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Abstract

Large language models (LLMs) have demon-
strated impressive capabilities in mathemati-
cal problem-solving, particularly in single-turn
question-answering formats. However, real-
world scenarios often involve mathematical
question-answering that requires multi-turn or
interactive information exchanges, and the per-
formance of LLMs on these tasks is still under-
explored. This paper introduces MathChat,
a comprehensive benchmark specifically de-
signed to evaluate LLMs across a broader spec-
trum of mathematical tasks. These tasks are
structured to assess the models’ abilities in
multi-turn interactions and open-ended genera-
tion. We evaluate the performance of various
state-of-the-art LLMs on the MathChat bench-
mark, and we observe that while these models
excel in single-turn question answering, they
significantly underperform in more complex
scenarios that require sustained reasoning and
dialogue understanding. To address the above
limitations of existing LLMs when faced with
multi-turn and open-ended tasks, we develop
MathChatsy,, a synthetic dialogue-based math
dataset for LLM fine-tuning, focusing on im-
proving models’ interaction and instruction-
following capabilities in conversations. Experi-
mental results emphasize the need for training
LLMs with diverse, conversational instruction
tuning datasets like MathChatgy,.. We believe
this work outlines one promising direction for
improving the multi-turn mathematical reason-
ing abilities of LLMs, thus pushing forward the
development of LLLMs that are more adept at
interactive mathematical problem-solving and
real-world applications.

1 Introduction

Mathematical reasoning has been an essential task
for computers for decades (Boblow, 1968). With
the explosion in Large Language Model (LLM)
development (Brown et al., 2020; Achiam et al.,
2023; Touvron et al., 2023a,b; Jiang et al., 2023;

Team et al., 2024), mathematical reasoning has
been widely recognized as a key ability for assess-
ing these models. Most math reasoning bench-
marks such as GSM8K (Cobbe et al., 2021), MATH
(Hendrycks et al., 2021), SVAMP (Patel et al.,
2021), MAWPS (Koncel-Kedziorski et al., 2016),
ASDiv (Miao et al., 2020) and MathVista (Lu et al.,
2024) feature the format of single-turn question an-
swering (QA), where the input is a single question
and the output is the solution. Recent studies (Yu
et al., 2024; Yue et al., 2024; Gou et al., 2024; Luo
et al., 2023; Tang et al., 2024; Albalak et al., 2025;
Li et al., 2024; Mahdavi et al., 2025) have scaled
up such QA data by distilling synthetic data from
stronger LLMs like GPT-4 (Achiam et al., 2023)
or utilizing human-annotated datasets of rationales
in diverse formats (Yue et al., 2024; Liang et al.,
2023), continually pushing the limits of math QA
accuracy. For example, on one of the most widely
recognized benchmarks, GSM8K, accuracy has in-
creased from 10.4% with a 175B-parameter model
(Brown et al., 2020) to 88.2% achieved by a 7B-
parameter model (Shao et al., 2024).

While math-specialized LLMs have shown
promising progress on single-round QA bench-
marks, their mathematical capabilities have not
been verified in more complex scenarios. For in-
stance, in real-world applications, such as interac-
tive chatbots (Lee and Yeo, 2022; Jancarik et al.,
2022; Wang et al., 2024) and problem-solving as-
sistants (Nguyen et al., 2019; Macina et al., 2023b),
math tasks extend beyond single-round QA and
require much more advanced reasoning and instruc-
tion following abilities such as dialogue understand-
ing, diagnostic reasoning, educational feedback,
etc. Can the established math-specialized LLMs
perform as well on multi-round math reasoning as
they do on single-round tasks? This question has
not been comprehensively studied, although many
recent studies have identified critical weaknesses of
state-of-the-art LLM reasoners that could happen
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Figure 1: Taxonomy of MathChat. The inner ring rep-
resents the task categories involved in MathChat. The
intermediate ring lists the evaluation tasks in MathChat.
The outer ring shows the tested capabilities in our tasks
beyond simple math problem solving. See detailed de-
scriptions in Section 2.

in multi-round interactions, such as long-context
reasoning (Chen et al., 2024), self-reflection ability
(Huang et al., 2023), error identification (Authors,
2024; Daheim et al., 2024), and educational con-
tent generation (Shridhar et al., 2022; Kasneci et al.,
2023; Macina et al., 2023a).

Therefore, in this paper, we advance the explo-
ration of LLMs’ mathematical reasoning abilities
by introducing a new benchmark, MathChat. Fig-
ure 1 shows the hierarchical ability taxonomy de-
rived from the tasks in MathChat (e.g., those in
Figure 3), which are more advanced than the capa-
bilities tested by single-round QA and addresses the
above limitations noted in state-of-the-art LLMs.

Based on our MathChat benchmark, we find
that current state-of-the-art math-specialized LLMs
that are fine-tuned on extensive mathematical QA
data struggle to reliably answer multi-turn ques-
tions and understand instructions that extend be-
yond single-round QA. Specifically, on open-ended
tasks like ERROR ANALYSIS and PROBLEM GEN-
ERATION in Figure 3, the fine-tuned LLMs fail
catastrophically since they can hardly understand
the provided instructions. These shortcomings are
perhaps unsurprising for models like MetaMath
(Yu et al., 2024), which was trained exclusively on
augmented question-answer pairs from single-turn
math datasets GSM8K and MATH. The tasks in
MathChat obviously represent a shift in distribu-
tion that challenges such models. However, even
models like WizardMath (Luo et al., 2023) that
were trained on more diverse data including open-
ended dialogues and evolving instructions fail to

GSM8k

Problem / Follow-up

Generation QA

— Mistral
WizardMath-Mistral
DeepSeck-Math
InternLM2- Math

Error Analysis Error Correction GPT3.5-turbo

Figure 2: The performance comparison among vari-
ous LLMs. Math LLMs (e.g., Deepseek-Math) have
great performance on single-round QA dataset GSMS8K,
achieving similar performance to GPT-3.5. However,
they significantly underperform GPT3.5 on MathChat,
which requires more advanced reasoning abilities. We
average the evaluation metrics in each task and scale all
values into 0-1 for better visibility.

achieve satisfactory performance on MathChat. We
have also tried to reform our multi-turn math rea-
soning problem into a one-round math QA task
by including all dialogue history in the question
part, no significant performance improvement is
observed. These results indicate potential over-
tuning and data saturation towards the single-turn
QA data inside current math LLMs, and also high-
light a crucial open problem for the field of LLM
development:

How can we empower math-focused LLMs to
engage in multi-turn dialogues and follow diverse
instructions without significantly compromising
their problem-solving abilities?

To address the identified research challenge, we
conduct an exploratory study to investigate vari-
ous training data mixture strategies by leveraging
extensive public math QA data, general-domain
instruction tuning data, general-domain dialogue
data, and our constructed synthetic dialogue-based
math data (MathChatgync). The results indicate that
the model trained with MathChaty,,. significantly
outperforms the baselines fine-tuned on other mix-
ture datasets on open-ended tasks and surpasses the
base LLMs on problem-solving tasks (see Section
4 for more details).

In summary, this paper makes two main contri-
butions. First, we introduce and release a bench-
mark MathChat dedicated to multi-turn math rea-
soning and conversation, aimed at advancing the
development of a more generalized reasoner and
assistant in mathematical contexts—a capability
that existing math-specific LLMs currently lack.
Second, we demonstrate that integrating synthetic



math-dialogue dataset MathChaty,. with super-
vised fine-tuning (SFT) markedly enhances per-
formance on open-ended tasks within MathChat,
without compromising much accuracy on direct
problem-solving tasks. The resulting fine-tuned
LLM:s surpass their counterparts trained on various
combinations of existing datasets. We believe this
paper offers a new perspective on the evaluation
of math-specific LLMs and advances the goal of
developing a general math reasoning assistant.

2 MathChat

We introduce MathChat, designed to provide a
deeper and more comprehensive examination of
LLMs’ abilities in multi-turn mathematical reason-
ing and instruction-following. MathChatcontains
four important tasks that have been under-explored
by the community. (FOLLOW-UP QA, ERROR COR-
RECTION, ERROR ANALYSIS, and PROBLEM GEN-
ERATION) inspired by previous studies in the educa-
tion domain that reveal the importance of following
a sequence of Initiate-Response-Follow-up (Lim
et al., 2020), learning from self-made errors (Heem-
soth and Heinze, 2016), and posing new problems
with solutions (Silver, 1994). The first two tasks
focus on multi-turn mathematical problem-solving
and reasoning, whereas the final two tasks eval-
uate the models’ ability to follow mathematical
instructions and respond to open-ended questions.
All tasks within MathChat are sourced from the
testing set of GSMS8K, which we expanded using
GPT-4 (we use gpt-4-0125-preview version in this
paper.) to suit our specific requirements. While
our benchmark is based on GPT-4, we have imple-
mented robust quality assurance measures. We use
the human-annotated GSM8k dataset as a seed for
generating new tasks, ensuring that the foundation
of our benchmark is rooted in high-quality data.
Additionally, additional verification are involved
in verifying the correctness of reference responses,
especially for the first two tasks with deterministic
answers. As a result, each task category contains
the same number of samples as the GSM8K testing
set—1,319. Table 1 shows some basic statistics of
our benchmark and Figure 3 shows some examples.
All prompts used to generate the task data can be
found in the Appendix A.S8.

Follow-up QA In this task, we form a three-
round dialogue between a human user and an Al
assistant. The initial round consists of a question
from the original GSMS8K testing dataset, with its

Follow-up QA Question (First Round) 46.25
Follow-up QA Question (Second Round) 34.43
Follow-up QA Question (Third Round) 41.60
Follow-up QA Answer (First Round) 52.78
Follow-up QA Answer (Second Round)  87.16
Follow-up QA Answer (Third Round) 93.84
Error Correction Wrong Attempt 54.82
Error Correction Mistake Correction 75.27
Error Analysis Wrong Attempt 66.17
Error Analysis Mistake Analysis 94.69
Problem Generation New Problem 55.37
Problem Generation New Answer 105.13

Table 1: Average lengths in MathChat benchmark. The
first-round QA is essentially GSM8k testing set. We can
find that our MathChat has more informative answers
than GSMS8k.

ground truth answer. We then use GPT-4 to gener-
ate two additional questions that require a deeper
understanding of the original question. The correct
answers are produced by GPT-4. To prevent over-
confidence in self-generated content by GPT-4, we
use two LLMs (GPT-4 and Claude) to verify the
correctness of the generated answers. Both models
are asked to verify if the answer is correct. If it
is not, we revise the answer based on their feed-
back. This process is iterated for three rounds for
both GPT-4 and Claude. As a result, the accep-
tance rate of generated answers by both models
improves from 70% to 92.4%. For the remaining
7.6% of the problems, the authors manually revised
the answers. Finally, we sampled 100 problems
from the 1319 test samples and confirmed that all
of them were correct, further verifying the overall
quality of the data. During the evaluation phase,
we present only the questions to the models, and
the answers generated by the evaluated LLM are
used in the subsequent round as shown in Figure 3,
following methodologies similar to general-domain
benchmarks like MT-bench (Zheng et al., 2023).

Error Correction In this task, we present a ques-
tion to GPT-4 and instruct it to intentionally gener-
ate an incorrect answer. The incorrectness of this
response is easily verified by comparing it to the
original correct answer. We use this incorrect QA
pair as the dialogue history and clearly state that
the solution is incorrect, and then we prompt the Al
assistant to correct the wrong answer. Quality con-
trol is simpler for this task because we can directly
check whether the final answers align with the orig-
inal answers in GSM8k. To ensure our benchmark
contains a diverse set of error types, we conduct an
analysis in Appendix A.6.



MathChat Examples

Follow-up QA

Error Correction

<User>: 4 robe takes 2 bolts of blue fiber and half that much white fiber. How
many bolts in total does it take?

<Assistant>: It takes 2/2=<<2/2=1>>1 ...[14 words omitted] ...The answer is 3.
<User> : If making the same robe requires twice as much white fiber as initially
stated, how many bolts of fabric are needed now for one robe?

<Assistant>: Initially, it was stated .../6] words omitted] ... The answer is 6.
<User>: If one robe requires 3 bolts of fabric and the production of each
subsequent robe requires one additional bolt of fabric, how many bolts are needed
for 3 robes?

<Assistant>: The first robe requires ... /56 words omitted] ... The answer is 12.

<User>: John buys 2 pairs of shoes for each of his 3 children. They
cost $60 each. How much did he pay?

<Assistant>: Let's see. If John buys 2 pairs of shoes for $60, then
for 3 children, that's 3 times $60. So, he would have spent $180.
<User>: That's not quite right. Could you check your calculation
again?

<Assistant>: Oh, I see the mistake now. ... [38 words omitted] ...
The answer should be $360.

Problem Generation

Error Analysis

<User>: Your task is to create a similar math problem based on a given seed
problem. The generated problem should be accompanied by a detailed solution.
<Assistant>: Understood, please give me the seed problem.

<User> : Seed problem: A robe takes 2 bolts of blue fiber and half that much white
fiber. How many bolts in total does it take?

Seed Solution: It takes 2/2=<<2/2=1>>1 ...[14 words omitted] ... Answer is 3.
<Assistant>: New Problem: A bakery uses 4 pounds of flour to make a batch
of 24 cupcakes and twice that amount of sugar in ounces. How many ounces

<User>: Please give me a math problem and I will answer that. You
need to analyze my solution and correct it if I make errors.
<Assistant>: John buys 2 pairs of shoes for each of his 3 children.
They cost $60 each. How much did he pay?

<User>: If he bought 2 pairs for each of his 3 children, that's 2 + 3
= 5 pairs of shoes. And if each pair costs 360, then he must have
spent 5 * $60 = 8300 in total.

<Assistant>: You're on the right track, but there seems to be a

of sugar does the bakery use?
Solution: First, we convert the... [42 words omitted] ... The answer is 128.

mistake ... [76 words omitted] ... The answer should be $360.

Figure 3: The examples of the four tasks in our MathChat benchmark. We place all tasks under a scenario of a

dialogue between the user and the assistant. The part with a
parts are generated by LLMs and to be evaluated.

Error Analysis LLMs have been proven to have
weak error analysis abilities (Huang et al., 2023;
Authors, 2024; Zhou et al., 2024; Yang et al., 2024;
Miao et al., 2023). The initial QA pair for the ER-
ROR ANALYSIS task is similar to that used in the
ERROR CORRECTION task, where the evaluated
LLM is presented with an incorrect solution to a
problem. However, the tasks diverge from the sec-
ond round: while ERROR CORRECTION focuses on
rectifying the answer, ERROR ANALYSIS further
requires the model to first recognize that an error
exists, then analyze the error and correct it. Al-
though the two tasks share similarities in targeting
errors, they pose distinctly different challenges for
LLMs, especially those specialized in mathemat-
ics. These models are trained to solve problems
directly, aligning well with the goal of ERROR COR-
RECTION. In contrast, ERROR ANALYSIS demands
that the model not only understand the instructions
but also identify and articulate the cause of errors
before correcting them. To enhance data diversity
in our benchmark, we generate a different batch of
incorrect attempts for the ERROR ANALYSIS task,
separate from those used in ERROR CORRECTION.

Problem Generation The final task in MathChat,
Problem Generation, has been a direction of in-
terest in both computer science and education for
many years (Polozov et al., 2015; Wang et al., 2021;
Zhou et al., 2023b; Shah et al., 2024; Jia et al.,
2024; Liu et al., 2025). In this task, we provide the

italics font is the input to the LLMs and the highlighted

LLM with an original question-solution pair from
the source dataset as part of the dialogue history.
We then ask the LLM to create a new problem-
solution pair that either delves deeper into the same
topic or applies the same mathematical principles
in a different context. This task is notably different
from the typical mathematical QA, as it requires a
model to generate questions rather than solve them.
It challenges models to exhibit both creative and
reasoning capabilities.

3 Evaluation of Existing LLMs on
MathChat

We assess a variety of baseline LLLMs using the
MathChat benchmark. Detailed experimental set-
tings such as the descriptions of baseline models
are located in Appendix A.5.1.

3.1 Evaluation Metrics

For the problem-solving tasks (FOLLOW-UP QA
and ERROR CORRECTION), we extract the last nu-
merical value that appeared in the model’s response
and compare it to the ground truth number. This
approach aligns with the evaluation metrics used
in most prior studies on math word problem solv-
ing. For the instruction-following tasks (ERROR
ANALYSIS and PROBLEM GENERATION), we uti-
lize GPT-4 to assign scores from 1 to 5 (higher
is better) based on three carefully designed multi-
dimensional criteria, similar to (Zheng et al., 2023;
Kim et al., 2024). The ERROR ANALYSIS task



evaluates instruction following (IF), error diagnosis
(ED), and solution accuracy (SA). The PROBLEM
GENERATION task assesses IF, SA, and problem
quality (PQ). A detailed description of these evalua-
tion rubrics is available in Appendix A.9. All these
metrics are measured on a scale of 1 to 5. Empiri-
cally, for instruction following tasks, a score of 1 to
2 indicates the failure to understand the instructions.
A score of 2 to 3 signifies a basic understanding
of the instructions, but the generated responses are
often wrong. A score of 3 to 4 means the model has
a good understanding of the instructions and can
generate corresponding answers, though mistakes
may still occur sometimes. A score higher than 4
indicates a very good response, which is usually
fluent and relevant, with mistakes being rare.

3.2 Prompting Template

For math-specific LLMs like MetaMath and Wiz-
ardMath, which are typically trained on specific
QA templates, our MathChat involves multi-turn
dialogues that do not strictly adhere to the formats
of their training data. To fully exploit their potential
in evaluation, we test these models in two settings:
(1) using the chat template of their instruct mod-
els, and (ii) adapting their specific QA templates
to include our dialogue history in the question part,
i.e., reforming our multi-turn math reasoning prob-
lem to a one-round math QA task. For each task,
we report results from the better-performing set-
ting. Empirically, we find that for tasks requir-
ing problem-solving skills, such as FOLLOW-UP
QA and ERROR CORRECTION, the second setting
significantly outperforms the first. However, per-
formance is nearly identical across both settings
for the instruction following tasks. These results
reveal that solving the tasks in our benchmark re-
quires models to possess deeper understanding and
comprehension abilities. For models that cannot
perform well on our tasks, it is not merely due to
their unfamiliarity with chat-template data.

3.3 Result Analysis and Observations

Overall, while most math-specific LLMs (except
for MAmmoTH) outperform GPT-3.5-turbo only in
the Round1 of Follow-up QA (see the first column
in Table 2), they fall short in all other tasks (other
columns in Table 2). These outcomes suggest that
current math-specific models are overly tuned to
single-round QA data, and the significant perfor-
mance drop in multi-round and complex tasks fur-
ther validates the challenging nature of our bench-

mark, testing the models’ diverse capabilities in
mathematical reasoning, as illustrated in Figure 1.
We further investigate the models’ performance in
each task:

Follow-up QA. In Rounds 2 and 3 of the
FoLLow-UP QA tasks, models face significant
challenges in multi-round math reasoning, with
accuracy reductions ranging from 20% to 50%.
This decline indicates that while math-specific
LLMs initially outperform general-purpose LLMs
and even GPT-3.5-turbo in Round 1, their per-
formance deteriorates more significantly in sub-
sequent rounds. Theoretically, if a model main-
tains consistent accuracy across all dialogue rounds,
with a first-round accuracy of x;, the expected
second-round accuracy would be z? due to error
propagation. Interestingly, when comparing the
square of the first-round accuracy (x?) with the
actual second-round accuracy (z2), we observe a
contrasting pattern: x2 > xo for all math-specific
LLMs, indicating a decline, whereas :c% < x9 for
all other general-purpose models. This finding
demonstrates that while math-specific LLMs ex-
cel at solving math problems in a single round,
they show weaker progressive reasoning capabili-
ties within dialogues.

Error Correction. In the ERROR CORRECTION
task, a clear distinction also exists between math-
specific LLMs and general-purpose LLMs. No-
tably, general LLLMs exhibit higher accuracy in
correcting errors than in directly solving problems
(i.e., the first-round follow-up QA), whereas the
reverse is true for math-specific LLMs. This adap-
tive behavior is evident in general-purpose LLMs
but is noticeably lacking in math-specific LLMs,
suggesting their weak ability to learn and reason
from errors due to the over-tuning on single-round
QA tasks. The difficulty of this task in our bench-
mark further emphasizes the need for models to go
beyond single-round accuracy and develop robust
error-correction abilities.

Error Analysis. The ERROR ANALYSIS task re-
quires that models first identify errors in a given
solution before proceeding to analyze and correct
them. In practice, we find that math-specialized
LLMs often misinterpret the task’s instruction
about analyzing the solution and instead simply
repeat the previous answer, or just validate the in-
correct solution as correct. Conversely, only GPT-
3.5-turbo relatively performs well in verifying the



Follow-up QA Error . .
RI" R2p R3 Correction Error Analysis Problem Generation
Acc. Acc. IF ED SA IF PQ SA
General-Purpose 7B LLMs:
LLaMA2-chat 15.09 11.67 8.12 38.82 264 183 187 402 383 3.33
Mistral-Instruct ~ 32.06 20.40 13.70 51.20 350 282 277 444 430 3.80
Gemma-it 37.60 17.65 10.57 46.15 307 205 311 3.09 375 248
Math-specialized 7B LLMs:
MAmmoTH 66.85 32.16 19.31 54.15 255 175 179 203 195 242
MetaMath 77.18 4398 32.16 56.30 251 126 134 228 232 235
WizardMath 8320 44.81 36.86 68.22 262 1.81 195 153 154 1.60
DeepSeek-Math ~ 79.40 48.19  35.70 74.34 1.87 138 147 195 196 2.08
InternLM2-Math  83.80 40.20 28.64 72.70 288 224 235 431 431 3.50
GPT-3.5-turbo 74.68 5526 4559 75.90 412 3.64 371 462 462 423
GPT-4-turbo 94.62 7636 73.41 81.11 4.60 435 445 494 494 487
GPT-40 95.68 77.67 73.03 83.09 484 460 468 491 494 482

" The first round performance is essentially the performance on the original GSM8K dataset.
Table 2: The performance of three open-sourced general-purpose LLMs, five math-specialized LLMs,
and GPT-3.5-turbo on MathChat. All open-sourced models are in the size of 7B. R1, R2, and R3
denote different rounds in Follow-up QA. Evaluation metrics: Acc. (%), and others from 1 (lowest)
to 5 (highest), such as IF = Instruction Following, ED = Error Diagnosis, SA = Solution Accuracy
and PQ = Problem Quality. We bold the best performance achieved by open-sourced models.

solution and pinpointing errors. This task presents
a significant challenge for open-source mathemat-
ical LLMs, indicating a common limitation: their
ability to identify and analyze errors. The high
failure rate in this task also shows the challenging
nature of our benchmark.

Problem Generation. The PROBLEM GENERA-
TION task, similar to ERROR ANALYSIS, requires
models to understand instructions that go beyond
answering the given question. This task assesses
several abilities: a model must accurately compre-
hend the given instruction, understand the provided
problem-solution pair, and generate a new and rel-
evant problem-solution pair. We observe that all
general-purpose LLMs and only one math-specific
model InternL.M2-Math perform well. Other math
LLMs, which are heavily optimized for problem-
solving, struggle with this task. Empirically, we
find that those models still consistently attempt to
solve problems even when clearly instructed to cre-
ate new problems. The difficulty of adapting to
problem generation highlights the rigidity of cur-
rent math-specific models, suggesting that these
models are overly tuned to solve problems and, as
a result, find it challenging to adapt to other tasks.

4 Enhancement via SFT

In this section, we explore the performance im-
provements of general-purpose models enhanced
by various supervised fine-tuning (SFT) strategies.
See Appendix A.7 for case studies.

4.1 Baselines

We first build a series of Mistral 7B baseline models
by applying supervised fine-tuning with existing
datasets. First, Mistral-Math is developed to spe-
cialize Mistral-Instruct in math reasoning. This
is achieved via fine-tuning the model by Arithmo
(akjindal53244, 2023) compilation, which includes
three existing datasets: MetaMath (Yu et al., 2024),
Mathlnstruct (Yue et al., 2024), and Lila-OOD
(Mishra et al., 2022). These dataset totally com-
prises about 540,000 entries. Second, Mistral-
Math-IT is then built for enhancing the instruc-
tion following ability of Mistral-Math. We uti-
lized the Alpaca-GPT4 dataset (Peng et al., 2023),
which includes 52,000 instruction-following in-
stances generated by GPT-4. We also use LIMA
(Zhou et al., 2023a), which contains 1,000 high-
quality prompts and responses from human inter-
actions. Last, Mistral-Math-IT-Chat gains the
ability to engage in conversation by tuning with a
dialogue dataset. We subsample the Ultra-chat200k
(Ding et al., 2023) to 50,000 dialogues to minimize
the training workload. Empirically, we find that
this subsampling does not significantly affect per-
formance on MathChat compared to using the en-
tire Ultrachat-200k dataset. Similarly, a series of
Gemma 7B models are developed using the same
SFT setting, and named following the same format.

4.2 Dialogue Dataset MathChaty,.

While the Ultra-chat200k dataset includes dia-
logues spanning a variety of topics, math-related



conversations should be specifically highlighted
and incorporated into the SFT process. We thus in-
troduce and release a new dataset MathChatgypc,
which is created by sampling QA pairs from
Arithmo as seed examples. We then tasked GPT
models to engage in real-world dialogues based
on these seeds, enriching the dataset with diverse
and contextually relevant mathematical discus-
sions. The details of the generation prompts are
provided in the Appendix A.9. Due to budget
constraints, we generated 16,132 dialogues using
GPT-4 and 131,346 dialogues using GPT-3.5-turbo,
resulting in a total of 147,478 dialogues in the
MathChatgy,. dataset. This dataset can serve as an
augmented resource during the SFT stage for future
math LLMs, enabling them to engage in dialogues
without compromising their ability to reason in
single-round QA. Since MathChatgy,. already in-
cludes samples in forms of instruction and dialogue,
Mistral and Gemma are tuned using both Arithmo
and MathChatgyp, resulting in Mistral-MathChat
and Gemma-MathChat models, respectively.

4.3 Result Analysis and Observations

Table 3 presents the results of two series of LLMs
that have been fine-tuned from Mistral and Gemma
models. The evaluation follows the same settings
on MathChat as presented in Table 2. Generally,
the results suggest that our method of augmenting
the training corpus enhances performance across
all tasks. Notably, incorporating general-purpose
instruction tuning data from sources such as Al-
paca and UltraChat can improve performance on
mathematical tasks. This improvement may stem
partly from the inclusion of mathematical con-
tent within these datasets. The addition of high-
quality instruction data predominantly may also
boost the LLMs’ natural language comprehension,
thereby enhancing their ability to solve math prob-
lems. Moreover, the model fine-tuned with our
MathChatgy,. dataset demonstrates markedly su-
perior overall performance. Appendix A.1 shows
how we scale and calculate the overall score and
Table 4 contains a more comprehensive compar-
ison in terms of the overall performance. Since
MathChatgy,. is created in a very simple and
straightforward way, we believe that scaling up
the quality and amount of such math dialogue data
can bring more performance improvement, which
we leave as our future work. Detailed analysis on
each task follows.

Follow-up QA. When performing SFT with ex-
isting datasets, adding instruction-following, dia-
logue or our MathChatgy,. datasets generally en-
hances the performance on follow-up QA tasks.
Notably, we observe that performance improve-
ments in the second and third rounds are signif-
icantly greater compared to the initial round of
the original GSM8K QA. A likely explanation is
that these datasets contain longer-context QA pairs,
which enable the model to reason based on the dia-
logue history rather than focusing predominantly
on more immediate contexts.

Error Correction. Fine-tuned models exhibit
better accuracy than base LLMs in error correction,
yet integrating additional datasets has not markedly
boosted performance. This limited improvement
suggests that essential skills such as DTAGNOSTIC
REASONING and SOLUTION REFINEMENT, indi-
cated in Figure 1, are not effectively learned from
the used datasets. Additionally, we observed that
our MathChatgy,. data negatively affects this task.
Upon examining the error cases, we discovered
that models trained with MathChatgy,,. indeed have
a better understanding of “correcting the error”,
where they try to make improvements over previ-
ous incorrect attempts rather than simply making
new attempts. This contrasts with models trained
purely on problem-solving datasets, which tend to
give completely new solutions. The lower perfor-
mance of the model trained with MathChatgy,c may
be attributed to the dataset’s lack of manual filter-
ing of incorrect cases. We leave the quality control
problem and analysis to future work.

Error Analysis. Similar to Error Correction,
learning the ability to perform error analysis is
challenging when using SFT with math QA and
general instruction tuning datasets. Although the
performance on this task is not exceptionally high,
the inclusion of math-dialogue data in SFT has
proven to be a viable method for enhancing LLMs’
capabilities in error analysis. Our analysis in Fig-
ure 5 also reveals that the models fine-tuned with
existing datasets (i.e., three baselines) typically af-
firm the correctness of previous answers and termi-
nate their responses prematurely. In contrast, our
MathChatgy,. dataset aids LLMs in understanding
how to conduct error analysis.

Problem Generation. On problem generation
task, we observe that the base models already
have reasonable performance and SFT without



Follow-up QA Error . Problem (Scaled)
R1" R2 R3 Correction Error Analysis Generation Overall
Acc. Acc. IF ED SA IF PQ SA ‘Average
Mistral 7B Series:
Mistral-Instruct 32.06 20.40 13.70 51.20 3.50 2.82 2.77 444 430 3.80| 0.550
Mistral-Math 70.20 32.31 24.60 70.22 2.18 1.60 1.71 3.54 3.28 3.75| 0.519
Mistral-Math-1T 70.73 40.59 27.74 69.54 234 1.65 1.76 4.08 3.81 4.16| 0.565
Mistral-Math-IT-Chat ~ 71.79 39.22 27.36 69.15 2.31 1.50 1.63 4.39 420 4.28| 0.574
Mistral-MathChat (Ours) 71.02 41.02 27.97 67.96 340 2.89 2.67 470 4.58 4.43| 0.661
Gemma 7B Series:
Gemma-it 37.60 17.65 10.57 46.15 3.07 2.05 3.11 3.09 3.75 248 | 0.463
Gemma-Math 70.73 29.70 19.92 62.68 1.69 1.29 1.32 324 3.09 344 | 0.464
Gemma-Math-IT 72.02 43.36 32.57 62.60 1.76 1.40 1.46 3.34 3.32 3.61| 0.508
Gemma-Math-IT-Chat  74.68 46.35 33.64 63.85 2.05 1.64 1.70 3.64 3.48 3.99| 0.549
Gemma-MathChat (Ours) 72.14 47.10 32.64 61.86 3.43 290 290 3.77 3.72 3.74| 0.623

Table 3: Performance of LLMs that are fine-tuned with different datasets. The best performance is

bold and the second best is underlined for each series.

MathChatgy,. generally hurts the performance.
However, a notable finding is the increase in Solu-
tion Accuracy (SA) scores following SFT, which
suggests that fine-tuning on mathematical data
helps the model recognize the importance of solu-
tion correctness and extend this awareness to gener-
ation tasks. Furthermore, our MathChat-enhanced
SFT model records the best performance on this
task, demonstrating the versatile utility of dialogue-
enhanced training in mathematical contexts.

5 Related Work

Mathematical Reasoning. Recently, LLMs have
demonstrated success in solving math word prob-
lems through techniques like Chain of Thought
(CoT) (Wei et al., 2022; Kojima et al., 2022), Pro-
gram of Thought (PoT) (Chen et al., 2023), and
sampling methods (Wang et al., 2022). These
studies primarily focus on improving performance
via better prompting design or inference strate-
gies. Some researchers also attempted exten-
sive pre-training on math-related corpora to ob-
tain foundational mathematical LLMs (Lewkowycz
et al., 2022; Taylor et al., 2022; Azerbayev et al.,
2024). As for the evaluation of mathematical
reasoning, popular benchmarks include GSM8K,
MAWPS (Koncel-Kedziorski et al., 2016), MATH
(Hendrycks et al., 2021), SVAMP (Patel et al.,
2021), MathVista (Lu et al., 2024), MathVerse
(Zhang et al., 2024), etc., and all of them are in
single-round QA format. State-of-the-art (SOTA)
models such as MetaMath (Yu et al., 2024), Wiz-
ardMath, MathlInstruct (Yue et al., 2024), ToRA
(Gou et al., 2024), OpenMathlInstruct (Toshniwal
et al., 2024) augment extensive amount of math
QA pairs from LLMs or humans as the additional

training set to boost the performance.

Multi-Turn Dialogues in Reasoning. The ad-
vancement of dialogue capabilities in LLMs, par-
ticularly their proficiency in multi-turn interactions,
has been a key focus in LLM research (Ding et al.,
2023; Tunstall et al., 2023; Zheng et al., 2023).
These are many studies on the intersection of math
reasoning and interaction. Frieder et al. (2024) ex-
plores error types within ChatGPT-generated math
solutions, including reasoning errors and miscal-
culations. An et al. (2023) proposes using error
analysis to improve the accuracy of final solutions.
CheckMate (Collins et al., 2024) a prototype plat-
form for human-LLM interaction focused on qual-
itative evaluation. Our work distinguishes itself
by examining an under-explored direction of open-
ended multi-turn dialogues: the benchmarking and
analysis of combined mathematical reasoning and
instruction-following on LLMs.

6 Conclusion

This paper introduces the MathChat benchmark
as a new evaluative framework for assessing the
capabilities of large language models (LLMs) in
mathematical problem-solving and open-ended QA
within multi-turn dialogue contexts. We demon-
strate that while existing math-specialized LLMs
excel at single-turn question-answering tasks, they
significantly struggle with more complex, open-
ended tasks that require understanding and fol-
lowing multi-turn instructions. We also collect
and release a fine-tuning dataset MathChatgy, with
math-centered dialogue interactions. LLMs trained
with MathChatgy,. show marked improvements in
handling complex tasks in MathChat that require
higher levels of comprehension and adaptability.



Limitation

One consideration of our work is that the MathChat
dataset is generated using LL.Ms. To address this
concern, we have taken proactive measures to en-
hance data quality and reliability. Instead of solely
relying on GPT-4, we designed an augmentation
strategy that builds upon the high-quality, human-
annotated GSM8K dataset to generate novel tasks.
This approach has been effective in expanding train-
ing data and creating robust evaluation benchmarks.
Additionally, for the two problem-solving tasks
with deterministic answers, we integrated human
verification alongside model validation to ensure
response accuracy. These measures collectively
strengthen the integrity of MathChat, providing a
comprehensive and reliable benchmark for evaluat-
ing multi-turn mathematical reasoning in LLMs.
Importantly, the core contribution of MathChat
extends beyond data generation—it establishes a
structured evaluation framework for multi-turn rea-
soning, advancing a crucial yet under-explored re-
search direction.

Broader Impact

MathChat has the potential to significantly impact
Al-driven education by enabling more interactive
and adaptive tutoring systems. Applications of our
work include intelligent tutoring assistants, educa-
tional chatbots, and Al-powered problem-solving
tools that can support students in developing math-
ematical reasoning skills.
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A Appendix
A.1 Opverall Results

To facilitate a more thorough and direct comparison
across different models on our MathChat bench-
mark, we have formulated three comprehensive
metrics based on two key aspects: problem-solving
accuracy and open-ended task quality. Initially,
we normalize all sub-metrics to a 0-1 scale. For
problem-solving tasks, including follow-up QA
and error correction, accuracies are normalized by
dividing each by 100. For open-ended tasks, which
are graded on a 1 to 5 scale, we normalize by divid-
ing the scores by 5. We then define three metrics:
1) Overall Average: the average score of all ten sub-
metrics listed in Tables 2 and 3; 2) Task Average:
the average score across the four tasks; 3) Category
Average: the average score of the two categories,
i.e., problem-solving and open-ended QA.

The results in Table 4, based on the met-
rics defined above, indicate that the model
with a Mistral backbone, fine-tuned with our
MathChatgy,. dataset, achieves the best perfor-
mance across all three metrics. This proves the
effectiveness of our SFT dataset and suggests that
there is still potential for improvement in math-
specific LLMs.

Mitigating GPT-4 Biases

We sincerely appreciate this insightful concern. To
address potential GPT-4 evaluation biases, we con-
ducted additional evaluations using two large-scale
models: Qwen2.5-72B-Instruct and LLaMA3.3-
70B-Instruct. Due to computational constraints, we
sampled 150 examples for this analysis, and we
plan to expand to the full evaluation in the final
camera-ready version.



Model Overall Average|Task Average|Category Average
LLaMA2-chat 0.424 0.418 0.384
Mistral-Instruct 0.550 0.544 0.507
Gemma-it 0.463 0.463 0.432
MAmmoTH 0.422 0.442 0.424
MetaMath 0.451 0.470 0.463
WizardMath 0.454 0.492 0.476
DeepSeek-Math 0.452 0.500 0.476
InternLM2-Math 0.617 0.635 0.608
Gemma-Math 0.464 0.491 0.463
Gemma-Math-IT 0.508 0.528 0.511
Gemma-Math-IT-Chat 0.549 0.564 0.548
Mistral-Math 0.519 0.549 0.514
Mistral-Math-1T 0.565 0.586 0.557
Mistral-Math-IT-Chat 0.574 0.593 0.565
Gemma-MathChat (Ours) 0.623 0.622 0.608
Mistral-MathChat (Ours) 0.661 0.664 0.638

Table 4: Overall results of 7B LLMs. The best models are bold and the second best is underlined.

Table 5: Evaluation by Qwen2.5-72B-Instruct on Error Analysis (EA) and Problem Generation (PG) tasks (150

samples).
Model IF (EA) ED (EA) SA (EA) IF (PG) PQ (PG) SA (PG)
MetaMath 2.67 1.39 1.48 247 245 2.49
DeepSeek-Math  2.02 1.55 1.60 2.11 2.08 2.23
GPT-3.5-turbo 3.96 3.53 3.57 4.47 4.50 4.09
GPT-4-turbo 4.43 4.19 4.30 4.78 4.76 4.72
GPT-40 4.68 442 4.55 4.77 4.82 4.69

Qwen2.5-72B-Instruct on Error Analysis (EA)
and Problem Generation (PG)

LLaMA3.3-70B-Instruct on Error Analysis
(EA) and Problem Generation (PG) Compar-
ing these results (Table 5 and Table 6) with Table 2
in our manuscript, we observe slight variations in
scoring and a few deviations in evaluation patterns.
Nevertheless, the overall trends and conclusions re-
main consistent, indicating that our evaluation pro-
tocol is robust. We believe this is due to the detailed
evaluation guidelines and rubrics incorporated into
our prompts (as exemplified by the descriptions
for rubric creation, though specific figure numbers
like 15 and 16 would refer to your full manuscript
if such figures detailing rubrics exist), which help
mitigate potential biases from self-evaluation.

Generalizability and Comparison with
Single-Turn QA Benchmarks

We truly appreciate the helpful suggestion to com-
pare performance on other standard benchmarks.
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In response, we include below the comparative re-
sults on several single-turn and out-of-distribution
math datasets.

While our MathChatgy,c-trained  models
(Mistral-MathChat and Gemma-MathChat) show
slightly lower performance on some single-turn
QA datasets (e.g., GSM8k, MAWPS, SVAMP)
compared to MetaMath, which is heavily optimized
for such formats, they surpass MetaMath on more
challenging and potentially out-of-distribution
datasets such as MMLU-Math and SAT-Math (Ta-
ble 7). This suggests that the MathChaty,,. dataset,
with its focus on multi-turn interactions and diverse
instruction following, contributes to stronger
generalization capabilities, especially in varied
and complex mathematical reasoning tasks. This
indicates a beneficial trade-off where a slight
decrease in specialized single-turn performance is
compensated by an increase in broader reasoning
and generalization. We will incorporate these
findings and further discussion into our final



Table 6: Evaluation by LLaMA3.3-70B-Instruct on Error Analysis (EA) and Problem Generation (PG) tasks (150

samples).
Model IF (EA) ED (EA) SA (EA) IF (PG) PQ (PG) SA (PG)
MetaMath 2.46 1.21 1.30 2.23 2.18 2.27
DeepSeek-Math ~ 1.83 1.34 1.41 1.90 1.91 2.04
GPT-3.5-turbo 3.81 3.34 343 4.28 4.32 3.94
GPT-4-turbo 4.30 4.06 4.20 4.61 4.58 4.52
GPT-40 4.54 4.27 4.42 4.60 4.65 4.50

Table 7: Comparative performance on single-turn QA and out-of-distribution math benchmarks.

Model GSM8k MAWPS SVAMP MMLU-Math SAT-Math
MetaMath 77.18 89.12 79.85 47.59 56.01
Mistral-MathChat (Ours)  71.02 83.63 72.41 46.95 61.29
Gemma-MathChat (Ours) 72.14 86.24 68.42 49.19 62.21

manuscript.

A.2 Analysis of Answer Qualities

To evaluate the answer qualities of various mod-
els on our MathChat benchmark, we analyzed 500
outputs each from Mistral, InternLM2-Math (i.e.,
the best math-specialized LLM in Table 2), Mistral-
Math, and our Mistral-MathChatgy,. model across
tasks such as Follow-up QA, Error Analysis, and
Problem Generation. We employed GPT-4 to cate-
gorize these outputs according to a predefined set
of output categories. Our analysis revealed that the
Mistral-MathChatgy,. models excel in tasks requir-
ing open-ended responses, like error analysis and
problem generation, while performing comparably
in problem-solving tasks. The following sections
detail these results:

LLMs + MathChatgy,. SFT achieves state-of-
the-art accuracy in follow-up QA. As shown
in Figure 4, all three math-specific models sig-
nificantly outperform the original Mistral model,
with our MathChatgy,. model slightly surpassing
the other two, showing the strong mathematical
problem solving ability is still maintained after
MathChatgyp, fine-tuning.

LLMs + MathChatgy,. SFT exhibits strong er-
ror identification and correction abilities. Figure
5 shows that although the Mistral model identifies
errors in mathematical problems, it falls short in
offering corrections. InternLM2-Math and Math-
SFT show reduced error detection capabilities due
to their intensive training on straightforward math
QA. In contrast, our MathChatgy,. model demon-
strates a robust capacity for both identifying and
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correcting errors.

LLMs + MathChatgy,. SFT demonstrates su-
perior performance in problem generation. As
shown in 6, our MathChatgy,. model excels in prob-
lem generation tasks, while the other two math-
specific models (InternLM2-Math and Math-SFT)
struggle with instruction following and basic com-
prehension, highlighting the effectiveness of our
MathChatgyp fine-tuning approach.

A.3 Connection Between Few-Shot Prompting
and MathChat

We conducted an experiment to compare the per-
formance of models using few-shot prompting and
MathChat on the GSM8K dataset. Our goal was
to understand the differences in performance when
using these two methods. In particular, we hypoth-
esized that the additional context provided by few-
shot prompting would positively impact the models’
performance, similar to how MathChat requires in-
formation from the extra conversational context.
The results in Table 8 show a general trend that
few-shot prompting improves performance over
zero-shot, but not uniformly. For instance, models
like Mistral-Instruct and DeepSeek-Math experi-
enced notable gains in performance from zero-shot
to few-shot prompting, with increases of 26.49%
and 1.98%, respectively. However, other models,
such as MetaMath and MAmmoTH, saw a per-
formance drop in the transition from zero-shot to
few-shot, indicating that not all models leverage
few-shot prompting effectively. Interestingly, mod-
els that benefit from few-shot prompting tend to
have a smaller performance drop from R1 to R2.
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Figure 6: The answer quality in Problem Generation task.
Model GSMS8K Zero | GSM8K Few | Performance Performance
Shot (R1) Shot Drop (R1 to | Change
R2)
Mistral-Instruct | 32.06 40.56 36.38% +26.49%
Gemma-it 37.60 36.54 53.04% -2.82%
MAmmoTH 66.85 59.36 51.88% -11.20%
MetaMath 77.18 72.25 43.04% -6.39%
WizardMath 83.20 78.99 46.15% -5.06%
DeepSeek-Math | 79.40 80.97 39.29% +1.98%
InternLM2-Math | 83.80 76.88 52.02% -8.26%

Table 8: Comparison of GSM8K Zero Shot and Few Shot Performance, Performance Drop (R1 to R2), and
Performance Change (Zero Shot to Few Shot).
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This indirectly supports your guess that there is a
correlation between multi-turn reasoning and few-
shot learning. We believe this is because both tasks
require models to have strong long-context com-
prehension and reasoning abilities.

A.4 Impact of Removing Prior Conversation
Context

In this experiment, we evaluate the performance of
various models on the second and third rounds (R2
and R3) of questions, both with and without the
context provided by the previous rounds. Specif-
ically, we report the performance when running
on R2 and R3 questions individually, without the
context from R1 and R1/2 in Table 9, respectively.
The results indicate that removing the prior con-
versation context negatively impacts all models’
performance. This confirms that when a model can
engage with the full conversation context in Math-
Chat, it significantly enhances subsequent rounds
of problem-solving. These findings highlight the
importance of conversational context in evaluating
a model’s reasoning ability, further validating the
effectiveness of our benchmark.

A.5 Experiment Details
A.5.1 Existing LLM Baselines

We test three general-purpose, open-source models:
LLaMA2-7B-chat (Touvron et al., 2023b), Mistral-
7B-Instruct (Jiang et al., 2023) and Gemma-7B-
it (Team et al., 2024). Additionally, we exam-
ine five math-specific LLMs: MAmmoTH (Yue
et al., 2024) create and release MathlInstruct, a
math problem-solving dataset including CoT-style
and PoT-style annotations and perform Supervised
Fine-Tuning (SFT) on various base LLMs. In
this paper, we use their released MAmmoTH-
Mistral-7B variant. MetaMath-Mistral-7B (Yu
et al., 2024) is trained on augmented math data
based on GSM8K and MATH. WizardMath-7B-
v1.1 (Luo et al., 2023) utilizes both SFT and re-
inforcement learning from evol-instruct Feedback
on math instructions. InternL.M2-7B-Math (Ying
et al., 2024) and DeepSeek-7B-Math (Shao et al.,
2024) incorporate pre-training, SFT, and prefer-
ence alignment focused on a mathematical corpus.
We also present the performance of GPT-3.5-turbo,
GPT-4-turbo and the latest GPT-4o.

A.5.2 Supervised Fine-tuning Implementation

We utilize Mistral-7B and Gemma-7B as our back-
bone models and conduct fine-tuning using Low-
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Others, 2.40%

Reasoning Error
32.5%

Calculation Error
41.7%

Figure 7: The distribution of error types on error correc-
tion task.

Rank Adaptation (LoRA) (Hu et al., 2021), with
the rank set to 8 and alpha to 16. In our training
process, we do not employ any specific templates
or prefixes for the QA pairs but utilize the default
chat template of the base models for transform-
ing dialogues. The implementation is based on
Pytorch along with the DeepSpeed (Rasley et al.,
2020) Library, and the models are trained on 8
NVIDIA V100 GPUs, each with 32GB of memory.
We opt for float-16 (FP16) precision to decrease
memory demands and computational requirements.
The fine-tuning is carried out over three epochs,
with a batch size of 32 and a learning rate of 3e-
5. The cumulative training time for integrating all
three types of datasets amounts to approximately
72 hours, and the training time for SFT with Math
+ MathChatgyy is around 30 hours.

A.6 Error Type Analysis

To ensure our benchmark contains a diverse array
of error types, we randomly sampled 500 errors
from our error correction task and used GPT-4 to
determine their error types. The distribution of
errors are shown in Figure 7: Calculation Errors
were most frequent, accounting for 41.8% of the
total. Reasoning Errors constituted 32.6%, indi-
cating challenges in logical thinking and strategiz-
ing the steps required to solve problems. Concep-
tual Errors, making up 9.6%, pointed to difficul-
ties in understanding underlying mathematical con-
cepts. Ambiguity in solutions was noted in 13.8%
of cases, where the provided solution is ambiguous
or unclear. This range of error types highlights the
broad spectrum of challenges that MathChat con-
tains, making our benchmark a robust tool for diag-



Model R2 (Original) | R3 (Original) | R2 (Without R1) | R3 (Without R1/R2)
Mistral-Instruct 20.40 13.70 13.50 10.00
Gemma-it 17.65 10.57 15.16 6.60
MAmmoTH 32.16 19.31 21.75 9.25
MetaMath 43.98 32.16 30.47 17.82
WizardMath 44.81 36.86 41.70 29.80
DeepSeek-Math 48.19 35.70 48.14 35.18
Intern.M2-Math 40.20 28.64 38.13 24.34

Table 9: Performance comparison of R2 and R3 with and without prior context from R1 and R1/2.

nosing and improving error correction and analysis
ability across a variety of categories.

A.7 Case Study

Follow-up QA Figure 8 displays the responses
from four LLMs on the follow-up QA task, specifi-
cally focusing on the third round of each model’s
response. The Mistral-instruct and Mistral-Math
models, despite performing well in the first two
rounds, exhibit reasoning errors in their third-round
outputs. The InternL.M2-Math model demonstrates
a correct reasoning chain but makes a calculation
error, resulting in an incorrect answer. These re-
sults indicate that the three models struggle with
long-context reasoning, leading to increased errors
as the number of dialogue turns rises. In contrast,
our model, trained with MathChatgy,, consistently
performs well and successfully solves the third-
round problem.

Error Analysis Figure 9 shows the responses
from four LLMs on an error analysis task. This
base model - Gemma-it 7B correctly identified the
calculation error regarding the sheep in Toulouse
and corrected the user’s response. However, the
feedback was verbose and included unnecessary de-
tails, potentially leading to confusion. The models
fine-tuned with existing datasets failed to recognize
the error in the user’s solution, incorrectly affirm-
ing the erroneous calculation. This indicates a lack
of training focus on error identification and correc-
tion capabilities in these models. Trained with our
MathChat dataset, the model successfully identi-
fied and corrected the calculation error in a concise
and clear manner. The analysis shows the impor-
tance of targeted, dialogue-rich training datasets
like MathChatgy,,. in developing LLMs that are ca-
pable of effective educational interaction. The su-
perior performance of the MathChat-trained model
demonstrates its potential as a valuable tool in edu-
cational settings, offering precise and understand-
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able corrections that can aid learning.

Problem Generation Figure 10 presents the re-
sponses from four LLMs on the problem generation
task. The Mistral-Instruct and Mistral-Math mod-
els provide incorrect solutions when generating a
new problem, while the InternLM2-Math model
fails to follow the instructions for generating solu-
tions to the new problem. Only our model, trained
with MathChatgyyc, successfully understands the
instructions and delivers a high-quality solution.

A.8 Prompt for Generating Task Data

The prompts used to generate our MathChat bench-
mark is provided in Figure 11, 12, 13 and 14.

A.9 Prompt for Evaluating Open-ended Tasks

We provide the prompts used for evaluating the
results of Error Analysis and Problem Generation
in Figure 15 and 16.

Prompt for Generating MathChatgy,,

The prompt for generating MathChatgyp. is shown
in Figure 17.



Follow-up QA Case Study

Dialogue History of Mistral-instruct: (Reasoning Error)
<User>: The expenditure of Joseph in May was $500. In June, his expenditure was $60 less. How
much was his total expenditure for those two months?

<Assistant>: To find the total expenditure for May and June, we first need to determine Joseph's
expenditure in June. We know that his expenditure in May was $500 and it was $60 less in
June.\n\nJoseph's expenditure in June = May's expenditure - $60\n =$500 -
$60\n =$440\n\nNow that we have the expenditure for both months, we can find the total by
adding them together.\n\nTotal di =May's diture +June's di \n =$500
+$440\n =$940\n\nSo, the answer is $940.

<User>: Considering Joseph's expenditures, if in July he decided to increase his spending by 20%
compared to June, what was his expenditure in July?

<Assistant>: To find Joseph's expenditure in July, we first need to determine how much more he
spent compared to June, which was a 20% increase.\n\nPercentage increase = Total increase /
Original amount * 100%\n = $X / $440 * 100%\n\nWe don't know the exact value of $X (the total
increase), but we can find it by setting up an equation:\n\nTotal increase = Percentage
increase * Original amount\n=20% * $440\n =0.2 * $440\n = $88\n\nNow that we know the
totalincrease, we can find Joseph's expenditure in July:\n\nJoseph's expenditure in July =
June's expenditure + Total increase\n = $440 + $88\n = $528\n\nSo, the answer is $528.

<User>: Now, if Joseph decides to save 15% of his total expenditure in July for an emergency fund
and the rest he plans to split equally to support three causes he believes in, how much money will
each cause receive?

<Assistant>: First, let's calculate the amount Joseph saved for his emergency fund in
July:\n\nAmount saved = Percentage saved * Total expenditure\n = 15% * $528\n =0.15
*$528\n = $80.20 (rounded to the nearest cent)\n\nNow, we'll find the amount left for the three
causes:\n\nAmount for causes = Total expenditure - Amount saved\n = $528 - $80.20\n =
$447.80\n\nSince Joseph plans to split the money equally among the three causes, we can find
the amount each cause will receive:\n\nAmount for one cause = Amount for causes / Number
of causes\n = $447.80 / 3\n =$149.27.

Dialogue History of Mistral-Math: (Reasoning Error)
<User>: The expenditure of Joseph in May was $500. In June, his expenditure was $60 less. How
much was his total expenditure for those two months?

<Assistant>: Joseph's expenditure in May was $500.\nIn June, his expenditure was $60 less, so
it was $500 - $60 = $440.\nTo find his total expenditure for those two months, we add his
expenditure in May and June: $500 + $440 = $940.\nTherefore, Joseph's total expenditure for
those two months was $940.

<User>: Considering Joseph's expenditures, if in July he decided to increase his spending by 20%
compared to June, what was his expenditure in July?

<Assistant>:If Joseph's expenditure in June was $440, and he decided to increase his spending
by 20% in July, we can calculate his expenditure in July by adding 20% of $440 to $440.\n20% of
$440 is (20/100) * $440 = $88.\nSo, Joseph's expenditure in July would be $440 + $88 =
$528.\nThe answer is: 528

<User>: Now, if Joseph decides to save 15% of his total expenditure in July for an emergency fund
and the rest he plans to split equally to support three causes he believes in, how much money will
each cause receive?

<Assistant>: If Joseph's expenditure in July was $528, and he decides to save 15% of it for his
emergency fund, we can calculate the amount he saves by multiplying $528 by
15/100.\n15/100 * $528 = $84.\nSo, Joseph saves $84 for his emergency fund.\nThe remaining
amount he plans to split equally among three causes is $528 - $84 = $444.\nTo find out how
much each cause will receive, we divide $444 by 3.\n$444 / 3 = $148.\nTherefore, each cause
will receive $148.\nThe answer is: 148

Dialogue History of InternLM2-Math: (Calculation Error)

<User>: The expenditure of Joseph in May was $500. In June, his expenditure was
$60 less. How much was his total expenditure for those two months?

<Assistant>: To find the total expenditure for those two months, we need to
add the expenditure in May and June. \nln June, the expenditure was $60 less
than in May, so we subtract $60 from $500 to get the June expenditure. \n$500
- $60 = $440\nNow, we add the expenditure in May and June: $500 + $440 =
$940\nTt fore, the total di for those two months was $940.\nThe
answer is 940.

<User>: Considering Joseph's expenditures, if in July he decided to increase his
spending by 20% compared to June, what was his expenditure in July?

<Assistant>: If Joseph increased his spending by 20% in July compared to
June, we need to find 20% of the June expenditure and add it to the June
expenditure. \n20% of $440 is (20/100) * $440 = $88\nSo, the expenditure in
July was $440 + $88 = $528\nTherefore, Joseph's expenditure in July was
$528.\nThe answer is 528.

<User>: Now, if Joseph decides to save 15% of his total expenditure in July for an
emergency fund and the rest he plans to split equally to support three causes he
believes in, how much money will each cause receive?

<Assistant>: First, we need to find 15% of the July expenditure to determine
how much Joseph will save for his emergency fund. \n15% of $528 is (15/100) *
$528 = $79.2\nSo, Joseph will save $79.2 for his emergency fund.\nThe
remaining amount that Joseph will split equally among three causes is $528 -
$79.2 = $448.8\nTo find out how much each cause will receive, we divide the
remaining amount by 3: $448.8 / 3 = $149 \nTherefore, each cause will receive
$149.6\nThe answer is 149. (Calculation Error)

Dialogue History of Mistral-MathChat (Ours): (Correct Solution!)

<User>: The expenditure of Joseph in May was $500. In June, his expenditure was
$60 less. How much was his total expenditure for those two months?

<Assi 1t>: Joseph's exp in May was $500.\nIn June, his expenditure
was $60 less, so it was $500 - $60 = $440.\nTo find the total expenditure for
those two months, we add the expenditures together: $500 + $440 =
$940.\nThe answer is: 940

<User>: Considering Joseph's expenditures, if in July he decided to increase his
spending by 20% compared to June, what was his expenditure in July?

<Assistant>: To find the expenditure in July, we first calculate the 20% increase
of $440, which is $440 * 0.20 = $88. Then, we add this increase to the
expenditure in June: $440 + $88 = $528. So, Joseph's expenditure in July was
$528.

<User>: Now, if Joseph decides to save 15% of his total expenditure in July for an
emergency fund and the rest he plans to split equally to support three causes he
believes in, how much money will each cause receive?

<Assistant>: First, we calculate 15% of $528, which is $528 * 0.15 = $79.20. This
amount is saved for the emergency fund. The remaining amount for the three
causes is $528 - $79.20 = $448.80. Since Joseph plans to split this equally
among three causes, each cause will receive $448.80 / 3 = $149.60.

Figure 8: This figure illustrates the responses of four different LLMs in a follow-up QA task.

Dialogue History:

Error Analysis Case Study

Gemma-it Response

<User>: Please give me a math problem and | will answer that. You need to analyze my
solution and correct it if | make errors.

<Assistant>: Let's solve a math problem. Toulouse has twice as many sheep as

Charleston. Charleston has 4 times as many sheep as Seattle. Together, how many sheep

do Toulouse, Charleston, and Seattle have if Seattle has 20 sheep?

<User>: Okay, let me try to solve it. If Seattle has 20 sheep, then Charleston has 4 times
20, which is 80 sheep. Then, if Toulouse has twice as many sheep as Charleston, that
would be 2 times 20, giving Toulouse 40 sheep. So, added together, they should have 20
sheep + 80 sheep + 40 sheep = 140 sheep. Is that correct? Please check my work.

Gemma-Math Response: (Fail to identify errors)
Yes, you are correct. Your solution is correct. Seattle has 20 sheep, Charleston has 80

sheep, and Toulouse has 40 sheep. Added together, they have 20 + 80 + 40 = 140 sheep.

You solved the problem correctly.

Gemma-Math-IT Response: (Fail to identify errors)
Yes, you are correct! Toulouse, Charleston, and Seattle have a total of 140 sheep.

You correctly calculated the number of sheep for Charleston, but you doubled the
number of sheep for Toulouse instead of multiplying it by 2. And you did not add the
number of sheep for Seattle, Charleston, and Toulouse correctly. Corrected solution:
Toulouse has twice as many sheep as Charleston. Charleston has 4 times as many sheep
as Seattle. Together, how many sheep do Toulouse, Charleston, and Seattle have if Seattle
has 20 sheep? Okay, let me try to solve it. If Seattle has 20 sheep, then Charleston has 4
times 20, which is 80 sheep. Then, if Toulouse has twice as many sheep as Charleston,
that would be 2 times 80, giving Toulouse 160 sheep. So, added together, they should have
20 sheep + 80 sheep + 160 sheep = 260 sheep

Gemma-Math-IT-Chat Response: (Fail to identify errors)
Yes, that is correct. You have correctly calculated the number of sheep each city has and
then added them together to find the total number of sheep they have. So, Toulouse,
Charleston, and Seattle have a total of 140 sheep.

Gemma-MathChat Response (Ours): (Correct and fluent)
You made a mistake in your calculation. Let's go through it again. If Seattle has 20 sheep,
then Charleston has 4 times 20, which is 80 sheep. If Toulouse has twice as many sheep
as Charleston, that would be 2 times 80, giving Toulouse 160 sheep. So, added together,
they should have 20 sheep + 80 sheep + 160 sheep = 260 sheep. Please check your
calculation again.

Figure 9: This figure illustrates the responses of four different LLMs in an error analysis task. The base Gemma-it
model identifies and corrects the error but with verbosity, models fine-tuned with existing datasets fail to detect the
error, and the MathChatgy,. model successfully identifies and corrects the error succinctly and accurately.
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Dialogue History
<User>: Your task is to create a similar math problem based on a given seed
problem. The generated problem should be accompanied by a detailed solution.

<Assistant>: Understood, please give me the seed problem.

<User>: Seed problem: Carlos is planting a lemon tree. The tree will cost $90 to
plant. Each year it will grow 7 lemons, which he can sell for $1.5 each. It costs $3 a
year to water and feed the tree. How many years will it take before he starts earning
money on the lemon tree?

Solution: He makes $10.5 selling lemons each year because 7x 1.5 =
<<7*1.5=10.5>>10.5\n He earns $7.5 each year from the lemon tree because 10.5 -
3=<<10.5-3=7.5>>7.5\n It will take 12 years to earn enough to pay off the tree
because 90/ 7.5 = <<90/7.5=12>>12\n He will make money in year 13 because 12 +
1=<<12+1=13>>13. Answer is 13.

Response of Mistral-instruct: (Low-quality Solution)

<Assistant>: Problem: Sarah is raising a rabbit. The rabbit hutch costs $120 to build. Eachyear,
the rabbit produces 12 baby rabbits, which she can sell for $5 each. It costs $5 a year to feed
and care for the rabbit. How many years will it take before she starts earning money on the
rabbit farm?\n\n

Solution: Sarah makes $11 selling baby rabbits each year b 12x5=<<12 ), but
she has to subtract the cost of caring for the mother rabbit, so she makes $11 - $5 = <<11-
5=6>>6\nShe earns $6 each year from the rabbit farm because 11 - 5 = 6\nlt will take 20 years to
earn enough to pay off the rabbit hutch because 120 / 6 = <<120/6=20>>20\nShe will make
money in year 21 because 20 + 1 =<<20+1=21>>21.

Problem Generation Case Study

Response of InternLM2-Math: (No Solution Provided)

<Assistant>: Carlos is planting a lemon tree. The tree will cost $90 to plant.
Each year it will grow 7 lemons, which he can sell for $1.5 each. It costs $3 a
year to water and feed the tree. If Carlos sells all the lemons he grows and
uses the money to pay off the initial planting cost, how many years will it take
for him to earn $100 in total from the lemon tree.

Response of Mistral-Math: (Low-quality Solution)

<Assistant>: Carlos is planting an apple tree. The tree will cost $100 to plant.
Each year it will grow 8 apples, which he can sell for $2 each. It costs $4 a year
to water and feed the tree.\nHow many years will it take before he starts
earning money on the apple tree?

Solution:\nHe makes $16 selling apples each year because 8 x2 =
<<8*2=16>>16\nHe earns $12 each year from the apple tree because 16 -4 =
<<16-4=12>>12\nlt will take 9 years to earn enough to pay off the apple tree
because 100 / 12 = <<100/12=8.33>>8.33\nHe will make moneyin year 10
because 9 + 1=<<9+1=10>>10\nThe answer is: 10

Response of Mistral-MathChat: (Good Response!)

<Assistant>: Sara is planting a cherry tree. The tree will cost $120 to plant.
Each year it will grow 10 cherries, which she can sell for $2 each. It costs $5 a
year to water and feed the tree. How many years will it take before she starts
earning money on the cherry tree?

Solution: She makes $20 selling cherries each year because 10x2 =
<<10*2=20>>20\nShe earns $15 each year from the cherry tree because 20 - 5
=<<20-5=15>>15\nlt will take 8 years to earn enough to pay off the tree
because 120 / 15 = <<120/15=8>>8\nShe will make money in year 9 because 8
+1=<<8+1=9>>9

Figure 10: This figure illustrates the responses of four different LLMs in a problem generation task.
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System Prompt for Follow-up QA

Objective: To create a dialogue math problem-solving session involving two
characters A and B that contains two follow-up question-answerings, where A
acts as the questioner and B as the responder.

Initial Round:

A (Questioner): Begins the session by asking a seed math problem.
B (Responder): Responds with the correct answer to the seed problem.

There should be exact four follow-up rounds in the response in the format of
A \nBi.\nA:.\nB..\n.

A: Asks a follow-up question that is more challenging than the original problem,
but logically connected to it. The answer should be a single value.

B: Provides a correct and detailed solution to the first follow-up question. End
the response with 'The answer is \ANSWER{THE_FINAL_ANSWER}'.
Second Follow-Up Round:

A: Poses another follow-up question, further increasing in difficulty from the
first follow-up, and maintaining a logical connection to the previous questions.
The answer should be a single value.

B: Responds with a correct and comprehensive solution to the second follow-up
question. End the response with 'The answer is
\ANSWER{THE_FINAL_ANSWER}'.

Guidelines:

Complexity: Ensure that each follow-up question is more challenging than the
preceding one, introducing new complexities or requiring deeper understanding.
Accuracy: B must provide accurate and mathematically sound answers.
Explanation: B should include clear explanations for each solution, demonstrating
the thought process and mathematical principles used.

Clarity: Both A and B should use clear, concise language appropriate for the
intended educational level of the math problems.

Creativity: A is encouraged to be creative in formulating follow-up questions
that are engaging and thought-provoking.

Figure 11: The system prompt for generating FOLLOW-UP QA task data.
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System Prompt for Error Correction

Objective: To create a dialogue-based interaction centered around a math
problem between two characters A and B, where A presents the original
problem and B attempts to solve it, initially providing an incorrect solution, and
then revising it to align with the correct answer.

There should be exact four rounds in the response in the format of A:..\n
B:..\n A:..\n B...\n. The dialogue should follow the structure below:

1. A starts the dialogue by presenting a math problem. This problem should be
clearly stated and within a difficulty level appropriate for the intended
audience.

First Atftempt at Solution by B.

2. B responds to the problem with an attempt to solve it. Importantly, this
first attempt must give an incorrect answer value, demonstrating a common
misunderstanding or error that could be made in solving such a problem.

Request for Revision by A:

3. After B's response, A points out that the solution is incorrect and prompt B
to reconsider its approach and give a new answer. No need to explain the
mistake at this point. Just ask B to revise the solution.

4. Taking into account the feedback from A, B revises its solution. This time,
the answer should be correct and align with the seed answer provided initially. B
should also explain the reasoning behind the revised solution, highlighting the
correction of the initial mistake. End the response with 'The answer is
\ANSWER{THE_FINAL_ANSWER}', where THE_FINAL_ANSWER should be
a single value.

Notes:

Use the seed problem and answer provided to guide the dialogue. The final
answer should be the same as the seed answer.

Ensure the dialogue maintains a collaborative and educational tone throughout.

The interaction should mimic a tutoring session, with A acting as a guide or
teacher, and B as a learning student.

The math problem, incorrect solution, and subsequent dialogue should be
tailored to the target audience's understanding level and learning objectives.

Keep the dialogue concise yet informative, focusing on the key educational
aspects of the problem-solving process.

Figure 12: The system prompt for generating ERROR CORRECTION task data.
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System Prompt for Error Analysis

Objective: To create a dialogue-based interaction centered around a math
problem between two characters A and B, where A presents the original
problem and B attempts to solve it, initially providing an incorrect solution, and
then A pointing out the error and revising it to align with the correct answer.

There should be exact three rounds in the response in the format of A:..\n
B:..\n A:..\n. The dialogue should follow the structure below:

1. A starts the dialogue by presenting a math problem. This problem should be
clearly stated and within a difficulty level appropriate for the intended
audience.

First Attempt at Solution by B.

2. B responds to the problem with an attempt to solve it. Importantly, this
first attempt must gives an incorrect answer value, demonstrating a common
misunderstanding or error that could be made in solving such a problem. And
request for an evaluation and analysis by A:

3. After B's response, A points out the errors inside B's attempt and corrects
it into a correct solution that aligns with the given ground truth answer. End the
response with ‘The answer is \ANSWER{THE_FINAL_ANSWER}', where
THE_FINAL_ANSWER should be a single value.

Notes:

Use the seed problem and answer provided to guide the dialogue. The final
answer should be the same as the seed answer.

Ensure the dialogue maintains a collaborative and educational tone throughout.

The interaction should mimic a tutoring session, with A acting as a guide or
teacher, and B as a learning student.

Keep the dialogue concise yet informative, focusing on the key educational
aspects of the problem-solving process.

Figure 13: The system prompt for generating ERROR ANALYSIS task data.
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System Prompt for Problem Generation

Objective: Creating new math problems based on a given seed problem. The
generated problems should either explore the same topic in greater depth or apply
the same mathematical principles in a different context. Each problem should be
accompanied by a detailed solution that demonstrates the correct application of
the mathematical principles involved.

Instructions:

1. Analyze the Seed Problem: Carefully read and understand the seed math
problem provided. Identify the key mathematical concepts and principles it
involves.

2. Determine the Focus: Choose whether to delve deeper into the same topic as
the seed problem or to explore a different topic. In either case, ensure the new
problem applies the same fundamental mathematical principles.

3. Create a New Problem: Craft a new math problem. If delving deeper into the
same fopic, make the problem more complex or nuanced. If exploring a different
topic, find a creative way to apply the same principles. Ensure the problem is clear,
concise, and mathematically sound.

4. Provide a Solution: Along with the problem, provide a step-by-step solution. The
solution should be detailed enough to demonstrate the correct application of the
mathematical principles involved. The final solution must be a single value instead
of multiple values.

5. Ensure Variety and Creativity: When generating multiple problems, aim for a
variety of contexts and applications. Avoid repetitive or overly similar problems to
ensure a rich and diverse set of data.

6. Check for Accuracy and Clarity: Before finalizing, review the problem and
solution for mathematical accuracy and clarity in expression. The problem should
be challenging yet solvable, and the solution should be logical and well-explained.

Return the generated problem and solution in the following format without any
additional information:

New Problem: [New Problem]
Solution: [Solution]

Figure 14: The system prompt for generating PROBLEM GENERATION task data.
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Evaluation Prompt for Error Analysis

Evaluate the large language model's ability to identify and correct errors in an
attempted solution to a math word problem. The evaluation focuses on the model's
comprehension, analytical reasoning, and problem-solving capabilities within the
context of mathematical problem-solving. Use the following criteria for scoring:

1. Understanding and Instruction Adherence: Assess how well the AT model
understands the given task and follows the instructions. Consider whether the AT
model accurately grasps the context and objectives of the task.

2. Identification of the Wrong Attempt: Evaluate the AT model's capability to
identify and generate a reasonable and correct analysis of the wrong attempt. Assess
the depth and accuracy of the analysis.

3. Correction of the Wrong Solution: Measure the effectiveness of the AT model in
correcting the previously wrong solution into a correct one. This not only involves
providing the correct answer but also explaining the correct approach to solving the
problem, ensuring the explanation is mathematically sound and logically structured.

Scoring Guidelines (1-5 points):

1 point: The model shows very poor understanding and adherence to instructions,
provides incorrect or irrelevant analysis of the wrong attempt, and fails to correct the
solution or makes it worse.

2 points: The model demonstrates limited understanding and partial adherence to
instructions, offers an inaccurate or shallow analysis of the wrong attempt, and
corrects the solution with significant errors or misunderstandings.

3 points: The model shows fair understanding and adherence fo instructions, provides
a moderately accurate analysis of the wrong attempt with some correct elements, and
corrects the solution with noticeable errors or logical flaws.

4 points: The model demonstrates good understanding and adherence to instructions,
offers a well-reasoned and mostly accurate analysis of the wrong attempt, and
corrects the solution effectively with minor mistakes or areas for improvement.

5 points: The model exhibits excellent understanding and strict adherence to
instructions, provides a detailed and accurate analysis of the wrong attempt, and
corrects the solution perfectly with a clear, logical, and mathematically sound
explanation.

For each of the three aspects, provide a score along with a concise rationale for each
score. Explain how the AT model's performance aligns with the evaluation criteria and
contributes to effectively identifying, analyzing, and correcting the mathematical
error. End the response for each score with "Score 1: {SCORE}", "Score 2: {SCORE}",
and "Score 3: {SCORE}". The SCORE must be a number from 1-5.

Figure 15: The system prompt for evaluating ERROR ANALYSIS results using GPT-4.
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Evaluation Prompt for Problem Generation

Evaluate the large language model's ability to generate a problem and solution based
on a provided seed problem. The task assesses the model's understanding, creativity
in problem generation, and accuracy in solution. Use the following criteria for scoring:

1. Understanding and Instruction Adherence: Assess whether the AT model fully
grasps the task and adheres to the instructions given. Consider how well the
generated problem aligns with the seed problem's topic or mathematical principles.
2. Problem Relevance and Quality: Evaluate the relevance and quality of the
generated problem. Determine if it explores the same topic more deeply or applies
the same mathematical principles in a different context, while also assessing the
problem's complexity and ingenuity.

3. Solution Accuracy: Check the correctness of the solution provided for the
generated problem. Ensure the solution is logically sound, mathematically accurate,
and effectively solves the problem.

Scoring Guidelines (1-5):

1 point: The model does not understand the task, generates an unrelated problem, and
provides an incorrect or irrelevant solution.

2 points: The model shows limited understanding of the task, creates a problem
somewhat related to the seed problem, but the solution has significant errors or is
partially irrelevant.

3 points: The model demonstrates a moderate understanding, generates a problem
that is relevant and has quality, and provides a solution that is mostly correct with
some errors or inconsistencies.

4 points: The model exhibits a good understanding, creates a relevant and well-
constructed problem, and provides a solution that is largely correct with minor
mistakes.

5 points: The model shows an excellent understanding of the task, generates a highly
relevant and challenging problem, and provides a perfectly accurate and
comprehensive solution.

When scoring, consider the overall effectiveness of the AL model in generating a
coherent and related problem-solution pair. Provide a score for each criterion, and a
rationale for each score, detailing how the AT model's performance aligns with the
evaluation criteria and contributes to the quality of the generated content. End the
response for each score with "Score 1: {SCORE}", "Score 2: {SCORE}", and "Score 3:
{SCORE}". The SCORE must be a humber from 1-5.

Figure 16: The system prompt for evaluating PROBLEM GENERATION results using GPT-4.
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Prompt for MathChat,,. Generation

You are given a seed math mathematical problem and its answer, both of which
are human-annotated and 100% correct. The objective is to create a simulated
multi-round conversation between a human user (<User>) and an AT assistant
(<Assistant>) based on the given math problem. The conversation should explore
various aspects of the problem, including but not limited to direct solutions,
rephrasings, follow-up queries, solution evaluations, and requests for similar
problems. The dialogue must adhere to the following guidelines:

Conversation Participants:

<User>: The human user, who will initiate queries, seek clarifications, always ask
questions.

<Assistant>: The AI assistant, tasked with providing clear, accurate, and
educational responses to the user's inquiries.

Dialogue Structure:

The conversation must be limited to a maximum of five rounds.

Each round consists of a question from the <User> followed by an answer from the
<Assistant>.

Content Guidelines:

Make sure all the conversations are related to the math problem itself, do not
include any irrelevant chat like thank you and bye-bye, etc.

The Content may involve but not limited to rephrasing the problem, seeking
further explanations, deliberately giving wrong answers and asking for correction,
or asking for additional, similar problems that could appear in real life.

Input Format:
Seed Problem: <problem>
Seed Answer: <answer>

Desired output format:
<User> ...
<Assistant> ...
up to five rounds of conversation
<User> ...
<Assistant> ...

Figure 17: The system prompt for generating the MathChaty,. dataset for supervised fine-tuning.
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