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Abstract

The future of human-computer interaction is moving toward systems where Large1

Language Models (LLMs) act as autonomous agents, capable of self-planning and2

adapting to complex, domain-specific tasks. However, a significant gap remains3

in developing agentic architectures that can seamlessly integrate into real-world,4

multimodal task support systems. We present our initial work on a novel agentic5

architecture for process task guidance, designed to assist human technicians in6

complex physical tasks. Our system develops automatic agent chaining features via7

dynamic planner that recruits specialized agents for task solving. To evaluate this8

approach, we collected a novel multimodal dataset of human-agent interactions9

during a toy assembly task and benchmarked our agentic system against a non-10

agentic baseline. Our findings show that the agentic solution significantly improves11

response quality and reduces incorrect outputs.12

1 Introduction13

Agentic architectures empower Large Language Models (LLMs) to act as autonomous agents,14

capable of making decisions, interacting with their environment, and achieving complex goals. This15

shift towards active interactions with the environment opens up new possibilities for human-agent16

collaborations and personalized assistance. We refer to agents, motivated by the very early works17

in the area of Artificial Intelligence, to mean any piece of program capable of perceiving, making18

decisions, and taking actions [1, 2]. Agentic systems in this work refer to ‘agents’ working with the19

user to collaboratively accomplish a user-centric goal.20

The focus of this work is the exploration and development of an agentic solution for process task21

guidance. Process task guidance systems collaborate with a human task performer (i.e., technicians)22

to help them successfully accomplish a task. Agentic task guidance involves developing solutions23

that can provide intelligent and timely support to users. Users request assistance via queries and24

visual demonstrations. These queries can be complex and difficult to answer, requiring the system25

to understand user intentions, context, and rationale; validate its own responses; look up task26

specifications or other relevant information; and provide guidance relevant to the posed query.27

Agentic task assistance involves systems that provide responses via speech, text, and/or tool calls28

(functions that control peripherals to provide better task guidance).29

Our agentic system consists of Planners, context enhancers, validators, and task or modality experts30

to assist users in accomplishing their goals. In this work, we propose a novel agentic architecture and31

a dataset for evaluating agentic solutions for process task guidance. The task requires constant envi-32

ronment perception and close coordination with the human task performer. Our agentic architecture33

involves automatic plan generation and chaining to automatically identify the support needed to assist34

the human in solving the task. We validated the agentic solution through quantitative and qualitative35

methods to identify potential issues in contextual robustness and chain-of-thought explainability,36

setting up promising avenues for future work. We also leverage human evaluations and LLM-as-judge37

for analyzing the results.38
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What should I do next? 

To install the excavator model, first 
gather all the parts shown in the image. 
Follow the assembly instructions 
carefully …

Is this installed properly?

The excavator arm looks installed 
properly. The boom is installed ..

I’m not sure which of these 
two seats should I use. One 

of them has two and the 
other has one seat. 

The instruction manual doesn’t specify 
which one to use. Looks like others 
have use a single seat. However, …

…

…

…

So, next

To start, first gather all the parts shown 
in the image. 

Next

After installing the arm, let’s install the 
seat. 

…

Video demonstration Task Guidance Mode Collection Mode

Setup

Figure 1: Shows sample conversations from the dataset. We collect the data in two modes: Task
Guidance Mode and Collection Mode. The setup for data collection is shown in bottom right.

2 Data39

In this study, we collected data from an assembly task in which participants interacted with an AI40

system to complete the construction of various toys. Participants were recruited through the company41

via email invitations sent to employees at the office. All participants were fluent in English and had42

normal or corrected-to-normal vision. Informed consent was obtained from all participants prior to43

the experiment, and the study was approved by the company’s internal review board.44

During the experiment, participants assembled four different toys while interacting with the AI45

system, which was presented in multiple modalities (detailed in Section 3). Participants captured46

images of their current assembly scene and asked verbal questions. The system responded with verbal47

guidance to assist in the task. All interactions were recorded for analysis. We collected a variety of48

data types from each participant, as summarized in the following table 2.49

The audio recordings were transcribed using the Whisper automatic speech recognition (ASR) model.50

The images were standardized to a fixed resolution and annotated with toy type. The interaction logs51

were synchronized using timestamps to align queries, responses, and assembly progress.52

3 Architecture53

The perception component is the sensory system responsible for perceiving information from its54

environment. The system perceives the input via vision (video) and audio (speech). The perception55

module ingests, processes, and structures the raw data into a form suitable for the planners. The56

vision perception module converts the video into frames with logic to sample frames from the video.57

The speech perception system is a Whisper-based speech-to-text conversion agent. The perception58

system also keeps track of the conversation history and passes it along to the planner modules. The59

conversation history is limited by the context length limitation of the underlying models.60

The planner is the agent’s cognitive core responsible for agent recruitment for answering a given61

query. The planner has access to the agents in the environment and their task expertise. The agents62

that the planner chooses belong to the i) context enhancers, ii) solvers, and iii) validators classes. The63

agents are published to the environment with agent cards containing details about the agent, input64

format, output format, and relevant prompts.65

The context enhancer acts as the agent’s long-term memory, which enriches the solver’s understanding66

by providing relevant external knowledge, preventing them from relying solely on the LLM’s pre-67

trained (and potentially outdated) information. The core component of context enhancement is68
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Figure 2: The left panel shows the percentage of times specific agents were deployed by a planner,
with mandatory agents successfully deployed at a 100% rate. The right panel displays human-rated
planner evaluations, highlighting strategic differences between different LLM backends. GPT-4o and
Gemini models are compared both without (I) and with (II) a query type agent, demonstrating how
this specific agent affects overall performance.

Retrieval-Augmented Generation (RAG) [3]. The indexing process relies on multimodal encoders69

which vectorize the contents and store them in vector stores (FAISS [4]). The retrieval process70

searches the vector database to find the most relevant chunks of text using the query and visual71

frames. The retrieved text chunks are added to the prompt that’s sent to the solver, giving it the72

specific context it needs to form an answer. The solver is the core execution unit that performs a73

specific, well-defined task. The specific solvers in the system are vision expert systems such as object74

detectors, captioning, QA, Intent recognition, and question generation modules. The validators ensure75

that the system-generated responses are aligned with the system’s goals and are safe. Additional76

context verifiers ensure that the prompt generated by the context enhancers is faithful to the query77

and the conversational context.78

4 Experiments79
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Figure 3: The agentic system demonstrates
higher average response quality.

The performance of an agentic baseline system is80

compared against a non-agentic one. The non-agentic81

system’s approach is straightforward: it sends a82

prompt that includes both the user’s query and a83

detailed instruction manual directly to a Large Lan-84

guage Model (LLM). In contrast, the agentic system85

would typically involve more complex processes as86

described in Section 3.87

To measure the effectiveness of each system, human88

users annotated the generated responses. This eval-89

uation uses a 5-point Likert scale, where a score of 190

signifies a completely incorrect or irrelevant response91

and 5 indicates a perfect answer. This method is92

similar to evaluation frameworks used in other bench-93

marks where an LLM judge assigns a correctness score to model outputs on the same 1 to 5 scale.94

However, in this work we employed experts to evaluate the responses.95

A significant gap in research on LLM-based Multi-Agent Systems is the failure to adequately96

evaluate the outputs from the planner component. The plans themselves—the sequences of reasoning97

and actions an agent decides to take—are inherently challenging to evaluate automatically. This98

difficulty mirrors findings which reveal that assessing an agent’s reasoning is substantially harder99
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than evaluating its final, direct answer. Models consistently score lower on providing a justification100

for their answer compared to just giving the answer itself. This suggests that while we can often tell101

if a final output is correct, judging the quality and logic of the intermediate plan" or reasoning" that102

produced it remains a major hurdle in the field.103

5 Results104

This section presents the results of an experiment designed to evaluate the performance of different105

large language models (LLMs) as planners in an agentic workflow and to assess the impact of strategic106

agent deployment on task completion. Our analysis focuses on four key metrics: Appropriate Agents,107

Complete Coverage, Efficient Execution, and Logical Flow (refer A.2).108

Our findings indicate that the choice of LLM significantly influences the planning strategy in an109

agentic system. We compared the planning behavior of GPT-4o and Gemini models across a series of110

human-annotated evaluations. While both models demonstrated comparable performance in selecting111

Appropriate Agents and maintaining a sound Logical Flow, their approaches to planning diverged112

significantly. GPT-4o model demonstrated a more strategic and efficient planning style. It selectively113

deployed agents to solve tasks, prioritizing an optimized workflow. This is evidenced by its higher114

scores in Efficient Execution. Gemini, in contrast exhibited a more exhaustive and expansive planning115

strategy. It tended to create broader plans that utilized more agents, even when not strictly necessary116

for efficiency. This behavior is reflected in its lower score for Efficient Execution. Despite these117

differences, both LLMs achieved similar high scores for Appropriate Agents and Logical Flow,118

suggesting that they are equally capable of identifying and sequencing the necessary agents for a119

given task.120

The experiment also highlighted the critical role of specific agents within the workflow. The presence121

or absence of certain agents can have a significant impact on overall performance. For example,122

removing the query type categorizer from the agentic workflow resulted in a statistically significant123

drop in performance (p < 0.001, Wilcoxon rank-sum test). This finding underscores the importance124

of a comprehensive and well-structured agent toolkit, where each agent contributes to the overall125

success of the task.126

Our analysis further revealed that agentic solutions consistently outperformed non-agentic solutions.127

Agentic workflows provide the ability to increase context, verify information, and plan more effec-128

tively, leading to superior task completion rates. The data also showed a clear distinction between129

the deployment of mandatory agents (e.g., Video frame Extractor, Audio Transcriber) and planned130

agents (e.g., Paraphraser, Object Detector). While mandatory agents were deployed at near 100%131

accuracy, the deployment of planned agents varied based on the LLM’s planning strategy, further132

emphasizing the distinct behaviors of GPT-4o and Gemini.133

Beyond the quantitative scores, our qualitative analysis revealed key insights into the user experience.134

Participants reported that the agentic system’s responses felt more natural and context-aware, as the135

system seemed to "remember" previous steps and conversations. While the non-agentic system often136

repeated information from the manual, the agentic system’s ability to use context enhancers resulted137

in more concise and personalized guidance. We also observed a clear preference for the system’s138

ability to "speak" with them, which allowed them to keep their hands free to continue the physical139

task.140

6 Future work141

This work demonstrates the viability of an agentic approach for multimodal process task guidance142

systems. Our primary findings indicate that while an agentic system outperforms a simple baseline,143

its performance is highly contingent on the quality of the planner. A major limitation of our current144

work is that we leverage the zero-shot abilities of a pre-trained LLM for the planner module and145

do not perform any fine-tuning or explicit training on the planning task. Future work will focus on146

improving the planner, enhancing the real-time abilities and additional capabilities to enhance the147

proactive abilities.148
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A Appendix220

A.1 Why is an Agentic Solution a Fit for Process Task Guidance?221

Physical tasks requiring process guidance are complex. They contain multiple steps and require users222

to identify both objects and actions with which they may be unfamiliar. Nevertheless, users have some223

actions at their disposal to navigate that complexity: they can manipulate their physical workspace224

(e.g., holding objects, pointing, etc.) and verbalize questions (e.g., "What do I do next?") about the225

task when in need of guidance. LLMs (including VLMs) are a useful match for both of these physical226

and verbal actions, which makes physical tasks and their navigation well-suited to an LLM-based227

agentic solution. Such a solution supports the needs of both humans and AI in socio-technical228

systems; the human and the AI system can, supported with an agentic solution, delegate tasks to one229

another, describe goals in ways that produce useful outputs, discern how useful those outputs are, and230

diligently take responsibility for those outputs (following [5]).231

To understand what could be usefully automated, we carefully studied tasks that are central to232

technicians’ work, and the context in which those tasks are embedded. We collected a dataset233

consisting of questions technicians asked in the course of using a remote-controlled task guidance234

system (similar to [6, 7]). The guidance could be provided via answers to the queries, proactively235

while the technician is performing the process, or even post-hoc after the step is completed via236

feedback. The responses themselves can be provided in numerous ways, including via text (chat),237

voice output, peripheral controls (navigating the dashboard a technician sees to the relevant parts,238

visualizations), augmented reality, or even robot controls. Given the nature of the process and the size239

of the objects, the most viable guidance we could provide in real-time was via speech and peripheral240

controls. We leave expanding the modality of generated responses for future work.241
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#processes
Minutes
# questions
...

LLM-as-Judge
Response ratings
...

Table 1: Dataset stats and results

To understand how augmentation creates more value than working separately, we identified the242

logistical and cognitive burden of following a lengthy process specification, invoking multiple difficult-243

to-recognize components while also physically manipulating those components and necessary tools.244

This burden, we determined, could be lessened for the human user by an agentic solution that could245

describe each step of the process and help identify each component needed for that step through246

spoken language interactions.247

Humans should remain in control of manipulating the physical components and completing the steps.248

The agent’s role is to keep the human ‘on task’ without requiring them to scroll through an online249

interface or turn pages in a printed guidebook, thereby freeing their hands for the physical task.250

We developed tools to help agents execute software/dashboard-related tasks, providing support for251

tasks carried out in the physical space. Our design consideration was that agents should not carry out252

the process in the physical space themselves yet, but only provide guidance via speech and peripheral253

control to the humans carrying out the process. This is in part because humans are far better and faster254

at carrying out the steps involved in the processes. Developing robotic solutions is also expensive and255

time-consuming with steep learning curves. As VLAs (Vision Language Action) models become256

more prevalent and integration with Agentic flow becomes easier, it remains an area of interest for257

process task guidance.258

Current works don’t study the agentic interactions and focus instead on final task performance259

evaluations, which is a key gap our work addresses.260

A.2 Other details261

Appropriate Agents: This metric assesses whether the LLM’s generated plan included the correct and262

relevant agents necessary to address the given query.263

Complete Coverage: This evaluates how effectively the plan, when executed, would lead to a264

comprehensive and complete answer to the user’s question.265

Efficient Execution: This measures the plan’s efficiency by determining if the LLM selected and266

deployed only the essential agents, avoiding unnecessary steps or redundant agent calls.267

Logical Flow: This metric judges the coherence of the plan by examining whether the sequence of268

agent deployments and actions makes logical sense from start to finish.269

B Related work270

An agentic system adaptively improves itself for problems that cannot be adequately specified in271

advance [1, 2]. There are several ways agentic systems achieve this. An agentic system could be272

comprised of a multi-agent cognitive synergist, where multi-turn self-collaboration with different273

personas is employed by a central planner that dynamically identifies personas to combine strengths274

and knowledge for complex problem-solving [8]. An alternative approach doesn’t rely on personas275

but rather a group of agents recruited to form an expert group, with each agent solving a task276

democratically which is then acted upon in the environment by experts [9].277

Recent advancements in agentic systems are shifting the focus from single LLM instances to struc-278

tured, autonomous, and self-improving multi-agent frameworks. A primary trend is the formalization279

of collaboration to enhance efficiency and reliability. For instance, MetaGPT [10] tackles this by280

encoding human-like Standardized Operating Procedures (SOPs) into a multi-agent system, assigning281

specific roles and structured workflows to mirror an efficient organization. This approach is further282

automated by frameworks like AutoAgents [11], which dynamically generates a team of specialized283

agents and a collaboration plan tailored to a specific task, thereby reducing the manual design effort.284
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Figure 4: The agentic architecture for process task guidance is shown here. The system employs a
planner to orchestrate various specialized agents, including context enhancers, solvers, and validators,
to provide accurate and relevant support to the user.

These developments aim to create more coherent and capable systems that can handle complex,285

multi-step problems with greater autonomy.286

Simultaneously, another key research thrust is enabling agents to learn and adapt without direct human287

intervention. The work on Adaptive Self-Improvement [12] introduces a mechanism for agents to288

reflect on their past actions, identify errors, and build an internal knowledge base to improve future289

performance through a closed-loop learning process. This capacity for autonomous evolution is being290

applied in practical domains, as demonstrated by ADAS [13], a system that automates the creation of291

decision-making agents for complex simulations. By generating diverse agent personas and behaviors292

automatically, ADAS enables sophisticated modeling of socio-technical systems. Together, these293

works illustrate a move toward building more dynamic, intelligent, and scalable agentic ecosystems294

that can learn, collaborate, and be deployed with increasing ease.295

B.1 Tools for Agentic System Development296

The landscape of agentic system development is defined by a range of open-source tools that offer297

different levels of abstraction and control. Frameworks like LangChain [14] and Haystack by deepset298

[15] provide the foundational building blocks for creating custom applications. LangChain offers a299

highly modular and extensive set of components for chaining" together LLM calls with data sources300

and APIs, making it a versatile choice for a wide array of tasks, particularly Retrieval-Augmented301

Generation (RAG). Similarly, Haystack provides a robust, pipeline-centric architecture of nodes302

for building production-grade semantic search and question-answering systems. These frameworks303

empower developers by providing the essential glue" to construct complex, context-aware applications304

from the ground up.305

In contrast to these foundational frameworks, other tools offer more opinionated or autonomous306

approaches. AutoGPT [16] pioneered the concept of a fully autonomous agent, demonstrating how307

an LLM could use a self-prompting loop of thought, reasoning, and tool use to pursue high-level308

goals without direct human oversight. For more structured workflows, Microsoft’s AutoGen [17]309

introduces a multi-agent conversational paradigm, where specialized agents collaborate by talking"310

to each other to solve problems, offering a flexible way to orchestrate complex tasks. At the same311

time, tools like Smol Agents [18] focus on a specific application—code generation—by acting as a312

developer-in-a-box" that scaffolds an entire codebase from a single, high-level user prompt. Together,313

these tools span the spectrum from providing granular components to delivering fully autonomous or314

specialized agent solutions.315
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I want to install this 
mode dozer. Can you 
tell me what should I 

do?
To install the bulldozer 
model, first gather all 

the parts … 

RAG

You’ve all the parts 
gathered. Start 

attaching the wheels 
...

+ + +

You’ve all the parts 
gathered. Start 

attaching the front 
wheels ...

Looks like you’ve all 
the parts. Start 

attaching the front 
wheels ...

Should I use a grey 
screw or the black 
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document doesn’t 

mention the color of 
the screws …
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remaining wheels …
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attachment. After the 

wheels attachment 
proceed to … 

You have to ensure that 
the wheels are snug…

Figure 5: An example of an agentic architecture for a multimodal task support system. The planner
dynamically recruits agents to handle perception, context, and validation, ensuring a robust and
accurate response.

As agentic systems become more prevalent and complex, there is a need for human-centered par-316

ticipatory designs for such systems [19]. While not a total solution to all the potential harms of317

integrating AI systems into the works [20], participatory design methods can help researchers to more318

inclusively consider the needs of the people and communities who will be using these technologies,319

gather critical data on acceptance, adoption and continued use, and integrate community concerns320

and priorities into design and engineering practices [21].321

B.2 Datasets and Surveys322

[22], [23] [24], [25], [26]323

Data Type Description
Audio Transcribed spoken questions from participants.
Image Scene snapshots taken by participants during each toy assembly.
Response Verbal or textual guidance provided by the LLM.
Meta Information Timestamps, toy type, query-response pairs, and assembly stage.
Demographics Participant age, sex, profession, experience with AI, and other back-

ground info.
Table 2: Summary of collected data types and their descriptions.
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