, et al. 2024. 806
Numinamath: The largest public dataset in ai4maths 807
with 860k pairs of competition math problems and 808
solutions. Hugging Face repository, 13:9. 809

Zhenwen Liang, Dian Yu, Xiaoman Pan, Wenlin Yao, 810
Qingkai Zeng, Xiangliang Zhang, and Dong Yu. 811
2023. Mint: Boosting generalization in mathematical 812
reasoning via multi-view fine-tuning. arXiv preprint 813
arXiv:2307.07951. 814

Woong Lim, Ji-Eun Lee, Kersti Tyson, Hee-Jeong Kim, 815
and Jihye Kim. 2020. An integral part of facilitating 816
mathematical discussions: Follow-up questioning. 817
International Journal of Science and Mathematics 818
Education, 18:377–398. 819

Haoxiong Liu, Yifan Zhang, Yifan Luo, and Andrew C 820
Yao. 2025. Augmenting math word problems via 821
iterative question composing. In Proceedings of 822
the AAAI Conference on Artificial Intelligence, vol- 823
ume 39, pages 24605–24613. 824

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chun- 825
yuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai- 826
Wei Chang, Michel Galley, and Jianfeng Gao. 2024. 827
Mathvista: Evaluating mathematical reasoning of 828
foundation models in visual contexts. In The Twelfth 829
International Conference on Learning Representa- 830
tions. 831

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian- 832
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei 833
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz- 834
ardmath: Empowering mathematical reasoning for 835
large language models via reinforced evol-instruct. 836
arXiv preprint arXiv:2308.09583. 837

Jakub Macina, Nico Daheim, Sankalan Chowdhury, Tan- 838
may Sinha, Manu Kapur, Iryna Gurevych, and Mrin- 839
maya Sachan. 2023a. Mathdial: A dialogue tutoring 840
dataset with rich pedagogical properties grounded in 841

10



math reasoning problems. In Findings of the Associ-842
ation for Computational Linguistics: EMNLP 2023,843
pages 5602–5621.844

Jakub Macina, Nico Daheim, Lingzhi Wang, Tanmay845
Sinha, Manu Kapur, Iryna Gurevych, and Mrinmaya846
Sachan. 2023b. Opportunities and challenges in neu-847
ral dialog tutoring. In Proceedings of the 17th Con-848
ference of the European Chapter of the Association849
for Computational Linguistics, pages 2357–2372.850

Sadegh Mahdavi, Muchen Li, Kaiwen Liu, Christos851
Thrampoulidis, Leonid Sigal, and Renjie Liao. 2025.852
Leveraging online olympiad-level math problems for853
llms training and contamination-resistant evaluation.854
arXiv preprint arXiv:2501.14275.855

Ning Miao, Yee Whye Teh, and Tom Rainforth.856
2023. Selfcheck: Using llms to zero-shot check857
their own step-by-step reasoning. arXiv preprint858
arXiv:2308.00436.859

Shen-Yun Miao, Chao-Chun Liang, and Keh-Yih Su.860
2020. A diverse corpus for evaluating and developing861
english math word problem solvers. In Proceedings862
of the 58th Annual Meeting of the Association for863
Computational Linguistics, pages 975–984.864

Swaroop Mishra, Matthew Finlayson, Pan Lu, Leonard865
Tang, Sean Welleck, Chitta Baral, Tanmay Rajpuro-866
hit, Oyvind Tafjord, Ashish Sabharwal, Peter Clark,867
et al. 2022. Lila: A unified benchmark for mathe-868
matical reasoning. In Proceedings of the 2022 Con-869
ference on Empirical Methods in Natural Language870
Processing, pages 5807–5832.871

Hien D Nguyen, Vuong T Pham, Dung A Tran, and872
Trung T Le. 2019. Intelligent tutoring chatbot for873
solving mathematical problems in high-school. In874
2019 11th International Conference on Knowledge875
and Systems Engineering (KSE), pages 1–6. IEEE.876

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.877
2021. Are nlp models really able to solve simple878
math word problems? In Proceedings of the 2021879
Conference of the North American Chapter of the880
Association for Computational Linguistics: Human881
Language Technologies, pages 2080–2094.882

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-883
ley, and Jianfeng Gao. 2023. Instruction tuning with884
gpt-4. arXiv preprint arXiv:2304.03277.885

Oleksandr Polozov, Eleanor O’Rourke, Adam M886
Smith, Luke Zettlemoyer, Sumit Gulwani, and Zo-887
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A Appendix 1023

A.1 Overall Results 1024

To facilitate a more thorough and direct comparison 1025

across different models on our MathChat bench- 1026

mark, we have formulated three comprehensive 1027

metrics based on two key aspects: problem-solving 1028

accuracy and open-ended task quality. Initially, 1029

we normalize all sub-metrics to a 0-1 scale. For 1030

problem-solving tasks, including follow-up QA 1031

and error correction, accuracies are normalized by 1032

dividing each by 100. For open-ended tasks, which 1033

are graded on a 1 to 5 scale, we normalize by divid- 1034

ing the scores by 5. We then define three metrics: 1035

1) Overall Average: the average score of all ten sub- 1036

metrics listed in Tables 2 and 3; 2) Task Average: 1037

the average score across the four tasks; 3) Category 1038

Average: the average score of the two categories, 1039

i.e., problem-solving and open-ended QA. 1040

The results in Table 4, based on the met- 1041

rics defined above, indicate that the model 1042

with a Mistral backbone, fine-tuned with our 1043

MathChatsync dataset, achieves the best perfor- 1044

mance across all three metrics. This proves the 1045

effectiveness of our SFT dataset and suggests that 1046

there is still potential for improvement in math- 1047

specific LLMs. 1048

Mitigating GPT-4 Biases 1049

We sincerely appreciate this insightful concern. To 1050

address potential GPT-4 evaluation biases, we con- 1051

ducted additional evaluations using two large-scale 1052

models: Qwen2.5-72B-Instruct and LLaMA3.3- 1053

70B-Instruct. Due to computational constraints, we 1054

sampled 150 examples for this analysis, and we 1055

plan to expand to the full evaluation in the final 1056

camera-ready version. 1057
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Model Overall Average Task Average Category Average
LLaMA2-chat 0.424 0.418 0.384
Mistral-Instruct 0.550 0.544 0.507
Gemma-it 0.463 0.463 0.432
MAmmoTH 0.422 0.442 0.424
MetaMath 0.451 0.470 0.463
WizardMath 0.454 0.492 0.476
DeepSeek-Math 0.452 0.500 0.476
InternLM2-Math 0.617 0.635 0.608
Gemma-Math 0.464 0.491 0.463
Gemma-Math-IT 0.508 0.528 0.511
Gemma-Math-IT-Chat 0.549 0.564 0.548
Mistral-Math 0.519 0.549 0.514
Mistral-Math-IT 0.565 0.586 0.557
Mistral-Math-IT-Chat 0.574 0.593 0.565
Gemma-MathChat (Ours) 0.623 0.622 0.608
Mistral-MathChat (Ours) 0.661 0.664 0.638

Table 4: Overall results of 7B LLMs. The best models are bold and the second best is underlined.

Table 5: Evaluation by Qwen2.5-72B-Instruct on Error Analysis (EA) and Problem Generation (PG) tasks (150
samples).

Model IF (EA) ED (EA) SA (EA) IF (PG) PQ (PG) SA (PG)

MetaMath 2.67 1.39 1.48 2.47 2.45 2.49
DeepSeek-Math 2.02 1.55 1.60 2.11 2.08 2.23
GPT-3.5-turbo 3.96 3.53 3.57 4.47 4.50 4.09
GPT-4-turbo 4.43 4.19 4.30 4.78 4.76 4.72
GPT-4o 4.68 4.42 4.55 4.77 4.82 4.69

Qwen2.5-72B-Instruct on Error Analysis (EA)1058

and Problem Generation (PG)1059

LLaMA3.3-70B-Instruct on Error Analysis1060

(EA) and Problem Generation (PG) Compar-1061

ing these results (Table 5 and Table 6) with Table 21062

in our manuscript, we observe slight variations in1063

scoring and a few deviations in evaluation patterns.1064

Nevertheless, the overall trends and conclusions re-1065

main consistent, indicating that our evaluation pro-1066

tocol is robust. We believe this is due to the detailed1067

evaluation guidelines and rubrics incorporated into1068

our prompts (as exemplified by the descriptions1069

for rubric creation, though specific figure numbers1070

like 15 and 16 would refer to your full manuscript1071

if such figures detailing rubrics exist), which help1072

mitigate potential biases from self-evaluation.1073

Generalizability and Comparison with1074

Single-Turn QA Benchmarks1075

We truly appreciate the helpful suggestion to com-1076

pare performance on other standard benchmarks.1077

In response, we include below the comparative re- 1078

sults on several single-turn and out-of-distribution 1079

math datasets. 1080

While our MathChatsync-trained models 1081

(Mistral-MathChat and Gemma-MathChat) show 1082

slightly lower performance on some single-turn 1083

QA datasets (e.g., GSM8k, MAWPS, SVAMP) 1084

compared to MetaMath, which is heavily optimized 1085

for such formats, they surpass MetaMath on more 1086

challenging and potentially out-of-distribution 1087

datasets such as MMLU-Math and SAT-Math (Ta- 1088

ble 7). This suggests that the MathChatsync dataset, 1089

with its focus on multi-turn interactions and diverse 1090

instruction following, contributes to stronger 1091

generalization capabilities, especially in varied 1092

and complex mathematical reasoning tasks. This 1093

indicates a beneficial trade-off where a slight 1094

decrease in specialized single-turn performance is 1095

compensated by an increase in broader reasoning 1096

and generalization. We will incorporate these 1097

findings and further discussion into our final 1098
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Table 6: Evaluation by LLaMA3.3-70B-Instruct on Error Analysis (EA) and Problem Generation (PG) tasks (150
samples).

Model IF (EA) ED (EA) SA (EA) IF (PG) PQ (PG) SA (PG)

MetaMath 2.46 1.21 1.30 2.23 2.18 2.27
DeepSeek-Math 1.83 1.34 1.41 1.90 1.91 2.04
GPT-3.5-turbo 3.81 3.34 3.43 4.28 4.32 3.94
GPT-4-turbo 4.30 4.06 4.20 4.61 4.58 4.52
GPT-4o 4.54 4.27 4.42 4.60 4.65 4.50

Table 7: Comparative performance on single-turn QA and out-of-distribution math benchmarks.

Model GSM8k MAWPS SVAMP MMLU-Math SAT-Math

MetaMath 77.18 89.12 79.85 47.59 56.01
Mistral-MathChat (Ours) 71.02 83.63 72.41 46.95 61.29
Gemma-MathChat (Ours) 72.14 86.24 68.42 49.19 62.21

manuscript.1099

A.2 Analysis of Answer Qualities1100

To evaluate the answer qualities of various mod-1101

els on our MathChat benchmark, we analyzed 5001102

outputs each from Mistral, InternLM2-Math (i.e.,1103

the best math-specialized LLM in Table 2), Mistral-1104

Math, and our Mistral-MathChatsync model across1105

tasks such as Follow-up QA, Error Analysis, and1106

Problem Generation. We employed GPT-4 to cate-1107

gorize these outputs according to a predefined set1108

of output categories. Our analysis revealed that the1109

Mistral-MathChatsync models excel in tasks requir-1110

ing open-ended responses, like error analysis and1111

problem generation, while performing comparably1112

in problem-solving tasks. The following sections1113

detail these results:1114

LLMs + MathChatsync SFT achieves state-of-1115

the-art accuracy in follow-up QA. As shown1116

in Figure 4, all three math-specific models sig-1117

nificantly outperform the original Mistral model,1118

with our MathChatsync model slightly surpassing1119

the other two, showing the strong mathematical1120

problem solving ability is still maintained after1121

MathChatsync fine-tuning.1122

LLMs + MathChatsync SFT exhibits strong er-1123

ror identification and correction abilities. Figure1124

5 shows that although the Mistral model identifies1125

errors in mathematical problems, it falls short in1126

offering corrections. InternLM2-Math and Math-1127

SFT show reduced error detection capabilities due1128

to their intensive training on straightforward math1129

QA. In contrast, our MathChatsync model demon-1130

strates a robust capacity for both identifying and1131

correcting errors. 1132

LLMs + MathChatsync SFT demonstrates su- 1133

perior performance in problem generation. As 1134

shown in 6, our MathChatsync model excels in prob- 1135

lem generation tasks, while the other two math- 1136

specific models (InternLM2-Math and Math-SFT) 1137

struggle with instruction following and basic com- 1138

prehension, highlighting the effectiveness of our 1139

MathChatsync fine-tuning approach. 1140

A.3 Connection Between Few-Shot Prompting 1141

and MathChat 1142

We conducted an experiment to compare the per- 1143

formance of models using few-shot prompting and 1144

MathChat on the GSM8K dataset. Our goal was 1145

to understand the differences in performance when 1146

using these two methods. In particular, we hypoth- 1147

esized that the additional context provided by few- 1148

shot prompting would positively impact the models’ 1149

performance, similar to how MathChat requires in- 1150

formation from the extra conversational context. 1151

The results in Table 8 show a general trend that 1152

few-shot prompting improves performance over 1153

zero-shot, but not uniformly. For instance, models 1154

like Mistral-Instruct and DeepSeek-Math experi- 1155

enced notable gains in performance from zero-shot 1156

to few-shot prompting, with increases of 26.49% 1157

and 1.98%, respectively. However, other models, 1158

such as MetaMath and MAmmoTH, saw a per- 1159

formance drop in the transition from zero-shot to 1160

few-shot, indicating that not all models leverage 1161

few-shot prompting effectively. Interestingly, mod- 1162

els that benefit from few-shot prompting tend to 1163

have a smaller performance drop from R1 to R2. 1164
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Figure 4: The Round3 answer quality in follow-up QA task.
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Figure 5: The answer quality in Error Analysis task.
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Figure 6: The answer quality in Problem Generation task.

Model GSM8K Zero
Shot (R1)

GSM8K Few
Shot

Performance
Drop (R1 to
R2)

Performance
Change

Mistral-Instruct 32.06 40.56 36.38% +26.49%
Gemma-it 37.60 36.54 53.04% -2.82%
MAmmoTH 66.85 59.36 51.88% -11.20%
MetaMath 77.18 72.25 43.04% -6.39%
WizardMath 83.20 78.99 46.15% -5.06%
DeepSeek-Math 79.40 80.97 39.29% +1.98%
InternLM2-Math 83.80 76.88 52.02% -8.26%

Table 8: Comparison of GSM8K Zero Shot and Few Shot Performance, Performance Drop (R1 to R2), and
Performance Change (Zero Shot to Few Shot).
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This indirectly supports your guess that there is a1165

correlation between multi-turn reasoning and few-1166

shot learning. We believe this is because both tasks1167

require models to have strong long-context com-1168

prehension and reasoning abilities.1169

A.4 Impact of Removing Prior Conversation1170

Context1171

In this experiment, we evaluate the performance of1172

various models on the second and third rounds (R21173

and R3) of questions, both with and without the1174

context provided by the previous rounds. Specif-1175

ically, we report the performance when running1176

on R2 and R3 questions individually, without the1177

context from R1 and R1/2 in Table 9, respectively.1178

The results indicate that removing the prior con-1179

versation context negatively impacts all models’1180

performance. This confirms that when a model can1181

engage with the full conversation context in Math-1182

Chat, it significantly enhances subsequent rounds1183

of problem-solving. These findings highlight the1184

importance of conversational context in evaluating1185

a model’s reasoning ability, further validating the1186

effectiveness of our benchmark.1187

A.5 Experiment Details1188

A.5.1 Existing LLM Baselines1189

We test three general-purpose, open-source models:1190

LLaMA2-7B-chat (Touvron et al., 2023b), Mistral-1191

7B-Instruct (Jiang et al., 2023) and Gemma-7B-1192

it (Team et al., 2024). Additionally, we exam-1193

ine five math-specific LLMs: MAmmoTH (Yue1194

et al., 2024) create and release MathInstruct, a1195

math problem-solving dataset including CoT-style1196

and PoT-style annotations and perform Supervised1197

Fine-Tuning (SFT) on various base LLMs. In1198

this paper, we use their released MAmmoTH-1199

Mistral-7B variant. MetaMath-Mistral-7B (Yu1200

et al., 2024) is trained on augmented math data1201

based on GSM8K and MATH. WizardMath-7B-1202

v1.1 (Luo et al., 2023) utilizes both SFT and re-1203

inforcement learning from evol-instruct Feedback1204

on math instructions. InternLM2-7B-Math (Ying1205

et al., 2024) and DeepSeek-7B-Math (Shao et al.,1206

2024) incorporate pre-training, SFT, and prefer-1207

ence alignment focused on a mathematical corpus.1208

We also present the performance of GPT-3.5-turbo,1209

GPT-4-turbo and the latest GPT-4o.1210

A.5.2 Supervised Fine-tuning Implementation1211

We utilize Mistral-7B and Gemma-7B as our back-1212

bone models and conduct fine-tuning using Low-1213

Calculation Error 
41.7%

Reasoning Error 
32.5%

Conceptual Error 
9.58%

Others, 2.40%

Figure 7: The distribution of error types on error correc-
tion task.

Rank Adaptation (LoRA) (Hu et al., 2021), with 1214

the rank set to 8 and alpha to 16. In our training 1215

process, we do not employ any specific templates 1216

or prefixes for the QA pairs but utilize the default 1217

chat template of the base models for transform- 1218

ing dialogues. The implementation is based on 1219

Pytorch along with the DeepSpeed (Rasley et al., 1220

2020) Library, and the models are trained on 8 1221

NVIDIA V100 GPUs, each with 32GB of memory. 1222

We opt for float-16 (FP16) precision to decrease 1223

memory demands and computational requirements. 1224

The fine-tuning is carried out over three epochs, 1225

with a batch size of 32 and a learning rate of 3e- 1226

5. The cumulative training time for integrating all 1227

three types of datasets amounts to approximately 1228

72 hours, and the training time for SFT with Math 1229

+ MathChatsync is around 30 hours. 1230

A.6 Error Type Analysis 1231

To ensure our benchmark contains a diverse array 1232

of error types, we randomly sampled 500 errors 1233

from our error correction task and used GPT-4 to 1234

determine their error types. The distribution of 1235

errors are shown in Figure 7: Calculation Errors 1236

were most frequent, accounting for 41.8% of the 1237

total. Reasoning Errors constituted 32.6%, indi- 1238

cating challenges in logical thinking and strategiz- 1239

ing the steps required to solve problems. Concep- 1240

tual Errors, making up 9.6%, pointed to difficul- 1241

ties in understanding underlying mathematical con- 1242

cepts. Ambiguity in solutions was noted in 13.8% 1243

of cases, where the provided solution is ambiguous 1244

or unclear. This range of error types highlights the 1245

broad spectrum of challenges that MathChat con- 1246

tains, making our benchmark a robust tool for diag- 1247
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Model R2 (Original) R3 (Original) R2 (Without R1) R3 (Without R1/R2)
Mistral-Instruct 20.40 13.70 13.50 10.00
Gemma-it 17.65 10.57 15.16 6.60
MAmmoTH 32.16 19.31 21.75 9.25
MetaMath 43.98 32.16 30.47 17.82
WizardMath 44.81 36.86 41.70 29.80
DeepSeek-Math 48.19 35.70 48.14 35.18
InternLM2-Math 40.20 28.64 38.13 24.34

Table 9: Performance comparison of R2 and R3 with and without prior context from R1 and R1/2.

nosing and improving error correction and analysis1248

ability across a variety of categories.1249

A.7 Case Study1250

Follow-up QA Figure 8 displays the responses1251

from four LLMs on the follow-up QA task, specifi-1252

cally focusing on the third round of each model’s1253

response. The Mistral-instruct and Mistral-Math1254

models, despite performing well in the first two1255

rounds, exhibit reasoning errors in their third-round1256

outputs. The InternLM2-Math model demonstrates1257

a correct reasoning chain but makes a calculation1258

error, resulting in an incorrect answer. These re-1259

sults indicate that the three models struggle with1260

long-context reasoning, leading to increased errors1261

as the number of dialogue turns rises. In contrast,1262

our model, trained with MathChatsync, consistently1263

performs well and successfully solves the third-1264

round problem.1265

Error Analysis Figure 9 shows the responses1266

from four LLMs on an error analysis task. This1267

base model - Gemma-it 7B correctly identified the1268

calculation error regarding the sheep in Toulouse1269

and corrected the user’s response. However, the1270

feedback was verbose and included unnecessary de-1271

tails, potentially leading to confusion. The models1272

fine-tuned with existing datasets failed to recognize1273

the error in the user’s solution, incorrectly affirm-1274

ing the erroneous calculation. This indicates a lack1275

of training focus on error identification and correc-1276

tion capabilities in these models. Trained with our1277

MathChat dataset, the model successfully identi-1278

fied and corrected the calculation error in a concise1279

and clear manner. The analysis shows the impor-1280

tance of targeted, dialogue-rich training datasets1281

like MathChatsync in developing LLMs that are ca-1282

pable of effective educational interaction. The su-1283

perior performance of the MathChat-trained model1284

demonstrates its potential as a valuable tool in edu-1285

cational settings, offering precise and understand-1286

able corrections that can aid learning. 1287

Problem Generation Figure 10 presents the re- 1288

sponses from four LLMs on the problem generation 1289

task. The Mistral-Instruct and Mistral-Math mod- 1290

els provide incorrect solutions when generating a 1291

new problem, while the InternLM2-Math model 1292

fails to follow the instructions for generating solu- 1293

tions to the new problem. Only our model, trained 1294

with MathChatsync, successfully understands the 1295

instructions and delivers a high-quality solution. 1296

A.8 Prompt for Generating Task Data 1297

The prompts used to generate our MathChat bench- 1298

mark is provided in Figure 11, 12, 13 and 14. 1299

A.9 Prompt for Evaluating Open-ended Tasks 1300

We provide the prompts used for evaluating the 1301

results of Error Analysis and Problem Generation 1302

in Figure 15 and 16. 1303

Prompt for Generating MathChatsync 1304

The prompt for generating MathChatsync is shown 1305

in Figure 17. 1306
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Dialogue History of Mistral-instruct: (Reasoning Error)
<User>: The expenditure of Joseph in May was $500. In June, his expenditure was $60 less. How 
much was his total expenditure for those two months?

<Assistant>: To find the total expenditure for May and June, we first need to determine Joseph's 
expenditure in June. We know that his expenditure in May was $500 and it was $60 less in 
June.\n\nJoseph's expenditure in June = May's expenditure - $60\n                                            = $500 -
$60\n  = $440\n\nNow that we have the expenditure for both months, we can find the total by 
adding them together.\n\nTotal expenditure = May's expenditure + June's expenditure\n  = $500 
+ $440\n  = $940\n\nSo, the answer is $940.

<User>: Considering Joseph's expenditures, if in July he decided to increase his spending by 20% 
compared to June, what was his expenditure in July?

<Assistant>: To find Joseph's expenditure in July, we first need to determine how much more he 
spent compared to June, which was a 20% increase.\n\nPercentage increase = Total increase / 
Original amount * 100%\n = $X / $440 * 100%\n\nWe don't know the exact value of $X (the total 
increase), but we can find it by setting up an equation:\n\nTotal increase = Percentage 
increase * Original amount\n = 20% * $440\n   = 0.2 * $440\n  = $88\n\nNow that we know the 
total increase, we can find Joseph's expenditure in July:\n\nJoseph's expenditure in July = 
June's expenditure + Total increase\n  = $440 + $88\n = $528\n\nSo, the answer is $528.

<User>: Now, if Joseph decides to save 15% of his total expenditure in July for an emergency fund 
and the rest he plans to split equally to support three causes he believes in, how much money will 
each cause receive?

<Assistant>: First, let's calculate the amount Joseph saved for his emergency fund in 
July:\n\nAmount saved = Percentage saved * Total expenditure\n = 15% * $528\n                   = 0.15 
* $528\n  = $80.20 (rounded to the nearest cent)\n\nNow, we'll find the amount left for the three 
causes:\n\nAmount for causes = Total expenditure - Amount saved\n  = $528 - $80.20\n  = 
$447.80\n\nSince Joseph plans to split the money equally among the three causes, we can find 
the amount each cause will receive:\n\nAmount for one cause = Amount for causes / Number 
of causes\n = $447.80 / 3\n =$149.27. 

Follow-up QA Case Study

Dialogue History of Mistral-Math: (Reasoning Error)
<User>: The expenditure of Joseph in May was $500. In June, his expenditure was $60 less. How 
much was his total expenditure for those two months?

<Assistant>: Joseph's expenditure in May was $500.\nIn June, his expenditure was $60 less, so 
it was $500 - $60 = $440.\nTo find his total expenditure for those two months, we add his 
expenditure in May and June: $500 + $440 = $940.\nTherefore, Joseph's total expenditure for 
those two months was $940.

<User>: Considering Joseph's expenditures, if in July he decided to increase his spending by 20% 
compared to June, what was his expenditure in July?

<Assistant>:If Joseph's expenditure in June was $440, and he decided to increase his spending 
by 20% in July, we can calculate his expenditure in July by adding 20% of $440 to $440.\n20% of 
$440 is (20/100) * $440 = $88.\nSo, Joseph's expenditure in July would be $440 + $88 = 
$528.\nThe answer is: 528 

<User>: Now, if Joseph decides to save 15% of his total expenditure in July for an emergency fund 
and the rest he plans to split equally to support three causes he believes in, how much money will 
each cause receive?

<Assistant>: If Joseph's expenditure in July was $528, and he decides to save 15% of it for his 
emergency fund, we can calculate the amount he saves by multiplying $528 by 
15/100.\n15/100 * $528 = $84.\nSo, Joseph saves $84 for his emergency fund.\nThe remaining 
amount he plans to split equally among three causes is $528 - $84 = $444.\nTo find out how 
much each cause will receive, we divide $444 by 3.\n$444 / 3 = $148.\nTherefore, each cause 
will receive $148.\nThe answer is: 148

Dialogue History of InternLM2-Math: (Calculation Error)

<User>: The expenditure of Joseph in May was $500. In June, his expenditure was 
$60 less. How much was his total expenditure for those two months?

<Assistant>: To find the total expenditure for those two months, we need to 
add the expenditure in May and June. \nIn June, the expenditure was $60 less 
than in May, so we subtract $60 from $500 to get the June expenditure. \n$500 
- $60 = $440\nNow, we add the expenditure in May and June: $500 + $440 = 
$940\nTherefore, the total expenditure for those two months was $940.\nThe
answer is 940.

<User>: Considering Joseph's expenditures, if in July he decided to increase his 
spending by 20% compared to June, what was his expenditure in July?

<Assistant>: If Joseph increased his spending by 20% in July compared to 
June, we need to find 20% of the June expenditure and add it to the June 
expenditure. \n20% of $440 is (20/100) * $440 = $88\nSo, the expenditure in 
July was $440 + $88 = $528\nTherefore, Joseph's expenditure in July was 
$528.\nThe answer is 528.

<User>: Now, if Joseph decides to save 15% of his total expenditure in July for an 
emergency fund and the rest he plans to split equally to support three causes he 
believes in, how much money will each cause receive?

<Assistant>: First, we need to find 15% of the July expenditure to determine 
how much Joseph will save for his emergency fund. \n15% of $528 is (15/100) * 
$528 = $79.2\nSo, Joseph will save $79.2 for his emergency fund.\nThe
remaining amount that Joseph will split equally among three causes is $528 -
$79.2 = $448.8\nTo find out how much each cause will receive, we divide the 
remaining amount by 3: $448.8 / 3 = $149 \nTherefore, each cause will receive 
$149.6\nThe answer is 149. (Calculation Error)

Dialogue History of Mistral-MathChat (Ours): (Correct Solution!)

<User>: The expenditure of Joseph in May was $500. In June, his expenditure was 
$60 less. How much was his total expenditure for those two months?

<Assistant>: Joseph's expenditure in May was $500.\nIn June, his expenditure 
was $60 less, so it was $500 - $60 = $440.\nTo find the total expenditure for 
those two months, we add the expenditures together: $500 + $440 = 
$940.\nThe answer is: 940

<User>: Considering Joseph's expenditures, if in July he decided to increase his 
spending by 20% compared to June, what was his expenditure in July?

<Assistant>: To find the expenditure in July, we first calculate the 20% increase 
of $440, which is $440 * 0.20 = $88. Then, we add this increase to the 
expenditure in June: $440 + $88 = $528. So, Joseph's expenditure in July was 
$528.

<User>: Now, if Joseph decides to save 15% of his total expenditure in July for an 
emergency fund and the rest he plans to split equally to support three causes he 
believes in, how much money will each cause receive?

<Assistant>: First, we calculate 15% of $528, which is $528 * 0.15 = $79.20. This 
amount is saved for the emergency fund. The remaining amount for the three 
causes is $528 - $79.20 = $448.80. Since Joseph plans to split this equally 
among three causes, each cause will receive $448.80 / 3 = $149.60. 

Figure 8: This figure illustrates the responses of four different LLMs in a follow-up QA task.

Dialogue History: 
<User>: Please give me a math problem and I will answer that. You need to analyze my 
solution and correct it if I make errors.

<Assistant>: Let's solve a math problem. Toulouse has twice as many sheep as 
Charleston. Charleston has 4 times as many sheep as Seattle. Together, how many sheep 
do Toulouse, Charleston, and Seattle have if Seattle has 20 sheep?

<User>: Okay, let me try to solve it. If Seattle has 20 sheep, then Charleston has 4 times 
20, which is 80 sheep. Then, if Toulouse has twice as many sheep as Charleston, that 
would be 2 times 20, giving Toulouse 40 sheep. So, added together, they should have 20 
sheep + 80 sheep + 40 sheep = 140 sheep. Is that correct? Please check my work.

Gemma-MathChat Response (Ours): (Correct and fluent)
You made a mistake in your calculation. Let's go through it again. If Seattle has 20 sheep, 
then Charleston has 4 times 20, which is 80 sheep. If Toulouse has twice as many sheep 
as Charleston, that would be 2 times 80, giving Toulouse 160 sheep. So, added together, 

they should have 20 sheep + 80 sheep + 160 sheep = 260 sheep. Please check your 
calculation again.

Gemma-it Response: (Too verbose)
You correctly calculated the number of sheep for Charleston, but you doubled the 

number of sheep for Toulouse instead of multiplying it by 2. And you did not add the 
number of sheep for Seattle, Charleston, and Toulouse correctly. Corrected solution: 

Toulouse has twice as many sheep as Charleston. Charleston has 4 times as many sheep 
as Seattle. Together, how many sheep do Toulouse, Charleston, and Seattle have if Seattle 

has 20 sheep? Okay, let me try to solve it. If Seattle has 20 sheep, then Charleston has 4 
times 20, which is 80 sheep. Then, if Toulouse has twice as many sheep as Charleston, 

that would be 2 times 80, giving Toulouse 160 sheep. So, added together, they should have 
20 sheep + 80 sheep + 160 sheep = 260 sheep 

Gemma-Math-IT Response: (Fail to identify errors)
Yes, you are correct! Toulouse, Charleston, and Seattle have a total of 140 sheep.

Gemma-Math-IT-Chat Response: (Fail to identify errors)
Yes, that is correct. You have correctly calculated the number of sheep each city has and 

then added them together to find the total number of sheep they have. So, Toulouse, 
Charleston, and Seattle have a total of 140 sheep.Gemma-Math Response: (Fail to identify errors)

Yes, you are correct. Your solution is correct. Seattle has 20 sheep, Charleston has 80 
sheep, and Toulouse has 40 sheep. Added together, they have 20 + 80 + 40 = 140 sheep. 

You solved the problem correctly.

Error Analysis Case Study

Figure 9: This figure illustrates the responses of four different LLMs in an error analysis task. The base Gemma-it
model identifies and corrects the error but with verbosity, models fine-tuned with existing datasets fail to detect the
error, and the MathChatsync model successfully identifies and corrects the error succinctly and accurately.
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Dialogue History
<User>: Your task is to create a similar math problem based on a given seed 

problem. The generated problem should be accompanied by a detailed solution.

<Assistant>: Understood, please give me the seed problem.

<User> : Seed problem: Carlos is planting a lemon tree. The tree will cost $90 to 
plant. Each year it will grow 7 lemons, which he can sell for $1.5 each. It costs $3 a 
year to water and feed the tree. How many years will it take before he starts earning 

money on the lemon tree? 
Solution: He makes $10.5 selling lemons each year because 7 x 1.5 = 

<<7*1.5=10.5>>10.5\n He earns $7.5 each year from the lemon tree because 10.5 -
3 = <<10.5-3=7.5>>7.5\n It will take 12 years to earn enough to pay off the tree 

because 90 / 7.5 = <<90/7.5=12>>12\n He will make money in year 13 because 12 + 
1 = <<12+1=13>>13. Answer is 13.

Problem Generation Case Study

Response of Mistral-instruct: (Low-quality Solution)

<Assistant>: Problem: Sarah is raising a rabbit. The rabbit hutch costs $120 to build. Each year, 
the rabbit produces 12 baby rabbits, which she can sell for $5 each. It costs $5 a year to feed 
and care for the rabbit. How many years will it take before she starts earning money on the 
rabbit farm?\n\n

Solution: Sarah makes $11 selling baby rabbits each year because 12 x 5 = <<12*5=60>>60, but 
she has to subtract the cost of caring for the mother rabbit, so she makes $11 - $5 = <<11-
5=6>>6\nShe earns $6 each year from the rabbit farm because 11 - 5 = 6\nIt will take 20 years to 
earn enough to pay off the rabbit hutch because 120 / 6 = <<120/6=20>>20\nShe will make 
money in year 21 because 20 + 1 = <<20+1=21>>21.

Response of InternLM2-Math: (No Solution Provided)

<Assistant>: Carlos is planting a lemon tree. The tree will cost $90 to plant. 
Each year it will grow 7 lemons, which he can sell for $1.5 each. It costs $3 a 
year to water and feed the tree. If Carlos sells all the lemons he grows and 
uses the money to pay off the initial planting cost, how many years will it take 
for him to earn $100 in total from the lemon tree.

Response of Mistral-Math: (Low-quality Solution)

<Assistant>: Carlos is planting an apple tree. The tree will cost $100 to plant. 
Each year it will grow 8 apples, which he can sell for $2 each. It costs $4 a year 
to water and feed the tree.\nHow many years will it take before he starts 
earning money on the apple tree?
Solution:\nHe makes $16 selling apples each year because 8 x 2 = 
<<8*2=16>>16\nHe earns $12 each year from the apple tree because 16 - 4 = 
<<16-4=12>>12\nIt will take 9 years to earn enough to pay off the apple tree 
because 100 / 12 = <<100/12=8.33>>8.33\nHe will make money in year 10 
because 9 + 1 = <<9+1=10>>10\nThe answer is: 10

Response of Mistral-MathChat: (Good Response!)

<Assistant>: Sara is planting a cherry tree. The tree will cost $120 to plant. 
Each year it will grow 10 cherries, which she can sell for $2 each. It costs $5 a 
year to water and feed the tree. How many years will it take before she starts 
earning money on the cherry tree?
Solution: She makes $20 selling cherries each year because 10 x 2 = 
<<10*2=20>>20\nShe earns $15 each year from the cherry tree because 20 - 5 
= <<20-5=15>>15\nIt will take 8 years to earn enough to pay off the tree 
because 120 / 15 = <<120/15=8>>8\nShe will make money in year 9 because 8 
+ 1 = <<8+1=9>>9

Figure 10: This figure illustrates the responses of four different LLMs in a problem generation task.
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Objective: To create a dialogue math problem-solving session involving two 
characters A and B that contains two follow-up question-answerings, where A 
acts as the questioner and B as the responder. 

Initial Round:

A (Questioner): Begins the session by asking a seed math problem.
B (Responder): Responds with the correct answer to the seed problem.

There should be exact four follow-up rounds in the response in the format of 
A:...\n B:...\n A:...\n B....\n.

A: Asks a follow-up question that is more challenging than the original problem, 
but logically connected to it. The answer should be a single value.
B: Provides a correct and detailed solution to the first follow-up question. End 
the response with 'The answer is \ANSWER{THE_FINAL_ANSWER}'. 
Second Follow-Up Round:

A: Poses another follow-up question, further increasing in difficulty from the 
first follow-up, and maintaining a logical connection to the previous questions. 
The answer should be a single value.
B: Responds with a correct and comprehensive solution to the second follow-up 
question. End the response with 'The answer is 
\ANSWER{THE_FINAL_ANSWER}'. 

Guidelines:

Complexity: Ensure that each follow-up question is more challenging than the 
preceding one, introducing new complexities or requiring deeper understanding.
Accuracy: B must provide accurate and mathematically sound answers.
Explanation: B should include clear explanations for each solution, demonstrating 
the thought process and mathematical principles used.
Clarity: Both A and B should use clear, concise language appropriate for the 
intended educational level of the math problems.
Creativity: A is encouraged to be creative in formulating follow-up questions 
that are engaging and thought-provoking.

System Prompt for Follow-up QA

Figure 11: The system prompt for generating FOLLOW-UP QA task data.
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Objective: To create a dialogue-based interaction centered around a math 
problem between two characters A and B, where A presents the original 
problem and B attempts to solve it, initially providing an incorrect solution, and 
then revising it to align with the correct answer.

There should be exact four rounds in the response in the format of A:...\n 
B:...\n A:...\n B....\n. The dialogue should follow the structure below:

1. A starts the dialogue by presenting a math problem. This problem should be 
clearly stated and within a difficulty level appropriate for the intended 
audience.

First Attempt at Solution by B.

2. B responds to the problem with an attempt to solve it. Importantly, this 
first attempt must give an incorrect answer value, demonstrating a common 
misunderstanding or error that could be made in solving such a problem.

Request for Revision by A:

3. After B's response, A points out that the solution is incorrect and prompt B 
to reconsider its approach and give a new answer. No need to explain the 
mistake at this point. Just ask B to revise the solution.

4. Taking into account the feedback from A, B revises its solution. This time, 
the answer should be correct and align with the seed answer provided initially. B 
should also explain the reasoning behind the revised solution, highlighting the 
correction of the initial mistake. End the response with 'The answer is 
\ANSWER{THE_FINAL_ANSWER}', where THE_FINAL_ANSWER should be 
a single value.

Notes:
Use the seed problem and answer provided to guide the dialogue. The final 

answer should be the same as the seed answer.
Ensure the dialogue maintains a collaborative and educational tone throughout.
The interaction should mimic a tutoring session, with A acting as a guide or 

teacher, and B as a learning student.
The math problem, incorrect solution, and subsequent dialogue should be 

tailored to the target audience's understanding level and learning objectives.
Keep the dialogue concise yet informative, focusing on the key educational 

aspects of the problem-solving process.

System Prompt for Error Correction

Figure 12: The system prompt for generating ERROR CORRECTION task data.
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Objective: To create a dialogue-based interaction centered around a math 
problem between two characters A and B, where A presents the original 
problem and B attempts to solve it, initially providing an incorrect solution, and 
then A pointing out the error and revising it to align with the correct answer.

There should be exact three rounds in the response in the format of A:...\n 
B:...\n A:...\n. The dialogue should follow the structure below:

1. A starts the dialogue by presenting a math problem. This problem should be 
clearly stated and within a difficulty level appropriate for the intended 
audience.

First Attempt at Solution by B.

2. B responds to the problem with an attempt to solve it. Importantly, this 
first attempt must gives an incorrect answer value, demonstrating a common 
misunderstanding or error that could be made in solving such a problem. And 
request for an evaluation and analysis by A:

3. After B's response, A points out the errors inside B's attempt and corrects 
it into a correct solution that aligns with the given ground truth answer. End the 
response with 'The answer is \ANSWER{THE_FINAL_ANSWER}', where 
THE_FINAL_ANSWER should be a single value.

Notes:
Use the seed problem and answer provided to guide the dialogue. The final 

answer should be the same as the seed answer.
Ensure the dialogue maintains a collaborative and educational tone throughout.
The interaction should mimic a tutoring session, with A acting as a guide or 

teacher, and B as a learning student.
Keep the dialogue concise yet informative, focusing on the key educational 

aspects of the problem-solving process.

System Prompt for Error Analysis

Figure 13: The system prompt for generating ERROR ANALYSIS task data.
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Objective: Creating new math problems based on a given seed problem. The 
generated problems should either explore the same topic in greater depth or apply 
the same mathematical principles in a different context. Each problem should be 
accompanied by a detailed solution that demonstrates the correct application of 
the mathematical principles involved.

Instructions:

1. Analyze the Seed Problem: Carefully read and understand the seed math 
problem provided. Identify the key mathematical concepts and principles it 
involves.

2. Determine the Focus: Choose whether to delve deeper into the same topic as 
the seed problem or to explore a different topic. In either case, ensure the new 
problem applies the same fundamental mathematical principles.

3. Create a New Problem: Craft a new math problem. If delving deeper into the 
same topic, make the problem more complex or nuanced. If exploring a different 
topic, find a creative way to apply the same principles. Ensure the problem is clear, 
concise, and mathematically sound.

4. Provide a Solution: Along with the problem, provide a step-by-step solution. The 
solution should be detailed enough to demonstrate the correct application of the 
mathematical principles involved. The final solution must be a single value instead 
of multiple values.

5. Ensure Variety and Creativity: When generating multiple problems, aim for a 
variety of contexts and applications. Avoid repetitive or overly similar problems to 
ensure a rich and diverse set of data.

6. Check for Accuracy and Clarity: Before finalizing, review the problem and 
solution for mathematical accuracy and clarity in expression. The problem should 
be challenging yet solvable, and the solution should be logical and well-explained.

Return the generated problem and solution in the following format without any 
additional information:

New Problem: [New Problem]
Solution: [Solution]

System Prompt for Problem Generation

Figure 14: The system prompt for generating PROBLEM GENERATION task data.
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Evaluation Prompt for Error Analysis
Evaluate the large language model's ability to identify and correct errors in an 
attempted solution to a math word problem. The evaluation focuses on the model's 
comprehension, analytical reasoning, and problem-solving capabilities within the 
context of mathematical problem-solving. Use the following criteria for scoring:

1. Understanding and Instruction Adherence: Assess how well the AI model 
understands the given task and follows the instructions. Consider whether the AI 
model accurately grasps the context and objectives of the task.
2. Identification of the Wrong Attempt: Evaluate the AI model's capability to 
identify and generate a reasonable and correct analysis of the wrong attempt. Assess 
the depth and accuracy of the analysis.
3. Correction of the Wrong Solution: Measure the effectiveness of the AI model in 
correcting the previously wrong solution into a correct one. This not only involves 
providing the correct answer but also explaining the correct approach to solving the 
problem, ensuring the explanation is mathematically sound and logically structured.

Scoring Guidelines (1-5 points):
1 point: The model shows very poor understanding and adherence to instructions, 
provides incorrect or irrelevant analysis of the wrong attempt, and fails to correct the 
solution or makes it worse.
2 points: The model demonstrates limited understanding and partial adherence to 
instructions, offers an inaccurate or shallow analysis of the wrong attempt, and 
corrects the solution with significant errors or misunderstandings.
3 points: The model shows fair understanding and adherence to instructions, provides 
a moderately accurate analysis of the wrong attempt with some correct elements, and 
corrects the solution with noticeable errors or logical flaws.
4 points: The model demonstrates good understanding and adherence to instructions, 
offers a well-reasoned and mostly accurate analysis of the wrong attempt, and 
corrects the solution effectively with minor mistakes or areas for improvement.
5 points: The model exhibits excellent understanding and strict adherence to 
instructions, provides a detailed and accurate analysis of the wrong attempt, and 
corrects the solution perfectly with a clear, logical, and mathematically sound 
explanation.

For each of the three aspects, provide a score along with a concise rationale for each 
score. Explain how the AI model's performance aligns with the evaluation criteria and 
contributes to effectively identifying, analyzing, and correcting the mathematical 
error. End the response for each score with "Score 1: {SCORE}", "Score 2: {SCORE}", 
and "Score 3: {SCORE}". The SCORE must be a number from 1-5.

Figure 15: The system prompt for evaluating ERROR ANALYSIS results using GPT-4.
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Evaluation Prompt for Problem Generation
Evaluate the large language model's ability to generate a problem and solution based 
on a provided seed problem. The task assesses the model's understanding, creativity 
in problem generation, and accuracy in solution. Use the following criteria for scoring:

1. Understanding and Instruction Adherence: Assess whether the AI model fully 
grasps the task and adheres to the instructions given. Consider how well the 
generated problem aligns with the seed problem's topic or mathematical principles.
2. Problem Relevance and Quality: Evaluate the relevance and quality of the 
generated problem. Determine if it explores the same topic more deeply or applies 
the same mathematical principles in a different context, while also assessing the 
problem's complexity and ingenuity.
3. Solution Accuracy: Check the correctness of the solution provided for the 
generated problem. Ensure the solution is logically sound, mathematically accurate, 
and effectively solves the problem.

Scoring Guidelines (1-5):

1 point: The model does not understand the task, generates an unrelated problem, and 
provides an incorrect or irrelevant solution.
2 points:  The model shows limited understanding of the task, creates a problem 
somewhat related to the seed problem, but the solution has significant errors or is 
partially irrelevant.
3 points:  The model demonstrates a moderate understanding, generates a problem 
that is relevant and has quality, and provides a solution that is mostly correct with 
some errors or inconsistencies.
4 points: The model exhibits a good understanding, creates a relevant and well-
constructed problem, and provides a solution that is largely correct with minor 
mistakes.
5 points:  The model shows an excellent understanding of the task, generates a highly 
relevant and challenging problem, and provides a perfectly accurate and 
comprehensive solution.

When scoring, consider the overall effectiveness of the AI model in generating a 
coherent and related problem-solution pair. Provide a score for each criterion, and a 
rationale for each score, detailing how the AI model's performance aligns with the 
evaluation criteria and contributes to the quality of the generated content. End the 
response for each score with "Score 1: {SCORE}", "Score 2: {SCORE}", and "Score 3: 
{SCORE}". The SCORE must be a number from 1-5.

Figure 16: The system prompt for evaluating PROBLEM GENERATION results using GPT-4.
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Prompt for MathChatsync Generation
You are given a seed math mathematical problem and its answer, both of which 
are human-annotated and 100% correct. The objective is to create a simulated 
multi-round conversation between a human user (<User>) and an AI assistant 
(<Assistant>) based on the given math problem. The conversation should explore 
various aspects of the problem, including but not limited to direct solutions, 
rephrasings, follow-up queries, solution evaluations, and requests for similar 
problems. The dialogue must adhere to the following guidelines:

Conversation Participants:
<User>: The human user, who will initiate queries, seek clarifications, always ask 
questions.
<Assistant>: The AI assistant, tasked with providing clear, accurate, and 
educational responses to the user's inquiries.
Dialogue Structure:
The conversation must be limited to a maximum of five rounds.
Each round consists of a question from the <User> followed by an answer from the 
<Assistant>.
Content Guidelines:
Make sure all the conversations are related to the math problem itself, do not 
include any irrelevant chat like thank you and bye-bye, etc.
The Content may involve but not limited to rephrasing the problem, seeking 
further explanations, deliberately giving wrong answers and asking for correction, 
or asking for additional, similar problems that could appear in real life.

Input Format:
Seed Problem: <problem>
Seed Answer: <answer>

Desired output format:
<User> ...
<Assistant> ...
up to five rounds of conversation
<User> ...
<Assistant> ... 

Figure 17: The system prompt for generating the MathChatsync dataset for supervised fine-tuning.
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