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ABSTRACT

A common starting point for drug design is to find small chemical groups or “frag-
ments” that form interactions with distinct subregions in a protein binding pocket.
However, once suitable fragments are identified, assembling these fragments into
a high affinity drug with desirable pharmacological properties is difficult. This
“molecule assembly” task is particularly challenging because, initially, fragment
positions are known only approximately, and the combinatorial space of potential
connectivities is extremely large. Even if the individual fragments form favorable
interactions with regions of the pocket, a poor assembly of these fragments can
drastically compromise the molecule’s druglikeness and hinder its binding affinity.
In this paper, we present EdGr, a new graph diffusion framework tailored for the
molecule assembly task. EdGr can handle both fragments and atoms, and predicted
candidate edge likelihoods influence node position updates during the diffusion
denoising process, allowing connectivity cues to guide spatial movements, and vice
versa. EdGr substantially outperforms previous methods on the molecule assembly
task and stays robust even as confidence in fragment placement decreases.

1 INTRODUCTION

Most small molecule drugs work by binding to a specific protein in the body and changing its activity
so that symptoms improve. In order to design a small molecule drug that targets a given protein, one
must find molecules that bind tightly and specifically to this protein while maintaining properties
such as synthesizability, solubility, and permeability. Knowing the 3D structure of the target protein
is useful: it reveals the shape of the binding pocket, which in principle allows us to design molecules
that fit in and interact with the pocket. Yet even for proteins whose structures have been known for
decades, finding molecules that meet all these requirements remains difficult.

A common approach is to first find small chemical groups, known as “fragments,” that interact
favorably with various parts of a target protein binding pocket—we refer to this step as “fragment
generation.” Multiple solutions exist for fragment generation, including experimental screening,
intuitive design by medicinal chemists, and generative AI techniques (Shim & MacKerell Jr, 2011;
Sheng & Zhang, 2013; Lamoree & Hubbard, 2017; Carloni et al., 2025; Powers et al., 2023; 2025;
Neeser et al., 2025).

Given a set of fragments and an atom-level representation of a binding pocket, the subsequent
challenge is to assemble the fragments into a larger molecule by adding chemical (covalent) bonds.
One can predict the inter-fragment covalent bonds between fragments, and then use them to connect
the fragments into a complete molecule.

We refer to this task as molecule assembly. Broadly speaking, the overarching goal of molecule
assembly is to use chemical functional groups or fragments to build a high affinity, druglike ligand
for a specific target protein receptor. A druglike ligand is broadly defined as being synthesizable,
permeable, metabolically stable, and nontoxic (among many other properties). Molecule assembly
is difficult in practice because the fragment positions are known only approximately (or not at
all), yielding a large combinatorial space of potential connectivities, each with vastly different
pharmacological properties and binding affinities. In machine learning terms, molecule assembly is a
traditional graph completion problem, where the nodes are atoms, and the edges are bonds. More
specifically, molecule assembly is an example of spatial graph completion, where one must predict
links between nodes in a spatial graph, where nodes have coordinate noise.
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Figure 1: Molecule Assembly Problem Definition. Given fragments (small chemical groups) scattered
in a protein binding pocket (left), we wish to predict inter-fragment chemical bonds that will connect
them into larger molecule that binds tightly to the pocket (right). The fragments positions and
orientations in the larger molecule differ from those provided initially.

No methods directly address spatial graph completion, so we turned to two related tasks: traditional
graph completion and all-atom molecule generation. In traditional graph completion, one predicts
edges between nodes in a knowledge graph, commonly used in recommender systems and social
network analysis (Zamini et al., 2022; Li et al., 2023; Mao et al., 2023). In all-atom molecule
generation, one generates all positions, atom types, and bond types of a molecule from scratch, with
the goal of designing a strong binder to the target protein.

We adapt methods used for the two aforementioned tasks for molecule assembly. For knowledge
graph completion, methods such as GCN and GraphAttention predict edges with the assumption that
spatial coordinates do not change (we refer to these as “Traditional graph completion” methods). For
all-atom molecule generation, methods such as EDM and Equiformer utilize spatial information to
generate atoms and bonds in 3D space (we refer to these as “Geometric deep learning” methods). A
full description of these tasks and methods can be found in the Related Work section.

In this manuscript, we find that these methods are ill-suited to the task of molecule assembly.
Specifically, traditional graph completion methods do not handle spatial information, and gemoetry-
prediction methods do not handle the different classes of edges well—molecule assembly requires
learning across fragments, atoms, unknown inter-fragment edges, and known intra-fragment edges.

We thus developed EdGr, a spatial graph diffusion framework to address the molecule assembly
problem. EdGr explicitly handles atoms and fragments together in the diffusion pipeline, and ensures
all atoms within a fragment are moved according to the same roto-translations. In addition, a
dual-edge representation handles intra-fragment edges and inter-fragment edges separately before
aggregating and updating coordinate positions. We empirically show that this coupled, dual-edge
approach to molecule assembly outperforms classical knowledge graph edge prediction methods (Li
et al., 2023; Mao et al., 2023) and recent spatial graph methods (Liao & Smidt, 2022; Hoogeboom
et al., 2022). In addition, we compare EdGr to the mixed continuous-discrete all-atom and all-bond
diffusion framework used by many ML-based molecule generation methods such as MiDi (Vignac
et al., 2023), DecompDiff (Guan et al., 2024), GCDM (Morehead & Cheng, 2024), and DrugFlow
(Schneuing et al., 2025), and find that our coupled candidate edge weights-to-coordinates update
approach outperforms this framework. In addition, we show that EdGr stays robust despite high
amounts of noise in fragment placement.

2 RELATED WORK

2.1 DIFFERENCES FROM ALL-ATOM MOLECULE GENERATION AND FRAGMENT LINKING

We highlight differences between molecule assembly and two equally important drug design tasks
that have previously attracted more attention in the machine learning community: all-atom molecule
generation and fragment linking.
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All-atom molecule generation All-atom molecule generation is defined as follows: given a protein
pocket, generate a high-affinity ligand, atom by atom. A variety of diffusion and flow-based models
address this task by sampling atom positions, atom identities (element types) (Schneuing et al.,
2024; Guan et al., 2023), and bond types (Guan et al., 2024; Morehead & Cheng, 2024; Schneuing
et al., 2025; Vignac et al., 2023; Dunn & Koes, 2024). Whereas all-atom molecule generation
focuses on creating molecules from scratch, molecule assembly focuses on connecting a known set of
approximately placed fragments in a binding pocket. Moreover, all-atom generation does not handle
fragments and treats each atom individually.

Fragment Linking The fragment linking problem is defined as follows: given two fragments
positioned precisely in a protein pocket, create a chain of atoms to link the fragments together.
Multiple computational approaches have been developed for fragment linking, including database
search (Sheng & Zhang, 2013), autoregressive modeling (Imrie et al., 2020), variational autoencoders
(Huang et al., 2022), and diffusion models (Igashov et al., 2024). Fragment linking involves adding
linking atoms between immovable fragments, whereas molecule assembly involves adding bonds
between noisily placed fragments. This means that fragment linking methods are not applicable to
molecule assembly, as each problem requires generating different modalities (bonds for molecule
assembly, and atoms for fragment linking).

2.2 EXISTING SPATIAL GRAPH COMPLETION APPROACHES

Two classes of previous developed methods have been applied to knowledge graph completion and
all-atom generation: traditional graph completion methods and geometric deep learning methods.

Traditional graph completion methods These methods predict missing edges in a graph, treating
spatial coordinates as fixed. These methods can be further subdivided into two subclasses: heuristic
methods and ML-based link prediction methods.

Heuristic methods predict edges without any learnable parameters, simply relying on properties of
the graph to make predictions. For example, the Common Neighbors (Newman, 2001) heuristic
computes the similarity of pairs of nodes and links nodes with the highest similarities, and the
Minimum Distance heuristic connects nodes that are the closest in physical space.

ML-based link prediction methods (Kipf & Welling, 2016; Veličković et al., 2017) are commonly
used for graph completion in the context of knowledge graphs (Zamini et al., 2022; Chaudhri et al.,
2021). These methods typically use graph neural networks to learn to impute missing edges in
incomplete graphs.

Both subclasses of methods predict new edges in a graph, which fits the bill for molecule assembly.
However, graphs in traditional graph completion do not have spatial information. As a result, these
methods are not well-suited to molecule assembly, where nodes exist in 3D space.

Geometric deep learning methods These methods explicitly predict spatial coordinates of nodes;
edges can then be inferred based on methods such as Minimum Distance. Geometric deep learning
methods such as EDM (Hoogeboom et al., 2022) and Equiformer (Liao & Smidt, 2022) are explicitly
designed for tasks in n-dimensional space, and are popular for molecular applications. The goal of
these methods is to predict point positions and attributes, and they are able to do so by treating points
in space as nodes in a graph, with edges inferred via a distance cutoff.

Recent work on molecular design has included the development of denoising diffusion and flow
models for generating coordinates and edges simultaneously (Dunn & Koes, 2024; Morehead &
Cheng, 2024; Guan et al., 2024; Schneuing et al., 2025). Although these methods generate coordinates,
elements, and edges simultaneously, they do so via separate diffusion branches, leading to a weak
coupling between the atom positions and bond predictions. In contrast, our method’s direct coupling
approach where bond logits feed directly into the updated coordinates outperforms standard mixed
diffusion on molecules (see Results and Tables 1, 2, 3).
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3 METHODS

3.1 DATASET AND SETUP

We follow the dataset preparation steps outlined in Powers et al. (2023) and Powers et al. (2025).
Our dataset comprises approximately 35,000 protein-ligand complexes from the Protein Data Bank
(PDB). When benchmarking methods on molecule assembly, we measure their ability to reconstruct
PDB ligands perfectly, as these ligands are known to be druglike and strong binders. We choose this
metric instead of calculating in silico druglike metrics because metrics such as QED (Bickerton et al.,
2012) have been shown to be unreliable estimators of the aforementioned properties (Beker et al.,
2020; Lee et al., 2022; Cai et al., 2022; Li et al., 2024).

We filter out lipids, peptides, nucleic acids, and carbohydrates, and small molecules that are not
considered drug-like. The resulting dataset consists of experimentally determined structures of
proteins bound to high-affinity, synthesizable, drug-like small molecules. We then split this dataset
into train, validation, and test sets (70/15/15), ensuring that the proteins in any given set have less
than 30% sequence similarity to any protein in the other sets.

To define the molecule assembly task on this dataset, we take each ligand (i.e., each small molecule)
and decompose it into fragments (removing covalent bonds that connect the fragments), following
the procedure and fragment library described in Powers et al. (2023) and Powers et al. (2025). This
fragment library contains fragments such that double, triple, and aromatic bonds always occur within
a fragment rather than between fragments. Our library comprises fragments that are small enough to
be treated as inflexible, such as phenyl, methyl, ethyl groups, and benzene rings. Some fragments
in our dataset include only one non-hydrogen atom, whereas others include an entire aromatic ring
system. Using small fragments allows biologists a greater level of control and precision in fragment
selection, as opposed to using large fragments with some sub-groups that are undesirable. The
aforementioned bond types are rigid (they cannot be rotated around), so this is consistent with using
inflexible fragments. However, one could easily extend this framework to predict double and triple
bonds as well. In addition, using small, inflexible fragments makes molecule assembly much more
difficult than using large fragments: small fragments mean more fragments in a pocket, yielding a
much larger combinatorial search space for bonds compared to using fewer, larger fragments.

3.2 FORWARD NOISING PROCESS

We note some key differences between EdGr’s forward noising process and that used in standard
spatial graph diffusion model. Unlike the standard case, where every point is noised following a
closed form multivariate Gaussian distribution, our model treats fragments as inflexible; every atom
in a fragment is noised according to the same translation and rotation vector. We add noise to the
fragment positions as this reflects the uncertainty in fragment placements outputted by fragment
generation methods.

Fragment translational noise is sampled the same way as a standard spatial graph diffusion model
samples atom coordinate noise:

q(zt|x) = N(zt|ᾱtx, σ
2
t I) (1)

α ∈ R+ controls the amount of signal retained in original coordinates x and σ2 ∈ R+ controls the
variance of the normal distribution, in Ångstroms. We do not add noise to the atomic features h as
the fragment and atom identities are fixed in molecule assembly. For noising a fragment’s orientation,
we follow the isotropic Gaussian distribution on SO(3) g ∼ IGSO(3)(µ = 0, ϵ2) (Leach et al., 2022;
Savjolova, 1985), which has the density function:

f(ω) =
1− cosω

π

∞∑
l=0

(2l + 1)e−l(l+1)ϵ2 sin((l +
1
2 )ω)

sin(ω2 )
(2)

To noise the bonds, we apply discrete diffusion:
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q(bt|b0) = Bernoulli(ᾱtb0 +
(1− ᾱt)

2
) (3)

3.3 MODEL AND TRAINING DETAILS

Preliminaries We define the following: hl are node embeddings at layer l; xl are node coordinate
embeddings at layer l; s is an indicator variable representing self conditioning; a are predefined edge
features; ϕ are neural networks; m are known edge embeddings; and n are missing edge embeddings.
We include pocket atoms in our graph representation, but treat these atoms as static.

EdGr Implementation A diagram of the EdGr model can be seen in Figure 2. We have two parallel
multi-layer perceptrons (MLPs) to learn edge features, one for known edges and one for missing
edges. The known and missing edge features then get aggregated per node and get passed to node
MLPs that update node embeddings and positions.

s =

{
1 if U(0, 1) < p

0 otherwise
(4)

mij = ϕe(h
l
i, h

l
j , ||xl

i − xl
j ||2, aij) (5)

nij;t = ϕf (h
l
i, h

l
j , ||xl

i − xl
j ||2, aij , s ∗ nij;t−1) (6)

xl+1
i = xl

i +
1

M − 1

∑
j ̸=i

(xl
i − xl

j)(ϕx(mij) + ϕy(nij)) (7)

mi =
∑

j∈N (i)

mij (8)

ni =
∑

j∈N (i)

nij (9)

hl+1
i = ϕh(h

l
i,mi, ni) (10)

Equations 5 and 8 are the message passing and aggregation over known intra-fragment edges (Satorras
et al., 2022). We add additional candidate inter-fragment edge features nij , which are updated in
a similar fashion with a different neural network ϕf and receive the previous timestep’s missing
edge embeddings if self conditioning is applied (Equations 4 and 6). Node positions are updated
using a sum over all relative distances (xl

i − xl
j) (Satorras et al., 2022) multiplied by the sum of the

outputs of ϕx and ϕy , which take in the known edge embeddings m and missing edge embeddings n,
respectively, and output scalar values (Equation 7). Both edge features are then aggregated across
all neighbors of each node N (i) (Equations 8 and 9) and passed to a node MLP that updates node
features (Equation 10). We compute an MSE loss on x and a Binary Cross Entropy Loss on nij .

As shown in the above equations, candidate edge embeddings influence atom positions (Equation
7), and atom positions affect candidate edge embeddings at the following denoising step (Equation
6). This applies to both ligand and pocket atoms — even though pocket atoms are treated as static,
the conditioning on the protein pocket guides the movement of atoms and the bond generation
possibilities.

3.4 INFERENCE

During inference, we ensure that fragments stay rigid during each step of denoising using the Kabsch
algorithm (Equation 11) (Lawrence et al., 2019) to calculate the optimal rigid body transformation:

min
T∗
t ,R∗

t

L(Tt, Rt) =
1

2

∑
i∈F

||x̂i,t+1 −R(x̂i,t + T )||2 (11)

xt+1 = T ∗
t +R∗

t x̂t (12)
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Figure 2: EdGr Architecture Schematic. Node information and edge information are learned through
MLPs, and the model outputs updated positions and edge weights (middle). After repeating for T
denoising steps, the full molecule with final positions and connectivity is produced (right).

Figure 3: Examples of molecule assembly results from different methods, showing both a 2D graph
depiction and a 3D rendering of each molecule. From top to bottom, left to right: the original ligand
(a modified version of penicillin, from PDB entry 1LLB); the ligand decomposed into fragments,
with rotational and translational noise added to each fragment; molecule assembly results from EdGr,
EDM, and the Minimum Distance heuristic.
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x̂t is the predicted locations of atoms in a fragment F at timestep t. R∗ and T ∗ are the optimal
rotational and translation vectors, respectively.

After denoising, we obtain our final atom positions and weights for every potential inter-fragment
bond within N Ångstroms (N is a cutoff specified as a hyperparameter). To obtain our final list of
bonds, we sequentially pop off the bond with the highest weight, check if the bond is chemically
plausible and the associated fragments are not connected, and connect the atoms. Full details can be
found in Algorithm 1 in the Appendix.

4 RESULTS

4.1 METRICS

To evaluate model performance, we report the following five metrics. The first four metrics quantify
a model’s effectiveness at predicting bonds between fragments—the main goal of molecule assembly.
The fifth metric quantifies the extent to which atom positions generated by a model match those in
the experimentally determined structure.

Precision & Recall We define precision and recall as follows:

Precision =
[Predicted Bonds] ∩ [True Bonds]

Predicted Bonds
(13)

Recall =
[Predicted Bonds] ∩ [True Bonds]

True Bonds
(14)

Full Molecule Recovery (FMR) We define “Full Molecule Recovery” as a binary value for each
molecule: 0 if the recall is less than 1, and 1 otherwise.

Tanimoto Similarity We calculate the Tanimoto coefficient of our recapitulated molecule and the
true molecule by first constructing a Morgan fingerprint (Rogers & Hahn, 2010) of both the predicted
and original molecule. We use RDKit (Landrum, 2013) to generate the Morgan fingerprint, and use
RDKit’s builtin Tanimoto Similarity function to calculate the Tanimoto coefficient.

Root Mean Square Deviation (RMSD) We also calculate Root Mean Square Deviation (RMSD)—
the L2 error between the predicted atom positions and atom positions in the experimentally determined
structure (Equation 15). For the molecule assembly task, predicted atom positions are much less
important than predicted bonds, but we include this metric because the results may still be instructive.

RMSD(w, v) =

√√√√ 1

n

n∑
i=1

[(vix − wix)2 + (viy − wiy)2 + (viz − wiz)2] (15)

4.2 EXPERIMENTAL SETUP

We split our comparisons table into three types of methods: EdGr, geometric deep learning methods
(EDM (Hoogeboom et al., 2022) and Equiformer (Liao & Smidt, 2022)), and traditional graph
completion methods (Graph Convolutions (Kipf & Welling, 2016), Graph Attention (Veličković
et al., 2017), Minimum Distance heuristic, and Common Neighbors heuristic (Newman, 2001)). We
train the geometric deep learning methods to denoise the 3D coordinates in an attempt to recover
original atom positions, and then connect the two closest atoms belonging to distinct fragments. For
the traditional graph completion methods models, we pass in the molecular graph, treating relative
positions between the atom coordinates as edge features, and run standard edge prediction. We do
not report RMSD for traditional graph completion methods methods, as they do not change spatial
coordinates.

In addition, we benchmark the mixed atom and bond diffusion architectures used by many molecule
generation methods (Vignac et al., 2023; Morehead & Cheng, 2024; Guan et al., 2024; Schneuing
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et al., 2025) (we report these results as “Mixed Diffusion”). These methods denoise atom types,
coordinates, and bond types simultaneously via separate diffusion branches. We train these models in
a similar fashion to the geometric deep learning methods, except instead of simply connecting closest
atoms, we directly use the predicted bonds from these methods.

4.3 COMPARISONS

To evaluate model robustness, we report model performance on different amounts of noise added to
the fragments. We report differing amounts of translational noise N (µ, σ2), where we test σ = 1Å
(Table 1), σ = 2Å (Table 2), and σ = 3Å (Table 3, Appendix). A fragment’s rotational noise is
always sampled uniformly from SO(3), meaning that all rotations are equally likely.

To generate confidence intervals, we generate three samples for each ligand in our test dataset (roughly
1,500 examples). We then perform bootstrap sampling to generate a 95 percent confidence interval.

EdGr outperforms all other models tested according to every metric at every level of translational noise.
Crucially, EdGr outperforms Mixed Diffusion, where atoms and bonds are generated simultaneously
but with separate, uncoupled MLPs, proving the efficacy of the coupled bond-atom framework. After
Mixed Diffusion is EDM, which makes uses diffusion to iteratively refine atom positions over N
diffusion timesteps. Equiformer attempts to predict the final denoised position in a one-shot fashion,
and does poorly. The traditional graph completion methods performed poorly across the board, likely
due to their inability to refine coordinate positions, leading to incorrect bond predictions. We see this
trend as the noise levels increase — GCN and Minimum Distance, the best-performing traditional
graph completion methods, deteriorate in performance. However, EdGr exhibits robust performance
despite the increasing amount of noise, with only a 14% drop in precision and a 0.87Å increase in
RMSD as the translational noise level increases from σ = 1Å to σ = 3Å. We further justify EdGr’s
design choices through ablation studies, which can be found in the Appendix.

Overall, these results justify the need to develop an architecture specifically tailored to molecule
assembly—adapting methods from related tasks underperform. Geometric deep learning methods
for all-atom molecule generation either do not predict bonds at all or cannot handle both inter- and
intra-fragment edges, and traditional graph completion methods cannot handle noisy coordinate
information. Therefore, a framework for molecule assembly that can handle fragments, atoms, and
different edge modalities is necessary for addressing this task.

Table 1: Comparison of EdGr to other molecule assembly methods, with translational noise of 1Å
standard deviation. Here and in the subsequent tables below, rotational noise is distributed uniformly
on SO(3), and error bars show 95 percent confidence intervals determined using bootstrapping.
RMSD values are not listed for traditional graph completion methods because those methods do not
adjust atom positions.

Topology Geometry
Model Precision ↑ Recall ↑ FMR ↑ Tanimoto ↑ RMSD ↓

EdGr 85 ± 1% 86 ± 1% 64 ± 2% 88 ± 1% 1.09 ± 0.02Å

EDM 70 ± 1% 70 ± 1% 38 ± 2% 71 ± 1% 1.20 ± 0.02Å
Mixed Diffusion 79 ± 1% 79 ± 1% 53 ± 1% 83 ± 1% 1.24 ± 0.02Å

Equiformer 10 ± 1% 11 ± 1% 1 ± 0% 22 ± 0% 4.46 ± 0.03Å

GCN 23 ± 1% 21 ± 1% 2 ± 0% 29 ± 0% —
Graph Attention 7 ± 1% 7 ± 1% 1 ± 0% 21 ± 0% —

Minimum Distance 27 ± 1% 27 ± 1% 2 ± 1% 31 ± 0% —
Common Neighbors 10 ± 1% 10 ± 1% 1 ± 0% 22 ± 0% —

5 CONCLUSION

We present EdGr, a graph diffusion-based edge prediction method for molecule assembly that couples
prediction of additional bonds with adjustment of atom positions. EdGr substantially and consistently
outperforms previous methods for this task, which is important in drug design.
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Table 2: Comparison of EdGr to to other molecule assembly methods, with translational noise of 2Å
standard deviation.

Topology Geometry
Model Precision ↑ Recall ↑ FMR ↑ Tanimoto ↑ RMSD ↓

EdGr 76 ± 1% 77 ± 1% 44 ± 2% 74 ± 1% 1.58 ± 0.02Å

EDM 59 ± 1% 60 ± 1% 24 ± 1% 61 ± 1% 1.65 ± 0.03Å
Mixed Diffusion 69 ± 1% 69 ± 1% 34 ± 2% 70 ± 1% 1.72 ± 0.02Å

Equiformer 10 ± 1% 10 ± 1% 1 ± 0% 22 ± 0% 5.25 ± 0.04Å

GCN 11± 1% 11 ± 1% 1 ± 0% 22 ± 0% —
Graph Attention 7 ± 1% 7 ± 0% 1 ± 0% 21 ± 0% —

Minimum Distance 19 ± 1% 19 ± 1% 1 ± 0% 26 ± 0% —
Common Neighbors 8 ± 1% 8 ± 1% 1 ± 0% 21 ± 0% —

The innovations underlying EdGr—explicit supervision of edge likelihoods and coupled diffusion
over coordinates and connectivity—offer a general framework for spatial graph completion. This
framework is applicable, in principle, to any graph completion task in which nodes have spatial
coordinates that influence edge likelihood and in which knowledge of missing edges would help
determine spatial coordinates. For example, in neural connectomics, one wishes to infer fully
connected neural circuits from microscopy data in which many connections between neurons are not
visible and precise geometries of neurons are uncertain (Ding et al., 2025; Marc et al., 2013). In the
computer vision problem of 3D scene reconstruction, one wishes both to determine relationships
between objects and to correct for spatial misalignments between objects in images from different
view angles (Koch et al., 2024). When designing a wireless sensor network, one must determine
both spatial positions of sensors and connectivity between sensors (Khojasteh et al., 2022; Dogan &
Brown, 2017). Our results may thus have implications well beyond molecular design.

REPRODUCIBILITY STATEMENT

Reproducibility details can be found in the Methods section. We will release code for the model in
the camera-ready version of the paper.
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A APPENDIX

Table 3: Comparison of EdGr to to other molecule assembly methods, with translational noise of 3Å
standard deviation.

Topology Geometry
Model Precision ↑ Recall ↑ FMR ↑ Tanimoto ↑ RMSD ↓

EdGr 71 ± 1% 70 ± 1% 34 ± 2% 72 ± 1% 1.96 ± 0.03Å

EDM 52 ± 1% 52 ± 2% 15 ± 1% 51 ± 1% 2.00 ± 0.03Å
Equiformer 10 ± 1% 11 ± 1% 1 ± 0% 22 ± 0% 6.43 ± 0.04Å

GCN 10 ± 1% 10 ± 1% 1 ± 0% 21 ± 0% —
Graph Attention 8 ± 1% 7 ± 1% 1 ± 0% 23 ± 0% —

Minimum Distance 15 ± 1% 15 ± 1% 1 ± 0% 24 ± 0% —
Common Neighbors 8 ± 1% 8 ± 1% 1 ± 0% 21 ± 0% —

A.1 BROADER SOCIETAL IMPACTS

We believe that this work is important to the field of structure-based drug design, which is highly
useful for creating novel drugs to treat diseases and improve human health. However, any such
method could also potentially be used to create drugs that do harm. Care is necessary to ensure that
this method is used for beneficial purposes.

A.2 ADDITIONAL BACKGROUND

Diffusion Models Denoising Diffusion Probabilistic Models (Diffusion Models, or DDPMs) (Sohl-
Dickstein et al., 2015; Ho et al., 2020), are generative machine learning models inspired by non-
equilibrium thermodynamics. They are characterized by two processes: a forward noising process
which gradually adds Gaussian noise to the original data x via a Markov chain; and a denoising
process which is parametrized by a neural network ϕ that learns to remove the noise.

Self Conditioning In diffusion, ϕ learns to either remove the noise ϵ or directly predict x0 in the
chain of denoising steps. However, any intermediate predictions x̃0 are discarded in the subsequent
diffusion steps; self conditioning addresses this deficiency (Chen et al., 2023). Instead of ignoring
these intermediate predictions, self conditioning takes these predictions and concatenates them to
the noise at timestep t to provide additional context for the model, yielding much better downstream
performance (Chen et al., 2023). To prevent the model from becoming too reliant on the intermediate
x̃s, we introduce stochasticity with a random variable s ∼ U(0, 1); if s is greater than or equal to a
preset threshold p, self conditioning is not applied.

A.3 FINAL BOND SELECTION ALGORITHM

A.4 TRAINING & REPRODUCIBILITY DETAILS FOR EDGR

We train our models on a single Nvidia GPU for up to 300 epochs (approximately 1 week on an
Nvidida A40), using the checkpoint with the lowest validation loss for benchmarking. We train all our
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Algorithm 1 Final Bond Selection
Require: List of bonds and model weights for each, ordered from lowest to highest: bonds

1: Initialize QuickFind datatype: q(n=num fragments)
2: while !q.is fully connected() do
3: atom1, atom2 = bonds.pop()
4: f1, f2 = get fragment(atom1), get fragment(atom2)
5: if atom1 and atom2 are bonded to hydrogen atoms and !q.is connected(f1,f2)

then
6: Add atom1 and atom2 to final list of bonds
7: q.connect(f1,f2)
8: else
9: continue

10: end if
11: end while
12: return final list of bonds

diffusion models with the AdamW Optimizer, with a learning rate of 3× 10−4, with 100 diffusion
steps, batch normalization, using ReLU activations, with 4 hidden layers, each comprising 128
neurons. EdGr receives atom coordinates, element types encoded as one-hot vectors, and fragment
membership encoded as a binary vector as input features.

A.5 TRAINING & REPRODUCIBILITY DETAILS FOR GEOMETRIC DEEP LEARNING METHODS

EDM and Equiformer receive the same input features as EdGr.

EDM We use the EDM architecture from the DiffLinker (Igashov et al., 2024) codebase. We use
the same hyperparameters as EdGr (3× 10−4 learning rate, 4 EGCL layers, each comprising 128
neurons, AdamW optimizer, ReLU activations, 100 diffusion steps, batch normalization). We treat
pocket atoms as static and all ligand atoms as flexible. We trained EDM for 300 epochs, saving the
checkpoint with the lowest validation loss and using that for benchmarking. To generate the final
inter-fragment bonds, we use Algorithm 1, but instead of using the bonds list ordered by model
weight, the bonds list is ordered by Euclidean distance.

Equiformer We use the implementation of Equiformer (Liao & Smidt, 2022) at this GitHub
repository: https://github.com/lucidrains/equiformer-pytorch. Due to compute constraints—training
an Equiformer model on a single A100 GPU took over a week, with 1 epoch completing every
2 hours—we could not train Equiformer for the full 300 epochs and instead trained it for a week
on an A100 (roughly 80 epochs). We saved the model with the lowest validation loss and used
that checkpoint for benchmarking. We used the default hyperparameters from the repository, but
modified the following: num edge tokens = 2, edge dim = 4, single headed kv
= True, heads = 4, dim head = 8. We generate inter-fragment bonds in the same manner
as described in the paragraph describing running EDM.

A.6 TRAINING & REPRODUCIBILITY DETAILS FOR TRADITIONAL GRAPH COMPLETION
METHODS

As additional baselines, we also tested standard implementations of the Graph Convolution Network
(GCN) (Kipf & Welling, 2016) and Graph Attention Networks (Veličković et al., 2017) from PyTorch
Geometric Version 2.7 (https://pytorch-geometric.readthedocs.io/en/latest/index.html). For both
architectures we create a node embedding model that learned node embeddings based on the molecular
graphs of all of the provided fragments and a separate link prediction network that took pairs of
node embeddings and predicted whether they formed an inter-fragment bond. Each model had nodes
that represented atoms, with node features including a one-hot representation of element type, a
numerical representation of the fragment identity, the atom’s current valence, the maximum number
of bonds the atom could form, and a binary flag of whether the atom could form any additional
bonds. Learning rates of 1 × 10−2, 1 × 10−3, and 1 × 10−4 were tested for both models. Both
methods were trained for 3 epochs on a single GPU with the default settings for the AdamW optimizer

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

(https://arxiv.org/abs/1711.05101), with the model checkpoints at the end of each epoch featuring the
lowest validation loss across all hyperparameters being used to report metrics. During development,
additional hyperparameter settings beyond those listed below and longer training times including
up to 20 epochs were tested, but did not result in significant changes in validation loss or validation
performance. The results reported correspond to the best results obtained from the combination of
hyperparameters investigated for these models.

Running GCN The GCN node embedding network featured 3 GCN layers, with a hidden dimension
size of 128, and a node embedding output dimension of size 64. The inverted pairwise distances
between all atoms based on the noised 3D coordinates were used as edge weights for message passing
in the GCN. The ReLU function was used as the non-linear activation function, and dropout layers
were placed after the ReLU activation for the first two GCN layers with a dropout rate of 10%. The
link prediction network featured 3 MLP layers, with ReLU as the activation function and dropout
layers after the first two MLP layers with a dropout rate of 10%. The input dimension for the link
prediction network was 128, equal to a pair of node embeddings concatenated together, and the
hidden dimension was size 64. The output dimension was size 1, for the binary classification task of
whether a given pair of node embeddings should have an inter-fragment bond.

Running Graph Attention The Graph Attention node embedding network featured 3 Graph
Attention layers, with a hidden dimension size of 128, a node embedding output dimension of size 64,
and 4 attention heads. The pairwise distances between all atoms based on the noised 3D coordinates
were provided as edge attributes to each node, along with a one-hot encoding representing whether
a given edge was a known intra-fragment bond or a potential inter-fragment bond. The ReLU
function was used as the non-linear activation function, and dropout layers were placed after the
ReLU activation for the first two GCN layers with a dropout rate of 30%. The link prediction network
featured 3 MLP layers, with ReLU as the activation function and dropout layers after the first two
MLP layers with a dropout rate of 30%. The input dimension for the link prediction network was 128,
equal to a pair of node embeddings concatenated together. The output dimension was size 1, for the
binary classification task of whether a given pair of node embeddings should have an inter-fragment
bond.

A.7 ABLATION STUDIES

In Table 4, we report ablations. Removing self conditioning yielded a drop in performance. This
was expected, as knowing the model’s confidence in the predicted bonds at the previous timestep
of denoising should yield an improvement in the following denoising timestep’s predictions. In
addition, we replace the diffusion trunk of the model with a VAE instead and find that performance
on Topology tasks is nearly as good as that of diffusion, but the RMSD is much worse.

Finally, we have previously mentioned the importance of direct edge prediction and the usage of
these weights to influence node positions. We investigate the importance of the latter in the following
ablation study. We continue to output logits nij for every candidate edge, but remove these terms
from the node coordinate and feature updates. To be precise, we remove the ϕy(nij) from Equation 7
and ni from Equation 10. We call this ablation “Remove candidate edge→node update.” We find
that removing this update while maintaining direct edge prediction results in significantly reduced
performance, highlighting the importance of using the candidate edge weights nij in the updates to
the node features hl

i and coordinates xl
i.
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Table 4: Ablation study of EdGr, with translational noise of 1Å standard deviation.
Topology Geometry

Model Precision ↑ Recall ↑ FMR ↑ Tanimoto ↑ RMSD ↓
EdGr base model 85 ± 1% 86 ± 1% 64 ± 2% 88 ± 1% 1.09 ± 0.02Å

Remove candidate
edge→node update 63 ± 1% 64 ± 1% 26 ± 1% 63 ± 1% 1.33 ± 0.02Å

VAE 80 ± 1% 79 ± 1% 51 ± 2% 85 ± 1% 2.29 ± 0.02Å
No self conditioning 80 ± 1% 79 ± 1% 52 ± 2% 83 ± 1% 1.28 ± 0.02Å
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