
DAG LEARNING ON THE PERMUTAHEDRON

Valentina Zantedeschi
ServiceNow Research
vzantedeschi@gmail.com

Luca Franceschi
Amazon Web Services∗
franuluc@amazon.de

Jean Kaddour
University College London,
Centre for AI
jean.kaddour.20@ucl.ac.uk

Matt J. Kusner
University College London,
Centre for AI
m.kusner@ucl.ac.uk

Vlad Niculae
Informatics Institute,
University of Amsterdam
v.niculae@uva.nl

ABSTRACT

We propose a continuous optimization framework for discovering a latent directed
acyclic graph (DAG) from observational data. Our approach optimizes over the
polytope of permutation vectors, the so-called Permutahedron, to learn a topo-
logical ordering. Edges can be optimized jointly, or learned conditional on the
ordering via a non-differentiable subroutine. Compared to existing continuous
optimization approaches our formulation has a number of advantages including: 1.
validity: optimizes over exact DAGs as opposed to other relaxations optimizing
approximate DAGs; 2. modularity: accommodates any edge-optimization proce-
dure, edge structural parameterization, and optimization loss; 3. end-to-end: either
alternately iterates between node-ordering and edge-optimization, or optimizes
them jointly. We demonstrate, on real-world data problems in protein-signaling
and transcriptional network discovery, that our approach lies on the Pareto frontier
of two key metrics, the SID and SHD.

1 INTRODUCTION

In many domains, including cell biology (Sachs et al., 2005), finance (Sanford & Moosa, 2012), and
genetics (Zhang et al., 2013), the data generating process is thought to be represented by an underlying
directed acylic graph (DAG). Many models rely on DAG assumptions, e.g., causal modeling uses
DAGs to model distribution shifts, ensure predictor fairness among subpopulations, or learn agents
more sample-efficiently (Kaddour et al., 2022). A key question, with implications ranging from
better modeling to causal discovery, is how to recover this unknown DAG from observed data
alone. While there are methods for identifying the underlying DAG if given additional interventional
data (Eberhardt, 2007; Hauser & Bühlmann, 2014; Shanmugam et al., 2015; Kocaoglu et al., 2017;
Brouillard et al., 2020; Addanki et al., 2020; Squires et al., 2020; Lippe et al., 2022), it is not always
practical or ethical to obtain such data (e.g., if one aims to discover links between dietary choices and
deadly diseases).

Learning DAGs from observational data alone is fundamentally difficult for two reasons. (i) Estima-
tion: it is possible for different graphs to produce similar observed data, either because the graphs
are Markov equivalent (they represent the same set of data distributions) or because not enough
samples have been observed to distinguish possible graphs. This riddles the search space with local
minima; (ii) Computation: DAG discovery is a costly combinatorial optimization problem over an
exponentially large solution space and subject to global acyclicity constraints.

To address issue (ii), recent work has proposed continuous relaxations of the DAG learning problem.
These allow one to use well-studied continuous optimization procedures to search the space of
DAGs given a score function (e.g., the likelihood). While these methods are more efficient than
combinatorial methods, the current approaches have one or more of the following downsides: 1.
Invalidity: existing methods based on penalizing the exponential of the adjacency matrix (Zheng

∗Work done prior to joining Amazon.

1

et al., 2018; Yu et al., 2019; Zheng et al., 2020; Ng et al., 2020; Lachapelle et al., 2020; He et al.,
2021) are not guaranteed to return a valid DAG in practice (see Ng et al. (2022) for a theoretical
analysis), but require post-processing to correct the graph to a DAG. How the learning method
and the post-processing method interact with each other is not currently well-understood; 2. Non-
modularity: continuously relaxing the DAG learning problem is often done to leverage gradient-based
optimization (Zheng et al., 2018; Ng et al., 2020; Cundy et al., 2021; Charpentier et al., 2022).
This requires all training operations to be differentiable, preventing the use of certain well-studied
black-box estimators for learning edge functions; 3. Error propagation: methods that break the DAG
learning problem into two stages risk propagating errors from one stage to the next (Teyssier & Koller,
2005; Bühlmann et al., 2014; Gao et al., 2020; Reisach et al., 2021; Rolland et al., 2022).

Following the framework of Friedman & Koller (2003), we propose a new differentiable DAG learning
procedure based on a decomposition of the problem into: (i) learning a topological ordering (i.e., a
total ordering of the variables) and (ii) selecting the best scoring DAG consistent with this ordering.
Whereas previous differentiable order-based works (Cundy et al., 2021; Charpentier et al., 2022)
implemented step (i) through the usage of permutation matrices1, we take a more straightforward
approach by directly working in the space of vector orderings. Overall, we make the following
contributions to score-based methods for DAG learning:

• We propose a novel vector parametrization that associates a single scalar value to each node. This
parametrization is (i) intuitive: the higher the score the lower the node is in the order; (ii) stable, as
small perturbations in the parameter space result in small perturbations in the DAG space.

• With such parameterization in place, we show how to learn DAG structures end-to-end from
observational data, with any choice of edge estimator (we do not require differentiability). To do
so, we leverage recent advances in discrete optimization (Niculae et al., 2018; Correia et al., 2020)
and derive a novel top-k oracle over permutations, which could be of independent interest.

• We show that DAGs learned with our proposed framework lie on the Pareto front of two key metrics
(the SHD and SID) on two real-world tasks and perform favorably on several synthetic tasks.

These contributions allow us to develop a framework that addresses the issues of prior work. Specif-
ically, our approach: 1. Models sparse distributions of DAG topological orderings, ensuring all
considered graphs are DAGs (also during training); 2. Separates the learning of topological orderings
from the learning of edge functions, but 3. Optimizes them end-to-end, either jointly or alternately
iterating between learning ordering and edges.

2 RELATED WORK

The work on DAG learning can be largely categorized into four families of approaches: (a) combina-
torial methods, (b) continuous relaxation, (c) two-stage, (d) differentiable, order-based.

Combinatorial methods. These methods are either constraint-based, relying on conditional indepen-
dence tests for selecting the sets of parents (Spirtes et al., 2000), or score-based, evaluating how well
possible candidates fit the data (Geiger & Heckerman, 1994) (see Kitson et al. (2021) for a survey).
Constraint-based methods, while elegant, require conditional independence testing, which is known
to be a hard statistical problem Shah & Peters (2020). For this reason, we focus our attention in this
paper on score-based methods. Of these, exact combinatorial algorithms exist only for small number
of nodes d (Singh & Moore, 2005; Xiang & Kim, 2013; Cussens, 2011), because the space of DAGs
grows superexponentially in d and finding the optimal solution is NP-hard to solve (Chickering,
1995). Approximate methods (Scanagatta et al., 2015; Aragam & Zhou, 2015; Ramsey et al., 2017)
rely on global or local search heuristics in order to scale to problems with thousands of nodes.

Continuous relaxation. To address the complexity of the combinatorial search, more recent methods
have proposed exact characterizations of DAGs that allow one to tackle the problem by continuous
optimization (Zheng et al., 2018; Yu et al., 2019; Zheng et al., 2020; Ng et al., 2020; Lachapelle et al.,
2020; He et al., 2021). To do so, the constraint on acyclicity is expressed as a smooth function (Zheng
et al., 2018; Yu et al., 2019) and then used as penalization term to allow efficient optimization.

1Critically, the usage of permutation matrices allows to maintain a fully differentiable path from loss to
parameters (of the permutation matrices) via Sinkhorn iterations or other (inexact) relaxation methods.

2

However, this procedure no longer guarantees the absence of cycles at any stage of training, and
solutions often require post-processing. Concurrently to this work, Bello et al. (2022) introduce a
log-determinant characterization and an optimization procedure that is guaranteed to return a DAG at
convergence. In practice, this relies on thresholding for reducing false positives in edge prediction.

Two-stage. The third prominent line of works learns DAGs in two-stages: (i) finding an ordering of
the variables, and (ii) selecting the best scoring graph among (or marginalizing over) the structures
that are consistent with the found ordering (Teyssier & Koller, 2005; Bühlmann et al., 2014; Gao
et al., 2020; Reisach et al., 2021; Rolland et al., 2022). As such, these approaches work over exact
DAGs, instead of relaxations. Additionally, they work on the space of orderings which is smaller
and more regular than the space of DAGs (Friedman & Koller, 2003; Teyssier & Koller, 2005),
while guaranteeing acyclicity. The downside of these approaches is that errors in the first stage can
propagate to the second stage that is unaware of them.

Differentiable, order-based. The final line of works uses the two-stage decomposition above, but
addresses the issue of error propagation by formulating an end-to-end differentiable optimization
approach (Friedman & Koller, 2003; Cundy et al., 2021; Charpentier et al., 2022). In particular,
Cundy et al. (2021) optimizes node ordering using the polytope of permutation matrices (the Birkhoff
polytope) via the Gumbel-Sinkhorn approximation (Mena et al., 2018). This method requires O(d3)
time and O(d2) memory complexities. To lower the time complexity, Charpentier et al. (2022)
suggest to leverage another operator (SoftSort, Prillo & Eisenschlos, 2020) that drops a constraint
on the permutation matrix (allowing row-stochastic matrices). Both methods introduce a mismatch
between forward (based on the hard permutation) and backward (based on soft permutations) passes.
Further, they require all downstream operations to be differentiable, including the edge estimator.

3 SETUP

3.1 THE PROBLEM

Let X ∈ Rn×d be a matrix of n observed data inputs generated by an unknown Structural Equation
Model (SEM) (Pearl, 2000). An SEM describes the functional relationships between d features as
edges between nodes in a DAG G ∈ D[d] (where D[d] is the space of all DAGs with d nodes). Each
feature xj ∈ Rn is generated by some (unknown) function fj of its (unknown) parents pa(j) as:
xj=fj(xpa(j)). We keep track of whether an edge exists in the graph G using an adjacency matrix
A ∈ {0, 1}d×d (i.e., Aij=1 if and only if there is a (directed) edge i→ j). For example, a special
case is when the structural equations are linear with Gaussian noise,

yj = fj (X,Aj) = X(wj ◦Aj) + ε; ε ∼ N (0, ν) (1)

where wj ∈ Rd, Aj is the jth column of A, and ν is the noise variance. This is just to add intuition;
our framework is compatible with non-linear, non-Gaussian structural equations.

3.2 OBJECTIVE

Given X, our goal is to recover the unknown DAG that generated the observations. To do so we must
learn (a) the connectivity parameters of the graph, represented by the adjacency matrix A, and (b) the
functional parameters Φ = {ϕj}dj=1 that define the edge functions {fϕj}dj=1. Score-based methods
(Kitson et al., 2021) learn these parameters via a constrained non-linear mixed-integer optimization
problem

min
A∈D[d]

Φ

d∑
j=1

ℓ
(
xj , f

ϕj (X ◦Aj)
)
+ λΩ(Φ), (2)

where ℓ : Rn × Rn → R is a loss that describes how well each feature xj is predicted by fϕj . As
in eq. (1), the adjacency matrix defines the parents of each feature xj as follows pa(j) = {i ⊆
[d] \ j | Aij = 1}. Only these features will be used by fϕj to predict xj , via X ◦Aj . The constraint
A ∈ D[d] enforces that the connectivity parameters A describes a valid DAG. Finally, Ω(Φ) is a
regularization term encouraging sparseness. So long as this regularizer takes the same value for all
DAGs within a Markov equivalence class, the consistency results of Brouillard et al. (2020, Theorem
1) prove that the solution to Problem (2) is Markov equivalent to the true DAG, given standard
assumptions.

3

<latexit sha1_base64="mvOosCXs2hCXkVjDLTyO5lAeUgk=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgQcKuhOgx4MVjAuYByRJmJ73JmNnZZWZWCEu+wIsHRbz6Sd78GyePgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M72Z++wmV5rF8MJME/YgOJQ85o8ZKjat+seSW3TnIOvGWpARL1PvFr94gZmmE0jBBte56bmL8jCrDmcBpoZdqTCgb0yF2LZU0Qu1n80On5MIqAxLGypY0ZK7+nshopPUkCmxnRM1Ir3oz8T+vm5rw1s+4TFKDki0WhakgJiazr8mAK2RGTCyhTHF7K2EjqigzNpuCDcFbfXmdtK7LXrVcaVRKtXptEUcezuAcLsGDG6jBPdShCQwQnuEV3pxH58V5dz4WrTlnGeEp/IHz+QONLY0H</latexit>,

<latexit sha1_base64="mvOosCXs2hCXkVjDLTyO5lAeUgk=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgQcKuhOgx4MVjAuYByRJmJ73JmNnZZWZWCEu+wIsHRbz6Sd78GyePgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M72Z++wmV5rF8MJME/YgOJQ85o8ZKjat+seSW3TnIOvGWpARL1PvFr94gZmmE0jBBte56bmL8jCrDmcBpoZdqTCgb0yF2LZU0Qu1n80On5MIqAxLGypY0ZK7+nshopPUkCmxnRM1Ir3oz8T+vm5rw1s+4TFKDki0WhakgJiazr8mAK2RGTCyhTHF7K2EjqigzNpuCDcFbfXmdtK7LXrVcaVRKtXptEUcezuAcLsGDG6jBPdShCQwQnuEV3pxH58V5dz4WrTlnGeEp/IHz+QONLY0H</latexit>,

<latexit sha1_base64="mvOosCXs2hCXkVjDLTyO5lAeUgk=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgQcKuhOgx4MVjAuYByRJmJ73JmNnZZWZWCEu+wIsHRbz6Sd78GyePgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M72Z++wmV5rF8MJME/YgOJQ85o8ZKjat+seSW3TnIOvGWpARL1PvFr94gZmmE0jBBte56bmL8jCrDmcBpoZdqTCgb0yF2LZU0Qu1n80On5MIqAxLGypY0ZK7+nshopPUkCmxnRM1Ir3oz8T+vm5rw1s+4TFKDki0WhakgJiazr8mAK2RGTCyhTHF7K2EjqigzNpuCDcFbfXmdtK7LXrVcaVRKtXptEUcezuAcLsGDG6jBPdShCQwQnuEV3pxH58V5dz4WrTlnGeEp/IHz+QONLY0H</latexit>,

or
de

rin
g

pr
ob

ab
ili

ty

0

0

0.3

0.6
0
0

0.1true graph
(unknown)

real datapredicted
data

<latexit sha1_base64="MV/fyzic/5LaXI0pkY7XRnJmdCA=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKexKUI8BLx4jmAckS5iddJIhM7PLzKwQlvyCFw+KePWHvPk3ziY5aGJBQ1HVTXdXlAhurO9/e4WNza3tneJuaW//4PCofHzSMnGqGTZZLGLdiahBwRU2LbcCO4lGKiOB7Whyl/vtJ9SGx+rRThMMJR0pPuSM2lzqoRD9csWv+nOQdRIsSQWWaPTLX71BzFKJyjJBjekGfmLDjGrLmcBZqZcaTCib0BF2HVVUogmz+a0zcuGUARnG2pWyZK7+nsioNGYqI9cpqR2bVS8X//O6qR3ehhlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNyIQSrL6+T1lU1uK7WHmqVeqO+iKMIZ3AOlxDADdThHhrQBAZjeIZXePOk9+K9ex+L1oK3jPAU/sD7/AEnio6S</latexit>

`
<latexit sha1_base64="ZL1R4riQmoZsZR9WGSvyMxGAuEc=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoOQU9iVED0GvHhMwDwgWcLspDcZMzu7zMwKYckXePGgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJb2zu7e/n9wsHh0fFJ8fSsreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWR4US27FXYBsEm9FSrBCY1D86g9jlkYoDRNU657nJsbPqDKcCZwV+qnGhLIJHWHPUkkj1H62OHRGrqwyJGGsbElDFurviYxGWk+jwHZG1Iz1ujcX//N6qQlv/YzLJDUo2XJRmApiYjL/mgy5QmbE1BLKFLe3EjamijJjsynYELz1lzdJ+7ri1SrVZrVUb9SXceThAi6hDB7cQB3uoQEtYIDwDK/w5jw6L86787FszTmrCM/hD5zPH4cdjQM=</latexit>

(
<latexit sha1_base64="/XtNEbz/LIQd5jgxTsZ87EEAlLQ=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoOgl7ArIXoMePGYgHlAsoTZSW8yZnZ2mZkVwpIv8OJBEa9+kjf/xsnjoIkFDUVVN91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju5nffkKleSwfzCRBP6JDyUPOqLFS46pfLLlldw6yTrwlKcES9X7xqzeIWRqhNExQrbuemxg/o8pwJnBa6KUaE8rGdIhdSyWNUPvZ/NApubDKgISxsiUNmau/JzIaaT2JAtsZUTPSq95M/M/rpia89TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZgQ/BWX14nreuyVy1XGpVSrV5bxJGHMziHS/DgBmpwD3VoAgOEZ3iFN+fReXHenY9Fa85ZRngKf+B8/gCIoY0E</latexit>

)
<latexit sha1_base64="mvOosCXs2hCXkVjDLTyO5lAeUgk=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgQcKuhOgx4MVjAuYByRJmJ73JmNnZZWZWCEu+wIsHRbz6Sd78GyePgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M72Z++wmV5rF8MJME/YgOJQ85o8ZKjat+seSW3TnIOvGWpARL1PvFr94gZmmE0jBBte56bmL8jCrDmcBpoZdqTCgb0yF2LZU0Qu1n80On5MIqAxLGypY0ZK7+nshopPUkCmxnRM1Ir3oz8T+vm5rw1s+4TFKDki0WhakgJiazr8mAK2RGTCyhTHF7K2EjqigzNpuCDcFbfXmdtK7LXrVcaVRKtXptEUcezuAcLsGDG6jBPdShCQwQnuEV3pxH58V5dz4WrTlnGeEp/IHz+QONLY0H</latexit>,

0.3

<latexit sha1_base64="MV/fyzic/5LaXI0pkY7XRnJmdCA=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKexKUI8BLx4jmAckS5iddJIhM7PLzKwQlvyCFw+KePWHvPk3ziY5aGJBQ1HVTXdXlAhurO9/e4WNza3tneJuaW//4PCofHzSMnGqGTZZLGLdiahBwRU2LbcCO4lGKiOB7Whyl/vtJ9SGx+rRThMMJR0pPuSM2lzqoRD9csWv+nOQdRIsSQWWaPTLX71BzFKJyjJBjekGfmLDjGrLmcBZqZcaTCib0BF2HVVUogmz+a0zcuGUARnG2pWyZK7+nsioNGYqI9cpqR2bVS8X//O6qR3ehhlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNyIQSrL6+T1lU1uK7WHmqVeqO+iKMIZ3AOlxDADdThHhrQBAZjeIZXePOk9+K9ex+L1oK3jPAU/sD7/AEnio6S</latexit>

`
<latexit sha1_base64="ZL1R4riQmoZsZR9WGSvyMxGAuEc=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoOQU9iVED0GvHhMwDwgWcLspDcZMzu7zMwKYckXePGgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJb2zu7e/n9wsHh0fFJ8fSsreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWR4US27FXYBsEm9FSrBCY1D86g9jlkYoDRNU657nJsbPqDKcCZwV+qnGhLIJHWHPUkkj1H62OHRGrqwyJGGsbElDFurviYxGWk+jwHZG1Iz1ujcX//N6qQlv/YzLJDUo2XJRmApiYjL/mgy5QmbE1BLKFLe3EjamijJjsynYELz1lzdJ+7ri1SrVZrVUb9SXceThAi6hDB7cQB3uoQEtYIDwDK/w5jw6L86787FszTmrCM/hD5zPH4cdjQM=</latexit>

(
<latexit sha1_base64="/XtNEbz/LIQd5jgxTsZ87EEAlLQ=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoOgl7ArIXoMePGYgHlAsoTZSW8yZnZ2mZkVwpIv8OJBEa9+kjf/xsnjoIkFDUVVN91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju5nffkKleSwfzCRBP6JDyUPOqLFS46pfLLlldw6yTrwlKcES9X7xqzeIWRqhNExQrbuemxg/o8pwJnBa6KUaE8rGdIhdSyWNUPvZ/NApubDKgISxsiUNmau/JzIaaT2JAtsZUTPSq95M/M/rpia89TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZgQ/BWX14nreuyVy1XGpVSrV5bxJGHMziHS/DgBmpwD3VoAgOEZ3iFN+fReXHenY9Fa85ZRngKf+B8/gCIoY0E</latexit>

)
<latexit sha1_base64="mvOosCXs2hCXkVjDLTyO5lAeUgk=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgQcKuhOgx4MVjAuYByRJmJ73JmNnZZWZWCEu+wIsHRbz6Sd78GyePgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M72Z++wmV5rF8MJME/YgOJQ85o8ZKjat+seSW3TnIOvGWpARL1PvFr94gZmmE0jBBte56bmL8jCrDmcBpoZdqTCgb0yF2LZU0Qu1n80On5MIqAxLGypY0ZK7+nshopPUkCmxnRM1Ir3oz8T+vm5rw1s+4TFKDki0WhakgJiazr8mAK2RGTCyhTHF7K2EjqigzNpuCDcFbfXmdtK7LXrVcaVRKtXptEUcezuAcLsGDG6jBPdShCQwQnuEV3pxH58V5dz4WrTlnGeEp/IHz+QONLY0H</latexit>,

<latexit sha1_base64="MV/fyzic/5LaXI0pkY7XRnJmdCA=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKexKUI8BLx4jmAckS5iddJIhM7PLzKwQlvyCFw+KePWHvPk3ziY5aGJBQ1HVTXdXlAhurO9/e4WNza3tneJuaW//4PCofHzSMnGqGTZZLGLdiahBwRU2LbcCO4lGKiOB7Whyl/vtJ9SGx+rRThMMJR0pPuSM2lzqoRD9csWv+nOQdRIsSQWWaPTLX71BzFKJyjJBjekGfmLDjGrLmcBZqZcaTCib0BF2HVVUogmz+a0zcuGUARnG2pWyZK7+nsioNGYqI9cpqR2bVS8X//O6qR3ehhlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNyIQSrL6+T1lU1uK7WHmqVeqO+iKMIZ3AOlxDADdThHhrQBAZjeIZXePOk9+K9ex+L1oK3jPAU/sD7/AEnio6S</latexit>

`
<latexit sha1_base64="ZL1R4riQmoZsZR9WGSvyMxGAuEc=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoOQU9iVED0GvHhMwDwgWcLspDcZMzu7zMwKYckXePGgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJb2zu7e/n9wsHh0fFJ8fSsreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWR4US27FXYBsEm9FSrBCY1D86g9jlkYoDRNU657nJsbPqDKcCZwV+qnGhLIJHWHPUkkj1H62OHRGrqwyJGGsbElDFurviYxGWk+jwHZG1Iz1ujcX//N6qQlv/YzLJDUo2XJRmApiYjL/mgy5QmbE1BLKFLe3EjamijJjsynYELz1lzdJ+7ri1SrVZrVUb9SXceThAi6hDB7cQB3uoQEtYIDwDK/w5jw6L86787FszTmrCM/hD5zPH4cdjQM=</latexit>

(
<latexit sha1_base64="/XtNEbz/LIQd5jgxTsZ87EEAlLQ=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoOgl7ArIXoMePGYgHlAsoTZSW8yZnZ2mZkVwpIv8OJBEa9+kjf/xsnjoIkFDUVVN91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju5nffkKleSwfzCRBP6JDyUPOqLFS46pfLLlldw6yTrwlKcES9X7xqzeIWRqhNExQrbuemxg/o8pwJnBa6KUaE8rGdIhdSyWNUPvZ/NApubDKgISxsiUNmau/JzIaaT2JAtsZUTPSq95M/M/rpia89TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZgQ/BWX14nreuyVy1XGpVSrV5bxJGHMziHS/DgBmpwD3VoAgOEZ3iFN+fReXHenY9Fa85ZRngKf+B8/gCIoY0E</latexit>

)
<latexit sha1_base64="mvOosCXs2hCXkVjDLTyO5lAeUgk=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgQcKuhOgx4MVjAuYByRJmJ73JmNnZZWZWCEu+wIsHRbz6Sd78GyePgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M72Z++wmV5rF8MJME/YgOJQ85o8ZKjat+seSW3TnIOvGWpARL1PvFr94gZmmE0jBBte56bmL8jCrDmcBpoZdqTCgb0yF2LZU0Qu1n80On5MIqAxLGypY0ZK7+nshopPUkCmxnRM1Ir3oz8T+vm5rw1s+4TFKDki0WhakgJiazr8mAK2RGTCyhTHF7K2EjqigzNpuCDcFbfXmdtK7LXrVcaVRKtXptEUcezuAcLsGDG6jBPdShCQwQnuEV3pxH58V5dz4WrTlnGeEp/IHz+QONLY0H</latexit>,

0.1

0.6

<latexit sha1_base64="G4vzAKUfqBvuBoSMSn1cPbS+Hlo=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXgnoMevGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+6wmV5rF8MOME/YgOJA85o8ZK9YteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhjT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0rwse1flSr1Sqt5mceThBE7hHDy4hircQw0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB3RzjLg=</latexit>

+

<latexit sha1_base64="G4vzAKUfqBvuBoSMSn1cPbS+Hlo=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXgnoMevGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+6wmV5rF8MOME/YgOJA85o8ZK9YteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhjT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0rwse1flSr1Sqt5mceThBE7hHDy4hircQw0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB3RzjLg=</latexit>

+

0.5 0.1 -0.2 -0.5
structure

parameters

equation
parameters

<latexit sha1_base64="C8Wy9s5ndkX8ZHW1cljCJcCE3Hc=">AAACA3icbVDLSsNAFJ3UV62vqDvdBIvgqiRS1GXRjcsK9gFNCJPJpB06mYSZG6GEght/xY0LRdz6E+78GydtFtp6YJjDOfdy7z1BypkC2/42Kiura+sb1c3a1vbO7p65f9BVSSYJ7ZCEJ7IfYEU5E7QDDDjtp5LiOOC0F4xvCr/3QKViibiHSUq9GA8FixjBoCXfPHJjJvzcDRIeqkmsv9yFEQU8nfpm3W7YM1jLxClJHZVo++aXGyYki6kAwrFSA8dOwcuxBEY4ndbcTNEUkzEe0oGmAsdUefnshql1qpXQihKpnwBrpv7uyHGsigV1ZYxhpBa9QvzPG2QQXXk5E2kGVJD5oCjjFiRWEYgVMkkJ8IkmmEimd7XICEtMQMdW0yE4iycvk+55w7loNO+a9dZ1GUcVHaMTdIYcdIla6Ba1UQcR9Iie0St6M56MF+Pd+JiXVoyy5xD9gfH5A2pXmKw=</latexit>

min
✓

<latexit sha1_base64="YiVVNJpl4OpNrYiEDZvRdDIO3H4=">AAAB/HicbVDLSsNAFJ3UV62vaJduBovgqiQi6rLoxmUF+4AmlMlk2g6dTMLMjRBC/RU3LhRx64e482+ctFlo64FhDufcy5w5QSK4Bsf5tipr6xubW9Xt2s7u3v6BfXjU1XGqKOvQWMSqHxDNBJesAxwE6yeKkSgQrBdMbwu/98iU5rF8gCxhfkTGko84JWCkoV33gliEOovMlXswYUBmQ7vhNJ058CpxS9JAJdpD+8sLY5pGTAIVROuB6yTg50QBp4LNal6qWULolIzZwFBJIqb9fB5+hk+NEuJRrMyRgOfq742cRLrIZyYjAhO97BXif94ghdG1n3OZpMAkXTw0SgWGGBdN4JArRkFkhhCquMmK6YQoQsH0VTMluMtfXiXd86Z72by4v2i0bso6qugYnaAz5KIr1EJ3qI06iKIMPaNX9GY9WS/Wu/WxGK1Y5U4d/YH1+QOn65Vv</latexit>

✓

<latexit sha1_base64="0COfdggJfFp8yRmUAmWi1fq7tJ8=">AAACyXicfVHfaxNBEN67Vq3Rtqk++rI1CLGUcCfFH4VCUR8EESOYtpCNYW4zSZbu7Z27cyXxuCf/Sl/8W9xLI9gmOLDst998szP7bZJr5SiKfgXhxuadu/e27jcePNze2W3uPTpzWWEl9mSmM3uRgEOtDPZIkcaL3CKkicbz5PJdnT+/QutUZr7SPMdBChOjxkoCeWrYnIkk0yM3T/1Wiu5UVd8O2jc4miJB9ZyL/eMTsc8F2EmqzLBcKay4QK3bK/whX3ffsNmKOtEi+CqIl6DFltEd7gVvxCiTRYqGpAbn+nGU06AES0pqrBqicJiDvIQJ9j00kKIblAuLKv7MMyM+zqxfhviC/beihNTVE3plCjR1t3M1uS7XL2j8elAqkxeERl43GheaU8Zrv/lIWZSk5x6AtMrPyuUULEjyv7K2S0O8R/9Ai5/86XOOFiizB+XCeJhV/sETcVij/wmV+Sv0qOHNjm9buwrOXnTil52jL0et07dL27fYE/aUtVnMXrFT9oF1WY9J9jvYDLaDnfBj+D2chT+upWGwrHnMbkT48w+9TuEy</latexit>

�⇤(✓) :=arg min
�

`(�,✓)

<latexit sha1_base64="AqahTZyS9LcNGvETya8pI0dAmeU=">AAACE3icbVDLSsNAFJ3UV62vqks3wSLULkpSirosunFZwT6giWEynbZDJ5MwcyOUkH9w46+4caGIWzfu/BunbRa29cAwh3Pu5d57/IgzBZb1Y+TW1jc2t/LbhZ3dvf2D4uFRW4WxJLRFQh7Kro8V5UzQFjDgtBtJigOf044/vpn6nUcqFQvFPUwi6gZ4KNiAEQxa8ooVxw95X00C/SVOc8TSh4pXKy+oMKKA03OvWLKq1gzmKrEzUkIZml7x2+mHJA6oAMKxUj3bisBNsARGOE0LTqxohMkYD2lPU4EDqtxkdlNqnmmlbw5CqZ8Ac6b+7UhwoKYL6soAw0gte1PxP68Xw+DKTZiIYqCCzAcNYm5CaE4DMvtMUgJ8ogkmkuldTTLCEhPQMRZ0CPbyyaukXavaF9X6Xb3UuM7iyKMTdIrKyEaXqIFuURO1EEFP6AW9oXfj2Xg1PozPeWnOyHqO0QKMr1/ZyZ7H</latexit>

�⇤
2(✓)

<latexit sha1_base64="bXpX2BJFMNQ3BDwVA+pIKSVIRMk=">AAACE3icbVDLSsNAFJ3UV62vqks3wSLULkqiRV0W3bisYB/QxDCZTNqhkwczN0IJ+Qc3/oobF4q4dePOv3HSdmFbDwxzOOde7r3HjTmTYBg/WmFldW19o7hZ2tre2d0r7x90ZJQIQtsk4pHouVhSzkLaBgac9mJBceBy2nVHN7nffaRCsii8h3FM7QAPQuYzgkFJTrlmuRH35DhQX2q1hix7qDnn1TkVhhRwduqUK0bdmEBfJuaMVNAMLaf8bXkRSQIaAuFYyr5pxGCnWAAjnGYlK5E0xmSEB7SvaIgDKu10clOmnyjF0/1IqBeCPlH/dqQ4kPmCqjLAMJSLXi7+5/UT8K/slIVxAjQk00F+wnWI9Dwg3WOCEuBjRTARTO2qkyEWmICKsaRCMBdPXiads7p5UW/cNSrN61kcRXSEjlEVmegSNdEtaqE2IugJvaA39K49a6/ah/Y5LS1os55DNAft6xfbYp7I</latexit>

�⇤
3(✓)

<latexit sha1_base64="z3X8WUqmxCoxRdt9fAoIo914JVE=">AAACE3icbVC7TsMwFHV4lvIqMLJYVEilQ5WgChgrWBiLRB9SEyLHdVurThzZN0hV1H9g4VdYGECIlYWNv8FpO9CWI1k+Oude3XtPEAuuwbZ/rJXVtfWNzdxWfntnd2+/cHDY1DJRlDWoFFK1A6KZ4BFrAAfB2rFiJAwEawXDm8xvPTKluYzuYRQzLyT9iPc4JWAkv1B2Aym6ehSaL3XrAz5+KPtOaU6FAQMyPvMLRbtiT4CXiTMjRTRD3S98u11Jk5BFQAXRuuPYMXgpUcCpYOO8m2gWEzokfdYxNCIh0146uWmMT43SxT2pzIsAT9S/HSkJdbagqQwJDPSil4n/eZ0EeldeyqM4ARbR6aBeIjBInAWEu1wxCmJkCKGKm10xHRBFKJgY8yYEZ/HkZdI8rzgXlepdtVi7nsWRQ8foBJWQgy5RDd2iOmogip7QC3pD79az9Wp9WJ/T0hVr1nOE5mB9/QLYMJ7G</latexit>

�⇤
1(✓)

Figure 1: DAGuerreotype : Our end-to-end approach to DAG learning works by (a) learning a sparse
distribution over node orderings via structure parameters θ, and (b) learning a sparse predictor w∗ to
estimate the data. Any black-box predictor can be used to learn w∗; differentiability is not necessary.

3.3 SPARSE RELAXATION METHODS

In developing our method, we will leverage recent works in sparse relaxation. In particular, we will
make use of the SparseMAP (Niculae et al., 2018) and Top-k SparseMAX (Correia et al., 2020)
operators, which we briefly describe below. At a high level, the goal of both these approaches is to
relax structured problems of the form α⋆ := argmaxα∈△D s⊤α so that ∂α⋆/∂s is well-defined
(where△D := {α ∈ RD | α ⪰ 0,

∑D
i=1 αi = 1} is the D-dimensional simplex). This will allow s

to be learned by gradient-based methods. Note that both approaches require querying an oracle that
finds the best scoring structures. We are unaware of such an oracle for DAG learning, i.e. for D[d]
being the vertices of△D. However, we will show that by decomposing the DAG learning problem,
we can find an oracle for the decomposed subproblem. We will derive this oracle in Section 4 and
prove its correctness.

Top-k sparsemax (Correia et al., 2020). This approach works by (i) regularizing α, and (ii) constrain-
ing the number of non-zero entries of α to be at most as follows k: argmaxα∈△D,∥α∥0≤k s

⊤α−
∥α∥22. To solve this optimization problem, top-k sparsemax requires an oracle that returns the k
structures with the highest scores s⊤α.

SparseMAP (Niculae et al., 2018). Assume s has a low-dimensional parametrization s = B⊤r,
where B ∈ Rq×D and q ≪ D. SparseMAP relaxes α⋆ = argmaxα∈△D r⊤Bα by regularizing the
lower-dimensional ‘marginal space’ argmaxα∈△D r⊤Bα− ∥Bα∥22. The relaxed problem can be
solved using the active set algorithm (Nocedal & Wright, 1999), which iteratively queries an oracle
for finding the best scoring structure (r−B⊤α(t))⊤Bα at iteration t+ 1.

4 DAG LEARNING VIA SPARSE RELAXATIONS

A key difficulty when learning DAG structures is that the characterization of the set of all valid
DAGs: as soon as some edges are added, other edges are prohibited. However, note the following key
observation: any DAG can be decomposed as follows (i) Assign to each of the d nodes a rank and
reorder nodes according to this rank (this is called a topological ordering); (ii) Only allow edges from
lower nodes in the order to higher nodes, i.e., from a node i to a node j if xi ≺ xj . This approach
lies at the core of our method for DAG learning, which we dub DAGuerreotype, shown in Figure 1.
In this section we derive the framework, present a global sensitivity result, show how to learn both
the structural and the edge equations parameters leveraging the sparse relaxation methods introduced
above and study the computational complexity of our method.

4.1 LEARNING ON THE PERMUTAHEDRON

Given d nodes, let Σd be the set of all permutations of node indices {1, . . . , d}. Given a vector
v ∈ Rd, let vσ := [vσ(1), . . . ,vσ(d)]⊤ be the vector of reordered v according to the permutation
σ ∈ Σd. Similarly, for a matrix M ∈ R, let Mσ be the matrix obtained by permuting the rows and
columns of M by σ.

4

Let DC[d] be the set of complete DAGs (i.e., DAGs with all possible edges). Let R ∈ {0, 1}d×d be
the binary strictly upper triangular matrix where the upper triangle is all equal to 1. Then DC[d] can
be fully enumerated given R and Σd, as follows:

DC[d] = {Rσ : σ ∈ Σd,R ∈ {0, 1}d×d,Rij = 0 ∀i ≥ j,Rji = 1 ∀j < i}. (3)

Therefore it is sufficient to learn σ in step (i), and then learn which edges to drop in step (ii).

The vector parameterization. Imagine now that θ ∈ Rd defines a score for each node, and these
scores induce an ordering σ(θ): the smaller the score, the earlier the node should be in the ordering.
Formally, the following optimization problem finds such an ordering:

σ(θ) ∈ argmax
σ∈Σd

θ⊤ρσ , where ρ = [1, 2, . . . , d] . (4)

Note that a simple oracle solves this optimization problem: sort θ into increasing order (as given by
The Rearrangement Inequality (Hardy et al., 1952, Thms. 368–369)). We emphasize that we write
‘∈’ in eq. (4) since the r.h.s can be a set: in fact, this happens exactly when some components of θ are
equal. Beside being intuitive and efficient, the parameterization of DC [d] given by θ 7→ Rσ(θ) allows
us to upper bound the structural Hamming distance (SHD) between any two complete DAGs (Rσ(θ)

and Rσ(θ′)) by the number of hyper-planes of "equal coordinates" (Hi,j = {x ∈ Rd : xi = xj})
that are traversed by the segment connecting θ and θ′ (see Figure 4 in the Appendix for a schematic).
More formally, we state the following theorem.

Theorem 4.1 (Global sensitivity). For any θ ∈ Rd and θ′ ∈ Rd

SHD
(
Rσ(θ),Rσ(θ′)

)
≤
∫
t∈[0,1]

∑
i

∑
j>i

δHi,j
(θ + t(θ′ − θ)) dt (5)

where δA(x) is the (generalized) Dirac delta that evaluates to infinity if x ∈ A and 0 otherwise.

In particular, Theorem 5 shows that we can expect that small changes in θ (e.g. due to gradient-
based iterative optimization) lead to small changes in the complete DAG space, offering a result
that is reminiscent to Lipschitz-smoothness for smooth optimization. We defer proof and further
commentary (also compared to the parameterization based on permutation matrices) to Appendix C.

Learning θ with gradients. Notice that we cannot take gradients through eq. (4) because (a) σ(θ) is
not even a function (due to it possibly being a set), and (b) even if we restrict the parameter space not
to have ties, the mapping is piece-wise constant and uninformative for gradient-based learning. To
circumvent these issues, Blondel et al. (2020) propose to relax problem (4) by optimizing over the
convex hull of all permutations of ρ, that is the the order-d Permutahedron P[d] := conv{ρσ | σ ∈
Σd}, and adding a convex regularizer. These alterations yield to a class of differentiable mappings
(soft permutations), indexed by τ ∈ R+,

µ(θ) = argmax
µ∈P[d]

θ⊤µ− τ

2
∥µ∥22, (6)

which, in absence of ties, are exact for τ → 0. This technique is, however, unsuitable for our case, as
the µ(θ)’s do not describe valid permutations except when taking values on vertices of P[d]. Instead,
we show next how to obtain meaningful gradients whilst maintaining validity adapting the sparseMAP
or the top-k sparsemax operators to our setting.

Leveraging sparse relaxation methods. Let D = d! be the total number permutations of d elements,
and△D be the D-dimensional simplex. We can (non-uniquely) decompose µ =

∑
σ∈Σd

ασρ
σ for

some α ∈ △D. Plugging this into eq. (6) leads to

αsparseMAP(θ) ∈ argmax
α∈△D

θ⊤Eσ∼α[ρσ]−
τ

2
∥Eσ∼α[ρσ]∥22 , (7)

We can recognize in (7) an instance of the SparseMAP operator introduced in Section 3.3. Among
all possible decomposition, we will favor sparse ones. This is achieved by employing the active set
algorithm (Nocedal & Wright, 1999) which only requires access to an oracle solving eq. (4), i.e.,
sorting θ.

5

Alternatively, because the only term in the regularization that matters for optimization is α, we can
regularize it alone, and directly restrict the number of non-zero entries of α to some k > 2 as follows

αtop-k sparsemax(θ) ∈ argmax
α∈△|Σd|,∥α∥0≤k

θ⊤Eσ∼α[ρ
σ]− τ

2
∥α∥22 , (8)

where we assume ties are resolved arbitrarily. Algorithm 1: Top-k permutations.

Data: k ∈ [d!], θ ∈ Rd

Result: top-k permutations Tk(θ)
P (θ)← {σ1 ∈R
argmaxσ∈Σd

gθ(σ)};
while |Tk(θ)| ≤ k do

σ ∈R
argmaxσ∈P (θ)\Tk(θ)

gθ(σ);
P (θ)← P (θ) ∪ {σj | j ∈
[d−1]};
Tk(θ)← Tk(θ) ∪ {σ};

end

This is a formulation of top-k sparsemax introduced in Sec-
tion 3.3 that we can efficiently employ to learn DAGs pro-
vided that we have access to a fast algorithm that returns a
set of k permutations with highest value of gθ(σ) = θ⊤ρσ .
Algorithm 1 describes such an oracle, which, to our knowl-
edge, has never been derived before and may be of inde-
pendent interest. The algorithm restricts the search for
the best solutions to the set of permutations that are one
adjacent transposition away from the best solutions found
so far. We refer the reader to Appendix A for notation and
proof of correctness of Algorithm 1.

Remark: Top-k sparsemax optimizes over the highest-scoring permutations, while sparseMAP draws
any set of permutations the marginal solution can be decomposed into. As an example, for θ = 0,
sparseMAP returns two permutations, σ and its inverse σ−1. On the other hand, because at 0 all the
permutations have the same probability, top-k sparsemax returns an arbitrary subset of k permutations
which, when using the oracle presented above, will lie on the same face of the permutahedron. In
Appendix D we provide an empirical comparison of these two operators when applied to the DAG
learning problem.

4.2 DAG LEARNING

In order to select which edges to drop from R, we regularize the set of edge functions {fϕj}dj=1 to
be sparse via Ω(Φ) in eq. (2), i.e., ∥Φ∥0 or ∥Φ∥1. Incorporating the sparse decompositions of eq. (7)
or eq. (8) into the original problem in eq. (2) yields

min
θ,Φ

Eσ∼α⋆(θ)

 d∑
j=1

ℓ
(
xj , f

ϕj (X ◦ (Rσ)j)
)
+ λΩ(Φ)

 , (9)

where (Rσ)j is the jth column of Rσ and α⋆ is the top-k sparsemax or the SparseMAP distribution.
Notice that for both sparse operators, in the limit τ → 0+ the distribution α⋆ puts all probability
mass on one permutation: σ(θ) (the sorting of θ), and thus eq. (9) is a generalization of eq. (2).

We can solve the above optimization problem for the optimal θ,Φ jointly via gradient-based opti-
mization. The downside of this, however, is that training may move towards poor permutations purely
because Φ is far from optimal. Specifically, at each iteration, the distribution over permutations α⋆(θ)
is updated based on functional parameters Φ that are, on average, good for all selected permutations.
In early iterations, this approach can be highly suboptimal as it cannot escape from high-error local
minima. To address this, we may push the optimization over Φ inside the objective:

min
θ

Eσ∼α⋆(θ)

 d∑
j=1

ℓ
(
xj , f

ϕ⋆(σ)j
(
X ◦ (Rσ)j

)) (10)

s.t. Φ⋆(σ) = argmin
Φ

d∑
j=1

ℓ
(
xj , f

ϕj

(
X ◦ (Rσ)j

))
+ λΩ(Φ).

This is a bi-level optimization problem (Franceschi et al., 2018; Dempe & Zemkoho, 2020) where the
inner problem fits one set of structural equations {fϕj}dj=1 per σ ∼ α⋆(θ). Note that, as opposed
to many other settings (e.g. in meta-learning), the outer objective depends on θ only through the
distribution α∗(θ), and not through the inner problem over Φ. In practice, this means that the outer

6

optimization does not require gradients (or differentiability) of the inner solutions at all, saving
computation and allowing for greater flexibility in picking a solver for fitting Φ⋆(σ).2 For example,
for Ω(Φ) = ∥Φ∥1 we may invoke any Lasso solver, and for Ω(Φ) = ∥Φ∥0 we may use the algorithm
of Louizos et al. (2017), detailed in Appendix B. The downside of this bi-level optimization is that it
is only tractable when the support of α⋆(θ) has a few permutations. Optimizing for θ and Φ jointly
is more efficient.

4.3 COMPUTATIONAL ANALYSIS

The overall complexity of our framework depends on the choice of sparse operator for learning the
topological order and on the choice of the estimator for learning the edge functions. We analyze
the complexity of learning topological orderings specific to our framework, and refer the reader
to previous works for the analyses of particular estimators (e.g., Efron et al. (2004)). Note that,
independently from the choice of sparse operator, the space complexity of DAGuerreotype is at least
of the order of the edge masking matrix R, hence O(d2). This is in line with most methods based on
continuous optimization and can be improved by imposing additional constraints on the in-degree
and out-degree of a node.

SparseMAP. Each SparseMAP iteration involves a length-d argsort and a Cholesky update of a s-by-s
matrix, where s is the size of the active set (number of selected permutations), and by Carathéodory’s
convex hull theorem (Reay, 1965) can be bounded by d+1. Given a fixed number of iterations K (as
in our implementation), this leads to a time complexity of O(Kd2) and space complexity O(s2 + sd)
for SparseMAP. Furthermore, we warm-start the sorting algorithm with the last selected permutation.
Both in theory and in practice, this is better than the O(d3) complexity of maximization over the
Birkhoff polytope.

Top-k sparsemax. Complexity for top-k sparsemax is dominated by the complexity of the top-k
oracle. In our implementation, the top-k oracle has an overall time complexity O(K2d2) and space
complexity O(Kd2) (as detailed in Appendix A) when searching for the best K permutations. When
K is fixed, as in our implementation, this leads to an overall complexity of the top-k sparsemax
operator O(d2). In practice, K has to be of an order smaller than

√
d for our framework to be more

efficient than existing end-to-end approaches.

4.4 RELATIONSHIP TO PREVIOUS DIFFERENTIABLE ORDER-BASED METHODS

The advantages of our method over Cundy et al. (2021); Charpentier et al. (2022) are: (a) our
parametrization, based on sorting, improves efficiency in practice (Appendix D) and has theoretically
stabler learning dynamics as measured by our bound on SHD (Theorem (C.1)); (b) our method
allows for any downstream edge estimator, including non-differentiable ones, critically allowing for
off-the-shelf estimators; (c) empirically our method vastly improves over both approaches in terms of
SID and especially SHD on both real-world and synthetic data (Section 5).

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets Reisach et al. (2021) recently demonstrated that commonly studied synthetic benchmarks
have a key flaw. Specifically, for linear additive synthetic DAGs, the marginal variance of each node
increases the ‘deeper’ the node is in the DAG (i.e., all child nodes generally have marginal variance
larger than their parents). They empirically show that a simple baseline that sorts nodes by increasing
marginal variance and then applies sparse linear regression matches or outperforms state-of-the-art
DAG learning methods. Given the triviality of simulated DAGs, here we evaluate all methods on two
real-world tasks: Sachs (Sachs et al., 2005), a dataset of cytometric measurements of phosphorylated
protein and phospholipid components in human immune system cells. The problem consists of d = 11

2This computational advantage is shared with the score-function estimator (SFE, Rubinstein, 1986; Williams,
1992; Paisley et al., 2012; Mohamed et al., 2020). We are not aware of any applications of SFE to permutation
learning, likely due to the #P-completeness of marginal inference over the Birkhoff polytope (Valiant, 1979;
Taskar, 2004).

7

15 20 25 30 35 40
SHD

38

40

42

44

46

48

50

52

SI
D

sachs

40 60 80 100 120 140 160
SHD

100

120

140

160

180

SI
D

syntren

ours-spmax (linear)
ours-spmax (non-linear)
ours-spmax (LARS)

ours-spmax-joint (linear)
ours-spmax-joint (non-linear)
sortnregress

NPVAR (GAM)
CAM
NoTears (linear)

Golem (NEV)
VI-DP-DAG (softsort)
BCDNets

Figure 2: SHD vs SID on real datasets Sachs and SynTReN. Results are averaged over 10 seeds and
the solutions lying on the Pareto front are circled.

nodes, 853 observations and of the graph reconstructed by Sachs et al. (2005) as ground-truth DAG,
which contains 17 edges; SynTReN (den Bulcke et al., 2006), a set of 10 pseudo-real transcriptional
networks generated by the SynTRen simulator, each consisting of 500 simulated gene expression
observations, and a DAG of d = 20 nodes and of e edges with e ∈ {20, . . . , 25}. We use the
networks made publicly available by Lachapelle et al. (2020). In Appendix D we, however, compare
different configurations of our method also on synthetic datasets, as they constitute an ideal test-bed
for assessing the quality of the ordering learning step independently from the choice of structural
equation estimator.

Baselines We benchmark our framework against state-of-the-art methods: NoTears (both its lin-
ear (Zheng et al., 2018) and nonlinear (Zheng et al., 2020) models), the first continuous optimization
method, which optimizes the Frobenius reconstruction loss and where the DAG constraint is enforced
via the Augmented Lagrangian approach; Golem (Ng et al., 2020), another continuous optimiza-
tion method that optimizes the likelihood under Gaussian non-equal variance error assumptions
regularized by NoTears’s DAG penalty; CAM (Bühlmann et al., 2014), a two-stage approach that
estimates the variable order by maximum likelihood estimation based on an additive structural
equation model with Gaussian noise; NPVAR (Gao et al., 2020), an iterative algorithm that learns
topological generations and then prunes edges based on node residual variances (with the Generalized
Additive Models (Hastie & Tibshirani, 2017) regressor backend to estimate conditional variance);
sortnregress (Reisach et al., 2021), a two-steps strategy that orders nodes by increasing variance
and selects the parents of a node among all its predecessors using the Least Angle Regressor (Efron
et al., 2004); BCDNets (Cundy et al., 2021) and VI-DP-DAG (Charpentier et al., 2022), the two
differentiable, probabilistic methods described in Section 2. Before evaluation, we post-process the
graphs found by NoTears and Golem by first removing all edges with absolute weights smaller than
0.3 and then iteratively removing edges ordered by increasing weight until obtaining a DAG, as the
learned graphs often contain cycles.

Metrics We compare the methods by two metrics, assessing the quality of the estimated graphs: the
Structural Hamming Distance (SHD) between true and estimated graphs, which counts the number of
edges that need to be added or removed or reversed to obtain the true DAG from the predicted one;
and the Structural Intervention Distance (SID, Peters & Bühlmann, 2015), which counts the number
of causal paths that are broken in the predicted DAG. It is standard in the literature to compute both
metrics, given their complementarity: SHD evaluates the correctness of individual edges, while SID
evaluates the preservation of causal orderings. We further remark here that these metrics privilege
opposite trivial solutions. Because true DAGs are usually sparse (i.e., their number of edges is much
smaller than the number of possible ones), SHD favors sparse solutions such as the empty graph. On
the contrary, given a topological ordering, SID favors dense solutions (complete DAGs in the limit)
as they are less likely to break causal paths. For this reason, we report both metrics and highlight the
solutions on the Pareto front in Figure 2.

Hyper-parameters and training details We set the hyper-parameters of all methods to their default
values. For our method we tuned them by Bayesian Optimization based on the performance, in terms

8

True Edge Correct prediction Wrong predictionMissing EdgeLegend:

sortnregress

True DAG

VI-DP-DAG

Daguerreotype (ours)

Figure 3: Sachs. True DAG and DAGs predicted by the best-performing methods. We plot on the left
of the bar correct and missing edges and on the right of the bar wrong edges found by each method.
DAGuerreotype strikes a good balance between SID and SHD; other methods focus overly on one
over the other by either predicting too few (sortnregress) or too many edges (VI-DP-DAG).

of SHD and SID, averaged over several synthetic problems from different SEMs. For our method, we
optimize the data likelihood (under Gaussian equal variance error assumptions, as derived in Ng et al.
(eq. 2, 2020)) and we instantiate f

ϕj

j to a masked linear function (linear) or as a masked MLP as for
NoTears-nonlinear. Because our approach allows for modular solving of the functional parameters Φ,
we also experiment with using Least Angle Regression (LARS) (Efron et al., 2004). We additionally
apply l2 regularizations on {θ,Φ} to stabilize training, and we standardize all datasets to ensure that
all variables have comparable scales. More details are provided in Appendix D. The code for running
the experiments is available at https://github.com/vzantedeschi/DAGuerreotype.

5.2 RESULTS

We report the main results in Figure 2, where we omit some baselines (e.g., DAGuerreotype with
sparseMAP) for sake of clarity. We present the complete comparison in Appendix D, together
with additional metrics and studies on the sensitivity of DAGuerreotype depending on the choice
of key hyper-parameters. To provide a better idea of the learned graphs, we also plot in Figure 3
the graphs learned by the best-performing methods on Sachs. We observe that the solutions found
by NPVAR and the matrix-exponential regularized methods (NoTears and Golem) are the best
in terms of SHD, but have the worst SIDs. This can be explained by the high sparsity of their
predicted graphs (see the number of edges in Tables 1 and 2). On the contrary, the high density of the
solutions of VI-DP-DAG makes them among the best in terms of SID and the worst in terms of SHD.
DAGuerreotype provides solutions with a good trade-off between these two metrics and which lie on
the Pareto front. Inevitably its performance strongly depends on the choice of edge estimator for the
problem at hand. For instance, the linear estimator is better suited for Sachs than for SynTReN. In
Appendix D, we assess our method’s performance independently from the quality of the estimator
with experiments on synthetic data where the underlying SEM is known, and the estimator can be
chosen accordingly.

6 CONCLUSION, LIMITATIONS AND FUTURE WORK

In this work, we presented DAGuerreotype , a permutation-based method for end-to-end learning
of directed acyclic graphs. While our approach shows promising results in identifying DAGs, the
optimization procedure can still be improved. Alternative choices of estimators, such as Generalized
Additive Models (Hastie & Tibshirani, 2017) as done in CAM and NPVAR, could be considered to
improve identification. Another venue for improvement would be to include interventional datasets
at training. It would be interesting to study in this context whether our framework is more sample-
efficient, i.e., allows us to learn the DAG with fewer interventions or observations.

9

https://github.com/vzantedeschi/DAGuerreotype

ACKNOWLEDGEMENTS

We are grateful to Mathieu Blondel, Caio Corro, Alexandre Drouin and Sébastien Paquet for discus-
sions. Part of this work was carried out when VZ was affiliated with INRIA-London and University
College London. Experiments presented in this paper were partly performed using the Grid’5000
testbed, supported by a scientific interest group hosted by Inria and including CNRS, RENATER
and several Universities as well as other organizations (see https://www.grid5000.fr). VN
acknowledges support from the Dutch Research Council (NWO) project VI.Veni.212.228.

REFERENCES

Raghavendra Addanki, Shiva Kasiviswanathan, Andrew McGregor, and Cameron Musco. Efficient
intervention design for causal discovery with latents. In International Conference on Machine
Learning, pp. 63–73. PMLR, 2020.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 2623–2631, 2019.

Bryon Aragam and Qing Zhou. Concave penalized estimation of sparse gaussian bayesian networks.
The Journal of Machine Learning Research, 16, 2015.

Kevin Bello, Bryon Aragam, and Pradeep Ravikumar. DAGMA: learning dags via m-matrices and a
log-determinant acyclicity characterization. Advances in Neural Information Processing Systems,
2022.

Mathieu Blondel, Olivier Teboul, Quentin Berthet, and Josip Djolonga. Fast differentiable sorting
and ranking. In International Conference on Machine Learning, pp. 950–959. PMLR, 2020.

Philippe Brouillard, Sébastien Lachapelle, Alexandre Lacoste, Simon Lacoste-Julien, and Alexandre
Drouin. Differentiable causal discovery from interventional data. In NeurIPS, 2020.

Peter Bühlmann, Jonas Peters, and Jan Ernest. Cam: Causal additive models, high-dimensional order
search and penalized regression. The Annals of Statistics, 42(6):2526–2556, 2014.

Bertrand Charpentier, Simon Kibler, and Stephan Günnemann. Differentiable DAG sampling. In
International Conference on Learning Representations, 2022.

David Maxwell Chickering. Learning bayesian networks is np-complete. In Doug Fisher and Hans-
Joachim Lenz (eds.), Learning from Data - Fifth International Workshop on Artificial Intelligence
and Statistics, AISTATS 1995, Key West, Florida, USA, January, 1995. Proceedings. Springer,
1995.

Gonçalo Correia, Vlad Niculae, Wilker Aziz, and André Martins. Efficient marginalization of discrete
and structured latent variables via sparsity. Advances in Neural Information Processing Systems,
33, 2020.

Chris Cundy, Aditya Grover, and Stefano Ermon. Bcd nets: Scalable variational approaches for
bayesian causal discovery. Advances in Neural Information Processing Systems, 34, 2021.

James Cussens. Bayesian network learning with cutting planes. In Uncertainty in Artificial Intelli-
gence, 2011.

Stephan Dempe and Alain Zemkoho. Bilevel optimization: Advances and next challenges. Springer,
2020.

Tim Van den Bulcke, Koen Van Leemput, Bart Naudts, Piet van Remortel, Hongwu Ma, Alain
Verschoren, Bart De Moor, and Kathleen Marchal. Syntren: a generator of synthetic gene
expression data for design and analysis of structure learning algorithms. BMC Bioinform., 7:43,
2006.

Frederick Eberhardt. Causation and intervention. Unpublished doctoral dissertation, Carnegie
Mellon University, pp. 93, 2007.

10

https://www.grid5000.fr

Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least angle regression. The
Annals of statistics, 32(2):407–499, 2004.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. Bilevel
programming for hyperparameter optimization and meta-learning. In International Conference on
Machine Learning, pp. 1568–1577. PMLR, 2018.

Nir Friedman and Daphne Koller. Being bayesian about network structure. A bayesian approach to
structure discovery in bayesian networks. Machine learning, 50, 2003.

Ming Gao, Yi Ding, and Bryon Aragam. A polynomial-time algorithm for learning nonparametric
causal graphs. In Advances in Neural Information Processing Systems, 2020.

Dan Geiger and David Heckerman. Learning gaussian networks. In Uncertainty Proceedings 1994,
pp. 235–243. Elsevier, 1994.

Godfrey Harold Hardy, John Edensor Littlewood, , and György Pólya. Inequalities. Cambridge
University Press, 1952.

Trevor J Hastie and Robert J Tibshirani. Generalized additive models. Routledge, 2017.

Alain Hauser and Peter Bühlmann. Two optimal strategies for active learning of causal models from
interventional data. International Journal of Approximate Reasoning, 55(4):926–939, 2014.

Yue He, Peng Cui, Zheyan Shen, Renzhe Xu, Furui Liu, and Yong Jiang. DARING: differentiable
causal discovery with residual independence. In KDD, 2021.

Jean Kaddour, Aengus Lynch, Qi Liu, Matt J. Kusner, and Ricardo Silva. Causal machine learning:
A survey and open problems. arXiv preprint arXiv:2206.15475, 2022.

Diviyan Kalainathan and Olivier Goudet. Causal discovery toolbox: Uncover causal relationships in
python. arXiv preprint arXiv:1903.02278, 2019.

Neville Kenneth Kitson, Anthony C. Constantinou, Zhigao Guo, Yang Liu, and Kiattikun Chobtham.
A survey of bayesian network structure learning. CoRR, abs/2109.11415, 2021.

Murat Kocaoglu, Alex Dimakis, and Sriram Vishwanath. Cost-optimal learning of causal graphs. In
International Conference on Machine Learning, pp. 1875–1884. PMLR, 2017.

Sébastien Lachapelle, Philippe Brouillard, Tristan Deleu, and Simon Lacoste-Julien. Gradient-based
neural DAG learning. In ICLR, 2020.

Phillip Lippe, Taco Cohen, and Efstratios Gavves. Efficient neural causal discovery without acyclicity
constraints. In International Conference on Learning Representations, 2022.

Christos Louizos, Max Welling, and Diederik P Kingma. Learning sparse neural networks through
l_0 regularization. arXiv preprint arXiv:1712.01312, 2017.

Gonzalo Mena, David Belanger, Scott Linderman, and Jasper Snoek. Learning latent permutations
with gumbel-sinkhorn networks. In International Conference on Learning Representations, 2018.

Elad Michael, Tony A. Wood, Chris Manzie, and Iman Shames. Global sensitivity analysis for the
linear assignment problem. In ACC, pp. 3387–3392. IEEE, 2020.

Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte carlo gradient
estimation in machine learning. J. Mach. Learn. Res., 21(132):1–62, 2020.

Ignavier Ng, AmirEmad Ghassami, and Kun Zhang. On the role of sparsity and DAG constraints for
learning linear dags. In NeurIPS, 2020.

Ignavier Ng, Sébastien Lachapelle, Nan Rosemary Ke, Simon Lacoste-Julien, and Kun Zhang.
On the convergence of continuous constrained optimization for structure learning. In AISTATS,
Proceedings of Machine Learning Research, 2022.

11

Vlad Niculae, Andre Martins, Mathieu Blondel, and Claire Cardie. Sparsemap: Differentiable sparse
structured inference. In International Conference on Machine Learning, pp. 3799–3808. PMLR,
2018.

Mathias Niepert, Pasquale Minervini, and Luca Franceschi. Implicit mle: Backpropagating through
discrete exponential family distributions. Advances in Neural Information Processing Systems, 34,
2021.

Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

John Paisley, David M. Blei, and Michael I. Jordan. Variational bayesian inference with stochastic
search. In Proc. ICML, 2012.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

Max Paulus, Dami Choi, Daniel Tarlow, Andreas Krause, and Chris J Maddison. Gradient estimation
with stochastic softmax tricks. Advances in Neural Information Processing Systems, 33:5691–5704,
2020.

Judea Pearl. Causality: Models, reasoning and inference. 2000.

Jonas Peters and Peter Bühlmann. Neural computation, 27(3):771–799, 2015.

Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference: foundations
and learning algorithms. The MIT Press, 2017.

Sebastian Prillo and Julian Eisenschlos. Softsort: A continuous relaxation for the argsort operator. In
ICML, 2020.

Joseph D. Ramsey, Madelyn Glymour, Ruben Sanchez-Romero, and Clark Glymour. A million
variables and more: the fast greedy equivalence search algorithm for learning high-dimensional
graphical causal models, with an application to functional magnetic resonance images. Interna-
tional Journal of Data Science and Analytics, 3, 2017.

John R Reay. Generalizations of a theorem of Carathéodory. Number 54. American Mathematical
Soc., 1965.

Alexander G Reisach, Christof Seiler, and Sebastian Weichwald. Beware of the simulated dag!
varsortability in additive noise models. Advances in Neural Information Processing Systems, 34,
2021.

Paul Rolland, Volkan Cevher, Matthäus Kleindessner, Chris Russell, Dominik Janzing, Bernhard
Schölkopf, and Francesco Locatello. Score matching enables causal discovery of nonlinear additive
noise models. In International Conference on Machine Learning, pp. 18741–18753. PMLR, 2022.

Reuven Y Rubinstein. The score function approach for sensitivity analysis of computer simulation
models. Mathematics and Computers in Simulation, 28(5):351–379, 1986.

Karen Sachs, Omar Perez, Dana Pe’er, Douglas A. Lauffenburger, and Garry P. Nolan. Causal
protein-signaling networks derived from multiparameter single-cell data. Science, 308(5721):
523–529, 2005. doi: 10.1126/science.1105809.

Andrew D Sanford and Imad A Moosa. A bayesian network structure for operational risk modelling
in structured finance operations. Journal of the Operational Research Society, 63(4):431–444,
2012.

Mauro Scanagatta, Cassio P de Campos, Giorgio Corani, and Marco Zaffalon. Learning bayesian
networks with thousands of variables. In Advances in Neural Information Processing Systems,
volume 28, 2015.

12

Rajen D Shah and Jonas Peters. The hardness of conditional independence testing and the generalised
covariance measure. The Annals of Statistics, 48(3):1514–1538, 2020.

Karthikeyan Shanmugam, Murat Kocaoglu, Alexandros G Dimakis, and Sriram Vishwanath. Learning
causal graphs with small interventions. Advances in Neural Information Processing Systems, 28,
2015.

Ajit P Singh and Andrew W Moore. Finding optimal Bayesian networks by dynamic programming.
Citeseer, 2005.

Peter Spirtes, Clark N Glymour, Richard Scheines, and David Heckerman. Causation, prediction,
and search. MIT press, 2000.

Chandler Squires, Yuhao Wang, and Caroline Uhler. Permutation-based causal structure learning with
unknown intervention targets. In Proceedings of the 36th Conference on Uncertainty in Artificial
Intelligence (UAI), 2020.

Ben Taskar. Learning structured prediction models: A large margin approach. PhD thesis, Stanford
University, 2004.

Marc Teyssier and Daphne Koller. Ordering-based search: A simple and effective algorithm for
learning bayesian networks. In UAI, pp. 548–549. AUAI Press, 2005.

Leslie G Valiant. The complexity of computing the permanent. Theor. Comput. Sci., 8(2):189–201,
1979.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3-4):229–256, 1992.

Jing Xiang and Seyoung Kim. A∗ lasso for learning a sparse bayesian network structure for continuous
variables. In Advances in Neural Information Processing Systems, volume 26, 2013.

Yue Yu, Jie Chen, Tian Gao, and Mo Yu. DAG-GNN: DAG structure learning with graph neural
networks. In ICML, Proceedings of Machine Learning Research, 2019.

Bin Zhang, Chris Gaiteri, Liviu-Gabriel Bodea, Zhi Wang, Joshua McElwee, Alexei A Podtelezhnikov,
Chunsheng Zhang, Tao Xie, Linh Tran, Radu Dobrin, et al. Integrated systems approach identifies
genetic nodes and networks in late-onset alzheimer’s disease. Cell, 153(3):707–720, 2013.

Xun Zheng, Bryon Aragam, Pradeep Ravikumar, and Eric P. Xing. Dags with NO TEARS: continuous
optimization for structure learning. In Advances in Neural Information Processing Systems, 2018.

Xun Zheng, Chen Dan, Bryon Aragam, Pradeep Ravikumar, and Eric Xing. Learning sparse
nonparametric dags. In International Conference on Artificial Intelligence and Statistics, pp.
3414–3425. PMLR, 2020.

13

A TOP-K ORACLE

In this section, we propose an efficient algorithm for finding the top-k scoring rankings of a vector
and prove its correctness. We leverage this result in order to apply the sparsemax operator (Correia
et al., 2020) to our DAG learning problem. We are not aware of existing works on this topic and
believe this result is of independent interest.

A.1 NOTATION AND DEFINITIONS

Let us denote the objective function gθ(σ) = ⟨θ,ρσ⟩ evaluating the quality of a permutation σ, and
denote one of its maximizers as σ1 ∈ argmaxσ∈Σd

gθ(σ), corresponding to the argsort of θ. Notice
that we can equivalently write this objective as gθ(σ) = ⟨θσ,ρ⟩ by applying the permutation to θ.

Definition A.1 (Top-k permutations). We denote by Tk(θ) ⊆ Σd a sequence of K highest-scoring
permutations according to gθ i.e., Tk(θ) = {σ1, σ2, . . . , σk} and for any σ′ /∈ Tk(θ):

gθ(σ
1) ≥ gθ(σ

2) ≥ . . . ≥ gθ(σ
k) ≥ gθ(σ

′).

In this section, we will make use of the following definition and lemma.

Definition A.2 (Adjacent transposition). σj := σ (j j+1) denotes a 2-cycle of the components of
the vector σ, which transposes (flips) the two consecutive elements σj and σj+1.

Lemma A.1. Let σ ∈ Σd be a permutation. Exactly one of the following holds.

1. gθ(σ j) = gθ(σ
1),

2. There exists an adjacent transposition (j j+1) such that σj satisfies gθ(σ) > gθ(σ
1).

Proof. Denote by θσ the permutation of θ by σ and let J = {j ∈ [d−1] | θσ
j > θσ

j+1}. If J = ∅ then
θσ is in increasing order, so by the Rearrangement Inequality (Hardy et al., 1952, Thms. 368–369) σ
is a 1-best permutation. Otherwise, applying the adjacent transposition (j j+1) increases the score:

gθ(σ j)− gθ(σ) = θσ
j − θσ

j+1 > 0 .

A.2 BEST-FIRST SEARCH ALGORITHM

Algorithm (2) finds the set of k-best scoring permutations given θ. Starting from an optimum of
gθ, the algorithm grows the set of candidate permutations P (θ) by adding all those that are one
adjacent transposition away from the ith-best permutation at iteration i. It then selects the best scoring
permutation in P (θ) to be the top-(i+1) solution. Theorem A.2 proves that an i+1th-best solution
must lie in this set P (θ), hence that Algorithm (2) is correct.

Theorem A.2 (Correctness of Algorithm (2)). Given a sequence of k−1-best permutations
Tk−1(θ) = {σ1, σ2, . . . , σk−1}, there exists a k-th best σk, i.e., one satisfying gθ(σ

k−1) ≥
gθ(σ

k) ≥ gθ(σ
′) for any σ′ /∈ Tk−1(θ), with the property that σk = σij for some i ∈ {1, . . . , k−1}

and j ∈ {1, . . . , d−1}.

Proof. Let σk be a k-th best permutation.

Case 1. gθ(σk) ̸= gθ(σ
1). Invoking Lemma A.1 we have gθ(σkj) > gθ(σ

k). Since the inequality is
strict, we must have σkj ∈ Tk−1(θ).

Case 2. gθ(σk) = gθ(σ
1). In this case, we have at least k permutations tied for first place. Any

two permutations with equal score can only differ in indices that correspond to ties in θ. Therefore,
any two tied permutations are connected by a trajectory of transpositions of equal score. This is a
face of the permutahedron, of size c > K, containing Tk−1(θ). This face must contain at least one
permutation that is one adjacent transposition away from one of Tk−1(θ), and we may as well take
this one as the k-th best instead of σk.

14

Algorithm 2: Top-k permutations.

Data: k ∈ {1, . . . , d!}, θ ∈ Rd

Result: top-k permutations Tk(θ)
P (θ)← {σ1 ∈R argmaxσ∈Σd

gθ(σ)} /* initialize set of candidates
with an optimum */

while |Tk(θ)| ≤ k do
σ ∈R argmaxσ∈P (θ)\Tk(θ)

gθ(σ) /* retrieve a best scoring solution
among the candidates that has not been retrieved yet */

P (θ)← P (θ) ∪ {σj | j ∈ {1, . . . , d−1}} /* add its one adjacent
transposition away permutations to the candidates */

Tk(θ)← Tk(θ) ∪ {σ} /* update set of best permutations */
end

A.3 COMPUTATIONAL ANALYSIS

Finding σ1 requires sorting a vector of size d (hence O(d log d) complexity). Then, at each iteration
k of Algorithm (2), the maximum among the best candidates P (θ) needs to be found, which requires
O(dk) complexity as |P (θ)| ≤ (d− 2)k, and O(d) adjacent flip operations are applied to it.

The most expensive operation is checking that the selected best candidate is not already in Tk−1(θ).
At worst, this requires going through the whole P (θ) and comparing them in order to all top-k
solutions, so no more than K × |P (θ)| comparisons of cost O(d) each.

This leads to an overall time complexity of O(K2d2). The space complexity is dominated by the size
of P (θ), which contains at most Kd vectors of size d, leading to O(Kd2).

B L0 REGULARIZATION

In the linear and non-linear variants of DAGuerreotype , we implement the regularization term Ωξ of
the inner problem of Eq. (10) with an approximate L0 regularizer. The exact L0 norm

||w||0 =

n∑
i=1

1wj ̸=0 (11)

counts the number of non-zero entries of w ∈ Rn and, when used as regularizer, it favors sparse
solutions without injecting other priors. However, its combinatorial nature and its non-differentiability
make its optimization intractable. Following Louizos et al. (2017), we reparameterize (11) by
introducing a set of binary variables z ∈ {0, 1}n and letting w = ŵ ◦ z, sothat ||w||0 =

∑
zi. Next,

we let z ∼ p(z;π) = Bernoulli(π) where π ∈ [0, 1]d. For linear SEMs, we can now reformulate
the Inner Problem (10) as follows:

min
ŵ,π

d∑
j=1

(
Ezj∼p(zj |πj)

[
ℓ
(
xj , f

ŵj◦zj
j

(
X, (Mσ)j

))]
+ ξ

d∑
i=1

πji

)
; (12)

where now the decision (inner) variables are intended to be matrices and ξ ≥ 0 is a hyperparameter. In
the non-linear (MLP) case, we achieve sparsity at the graph level by group-regularizing the parameters
corresponding to each input variable. In the experiments, we optimize (12) using the one-sample
Monte Carlo straight-through estimator and set the final functional parameters as

w∗ = ŵ∗ ◦MAP [p(· ;π)] = ŵ∗ ◦H
(
π − 1

2
1

)
; (13)

where H is the Heaviside function. We leave the implementation of more sophisticated strategies,
such as the relaxation with the hard-concrete distribution presented in (Louizos et al., 2017) or other
estimators (e.g. Paulus et al., 2020; Niepert et al., 2021), to future work.

15

1.5
1.0
0.5
0.0
0.5
1.0
1.5

1.51.00.50.00.51.01.5
1.5
1.0
0.5

0.0
0.5
1.0
1.5

Figure 4: Representation of the degeneracy hyper-planes in R3 and of two-parameter points (in red)
whose connecting segment intersects two hyper-planes.

C CHARACTERIZATION AND SENSITIVITY OF THE VECTOR
PARAMETRIZATION

In this section, we provide some intuition into the behavior of our score vector parameterization in
the space of complete DAGs. More precisely, we look at the Maximum A Posteriori (MAP) complete
DAG

Mσ∗
∈ DC[d] where σ∗ ∈ argmax ⟨θ,ρσ⟩ (14)

and how it varies as a function of the score vector θ ∈ Rd. The permutation σ∗ is a MAP state
(or mode) of both the sparseMAP and the sparsemax distributions (as well as the standard categori-
cal/softmax distribution). For brevity, we shall rename Mσ∗

:= M(θ) in the following.

We choose to work on the space of complete DAGs because there is a one-to-one correspondence
between topological orderings and complete DAGs. This is not generally true when analyzing the
space of DAGs, as a permutation does not uniquely identify a DAG and vice versa.

C.1 PRELIMINARY

For the results of this section, we will use the following relationship between transpositions (adjacent
or not) and SHD.

Proposition C.0.1 (SHD difference after a flip). Consider θ ∈ Rd and θ′ which is obtained by
applying a flip (i j) with the convention that i < j. All the edges from nodes between i and j directed
towards i or j need to be reversed. Thus, the SHD between complete DAGs SHD(M(θ),M(θ′)) =
2(j − i)− 1. (because no new undirected edges are added, no undirected edges are removed, and
2(j − i)− 1 edges are reversed).

From Proposition (C.0.1) we deduce that the SHD difference after applying an adjacent flip is
SHD(M(θ),M(θ′)) = 1.

C.2 ANALYSIS

Recall that σ∗ sorts the elements of θ in increasing order. Then, the points θ ∈ Rd where
argmax ⟨θ,ρσ⟩ is non-singleton (degeneracy) are exactly those that have at least one tie among their

16

entries (i.e., ∃ i, j such that θi = θj). Following this simple observation, we can populate Rd with
(
d
2

)
hyper-planes (of dimensionality d− 1), and call them Hi,j with i < j, such that ∀θ ∈ Hi,j ,θi = θj .
Intersections of such hyper-planes are lower dimensional subspaces where more than 2 entries of θ
are equal. For d = 3, Figure 4 depicts the

(
3
2

)
= 3 hyper-planes in orange, green and blue, and their

intersection (a line) in gray.

The hyper-planes {Hi,j}i<j’s delimit exactly d! open cones of the form C = {θ ∈ Rd|θσ
1 < θσ

2 <
· · · < θσ

d , σ ∈ Σd}, i.e., each cone is the space of all points that give the same MAP permutation and
do not contain any ties.

This partition of the space allows us to reason about the sensitivity of our MAP estimates to changes
to the parameters. For instance, as the points of a cone do not have any ties, changes to the score
vector do not affect SHD: ∀θ ∈ C,θ′ ∈ C SHD(M(θ),M(θ′)) = 0.

We first analyze the sensitivity to single-entry changes, hence assessing how much an entry of θ
can be individually perturbed without changing its MAP. Proposition C.0.2 provides the entry-wise
ranges in which the optimal solution set does not change.

Proposition C.0.2 (Entry-wise intervals). For any θ ∈ Rd and εi ∈ R, argmax ⟨θσ,ρ⟩ =
argmax ⟨θσ + εiei,ρ⟩ if and only if:

• ∀i ∈ [2, . . . , d− 1], εi ∈ (θσ⋆

i−1 − θσ⋆

i ,θσ⋆

i+1 − θσ⋆

i);

• i = 1, εi ∈ (−∞,θσ⋆

i+1 − θσ⋆

i);

• i = d, εi ∈ (θσ⋆

i−1 − θσ⋆

i ,∞)

where ei denotes the i-th standard unit vector and σ⋆ ∈ argmax ⟨θ,ρσ⟩.

We can relate this result to changes in terms of SHD, by making the following observation: if we
gradually increase one coordinate θi initially ranked σ⋆

i , its rank changes in the optimal ordering
as soon as it becomes greater than the coordinate right after it in the ordering, entailing an adjacent
transposition between the two coordinates3. Greater perturbations entail a longer sequence of adjacent
transpositions. By Proposition C.0.1, this implies an increase in SHD of 1 for each transposition.
Visually, the SHD increases by 1 every time the perturbed vector crosses a hyper-plane along its
perturbation direction, as this corresponds to swapping two components that are adjacent when
optimally sorted.

For comparison, we can apply the same reasoning to the matrix parametrization of the linear assign-
ment problem, deployed by Cundy et al. (2021) for learning permutation matrices. In this context,
we can leverage the edge sensitivity analysis reviewed in Michael et al. (2020, Equations 6-7). As
a general remark, it is not as intuitive to determine the entry-wise intervals for this problem, not
only because we have d2 variables instead of d but especially because it requires solving a different
assignment problem per entry. Furthermore, the minimal perturbation that changes the MAP does not
necessarily result in flipping two adjacent nodes, entailing an SHD relative to the optimal permutation
of at least 1. Consider, for example, the following 3× 3 matrix parameter:

Θ =

(
16 16 15
5 16 10
16 9 10

)

Its optimal permutation matrix corresponds to the rank (3, 1, 2) with a score of 29. The minimal
perturbations on Θ1,3 or Θ3,2 that change the MAP result in the solution (2, 1, 3) which has an
SHD of 3 w.r.t. the optimal (and the second best score of 31). For problems of scale larger than this
example, the resulting SHD can take values up to 2d− 3 for non-adjacent transpositions.

We now generalize and formalize this relationship between perturbations and SHD changes for
general vector perturbations (global sensitivity). Theorem (C.1) upper bounds the SHD between
complete DAGs of any pair of score vectors by the number of hyper-planes crossed by the segment
connecting them.

3A similar reasoning also applies when decreasing the value of one coordinate instead.

17

Theorem C.1 (Global sensitivity). For any θ ∈ Rd and θ′ ∈ Rd

SHD(M(θ),M(θ′)) ≤
∫
t∈[0,1]

∑
i

∑
j>i

δHi,j (θ + t(θ′ − θ)) dt (15)

where δA(x) is the (generalized) Dirac delta that evaluates to infinity if x ∈ A and 0 otherwise.

Proof. Let us first consider the case where θ ∈ C and θ′ ∈ C ′, i.e., the two vectors do not contain
ties. Let us denote σ (respectively σ′) the permutation that sorts the components of a point of C (C ′)
by increasing order. The minimal-length sequence of adjacent flips that need to be applied to σ to
obtain σ′ has a length equal to the number of times the segment connecting their parameters crosses a
hyper-plane. Then the SHD between their complete DAGs equals the minimal number of adjacent
flips, which proves the result. When either θ or θ′ lies on a hyper-plane, the minimal required number
of adjacent flips might be smaller, hence the upper bound in Theorem C.1.

In Figure 4, the segment connecting the two red dots intersects the green and blue hyperplanes and
hence the resulting complete DAGs will have an SHD of at most 2 (in fact, exactly 2 in this case).

This intuitive characterization links the SHD distance in the complete DAG space to a partition of Rd

resulting from the "sorting" operator (i.e. the MAP, or maximizer of the linear program) of the score
vector θ. This implies that, during optimization, if θk are in the interior of any cone (which happens
almost surely) then it is very likely that updating the parameters results in small changes to the SHD
unless the parameters have all similar values.

A deeper analysis of the vector parameterization is the object of future work, as we hope it can
fuel further improvements in the optimization algorithm, such as better initialization strategies or
reparameterization. For instance, optimizing in Sd−1

r (over polar coordinates) would expose the role
of the radius r as similar to the temperature parameter for the distributions we consider (the smaller
the radius, the higher the "temperature"). Typically, the temperature is left constant during training or
annealed, suggesting this might be advantageous also in our scenario. We leave the exploration of
this strategy to future work.

D ADDITIONAL EXPERIMENTS

We provide a detailed description of the experimental setup and report additional results. The method
is implemented in (PyTorch, Paszke et al., 2019), and the code used for carrying out the experiments
is included in the supplementary material. All experiments were run on a machine with 16 cores,
32Gb of RAM and an NVIDIA A100-SXM4-80GB GPU.

DAGuerreotype ’s optimization and evaluation For our method, we optimize the data likelihood
(under Gaussian equal variance error assumptions, as derived in Ng et al. (Equation 2, 2020)) We
optimize the bilevel Problem (10) when not specified otherwise. We report results for the following
three variants of DAGuerreotype , where the edge estimator of the graph is instantiated

(linear) with L0 regularization, fϕj

j (X,Aj) = X (ϕj ◦Aj) and wj ∈ Rd;

(non-linear) with L0 regularization, fϕj

j (X,Aj) = hj

(
g
ϕj

j (X,Aj)
)

, with hj a locally connected

MLP with one hidden layer, 50 hidden units and sigmoid activation function, gϕj

j a
linear layer with d× 50 hidden units (50 per parent i) and masking out all non-parents
of j (according to Aj), and ϕji = ∥g

ϕj

ji ∥2 as for NoTears (non-linear);

(LARS) with Least Angle Regression (LARS) (Efron et al., 2004), fϕj

j (X,Aj) = X (ϕj ◦Aj)

and ϕj ∈ Rd.

We additionally apply a l2 regularization on {θ,ϕ} to stabilize training, and we standardize all
datasets to ensure that all variables have comparable scales.

With any variant, the outer problem is optimized for 5, 000 maximum iterations by gradient descent
and early-stopped when approximate convergence is reached. When using the (linear) and (non-linear)

18

15 20 25 30 35 40
SHD

38

40

42

44

46

48

50

52

SI
D

sachs
ours-spmax (linear)
ours-spmax (non-linear)
ours-spmax (LARS)
ours-spmax-joint (linear)
ours-spmax-joint (non-linear)
ours-spMAP (linear)
ours-spMAP (non-linear)
ours-spMAP (LARS)
ours-spMAP-joint (linear)
ours-spMAP-joint (non-linear)
sortnregress
NPVAR (GAM)
CAM
NoTears (linear)
NoTears (non-linear)
Golem (NEV)
VI-DP-DAG (softsort)
VI-DP-DAG (sinkhorn)
BCDNets

Figure 5: SHD vs SID on Sachs. The solutions lying on the Pareto front are colored in orange and the
others in blue.

back-ends, the graph of each permutation is optimized also by gradient descent, for 1, 000 epochs and
also with an early-stopping mechanism based on approximate convergence. After training, the graph
for the mode permutation is further fine-tuned, and the final evaluation is carried out with this model.

We also experiment with the approximated, but faster, joint optimization of θ and ϕ in Problem (2)
instead of the bilevel formulation, when we add the suffix joint to the method name. In this case, as
we need a differentiable graph estimator for jointly updating the ordering and the graph, we instantiate
the method only with the (linear) and (non-linear) back-ends. These models are optimized by gradient
descent for 5, 000 epochs and with an early-stopping mechanism based on approximate convergence.

The default hyper-parameters of our methods were chosen as follows. We set the sparse operators’
temperature τ = 1 and K = 100, the strength of the l2 regularizations to 0.0005, and tuned
the learning rates for the outer and inner optimization ∈ [10−4, 10−1] and pruning strength λ ∈
[10−6, 10−1]. The tuning was carried out by Bayesian Optimization using (Optuna, Akiba et al., 2019)
for 50 trials on synthetic problems, consisting of data generated from different types of random graphs
(Scale-Free, Erdős–Rényi, BiPartite) and of noise models (e.g., Gaussian, Gumbel, Uniform) with 20
nodes and 20 or 40 expected edges. For each setting, three datasets are generated by drawing a DAG,
its edge weights uniformly in [−2,−0.5] ∪ [0.5, 2], and 1, 000 data points. A set of hyper-parameters
is then evaluated by averaging its performance on all the generated datasets, and the tuning is carried
out to minimize SHD and SID jointly. The default value of a hyper-parameter was then set to be the
average value among those lying on the Pareto front and rounded up to have a single significant digit.

Baseline optimization and evaluation

All baseline methods are optimized using the codes released by their authors, apart from CAM that is
included in the Kalainathan & Goudet (Causal Discovery Toolbox, 2019). Before evaluation, we post-
process the graphs found by NoTears and Golem by first removing all edges with absolute weights
smaller than 0.3 and then iteratively removing edges ordered by increasing weight until obtaining
a DAG, as the learned graphs often contain cycles. For the probabilistic baselines (VI-DP-DAG
and BCDNets), we make use of the mode model (in particular, the mode permutation matrix) for
evaluation.

We set the hyper-parameters of all methods to their default values, released together with the source
code, apart from the parameters of the Least Angle Regressor module of sortnregress that uses the
Bayesian Information Criterion for model selection.

Additional results on real-world tasks In Figures 5, 6, and Tables 1 and 2 we extend the evalu-
ation on real-world tasks provided in the main text. More precisely, we report the results also for
DAGuerreotype with sparseMAP, and provide additional metrics for comparison: the F1 score using
the existence of an edge as the positive class and the number of predicted edges to assess the density
of the solutions.

19

40 60 80 100 120 140 160
SHD

100

120

140

160

180

SI
D

syntren
ours-spmax (linear)
ours-spmax (non-linear)
ours-spmax (LARS)
ours-spmax-joint (linear)
ours-spmax-joint (non-linear)
ours-spMAP (linear)
ours-spMAP (non-linear)
ours-spMAP (LARS)
ours-spMAP-joint (linear)
ours-spMAP-joint (non-linear)
sortnregress
NPVAR (GAM)
CAM
NoTears (linear)
NoTears (non-linear)
Golem (NEV)
VI-DP-DAG (softsort)
VI-DP-DAG (sinkhorn)
BCDNets

Figure 6: SHD vs SID on SynTReN. The solutions lying on the Pareto front are colored in orange and
the others in blue.

Sparsemax vs sparseMAP comparison In Figures 8 and 7, we report an analysis of the effect of
DAGuerreotype ’s hyper-parameter K and of the sample size n on the quality of the learned DAG.
Recall that K corresponds to the maximal number of selected permutations for sparsemax and to the
maximal number of iterations of the active set algorithm for sparseMAP, and that is the principal
parameter that controls the computational cost of the ordering learning step in our framework. This
analysis is carried out on data generated by a linear SEM from a scale-free graph with equal variance
Gaussian noise. We choose this simple setting for two reasons: the true DAG can be identified
from (enough) observational data only (Proposition 7.5, Peters et al., 2017); provided with the true
topological ordering, the LARS estimator can identify the true edges. In this setting, we can then
assess the quality of sparsemax and sparseMAP independently from the quality of the estimator. For
reference, in Figures 8 and 7 we also report the performance of optimizing LARS with a random
ordering or with a true one.

We observe that sparsemax and sparseMAP provide MAP orderings that are significantly better
than random ones for K > 2 and for any sample size. For K big enough, these orderings give
DAGs that are almost as good as when knowing the variable ordering. Furthermore, apart when
K = 2, increasing the sample size generally results in an improvement (although moderate) in the
performance of sparsemax and sparseMAP. However, the gap from true’s performance does not
reduces when increasing n or K, which can be explained by the non-convexity of the search space
and DAGuerreotype getting stuck in local minima. We further observe that sparsemax generally
provides better solutions than sparseMAP’s at a comparable training time. The only settings where
this is not the case are for d = 30 and K > 35. Notice that sparseMAP’s performance peaks at
K = 35 and degrades for higher K in this setting. This phenomenon can be due to the inclusion of
unnecessary orderings to sparseMAP’s set, which ends up hurting training.

We further study in Figures 9 and 10 the effect of the pruning strength, (controlled by λ) on the perfor-
mance of both operators on the real datasets. For this experiment, we instantiate DAGuerreotype with
the linear estimator and train it by joint optimization. As a general remark, when strongly penalizing
dense graphs (higher λ) SHD generally improves and SID degrades. On Sachs, the two operators do
not provide significantly different results, while on SynTReN we find that sparsemax provides better
SHD for comparable SID.

Additional results on synthetic data We report in Figures 11 and12 an additional comparison of
DAGuerreotype with several state-of-the-art baselines on synthetic problems of varying number of
nodes d and n = 1, 000 samples generated from scale-free DAGs with 2d expected number of edges
and different noise models: (Gaussian) linear SEM with equal variance Gaussian noise; (Gumbel)
linear SEM with equal variance Gumbel noise; (MLP) 2-layer neural network SEM with sigmoid
activations and equal variance Gaussian noise. To limit the varsortability of the generated problems,
the parameters of the SEMs are uniformly drawn from [−0.5,−0.1] ∪ [0.1, 0.5]. The resulting
problems are still varsortable on average, as demostrated by the great performance of sortnregress,
and by the fact that by initializing DAGuerreotype ’s parameters θ with the marginal variances of

20

Table 1: Sachs. We report Structural Hamming Distance (SHD, the lower the better), Structural
Interventional Distance (SID, the lower the better), (F1, the higher the better), and the number of
predicted edges for all methods.

Method SHD ↓ SID ↓ F1 ↑ # edges

NoTears (linear) 16.0 52.0 0.095 4
NoTears (non-linear) 14.0 50.0 0.320 8
Golem (NEV) 15.0 51.0 0.190 4

VI-DP-DAG (softsort) 43.0 37.0 0.265 51
VI-DP-DAG (sinkhorn) 42.0 38.0 0.269 50
BCDNets 39.0 46.0 0.196 34
sortnregress 13.1 50.8 0.377 9.0
CAM 30.0 47.0 0.28 33.0
NPVAR (GAM) 13.2 51.2 0.344 9.6

DAGuerreotype -spmax (linear) 13.8 51.6 0.323 7.7
DAGuerreotype -spMAP (linear) 13.8 49.1 0.309 7.6
DAGuerreotype -spmax (LARS) 13.8 51.7 0.316 9.5
DAGuerreotype -spMAP (LARS) 14.4 49.6 0.275 9.2
DAGuerreotype -spmax (non-linear) 13.5 50.9 0.348 7.1
DAGuerreotype -spMAP (non-linear) 14.1 48.1 0.32 7.4
DAGuerreotype -spmax-joint (linear) 16.9 44.9 0.36 16.1
DAGuerreotype -spMAP-joint (linear) 14.1 51.5 0.244 6.8
DAGuerreotype -spmax-joint (non-linear) 14.7 50.7 0.265 8.6
DAGuerreotype -spMAP-joint (non-linear) 14.4 51.1 0.236 5.0

Table 2: SynTReN. We report Structural Hamming Distance (SHD, the lower the better), Structural
Interventional Distance (SID, the lower the better), Topological Ordering Pearson Correlation (TOPC,
the higher the better), (F1, the higher the better) number of predicted edges all averaged over the 10
networks.

Method SHD ↓ SID ↓ F1 ↑ # edges

NoTears (linear) 32.4 184.0 0.157 17.7
NoTears (non-linear) 40.0 187.9 0.165 28.1
Golem (NEV) 30.5 191.7 0.152 15.4

VI-DP-DAG (softsort) 165.4 114.8 0.109 175.7
VI-DP-DAG (sinkhorn) 164.0 121.4 0.104 173.6
BCDNets 117.8 148.6 0.113 119.0
sortnregress 86.4 156.0 0.151 89.8
CAM 82.6 116.0 0.192 86.6
NPVAR (GAM) 36.1 191.0 0.184 26.0

DAGuerreotype -spmax (linear) 51.4 171.0 0.182 44.5
DAGuerreotype -spMAP (linear) 51.1 161.0 0.211 47.2
DAGuerreotype -spmax (LARS) 77.9 103.0 0.238 86.0
DAGuerreotype -spMAP (LARS) 78.7 116.0 0.212 83.8
DAGuerreotype -spmax (non-linear) 62.8 121.0 0.245 65.1
DAGuerreotype -spMAP (non-linear) 61.9 134.0 0.255 65.5
DAGuerreotype -spmax-joint (linear) 152.0 138.0 0.104 161.0
DAGuerreotype -spMAP-joint (linear) 122.0 131.0 0.139 131.0
DAGuerreotype -spmax-joint (non-linear) 154.0 90.9 0.149 169.0
DAGuerreotype -spMAP-joint (non-linear) 138.0 118.0 0.143 150.0

21

0

10

20

30

SH
D

d=10

0

25

50

75

100

125

d=20

0

50

100

150

200

250
d=30

0

250

500

750

1000

1250

d=100

0

10

20

30

40

50

SI
D

0

50

100

150

200

0

100

200

300

400

500

0

1000

2000

3000

4000

5000

0.2

0.4

0.6

0.8

1.0

F1

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

20

40

60

80

100

120

tim
e

(s
)

0

200

400

600

800

0

1000

2000

3000

0

50000

100000

150000

200000

0

10

20

30

40

50

pe

rm
ut

at
io

ns

0

20

40

60

80

0

20

40

60

80

100

0

20

40

60

80

100

101 102

K

15

20

25

30

35

40

ed

ge
s

101 102

K

40

60

80

100

120

140

101 102

K

50

100

150

200

250

101 102

K

200

400

600

800

1000

1200

1400

sparsemax
sparseMAP
true
random

Figure 7: Comparison of different strategies for learning topological orderings, on data (1, 000
samples) generated from a linear SEM with Scale-Free graph and Gaussian noise, and a varying
number of nodes d. In order from top to bottom, we plot SHD, SID, F1, training time in seconds,
number of permutations, and number of predicted edges (all at the end of training) as a function of the
sparse operators’ parameter K, which corresponds to the maximal number of sampled permutations
for sparsemax and to the maximal number of iterations of the active set algorithm for sparseMAP.
We also include two simple variants of DAGuerreotype , where the ordering is fixed to one true
ordering (true) or to a random one (random). Results are averaged over 10 seeds.

the nodes consistently improves its performance, compared to initializing them with the vector of all
zeros. For these experiments we set K = 10, use the linear edge estimator and jointly optimize all
DAGuerreotype ’s parameters.

Compared to other differentiable order-based methods, DAGuerreotype consistently provides a signif-
icantly better trade-off between SHD and SID, confirming our findings on the real-world data. Indeed,
these baselines generally discover DAGs with high false positive rates. DAGuerreotype equipped with
the sparseMAP operator also improves upon the linear continuous methods based on the exponential
matrix regularization, but when equipped with the top-k sparsemax operator its results on these
settings depend on a good initialization of θ (the marginal variances in this case) and worsen with the
number of nodes. A higher value of k would be required to improve DAGuerreotype -sparsemax’s
performance in these settings, as shown in Figure 8.

22

0

20

40

60

80

100

SH
D

K = 2

0

20

40

60

80

100

K = 10

0

20

40

60

80

100

K = 35

0

20

40

60

80

100

K = 100

0

50

100

150

200

250

SI
D

0

50

100

150

200

250

0

50

100

150

200

250

0

50

100

150

200

250

0.2

0.4

0.6

0.8

1.0

F1

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

20

30

40

50

tim
e

(s
)

50

100

150

200

250

300

350

500

1000

1500

0

1000

2000

3000

4000

5000

1.90

1.95

2.00

2.05

2.10

pe

rm
ut

at
io

ns

5

6

7

8

9

10

10

15

20

25

30

35

20

40

60

80

100

102 103

sample size

40

60

80

100

120

ed

ge
s

102 103

sample size

40

60

80

100

120

102 103

sample size

40

60

80

100

120

102 103

sample size

40

60

80

100

120

sparsemax
sparseMAP
true
random

Figure 8: Comparison of different strategies for learning topological orderings, on samples of varying
size (n ∈ [100, 5′000] on the x-axes) generated from a linear SEM with Scale-Free graph and
Gaussian noise, and number of nodes d = 20. In order from top to bottom, we plot SHD, SID, F1,
training time in seconds, number of permutations, and number of predicted edges (all at the end
of training) for 4 values of the sparse operators’ parameter K, which corresponds to the maximal
number of sampled permutations for sparsemax and to the maximal number of iterations of the
active set algorithm for sparseMAP. We also include two simple variants of DAGuerreotype , where
the ordering is fixed to one true ordering (true) or to a random one (random). Results are averaged
over 10 seeds.

10 7 10 5 10 3 10 1

pruning

20

30

40

50
SHD

10 7 10 5 10 3 10 1

pruning

30

40

50

60
SID

10 7 10 5 10 3 10 1

pruning

0.0

0.1

0.2

0.3

0.4

F1

10 7 10 5 10 3 10 1

pruning

0

10

20

30

40

50

edges

sparsemax
sparseMAP

Figure 9: Sachs. Effect of L0 pruning intensity (controlled by λ) on SHD, SID, F1 and number of
learned edges for DAGuerreotype jointly optimizing a linear estimator and the topological ordering
distribution either with sparsemax (sparsemax) or sparseMAP (sparseMAP).

In terms of running times, DAGuerreotype is aligned with NoTears and is generally faster than CAM,
Golem and VI-DP-DAG. Of course DAGuerreotype ’s running times strongly depend on the value of
K, the choice of edge estimator and the optimization of either the joint or bi-level problems.

23

10 7 10 5 10 3 10 1

pruning

25

50

75

100

125

150

175

SHD

10 7 10 5 10 3 10 1

pruning

100

150

200

250

SID

10 7 10 5 10 3 10 1

pruning

0.00

0.05

0.10

0.15

0.20

0.25

F1

10 7 10 5 10 3 10 1

pruning

0

50

100

150

200
edges

sparsemax
sparseMAP

Figure 10: SynTReN. Effect of L0 pruning intensity (controlled by λ) on SHD, SID, F1 and number
of learned edges for DAGuerreotype jointly optimizing a linear estimator and the topological ordering
distribution either with sparsemax (sparsemax) or sparseMAP (sparseMAP).

10 20 30
SHD

10

15

20

25

30

35

40

45

SI
D

Gaussian d=10

50 100 150
SHD

50

100

150

200

SI
D

Gaussian d=20

0 100 200 300 400
SHD

50

100

150

200

250

300

350

SI
D

Gaussian d=30

0 1000 2000 3000 4000
SHD

1000

2000

3000

4000

SI
D

Gaussian d=100

10 20 30
SHD

10

20

30

40

50

60

SI
D

Gumbel d=10

50 100 150
SHD

50

100

150

200

SI
D

Gumbel d=20

0 100 200 300 400
SHD

100

200

300

400

500

SI
D

Gumbel d=30

0 1000 2000 3000 4000
SHD

1000

2000

3000

4000

5000

SI
D

Gumbel d=100

10 15 20 25 30 35
SHD

20

25

30

35

40

SI
D

MLP d=10

50 100 150
SHD

80

100

120

140

160

180

200

SI
D

MLP d=20

100 200 300 400
SHD

100

150

200

250

300

350

400

SI
D

MLP d=30

0 1000 2000 3000 4000 5000
SHD

1000

1500

2000

2500

3000

SI
D

MLP d=100

ours-sparsemax-zeros
ours-sparsemax-variances
ours-sparseMAP-zeros

ours-sparseMAP-variances
VI-DP-DAG (softsort)
VI-DP-DAG (sinkhorn)

Golem (EV)
NoTears (linear)

sortnregress
CAM

Figure 11: SHD vs SID on synthetic datasets generated from scale-free DAGs with Gaussian (top),
Gumbel (middle) and MLP (bottom) SEMs. DAGuerreotype ’s (ours) θ is either initialized with a
zero vector (zeros) or with the marginal variances (variances).

24

0

1000

2000

3000

4000

Ga
us

sia
n

SHD

0

1000

2000

3000

4000

SID

0.2

0.4

0.6

0.8

F1

0

100

200

300

400

500
time (s)

0

1000

2000

3000

4000

Gu
m

be
l

0

2000

4000

6000

0.2

0.4

0.6

0.8

1.0

0

100

200

300

400

10 20 30 100
d

0

1000

2000

3000

4000

5000

M
LP

10 20 30 100
d

0

1000

2000

3000

4000

10 20 30 100
d

0.0

0.2

0.4

0.6

0.8

10 20 30 100
d

0

100

200

300

400

500

ours-sparsemax-zeros
ours-sparsemax-variances
ours-sparseMAP-zeros
ours-sparseMAP-variances
VI-DP-DAG (softsort)
VI-DP-DAG (sinkhorn)
Golem (EV)
NoTears (linear)
sortnregress
CAM

0

1000

2000

3000

4000

Ga
us

sia
n

SHD

0

500

1000

1500

2000

2500
SID

0.2

0.4

0.6

0.8

F1

0

20

40

60

time (s)

0

1000

2000

3000

4000

Gu
m

be
l

0

1000

2000

3000

4000

0.2

0.4

0.6

0.8

0

20

40

60

10 20 30 100
d

0

1000

2000

3000

4000

5000

M
LP

10 20 30 100
d

0

1000

2000

3000

4000

10 20 30 100
d

0.0

0.2

0.4

0.6

0.8

10 20 30 100
d

10

20

30

40

50

ours-sparsemax-zeros
ours-sparsemax-variances
ours-sparseMAP-zeros
ours-sparseMAP-variances
VI-DP-DAG (softsort)
VI-DP-DAG (sinkhorn)

0

200

400

600

Ga
us

sia
n

SHD

0

500

1000

1500

2000

2500
SID

0.2

0.4

0.6

0.8

F1

0

20

40

60

80

time (s)

0

200

400

600

Gu
m

be
l

0

1000

2000

3000

4000

0.2

0.4

0.6

0.8

0

20

40

60

10 20 30 100
d

0

200

400

600

M
LP

10 20 30 100
d

0

1000

2000

3000

4000

10 20 30 100
d

0.2

0.4

0.6

0.8

10 20 30 100
d

20

40

60

ours-sparsemax-zeros
ours-sparsemax-variances
ours-sparseMAP-zeros
ours-sparseMAP-variances
Golem (EV)
NoTears (linear)

Figure 12: Comparison of DAGuerreotype (ours) with related methods in terms of SHD, SID, F1,
training time (in seconds) on synthetic datasets generated from scale-free DAGs with Gaussian,
Gumbel and MLP SEMs. DAGuerreotype ’s (ours) θ is either initialized with a zero vector (zeros)
or with the marginal variances (variances). For ease of reading, we split the full comparison (top)
into two, to focus on the comparison with differentiable order-based methods (middle) and with
differentiable methods based on the matrix exponential constraint (bottom).

25

	Introduction
	Related Work
	Setup
	The Problem
	Objective
	Sparse Relaxation Methods

	DAG Learning via Sparse Relaxations
	Learning on the Permutahedron
	DAG Learning
	Computational analysis
	Relationship to previous differentiable order-based methods

	Experiments
	Experimental setup
	Results

	Conclusion, Limitations and Future Work
	Top-k oracle
	Notation and definitions
	Best-first Search Algorithm
	Computational analysis

	L0 Regularization
	Characterization and sensitivity of the vector parametrization
	Preliminary
	Analysis

	Additional experiments

