
Overcoming Policy Collapse
in Deep Reinforcement Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

A long-awaited characteristic of reinforcement learning agents is scalable perfor-1

mance, that is, to continue to learn and improve performance with a never-ending2

stream of experience. However, current deep reinforcement learning algorithms3

are known to be brittle and difficult to train, which limits their scalability. For4

example, the learned policy can dramatically worsen after some initial training as5

the agent continues to interact with the environment. We call this phenomenon6

policy collapse. We first establish that policy collapse can occur in both policy7

gradient and value-based methods. Policy collapse happens in these algorithms in8

typical benchmarks such as Mujoco environments when trained with their com-9

monly used hyper-parameters. In a simple 2-state MDP, we show that the standard10

use of the Adam optimizer with its default hyper-parameters is a root cause of11

policy collapse. Specifically, the standard use of Adam can lead to sudden large12

weight changes even when the gradient is small whenever there is non-stationarity13

in the data stream. We find that policy collapse can be successfully mitigated by14

using the same hyper-parameters for the running averages of the first and second15

moments of the gradient. Additionally, we find that aggressive L2 regularization16

also mitigates policy collapse in many cases. Our work establishes that a minimal17

change in the existing usage of deep reinforcement learning can mitigate policy18

collapse and enable more stable and scalable deep reinforcement learning.19

1 Introduction20

AI systems that take advantage of available data and computation tend to outperform systems that do21

not (Sutton, 2019). Historically, in games like Chess and Go, systems that utilize the available data22

and computation have defeated all other systems (Campbell et al., 2002; Silver et al., 2016). Most23

recently, large language models like GPT-4 (OpenAI, 2023) have dramatically outperformed previous24

natural language processing systems, primarily due to the amount of data and computation used by25

them. The need to improve performance with data is particularly relevant for reinforcement learning26

systems (Sutton and Barto, 2018) as they experience a potentially unending data stream.27

Unfortunately, the performance of many current deep reinforcement learning algorithms does not28

always improve with more experience. The policy learned by these algorithms can dramatically29

worsen as the agent continues interacting with the environment, a phenomenon we call policy collapse.30

The evidence of policy collapse is scattered throughout the reinforcement learning literature. For31

instance, policy collapse can be observed in several reinforcement learning algorithms such as DQN,32

PPO, and DDPG, as shown in papers by Shaul et al. (2016, Figure 7), Henderson et al. (2018, Figure33

2), and Tassa et al. (2018, Figure 4), respectively.34

Although we can observe policy collapse in several works, it has not been pointed out and studied35

in the literature. As a first step, we establish in Section 3 that policy collapse can occur in two36

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



PPO on Ant-v3 DQN on MinAtar-Asterix-v1

Episodic return

Figure 1: PPO and DQN do not scale with data. As these reinforcement learning agents continue to
interact with the environment, instead of improving, their performance degrades. In the case of PPO,
the policy completely collapses and performs worse than it did in the beginning. While for DQN, the
policy does not fully collapse, but there is still a significant degradation in performance.

widely-used algorithms Proximal Policy Optimization, (PPO), Deep Q-Network (DQN) in typical37

benchmarks such as Mujoco environments (Todorov et al., 2012). Figure 1 shows a representative38

performance of PPO in one of the OpenAI gym (Brockman et al., 2016) environments and that39

of DQN in a MinAtar environment (Young and Tian, 2019). For these experiments, we employed40

commonly used hyper-parameter settings for PPO and DQN, the details of which are in Appendix A,41

and the rest of the experimental details are in Section 3. Figure 1 shows that the performance of both42

algorithms drops as they continue to interact with the environment. This performance degradation43

in PPO and DQN means that they do not scale with data; their performance worsens with more44

data. Policy collapse is generally absent in the literature because experiments with PPO on Mujoco45

environments are usually only run for 3M time steps and DQN on MinAtar for 5M time steps.46

Policy collapse is reminiscent of two phenomena in continual learning, catastrophic forgetting and47

loss of plasticity. Deep networks are known to forget previously acquired information when trained48

on a non-stationary stream of data (McCloskey and Cohen, 1989; French, 1999; Parisi et al., 2019).49

Similar to continual learning, reinforcement learning agents have to learn from a non-stationary50

stream of data due to a changing policy, bootstrapping, etc. When the agent suffers from policy51

collapse, it has forgotten the good policy it had learned at one point. The second problem deep52

networks face when learning from a non-stationary stream of data is loss of plasticity (Dohare et53

al., 2021; Lyle et al., 2022; Nishikin et al., 2022; Abbas et al., 2023), where deep networks lose the54

ability to learn new things. Once the agent forgets the good policy, it does not re-learn it, which could55

be because the agent has lost plasticity. We take a deep look at policy collapse in a 2-state MDP and56

understand its connections to plasticity loss and forgetting, in Section 4. Then in section 5, we show57

how simple solutions help mitigate policy collapse in DQN and PPO. And finally, in section 6, we58

discuss the connection between forgetting and plasticity in reinforcement learning.59

2 Background60

In reinforcement learning (RL), an agent learns to achieve its goal by trial and error. The problem61

of reinforcement learning can be mathematically formalized as a Markov Decision Process (MDP).62

Formally, let M = (S,A,P, r, γ) be an MDP which includes a state space S, an action space A, a63

state transition probability function P : S × A × S → R, a reward function r : S × A → R, and64

a discount factor γ ∈ [0, 1). For a given MDP, the agent interacts with the MDP according to its65

policy π, which maps a state to a distribution over the action space. At each time-step t, the agent66

observes a state St ∈ S and samples an action At from π(·|St). Then it observes the next state67

St+1 ∈ S according to the transition function P and receives a scalar reward Rt+1 = r(St, At) ∈ R.68

Considering an episodic task with horizon T , we define the return Gt as the sum of discounted69

rewards, that is, Gt =
∑T

k=t γ
k−tRk+1. The action-value function of policy π is defined as70

qπ(s, a) = E[Gt|St = s,At = a], ∀(s, a) ∈ S × A. Similarly, the state-value function vπ maps71

states to expected returns, vπ(s) = E[Gt|St = s], ∀s ∈ S.72

The agent aims to find an optimal policy π∗ that maximizes the expected return starting from some73

initial states. Generally, there are two approaches: value-based methods and policy gradient methods.74

For example, Q-learning (Watkins and Dayan, 1992) is a value-based method designed to learn an75

2



action-value function estimate Q : S×A → R of an optimal policy. Mnih et al., (2015) generalized Q-76

learning to DQN, which uses a neural network to approximate the action-value function. Furthermore,77

to improve training stability, Mnih et al., (2015) introduced a target neural network Q̂, a copy of the78

Q-network and it is updated less frequently than the Q-network. In contrast to value-based methods,79

policy gradient methods directly learn a policy. Among policy gradient methods, PPO (Schulman80

et al., 2107) is one of the most widely used. The key idea of PPO is to constrain the policy update81

by using a clipped surrogate objective to prevent the policy from changing too much. In practice, to82

achieve good performance and improve training stability, a practical implementation of PPO usually83

employs a lot of tricks (Huang et al., 2022), such as advantage normalization, loss clipping, gradient84

clipping, entropy regularization, etc.85

Gradient descent algorithms like Stochastic Gradient Descent (SGD) are widely recognized as one86

of the most prevalent algorithms for training neural networks. However, the performance of SGD87

is very sensitive to the learning rate. And choosing a suitable learning rate can be difficult and88

time-consuming. To address this challenge, researchers have developed many adaptive optimizers89

that are less sensitive to learning rates, significantly improving optimization performance (Duchi90

et al., 2011; Tieleman and Hinton, 2012; Kingma and Ba, 2015). Among them, Adam (Kingma91

and Ba, 2015) is one of the most popular adaptive optimizers and is the optimizer of choice in92

many applications of deep reinforcement learning. It keeps an exponentially moving average of past93

gradients and squared gradients, updating parameter θ as the following:94

mt = β1mt−1 + (1− β1) gt and m̂t = mt/(1− βt
1)

vt = β2vt−1 + (1− β2) g
2
t and v̂t = vt/(1− βt

2)

θt = θt−1 − α m̂t/(
√

v̂t + ϵ)

where gt is the gradient, m and v are initialized as 0s, β1, β2 ∈ [0, 1) are two hyper-parameters, and95

α is the learning rate. In practice, the default βs (β1 = 0.9, β2 = 0.999) are usually used (Abadi et96

al., 2015, Paszke et al., 2019; Babuschkin et al., 2020) without further adjustment in both supervised97

learning and reinforcement learning.98

3 Policy Collapse in Deep Reinforcement Learning99

Here, we test the stability and scalability of Proximal Policy Optimization (PPO) on Mujoco en-100

vironments and Deep-Q Networks (DQN) on MinAtar environments. PPO is a policy gradient101

method, while DQN is a value-based method, so these algorithms cover two types of commonly used102

algorithms. We chose PPO as a representative for policy gradient methods as it is computationally103

cheap, which allows us to perform thorough and reproducible experiments. Additionally, it has been104

used in many successful applications, from Dota-2 (OpenAI et al., 2019) to reinforcement learning105

from human feedback in ChatGPT. We chose DQN as it can perform human-level control in Atari106

games (Mnih et al., 2015). To test the scalability of these methods, we need to run the experiments107

longer than the common practice in the literature. Typically, DQN is tested on the Arcade learning108

environment (ALE) (Bellemare et al., 2019) for 200M frames, which takes almost a week to run on109

modern GPUs. Running these experiments for longer makes it computationally infeasible to perform110

thorough and reproducible experiments. Young and Tian (2019) developed the MinAtar environments,111

which capture many critical behavioural aspects of the ALE while allowing good learning with DQN112

in order of magnitude fewer time steps than ALE. DQN can achieve good performance on MinAtar113

in just 5M time steps, making it feasible to run long experiments. As a natural choice for our long114

experiments, we chose to test DQN on MinAtar instead of the ALE.115

In the first experiment, we tested the scalability of PPO. Usually, PPO is trained for 1-3 million116

time steps on the Mujoco environments. However, to test the stability and scalability of PPO we117

trained it for up to 100M time steps. We used the standard setting of hyper-parameters for PPO, and118

their values are given in Appendix A. We used the undiscounted episodic return as the measure of119

performance. The results of the experiments are shown in Figure 2. The x-axis in the plots is the120

time step, and the y-axis is the undiscounted episodic return in bins of 100k times steps. The first121

points in the plots are the average return for the episodes in the first 100k time steps, and the next122

point is the average return for the episodes in the next 100k time steps and so on. We performed123

30 independent runs for each environment. In all our experiments we report the 95% bootstrapped124

confidence interval as suggested by Patterson et al. (2023). In Figure 2, the shaded region shows the125

95% bootstrapped confidence interval.126

3



Ant-v3

-1000

4000

0 30M15M

1000

2000

3000

0

Walker-v3

0

2500

0 30M15M

1000

1500

2000

500

Hopper-v3

0

2500

0 30M15M

1000

1500

2000

500

HalfCheetah-v3

-1000

4000

0 100M50M

1000

2000

3000

0

Time Step

Expected
Return

(30 Runs)

Figure 2: PPO on Mujoco environments. After initial learning, the policy learned by PPO kept
degrading. And, in many cases, its performance dropped as low as it was in the beginning. PPO did
not scale with data. Instead of improving, its performance decreased with more experience.

Asterix-MinAtar-v1

5

30

0 50M25M

15

20

25

10

Breakout-MinAtar-v1

9

24

0 30M15M

15

18

21

12

Freeway-MinAtar-v1

40

65

0 30M15M

50

55

60

45

SpaceInvader-MinAtar-v1

20

120

0 30M15M

60

80

100

40

Time step

Expected
Return

(20 runs)

Figure 3: DQN on MinAtar environments. Similar to PPO, after initial learning, the performance of
DQN decreased. However, the performance did not degrade in all environments, and the degradation
was not as severe as that of PPO. DQN did not always scale with data, and its performance did not
improve with more experience.

The performance of PPO had a similar trend in all the environments. Performance improved for the127

first few million time steps, then it hit a plateau, and finally, it dropped, usually to a level below what128

it had in the first 100k time steps. Another thing to note is that once the performance dropped, it did129

not improve, suggesting that the agent might have lost plasticity, which is the ability to learn new130

things. These results show that PPO does not scale with data as it displays consistent policy collapse131

when used with standard hyper-parameters.132

In the next experiment, we tested the scalability of DQN in MinAtar environments. We used the133

DQN implementation from the Tianshou library (Weng et al., 2022). DQN can get to a level of good134

performance on MinAtar in 5M time steps. To test the scalability of DQN we trained it for 50M time135

steps. The results of experiments with DQN are shown in Figure 3. In Figure 3, the x-axis is the time136

step, and the y-axis is the undiscounted episodic return in bins of 1M times steps. We performed 20137

independent runs for each environment.138

Figure 3 shows that the performance of DQN degraded some environments, Asterix and Freeway. In139

these environments, the performance of DQN first improved, then plateaued, and finally, it started to140

drop. The drop in the performance of DQN was gradual and not as common as that of PPO. DQN did141

not always scale with more data, its policy got worse in some environments with more experience,142

although the policy did not fully collapse.143

The experiments in this section showed that policy collapse severely affects PPO. Similarly, DQN144

is also affected by policy collapse, although the collapse is not as severe as that in PPO. These145

experiments point out a major problem with current deep reinforcement learning algorithms: they are146

not stable during training, and their scalability is limited due to policy collapse.147

4 Understanding Policy Collapse in a Small MDP148

To overcome policy collapse, we first need to understand what happens to the learning agent when the149

policy collapses. However, fully understanding policy collapse in modern deep reinforcement learning150

algorithms in standard environments is difficult because deep reinforcement learning algorithms151

have many interacting parts, such as bootstrapping, off-policy learning, function approximation,152

exploration, and changing policy. Policy collapse could be due to the deadly triad (Baird, 1995;153

Sutton, 1995), where reinforcement learning algorithms can diverge if they face off-policy learning,154

4



U

L

TT

Right, 1

Right, 0

Left, 0

Left, 2

[1, 0]

[0, 1] Inputs

Softmax

Network
output

A) A 2-state MDP B) Policy learning network 

Hidden unit
(tanh)

Expected
Return

(500 runs)

1.3

1.5

25k 50k
Time step

C) PPO on 2-state MDP 

0

Figure 4: Policy collapse in a 2-state MDP. The figure on the right shows the 2-state MDP, the figure
in the middle shows the network used by the learning agent, and the plot on the right shows the
performance of PPO on this 2-state MDP. A 2-dimensional vector represents the states of the MDP.
When PPO learns using a function approximator, it lacks stability, and its performance degrades as
the agent continues interacting in the MDP. PPO is unstable even in this simple MDP.

bootstrapping, and function approximation. Additionally, modern deep reinforcement learning155

algorithms have dozens of hyper-parameters, and a wrong setting of any one of them could be156

causing policy collapse. To make matters worse, the environments where deep reinforcement learning157

algorithms are tested are extremely complicated and computationally expensive, which makes it158

impossible to do a full grid search over the hyperparameter space.159

We used a simple MDP to gain insights into policy collapse in modern deep reinforcement learning160

algorithms. The MDP consists of two states, the agent can take two actions, left and right, in both161

states. Both actions take the agent to the terminal state. However, the reward associated with each162

action is different. The MDP is shown in Figure 4A. After termination, the agent starts with equal163

probability in both states. There are four deterministic policies for this MDP, and the best one is to164

choose the right action in state U and the left action in state L. The expected return for the optimal165

policy is 1.5, while for other deterministic policies, it is 1.0, 0.5, and 0.0.166

We trained an agent using PPO on this MDP. The agent used a neural network to learn a policy. The167

neural network had one hidden layer with one unit and tanh activation. The input to the network is a168

two-dimensional vector, which is [1, 0] when the agent is in state U and [0, 1] when the agent is in169

state L. The action probabilities are obtained by passing the network outputs into a softmax operator.170

Figure 4B shows the policy learning network. The agent used a different network with one hidden171

layer and one hidden unit to learn a value function for the current policy. The hyper-parameter values172

for PPO for this experiment are shown in Appendix A.173

We use the expected return as the performance measure in this experiment. As we have access to174

the entire state space, we can calculate the exact expected return instead of approximating it using175

the actual return. We performed 500 independent runs for this experiment. The results are shown in176

Figure 4C. In Figure 5A, we plot the performance of a single run.177

The performance of PPO in Figure 4C follows the same trend as its performance in the Mujoco178

environments. The performance of PPO improves at first, then it plateaus at a high level and finally179

drops. We find two interesting things to note if we look at the individual runs of PPO in Figure 5A.180

First, the agent gets stuck at different sub-optimal policies. And second, the learned policy is very181

unstable. It fluctuates rapidly between different policies.182

The agent uses a neural network and a softmax policy parameterization. As the optimal policy is183

deterministic, the optimal values of the weights have infinite magnitude. This means that the gradient184

will force the outgoing weights in the network to grow. The probability of taking a different action185

will decrease exponentially as the weights increase. Once the weights become large enough, the186

agent almost never takes an exploratory action. In Figure 5B, we plot the outgoing weights of the187

policy network, and as we suspected, the weights kept increasing over time. The large magnitude of188

outgoing weights explains why the learned policy gets stuck at different deterministic policies.189

The sudden jumps in the policy in Figure 5A suggest that there might be sudden large changes in190

the representation provided by the single hidden unit. Figure 5C shows the absolute difference in191

the output of the hidden unit for the two states. Let’s call the output of the hidden unit for a given192

5



50k25k0

0.5

1

1.5

17495

A) Expected Return 
Time step

50k25k0
0

4

8

17495

B) Mean Outgoing weight
 magnitude

6

2

50k25k0
0

1

2

17495

C) Magnitude of difference in the
 representation of two states

1.5

0.5

50k25k0
0

.2

17495

D) Average change in the 
magnitude of input weights

.3

.1

50k25k0
0

.08

17495

E) Average magnitude of 
gradient of input weights

.12

.04

Figure 5: A deep look at one specific run of PPO on the 2-state MDP. Different figures plot the
evolution of different quantities as the agent interacted with the MDP. The magnitude of the output
weights of the network kept increasing (Figure B) because the optima lie at infinity, making it difficult
to try exploratory actions. Once the representation of the two states became sufficiently similar, at
time step 17495 (Figure C), the agent kept taking the same action in both states. This resulted in the
agent getting stuck at a sub-optimal policy (Figure A). The sudden large changes in input weights
(Figure D) caused sudden large changes in the representation and the learned policy. These large
changes were caused by the standard use of the Adam optimizer, which caused large weight changes
even when the gradient was small (Figure E).

state the representation of the state. Note that when the difference in the representation of the two193

states is small, the states will look similar to the final layer. Figure 5 shows that sudden jumps in the194

policy happen whenever the difference in the state representation changes dramatically. The sudden195

changes in the representation should follow large changes in the input weights, which we observe in196

Figure 5D. In Figure 5E, we plot the average magnitude of the gradients of the input layer. Perhaps197

surprisingly, there are large changes in the input weights even when the gradient is small, such as at198

time step 17495.199

The large updates, even when the gradient is small, are due to the Adam optimizer. Adam keeps200

running averages of the first and second moments of the gradient. The averages use β1 and β2 to201

control the importance of recent gradients in the average. In this experiment, we set β1 = 0.9 and202

β2 = 0.999, which are the default βs in popular deep learning frameworks like Pytorch. In the203

individual run, when the policy changes at time step 17495, there is a sudden non-zero gradient. The204

sudden non-zero gradient happened because the agent took an exploratory action. Assuming that205

the gradient before and after time step 17495 is exactly zero, then during the next ten updates, these206

values of β1 and β2 would lead to an update that is 20 times larger than the gradient (see Appendix B207

for details). This large weight change can lead to a large change in the policy, which explains why208

the learned policy fluctuates so abruptly.209

Policy collapse in the 2-state MDP gave us various insights into the phenomenon. We learned that the210

agent gets stuck at sub-optimal policies when the representation does not separate the two states and211

outgoing weights become too large. And we found that the instability in PPO is due to the standard212

use of Adam(β1 = 0.9, β2 = 0.999), which caused sudden changes in the policy even when the213

gradient was small. These sudden changes caused the agent to forget the previously learned policy.214

This instability caused by the standard use of Adam could be the reason why Adam has been observed215

to cause more forgetting than SGD (Ashley et al., 2021). Similar to our analysis, Lyle et al. (2023)216

found that the standard use of Adam causes issues learning from a non-stationary stream of data.217

They showed that standard use of Adam worsens the loss of plasticity. In complement to that, we218

showed that the standard use of Adam also causes forgetting.219

5 Overcoming Policy Collapse220

Insights from policy collapse in the 2-state MDP guide us towards potential solutions to policy221

collapse. The first idea is to use L2 regularization (Goodfellow et al., 2016, pp. 227-230), it shrinks222

all the weights in the network by a constant rate. L2 regularization has also been shown to reduce the223

loss of plasticity (Dohare et al., 2021). It can reduce the effect of large updates. And it will reduce224

feature saturation by reducing weight magnitudes, enabling the network to have a good representation.225

Another idea is to tackle the problem of large updates even when the gradients are small. Lyle et226

al. (2023) suggested in their plasticity work to use equal values for β1 and β2. Recall that these227

parameters control the rate of the running averages for the first and second moments of the gradient.228

6



Ant-v3

-1000

4000

0 30M15M

1000

2000

3000

0

Walker-v3

0

2500

0 30M15M

1000

1500

2000

500

Hopper-v3

0

2500

0 30M15M

1000

1500

2000

500

HalfCheetah-v3

-1000

4000

0 100M50M

1000

2000

3000

0

5000 3000 5000

PPO

PPO+L2

PPO(non-stationary Adam)

PPO
PPO PPO

PPO(non-stationary Adam)
PPO(non-stationary Adam)

PPO(non-stationary Adam)

PPO+L2

PPO+L2

PPO+L2

Expected
Return

(30 runs)

Figure 7: PPO with non-stationary Adam and L2 on Mujoco environments. Both methods successfully
mitigate policy collapse in all environments, improving the scalability of PPO.

Adam, with equal values of β1 and β2, is also intuitively more reasonable in non-stationary problems229

like reinforcement learning, where the optimization landscape and the scale of the gradient can230

change after each update. We call Adam with equal values for β1 and β2 non-stationary Adam.231

50k25k01.3

1.5

Expected
 Return 

(500 runs)

PPO + L2

PPO

PPO (non-stationary Adam)

Figure 6: PPO with L2 regularization
and non-stationary Adam on the 2-state
MDP. Both L2 and non-stationary Adam
successfully mitigate policy collapse.
PPO+L2 is unstable as there are sud-
den jumps in the policy, but the con-
stant weight shrinking by L2 enables the
agent to find the optimal policy again.
While, the policy learned by PPO + non-
stationary Adam is more stable.

First, we tested if PPO with L2 regularization or non-232

stationary Adam can overcome policy collapse in our MDP.233

The experiment design and hyper-parameters were the234

same as in Section 4. The additional setting for the hyper-235

parameters for L2 and non-stationary-Adam is present in236

Appendix A. The results are plotted in Figure 6.237

The data in Figure 6 shows that both L2 regularization238

and non-stationary Adam can maintain a good level of239

performance. Although both non-stationary Adam and L2240

get to a high level of performance, they do not get to the241

optimal policy, a return of 1.5, in all runs. Another thing242

to note is that the performance of non-stationary Adam243

was more stable than L2. This is not surprising as non-244

stationary Adam fixes the source of instability while L2245

only reduces the harm caused by the instability of standard246

Adam. Both L2 regularization and non-stationary Adam247

mitigated policy collapse with PPO in our MDP.248

In the next experiment, we test if PPO using L2 regulariza-249

tion or non-stationary Adam can overcome policy collapse250

in Mujoco environments. First, we compare these methods251

when using standard parameters for PPO. The experiment252

design is the same as in Section 3. For L2 regularization,253

we tuned the weight-decay parameter, while for non-stationary Adam, we tuned β1, and had β2 = β1.254

We chose the hyper-parameter that had the highest performance after 30M time steps. The results of255

the experiment are shown in Figure 7.256

Figure 7 shows that in all the environments, the performance of non-stationary Adam and L2257

does not get worse over time. Their performance kept improving with more experience. Both258

methods overcome policy collapse for the standard setting of PPO hyper-parameters in the Mujoco259

environments. The performance of PPO with non-stationary Adam and L2 scaled with experience.260

Deep reinforcement learning methods like PPO are sensitive to their hyper-parameter settings. In261

the next experiment, we tested if PPO with non-stationary Adam or L2 can avoid policy collapse for262

different parameter settings. We tested these methods in Ant-v3 for three different hyper-parameters263

for PPO. The first is ReLU activation (Nair and Hinton, 2010) instead of tanh, as ReLU has been264

shown to perform a lot worse than tanh(Andrychowicz et al., 2020). Second, we use a larger value of265

the clipping parameter in PPO, this would cause larger changes in the policy. And third, was to use266

more updates after each buffer is collected, good performance in this case will improve the sample267

efficiency of PPO. And fourth, we use a smaller replay buffer. For this experiment, we tuned the268

weight-decay and step-size for L2, and beta and step-size for non-stationary Adam. The details of the269

hyper-parameters are shown in Appendix A. Again, we chose the hyper-parameter with the highest270

performance after 30M time steps. The results of these experiments are shown in Figure 8.271

The data in Figure 8 shows that PPO with L2 and non-stationary Adam had a different performance272

for some parameter settings. For a larger value of the clipping parameter, both L2 and non-stationary273

7



Clip=0.3

-1000

4000

0 30M15M

1000

2000

3000

0

ReLU activation

-1000

4000

0 30M15M

1000

2000

3000

0

Iterations=20

-1000

4000

0 20M5M

1000

2000

3000

0

5000 5000

PPO

PPO+L2

PPO(non-stationary Adam)

PPO

PPO(non-stationary Adam)

PPO+L2
Expected

Return
(30 runs)

5000

Time step

PPO

PPO(non-stationary Adam)

PPO+L2

Figure 8: PPO, PPO with L2, and PPO with non-stationary Adam with different hyper-parameter
settings of PPO. For all these hyper-parameters, PPO performs worse than its standard hyper-
parameter setting. PPO+L2 only mitigated policy collapse in all cases except when we used the
ReLU activation. Both methods reduced the parameter sensitivity of PPO and non-stationary Adam
successfully mitigated policy collapse in all cases.

Asterix-MinAtar-v1

5

30

0 50M25M

15

20

25

10

Breakout-MinAtar-v1

9

24

0 30M15M

15

18

21

12

Freeway-MinAtar-v1

40

65

0 30M15M

50

55

60

45

SpaceInvader-MinAtar-v1

20

120

0 30M15M

60

80

100

40

Time step

DQN

DQN
DQN

DQN

DQN(non-stationary Adam) DQN(non-stationary Adam)

DQN(non-stationary Adam)
DQN(non-stationary Adam)

Expected
Return

(20 runs)

Figure 9: DQN with non-stationary Adam on MinAtar environments. Non-stationary Adam
successfully mitigates policy degradation in Asterix and Freeway. Non-stationary Adam improves
the stability of DQN.

Adam mitigated policy collapse as well as had a good performance (Figure 8A). However, when274

used with the ReLU activation, L2 did not achieve good performance (Figure 8B). And, when using275

a large number of iterations, L2 significantly outperformed non-stationary Adam (Figure 8C). An276

important thing to note is that L2 only performed well for a large value of weight decay (0.001). For277

smaller values of weight decay, we observed policy collapse. While, for larger values of weight decay,278

the performance was never good. L2 regularization overcame policy collapse in all cases except279

when using ReLU activation. While Non-stationary Adam mitigated policy collapse in all cases,280

although it did not perform well when using a large number of iterations. Both L2 regularization and281

non-stationary Adam reduced the sensitivity of PPO to its hyper-parameters.282

Finally, we tested if DQN with non-stationary Adam can overcome policy degradation in MinAtar283

environments. We tuned β1 for non-stationary Adam; other parameters were the same as in Section 3.284

We performed 20 independent runs and performed the experiments in all environments. The results285

of the experiment are shown in Figure 9.286

Figure 9 shows that the performance of DQN with non-stationary Adam does not get worse over time287

in any environment. It performed better than regular DQN on SpaceInvader but worse on Breakout.288

DQN with non-stationary Adam scales with data as its performance improves with more data.289

In conclusion, we tested whether deep reinforcement learning algorithms can overcome policy290

collapse using L2 regularization or non-stationary Adam. We found that L2 regularization helped291

overcome policy collapse in all cases except when using ReLU activation. On the other hand, non-292

stationary Adam overcame policy collapse in all cases with both PPO and DQN. The performance293

of deep reinforcement learning algorithms with non-stationary Adam kept improving with data.294

Non-stationary Adam enabled stable and scalable deep reinforcement learning.295

6 Discussion296

Policy collapse is related to the forgetting problem faced by neural networks in non-stationary297

problems. When the policy collapses, the agent has forgotten the previously learned policy. This298

form of forgetting differs from what is commonly studied in continual learning, where forgetting is299

8



usually studied in a sequence of stationary supervised learning problems. Although some prior works300

(Fedus et al., 2020) have studied forgetting in deep reinforcement learning algorithms, the effect of301

forgetting in reinforcement learning remains obscure. In our work, we found that the standard use302

of Adam (β1 = 0.9, β2 = 0.999) is a cause of forgetting. The standard use of Adam might be the303

reason why Adam has been observed to forget more severely than SGD (Ashley et al., 2021). And it304

might be the reason why most algorithms addressing forgetting do not use Adam or RMSprop; rather,305

they use algorithms that do not have Adam-type normalization (Mirzadeh et al., 2020).306

Our work adds to evidence that methods that help mitigate plasticity loss also improve reinforcement307

learning algorithms’ performance. Recent works have shown that plasticity injection in different308

forms improves the performance of reinforcement learning algorithms (D’Oro et al., 2023; Sokar309

et al., 2023; Nikishin et al., 2023; Lyle et al., 2023). The work of Lyle et al. (2023) is particularly310

relevant to ours. They found that the standard use of the Adam optimizer significantly worsens the311

loss of plasticity. In contrast, we found that the standard use of Adam also causes policy collapse and312

forgetting. Interestingly, the original DQN (Mnih et al., 2015) used the same rate for averaging the313

first and second moments of the gradient. However, recent implementations of DQN, like DQN Zoo314

(Quan and Ostrovski, 2020), do not have the same rate for averaging the first and second moments315

of the gradient. Suggesting that good parameters for averaging the first and second moments of the316

gradient were found, but the importance of having equal rates for the first and second moments of the317

gradient was overlooked, and the community moved to the now default parameters of Adam.318

We showed that non-stationary Adam significantly improved the stability of deep reinforcement319

learning methods. A long line of work has been trying to reduce instability in deep reinforcement320

learning. Methods like trust region policy optimization (Schulman et al., 2015) and PPO were321

proposed to reduce the change in the policy, as the policy learned by vanilla actor-critic methods322

(Barto et al., 1983; Konda and Tsitsiklis, 1999; Mnih et al., 2016) varied a lot. Our work complements323

these works as non-stationary Adam and L2 regularization can be applied to all these algorithms.324

Various previous works have pointed out that deep reinforcement learning methods are brittle and325

sensitive to their hyper-parameters (Islam et al., 2017; Henderson et al., 2019). We made progress in326

reducing the brittleness and hyper-parameter sensitivity of deep reinforcement learning algorithms by327

showing that non-stationary Adam also reduced the hyper-parameter sensitivity of PPO.328

After seeing the severe policy collapse in PPO, one might wonder how PPO was applied successfully329

to Dota-2 and ChatGPT. We found that the learning system in Dota-2 explicitly tried to counteract330

the problem with standard Adam. They clipped the gradient per parameter to be less than 5
√
vt in331

magnitude (OpenAI et al., 2019, page 5). Recall that vt is the running estimate of the second moment332

of the gradient, and it is used in the denominator of Adam’s update. We suspect that this clipping was333

critical to the success of Dota-2 as it would also reduce the instability in PPO.334

7 Conclusion, Limitations, and Future Work335

We performed an empirical analysis of the phenomenon of policy collapse and found that the standard336

use of the Adam optimizer is a cause of policy collapse. This finding suggests that directly picking337

up tools from supervised learning can harm reinforcement learning algorithms. We need to be more338

careful when borrowing tools developed in other domains. A similar observation, but for recurrent339

networks, was made by Schlegel et al. (2022), where they pointed out that the best design choices340

for recurrent networks in supervised learning do not work well in reinforcement learning problems.341

The second conclusion is that a minimal change in the use of the Adam optimizer, by using the same342

rate for running averages of the first and second moment of the gradient, significantly improves the343

stability and scalability of reinforcement learning algorithms.344

The main limitation of our work is that we did not study optimizers like SGD using momentum. These345

optimizers do not have the normalization like Adam. That choice was because Adam and RMSprop346

are the two commonly used optimizers in the literature. But it would be an exciting direction for future347

work to thoroughly study optimizers like SGD with momentum in reinforcement learning problems.348

Although we did not observe policy collapse when using non-stationary Adam, it remains to be seen349

if this simple solution will also fix policy collapse in larger and more complicated reinforcement350

learning systems. In light of this, another important direction for future work is to develop algorithms351

for non-stationary problems that do not suffer from forgetting and loss of plasticity, maybe something352

along the lines of Elsayed and Mahmood (2023).353

9



References354

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Zheng, X. (2016).355

Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint356

arXiv:1603.04467.357

Abbas, Z., Zhao, R., Modayil, J., White, A., & Machado, M. C. (2023). Loss of Plasticity in Continual358

Deep Reinforcement Learning. arXiv preprint arXiv:2303.07507.359

Andrychowicz, M., Raichuk, A., Stańczyk, P., Orsini, M., Girgin, S., Marinier, R., ... & Bachem,360

O. (2020). What matters in on-policy reinforcement learning? a large-scale empirical study. arXiv361

preprint arXiv:2006.05990.362

Ashley, D. R., Ghiassian, S., & Sutton, R. S. (2021). Does the Adam Optimizer Exacerbate Catas-363

trophic Forgetting?. arXiv preprint arXiv:2102.07686.364

Babuschkin, I., Baumli, K., Bell, A., Bhupatiraju, S., Bruce, J., Buchlovsky, P., ... & Viola, F. (2020).365

The DeepMind JAX ecosystem. https://github.com/deepmind366

Barto, A. G., Sutton, R. S., & Anderson, C. W. (1983). Neuronlike adaptive elements that can367

solve difficult learning control problems. IEEE transactions on systems, man, and cybernetics, (5),368

834-846.369

Bellemare, M. G., Naddaf, Y., Veness, J., & Bowling, M. (2013). The arcade learning environment:370

An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47, 253-279.371

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., & Zaremba, W.372

(2016). Openai gym. arXiv preprint arXiv:1606.01540.373

Campbell, M., Hoane Jr, A. J., & Hsu, F. H. (2002). Deep blue. Artificial intelligence, 134(1-2),374

57-83.375

Dohare, S., Sutton, R. S., & Mahmood, A. R. (2021). Continual backprop: Stochastic gradient376

descent with persistent randomness. arXiv preprint arXiv:2108.06325.377

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and378

stochastic optimization. Journal of machine learning research.379

D’Oro, P., Schwarzer, M., Nikishin, E., Bacon, P. L., Bellemare, M. G., & Courville, A (2023).380

Sample-Efficient Reinforcement Learning by Breaking the Replay Ratio Barrier. In International381

Conference on Machine Learning 2023.382

Elsayed, M., & Mahmood, A. R. (2023). Utility-based Perturbed Gradient Descent: An Optimizer383

for Continual Learning. arXiv preprint arXiv:2302.03281.384

Fedus, W., Ghosh, D., Martin, J. D., Bellemare, M. G., Bengio, Y., & Larochelle, H. (2020). On385

catastrophic interference in atari 2600 games. arXiv preprint arXiv:2002.12499.386

French, R. M. (1999). Catastrophic forgetting in connectionist networks. Trends in cognitive sciences,387

3(4), 128-135.388

Goodfellow, I., Bengio, Y., & Courville, A., 2016. Deep Learning. MIT Press389

Hinton, G., Srivastava, N., & Swersky, K (2012). Neural networks for machine learning lecture 6a390

overview of mini-batch gradient descent. page 14, 2012.391

Huang, S., Dossa, R. F. J., Raffin, A., Kanervisto, A., & Wang, W. (2022). The 37 implementation392

details of proximal policy optimization. The ICLR Blog Track 2023.393

Islam, R., Henderson, P., Gomrokchi, M., & Precup, D. (2017). Reproducibility of benchmarked394

deep reinforcement learning tasks for continuous control. arXiv preprint arXiv:1708.04133.395

Kingma, D.P., & Ba, J., 2015. Adam: A method for stochastic optimization. International Conference396

on Learning Representations, 2015.397

Konda, V., & Tsitsiklis, J. (1999). Actor-critic algorithms. Advances in neural information processing398

systems, 12.399

10



Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., ... & Wierstra, D. (2015).400

Continuous control with deep reinforcement learning. In International Conference on Learning401

Representations, 2016.402

Lyle, C., Rowland, M., & Dabney, W. (2022). Understanding and preventing capacity loss in403

reinforcement learning. In International Conference on Learning Representations, 2022.404

Lyle, C., Zheng, Z., Nikishin, E., Pires, B. A., Pascanu, R., & Dabney, W. (2023). Understanding405

plasticity in neural networks. arXiv preprint arXiv:2303.01486.406

McCloskey, M., & Cohen, N. J. (1989). Catastrophic interference in connectionist networks: The407

sequential learning problem. In Psychology of learning and motivation (Vol. 24, pp. 109-165).408

Academic Press.409

Mirzadeh, S.I., Farajtabar, M., Pascanu, R., & Ghasemzadeh, H. (2020). Understanding the role of410

training regimes in continual learning. Advances in Neural Information Processing Systems, 33.411

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., ... & Kavukcuoglu, K. (2016,412

June). Asynchronous methods for deep reinforcement learning. In International conference on413

machine learning (pp. 1928-1937). PMLR.414

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... & Hassabis, D.415

(2015). Human-level control through deep reinforcement learning. nature, 518(7540), 529-533.416

Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In417

Proceedings of the 27th international conference on machine learning (ICML-10) (pp. 807-814).418

Nikishin, E., Oh, J., Ostrovski, G., Lyle, C., Pascanu, R. Dabney, W., & Barreto, A. (2023). Deep Re-419

inforcement Learning with Plasticity Injection, Workshop on Reincarnating Reinforcement Learning420

at ICLR 2023.421

Nikishin, E., Schwarzer, M., D’Oro, P., Bacon, P. L., & Courville, A. (2022, June). The primacy bias422

in deep reinforcement learning. In International Conference on Machine Learning (pp. 16828-16847).423

PMLR.424

OpenAI. (2023). GPT-4 technical report. arXiv.425

OpenAI, Berner, C., Brockman, G., Chan, B., Cheung, V., Dębiak, P., Dennison, C., ... & Zhang, S.426

(2019). Dota 2 with large scale deep reinforcement learning. arXiv preprint arXiv:1912.06680.427

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., ... & Chintala, S. (2019).428

Pytorch: An imperative style, high-performance deep learning library. Advances in neural information429

processing systems, 32.430

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., & Wermter, S. (2019). Continual lifelong learning431

with neural networks: A review. Neural networks, 113, 54-71.432

Patterson, A., Neumann, S., White, M., & White, A. (2023). Empirical Design in Reinforcement433

Learning. arXiv preprint arXiv:2304.01315.434

Quan, J. & Ostrovski, G. (2020). DQN Zoo: Reference implementations of DQN-based agents.435

http://github.com/deepmind/dqn_zoo436

Schaul, T., Quan, J., Antonoglou, I., & Silver, D. (2015). Prioritized experience replay. In Interna-437

tional Conference on Learning Representations, 2016.438

Schlegel, M. K., Tkachuk, V., White, A. M., & White, M (2022). Investigating Action Encodings in439

Recurrent Neural Networks in Reinforcement Learning. Transactions on Machine Learning Research.440

Schulman, J., Levine, S., Abbeel, P., Jordan, M., & Moritz, P. (2015, June). Trust region policy441

optimization. In International conference on machine learning (pp. 1889-1897). PMLR.442

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy optimiza-443

tion algorithms. arXiv preprint arXiv:1707.06347.444

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., ... & Hassabis, D.445

(2017). Mastering the game of go without human knowledge. nature, 550(7676), 354-359.446

11



Sokar, G., Agarwal, R., Castro, P. S., & Evci, U. (2023). The Dormant Neuron Phenomenon in Deep447

Reinforcement Learning. In International Conference on Machine Learning 2023.448

Sutton, R. (2019). The bitter lesson. Incomplete Ideas (blog), 13(1).449

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.450

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D. D. L., ... & Riedmiller, M. (2018).451

Deepmind control suite. arXiv preprint arXiv:1801.00690.452

Tieleman, T. & Hinton, G. (2012). Lecture 6.5-RMSProp: Divide the gradient by a running average453

of its recent magnitude. COURSERA Neural Networks Neural Networks for Machine Learning.454

Todorov, E., Erez, T., & Tassa, Y. (2012, October). Mujoco: A physics engine for model-based control.455

In 2012 IEEE/RSJ international conference on intelligent robots and systems (pp. 5026-5033). IEEE.456

Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine learning, 8, 279-292.457

Weng, J., Chen, H., Yan, D., You, K., Duburcq, A., Zhang, M., ... & Zhu, J. (2022). Tianshou: A458

highly modularized deep reinforcement learning library. Journal of Machine Learning Research,459

23(267), 1-6.460

Young, K., & Tian, T. (2019). Minatar: An atari-inspired testbed for thorough and reproducible461

reinforcement learning experiments. arXiv preprint arXiv:1903.03176.462

12



A Hyper-Parameter Settings463

This section presents the hyper-parameters used in different experiments throughout the paper. First,464

Table 1 contains the default hyper-parameters for PPO for all experiments in the Mujoco environments.465

The hyper-parameters described in Table 1 are used to generate the plots in Figures 1 and 2. Next,466

Table 2 contains the default hyper-parameters for PPO for experiments in the 2-state MDP. These467

hyper-parameters are used to generate the plots in Figures 4, 5, and 6. For experiments with non-468

stationary Adam using PPO, we used the best β out of {.99, .997, .999}. Figures 6, 7, and 8 used469

these values for betas for non-stationary Adam. For PPO+L2, we swept over weight decay of470

1e− 2, 1e− 3, 1e− 4, 1e− 5. In all Mujoco environments, we found that weight decay of 1e− 3471

performed best. These values for weight decay were used in Figures 7 and 8. For PPO+L2 in the472

2-state MDP, we swept over weight decay of 1e− 2, 1e− 3, 1e− 4, 1e− 5, 1e− 6, 1e− 7, 1e− 8.473

We found that PPO with weight decay of 1e− 6 had the best performance after 50k time steps in the474

2-state MDP. This value of weight decay was used in Figure 6.475

Table 1: Default hyper-parameters for PPO in Mujoco environments

Name Default Value
Policy Network (64, tanh, 64, tanh, Linear) + Standard deviation variable
Value Network (64, tanh, 64, tanh, Linear)

Buffer size 2048
Num epochs 10

Mini-batch size 256
GAE, λ 0.95

Discount factor, γ 0.99
clip parameter 0.2

Input Normalization False
Advantage Normalization True

Value function loss clipping False
Gradient clipping False

Optimizer Adam
Optimizer step size 0.0003
Optimizer (β1, β2) (0.9, 0.999)

Optimizer ϵ 1e− 8

Table 2: Default hyper-parameters for PPO in the 2-state MDP

Name Default Value
Policy Network (1, tanh, Linear) + Standard deviation variable
Value Network (1, tanh, Linear)

Buffer size 8
Num epochs 10

Mini-batch size 2
GAE, λ 0.95

Discount factor, γ 0.99
clip parameter 0.2

Input Normalization False
Advantage Normalization True

Value function loss clipping False
Gradient clipping False

Optimizer Adam
Optimizer step size 0.01
Optimizer (β1, β2) (0.9, 0.999)

Optimizer ϵ 1e− 8

For DQN experiments in MinAtar games, we followed most of the hyper-parameter settings in Young476

and Tian (2019). Specifically, we used smooth L1 loss and the same neural network settings as477

Young and Tian (2019). For the first 5, 000 exploration steps, we only collected transitions without478

learning. ϵ-greedy was applied as the exploration strategy with ϵ decreasing linearly from 1.0 to 0.1479

13



in 5, 000 steps. After 5, 000 steps, ϵ was fixed to 0.1. To choose the step size, we run DQN with480

step sizes of {3e− 3, 1e− 3, 3e− 4, 1e− 4, 3e− 5, 1e− 5} for 5M time steps. The step size with481

the highest expected return after 5M time steps was chosen to generate the plots in Figure 3. For482

non-stationary Adam, we used the step size that was chosen for regular DQN. Additionally, for non-483

stationary Adam, we chose the best performing β out of {.99, .999, .9997, .9999, .99997, .99999}.484

Other default hyper-parameters are listed in Table 3.485

Table 3: Default hyper-parameters for DQN in MinAtar games

Name Default Value
Q network (conv2d (out_channels=16), ReLU, 128, ReLU, linear)
Buffer size 1e5

Mini-batch size 32
Discount factor, γ 0.99
Gradient clipping False

Optimizer Adam
Optimizer (β1, β2) (0.9, 0.999)

Optimizer ϵ 1e− 8
Target Q network update steps 1000

B Large Update with Default Parameters of Adam486

In an idealized case, where the gradient for a sequence of samples is zero at every update, except t,487

the Adam optimizer with its default parameters leads to an update that is 30 times larger than the488

gradient. The tth update is given by,489

mt = β1mt−1 + (1− β1) gt and m̂t = mt/(1− βt
1) (1)

vt = β2vt−1 + (1− β2) g
2
t and v̂t = vt/(1− βt

2) (2)

θt = θt−1 − α m̂t/(
√

v̂t + ϵ) (3)

For β1 = 0.9, β1 = 0.999, ϵ = 1e− 8, and large t, the updates at t, t+ 1 ... are 3.16 ∗ α, 2.85 ∗ α490

and so on. In 40 updates, this corresponds to a total change of 31 ∗ α. This explains how a single491

non-zero gradient can lead to a sudden large update when using Adam with its default parameters. Of492

course, this idealized case does not directly apply to PPO as PPO collects data for a few time steps493

and then makes multiple updates at a single time step using the collected data. But, it gives us an494

intuition of how a single non-zero gradient can lead to sudden large changes in the learned function.495

C Computation Usage496

A single run of our PPO implementation took about 12 hours for 30M time steps for Mujoco497

environments. This corresponds to around 3 CPU years of compute for all experiments on Mujoco498

environments. And a single run on the 2-state MDP takes at most 5 minutes on a CPU, and this499

corresponds to the total compute usage of around 15 CPU days for all experiments on the 2-state500

MDP. Finally, a single run on DQN on MinAtar took around 3.5 days. This meant a total compute501

usage of 4 CPU years. In total, all experiments used 7 CPU years of compute.502

D Broader Impact503

This work is a fundamental study in scalable online reinforcement learning. Our work may help to504

develop reinforcement learning systems that scale with experience. Recent advances with big models505

like GPT-4 are leading to a rapid centralization of power. Only a handful of massive corporations506

and governments can afford to store and process the data required to train such models. In contrast507

to these massive models, online learning models only require a small amount of data at a time to508

improve their performance. Developing online learning models that continually improve performance509

with small memory requirements can make learning systems accessible to the general population. We510

do not see any immediate potential negative impacts of our work.511

14


	Introduction
	Background
	Policy Collapse in Deep Reinforcement Learning
	Understanding Policy Collapse in a Small MDP
	Overcoming Policy Collapse
	Discussion
	Conclusion, Limitations, and Future Work
	Hyper-Parameter Settings
	Large Update with Default Parameters of Adam
	Computation Usage
	Broader Impact

