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Abstract

Simultaneous feature selection and non-linear function estimation are challenging, especially
in high-dimensional settings where the number of variables exceeds the available sample
size in modeling. In this article, we investigate the problem of feature selection in neural
networks. Although the group LASSO has been utilized to select variables for learning with
neural networks, it tends to select unimportant variables into the model to compensate for its
over-shrinkage. To overcome this limitation, we propose a framework of sparse-input neural
networks using group concave regularization for feature selection in both low-dimensional
and high-dimensional settings. The main idea is to apply a proper concave penalty to the I
norm of weights from all outgoing connections of each input node, and thus obtain a neural
net that only uses a small subset of the original variables. In addition, we develop an effective
algorithm based on backward path-wise optimization to yield stable solution paths, in order
to tackle the challenge of complex optimization landscapes. Our extensive simulation studies
and real data examples demonstrate satisfactory finite-sample performances of the proposed
estimator, in feature selection and prediction for modeling continuous, binary, and time-to-
event outcomes.

1 Introduction

Over the past decades, advancements in molecular, imaging, and other laboratory tests have led to a growing
interest in high-dimensional data analysis (HDDA) (Donoho et al., |2000). This type of data involves a large
number of observed variables relative to the small sample size, which presents a considerable challenge in
building accurate and interpretable models. For example, in bioinformatics, hundreds of thousands of RNA
expressions, genome-wide association study (GWAS) data, and genomic data are used to understand disease
biology and the correlation with clinical outcomes, with only hundreds of patients involved (Visscher et al.|
2012; |Hertz et al.l [2016; |[Kim & Halabi, 2016; Beltran et al., |2017)). To address the curse of dimensionality,
feature selection is a critical step in HDDA modeling. By identifying the most relevant features that cap-
ture the relationship with clinical outcomes, feature selection enhances model interpretability and improves
generalization.

There are various methods for feature selection, including filter methods (Koller & Sahami, [1996; |Guyon &
Elisseeft] |2003; |Gu et al.,|2012)), wrapper methods (Kohavi & Johnl (1997 Inza et al.,|2004; |Tang et al. [2014),
and embedded methods (Tibshiranil (1996 |[Zou, 2006; Fan & Li, [2001; |Zhang et al., |2010). Among them,
penalized regression methods have become very popular in HDDA since the introduction of the least absolute
shrinkage and selection operator (LASSO) (Tibshirani, [1996). Penalized regression method can perform
simultaneous parameter estimation and feature selection by shrinking some of the parameter coefficients
to exact zeros. While LASSO has been widely used to obtain sparse estimates in machine learning and
statistics, it tends to select unimportant variables to compensate for the over-shrinkage for relevant variables
(Zou, |2006)). To address the bias and inconsistent feature selection of LASSO, several methods have been
proposed, including adaptive LASSO (Zoul 2006)), the minimax concave penalty (MCP) (Zhang et al.| 2010)),
and the smoothly clipped absolute deviation (SCAD) (Fan & Li, 2001)).
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However, most of these penalized methods assume linearity in the relationship between the variables and the
outcomes, while the actual functional form of the relationship may not be available in many applications.
Some additive non-parametric extensions have been proposed to resolve this problem (Lin & Zhang} 2006}
Ravikumar et al., [2009; Meier et al., [2009)), but their models rely on sums of univariate or low-dimensional
functions and may not be able to capture the complex interactions between multiple covariates. [Yamada
et al.| (2014) propose the HSIC-LASSO approach that leverages kernel learning for feature selection while
uncovering non-linear feature interactions. However, it suffers from quadratic scaling in computational
complexity with respect to the number of observations.

Neural networks are powerful tools for modeling complex relationships in a wide range of applications, from
imaging (Krizhevsky et al., [2017; He et al., [2016]) and speech recognition (Graves et all 2013; (Chan et al.|
2016)) to natural language processing (Young et al.,[2018; Devlin et al.,[2018) and financial forecasting (Fischer
& Krauss, [2018). Their state-of-the-art performance has been achieved through powerful computational
resources and the use of large sample sizes. Despite that, high-dimensional data can still lead to overfitting
and poor generalization performance for neural networks (Liu et al.; |2017)).

Recently, there have been novel developments in using regularized neural networks for feature selection or
HDDA. A line of research focuses on utilizing the regularized neural networks, specifically employing the
group LASSO technique to promote sparsity among input nodes (Liu et al., [2017; |Scardapane et al., [2017}
Feng & Simon, [2017)). These methods treat all outgoing connections from a single input neuron as a group
and apply the LASSO penalty to the Is norm of weight vectors of each group. Other LASSO-regularized
neural networks in feature selection can be found in the work of |Li et al.| (2016]) and [Lemhadri et al.| (2021]).
However, LASSO-regularized neural networks tend to over-shrink the weights of relevant variables, leading
to the inclusion of many false positives. The adaptive LASSO was employed to alleviate this problem (Dinh,
& Hol [2020), yet their results are limited to continuous outcomes and assume that the conditional mean
function is exactly a neural network. The work in [Yamada et al|(2020) bypassed the [; regularization by
introducing stochastic gates to the input layer of neural networks. They considered ly-like regularization
based on a continuous relaxation of the Bernoulli distribution. Their method, however, requires a cutoff
value for selecting variables with weak signals, and the stochastic gate is unable to completely exclude the
non-selected variables during model training and prediction stages.

In this paper, we propose a novel framework for sparse-input neural networks using group concave regular-
ization to overcome the limitations of existing feature selection methods. Although folded concave penalties
like MCP and SCAD have been shown to perform well in both theoretical and numerical settings for feature
selection and prediction, they have not received the same level of attention as LASSO in the context of
machine learning. Our proposed framework aims to draw attention to the underutilized potential of concave
penalties for feature selection in neural networks by providing a comprehensive approach for simultaneous
feature selection and function estimation in both low- and high-dimensional settings.

The key contributions of this paper are as follows:

e A unified framework for simultaneous feature selection and prediction: We introduce structured
sparsity in neural networks by applying concave group penalties, treating all outgoing connections
from a single input neuron as a group. An ls-norm-based concave penalty shrinks entire groups of
weights to zero, resulting in a parsimonious neural network that selects only a small subset of input
variables.

e A stable optimization algorithm for group concave penalties: We employ composite gradient de-
scent for optimization and explore backward path-wise optimization from the perspective of solution
paths in neural networks. This perspective enhances model selection stability and improves the
interpretability of optimization paths.

o Empirical validation across diverse data types: Through extensive simulations and real-data ex-
periments, we demonstrate that our method outperforms existing approaches in feature selection
consistency and prediction accuracy across continuous, binary, and time-to-event outcomes.
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The rest of this article is organized as follows. In Section 2, we formulate the problem of feature selection for
a generic non-parametric model and introduce our proposed method. The implementation of the method,
including the composite gradient descent algorithm and the backward path-wise optimization, is presented
in Section 3. In Section 4, we conduct extensive simulation studies to demonstrate the performance of the
proposed method. The application of the method to real-world datasets is presented in Section 5. Lastly,
in Section 6, we discuss the results and their implications. The implementation details and supplementary
numerical results are provided in the Appendix.

2 Method

2.1 Problem setup

Let X € R? be a d-dimensional random vector and Y be a response variable. We assume the conditional
distribution Py|x depends on a form of f(Xg) with a function f € F and a subset of variables S C {1,--- ,d}.
We are interested in identifying the true set S for important variables and estimating function f so that we
can predict Y based on selected variable Xg.

At the population level, we aim to minimize the loss

flg}mns]EX,Yf(f(Xs), Y)

)

where £ is a loss function tailored to a specific problem. In practical settings, the distribution of (X,Y) is
often unknown, and instead only an independent and identically distributed (i.i.d.) random sample of size
n is available, consisting of pairs of observations (X,-,Yi)?:l. Additionally, if the number of variables d is
large, an exhaustive search over all possible subsets S becomes computationally infeasible. Furthermore, we
do not assume any specific form of the unknown function f and aim to approximate f nonparametrically
using neural networks. Thus, our goal is to develop an efficient method that can simultaneously select a
variable subset S and approximate the solution f for any given class of functions using a sparse-input neural
network.

2.2 Proposed framework

We consider function estimators based on feedforward neural networks. Let F,, be a class of feed forward
neural networks fy : R? s R with parameter w. The architecture of a multi-layer perceptron (MLP) can
be expressed as a composition of a series of functions

fw(ac):LDOUOLD,loao---OJOLloUOLO(x),:reRd,

where o denotes function composition and o(z) is an activation function defined for each component of z.
Additionally,
Ll(l‘) =W;x+10b;,i=0,1,...,D,

where W; € R%+1%% is a weight matrix, D is the number of hidden layers, d; is the width defined as
the number of neurons of the i-th layer with dy = d, and b; € R%+! is the bias vector in the i-th linear
transformation L;. Note that the vector w € R is the column-vector concatenation of all parameters in

{W;,b;:i=0,1,...,D}. We define the empirical loss of f as

Lalw) = = 3 LX), )
=1

Ideally, the sparse-input neural network fy should rely only on the important variables, meaning that
Wy,; =0 for j ¢ S, where W ; denotes the jth column vector of Wy. In order to minimize the empirical
loss £,,(w) while inducing sparsity in Wy, we propose to train the neural network by minimizing the following
group regularized empirical loss
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d
W = argmin § La(w) + Y pa([Woll2) + afwll3 o, (1)
weRP J=1
where || - ||2 denotes the Euclidean norm of a vector.

The objective function in Eq. comprises three components:

(1)

(2)

L, (w) is the empirical loss function, such as the mean squared error loss for regression tasks, the
cross-entropy loss for classification tasks, and the negative log partial likelihood for proportional
hazards models. Further details can be found in Appendix [A]

P is a concave penalty function parameterized by A > 0. To simultaneously select variables and
learn the neural network, we group the outgoing connections from each single input neuron that
corresponds to each variable. The concave penalty function p) is designed to shrink the weight
vectors of specific groups to exact zeros, resulting in a neural network that utilizes only a small
subset of the original variables.

allw||%, where a > 0, represents the ridge regularization term used to prevent overfitting in neural
networks. Note that feature selection, employing py, depends exclusively on the magnitudes of
weights in the input layer. However, it is possible to diminish the influence of py by reducing
all weights in the input layer while simultaneously allowing larger weights in other layers, without
affecting the network’s output. The ridge regularization addresses this issue by promoting smaller,
well-balanced weights, thereby improving model stability and mitigating overfitting.

It should be noted that when the number of hidden layers D = 0, the function fy reduces to a linear
function, and the optimization problem in Eq. becomes the framework of elastic net (Zou & Hastie,
2005), SCAD-Ly (Zeng & Xie| [2014), and Mnet (Huang et al.l |2016)), with the choice of p) to be LASSO,
SCAD, and MCP, respectively.

2.3 Concave regularization

There are several commonly used penalty functions that encourage sparsity in the solution, such as LASSO
(Tibshirani, 1996)), SCAD (Fan & Li, 2001), and MCP (Zhang et al., [2010). When applied to the Ils-
norm of the coefficients associated with each group of variables, these penalty functions give rise to group
regularization methods, including group LASSO (GLASSO) (Yuan & Linl 2006), group SCAD (GSCAD)
(Guo et all 2015), and group MCP (GMCP) (Huang et al., |2012)). Specifically, LASSO, SCAD, and MCP
are defined as follows.

LASSO
pA(t) = Alt].
SCAD
Alt] for [t| < A,
pa(t) = —% for A < [t| < a),
% for [t| > al,

where a > 2 is fixed.

MCP

z

pa(t) = sign(t)/\/olt (1 - E>+ dz,

where a > 0 is fixed.
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It has been demonstrated, both theoretically and numerically, that the folded concave regularization methods
of SCAD and MCP exhibit strong performance in terms of feature selection and prediction (Fan & Li, [2001}
Zhang et al.;2010). Unlike the convex penalty LASSO, which tends to over-regularize large terms and provide
inconsistent feature selection, concave regularization can reduce LASSO’s bias and improve model selection
accuracy. The rationale behind the concave penalty lies in the behavior of its derivatives. Specifically, SCAD
and MCP initially apply the same level of penalization as LASSO, but gradually reduce the penalization
rate until it drops to zero when ¢t > a\. Given the benefits of the concave penalization, we propose using the
group concave regularization in our framework for simultaneous feature selection and function estimation.

3 Implementation

3.1 Composite gradient descent

The optimization in Eq. is not a convex optimization problem since both empirical loss function £,,(w)
and the penalty function p) can be non-convex. To obtain the stationary point, we use the composite gradient
descent algorithm (Nesterov], 2013)). This algorithm is also incorporated in |Feng & Simon| (2017)); |[Lemhadri
et al.| (2021)) for sparse-input neural networks based on the LASSO regularization. The local convergence of
the composite gradient descent algorithm for nonconvex regularization was established in|Gong et al.| (2013).

Denote L, (W) = L,(w) + a||lw||? as the smooth component of the objective function in Eq. (1). The
composition gradient iteration for epoch t is given by

d

. J1 -
witl = arg min §HW—WH—1H§ +’YZP/\(||W0,J’”2) ) (2)
W j=1

where Wit! = w! — VL, ,(w?') is the gradient update only for the smooth component £, ,(w') that can
be computed using the standard back-propagation algorithm. Here v > 0 is the step size for the update and
can be set as a fixed value or determined by employing the backtracking line search method, as described
in Nesterov| (2013)). Let A; represent the index set of Wy ; within w. We define A as the index set that
includes all weights in the input layer, given by A = {U;i:1 A;}. By solving Eq. |j we obtain the iteration
form WtAJil = v~vf4t1 and

Wi{:l = h(v?/fz;l;% A), forj=1,---d. (3)
Here, A€ refers to the complement of the set A, and the function h represents the thresholding operator,
which can be determined by the specific penalty py. By taking py to be the LASSO, MCP, and SCAD

penalty, it can be verified that the GLASSO, GSCAD, and GMCP solutions for the iteration in Eq. have
the following form:

« GLASSO
harasso(2;7, A) = Sg(z, 7).
e GSCAD
Sg(z,7A), if [zl < (v + 1A,
hascap(#:7,A) = ¢ 79725 (2, GR), i (Y+ DA < |l2]l2 < al,
z, if ||z|2 > aA.
« GMCP

759 (2,9A), if [[z]l2 < ad,

h ;7 A) =
amep (237, A) {z, if ||z]l2 > aA,

where Sg(2; A) is the group soft-thresholding operator defined as

S(z5)) = <1H32)+z
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Therefore, we can efficiently implement the composite gradient descent by integrating an additional thresh-
olding operation into the input layer. This operation follows the gradient descent step using the smooth
component L, o(w). The calculation for epoch t can be summarized as follows:

(1) Compute the gradient of the smooth component VL, ,(w?) using back-propagation.

(2) Perform the gradient update for the smooth component to get an intermediate estimate:

Wit wh — VL, o (Wh).

(3) Apply the thresholding operator to obtain the updated weights w'*!:

t+1 ~ 141 t+1 < i1, -
Wye =Wy, Wy <—h(WAj,’y,/\), forj=1,....,d.

The final index set of the selected variables is § = {j : W4, # 0}. Note that we consider v as a scaling factor
in the thresholding operator. When v = 1 in Step (3), the solutions for GLASSO, GSCAD, and GMCP
align with the closed-form results established in [Wei & Zhu| (2012)).

3.2 Backward path-wise optimization

We are interested in learning neural networks not only for a specific value of A, but also for a range of As
where the networks vary by the number of included variables. Specifically, we consider a range of A from
Amin, Where the networks include all or an excessively large number of variables, up to Apqz, Where all
variables are excluded and |Wy| becomes a zero matrix. Since the objective function is not convex and has
multiple local minima, the solution of Eq. with random initialization may not vary continuously for
A € [Amin, Amaz), resulting in a highly unstable path of solutions that are regularized by A.

To address this issue, we consider a path-wise optimization strategy by varying the regularization parameter
along a path. In this approach, we use the solution of a particular value of A\ as a warm start for the
next problem. Regularized linear regression methods (Friedman et al.l [2007; [2010; Breheny & Huang, 2011))
typically adopt a forward path-wise optimization, starting from a null model with all variables excluded
at Amqer and working forward with decreasing As. However, our numerical studies on sparse-input neural
networks revealed that starting with a sparse solution as the initial model does not lead to a smooth transition
to a dense model. To tackle this problem, we implement a backward path-wise optimization approach,
starting from a dense model at the minimum value of \,,;, and solving toward sparse models up to Apqz
with all variables excluded from the network. This dense-to-sparse warm start approach is also employed in
(Lemhadri et al., |2021)) using LASSO regularization.

To further illustrate the importance of using backward path-wise optimization in regularized neural networks,
we investigate variables selection and function estimation of a regression model Y = f(X) + ¢, where
f(X) =log(]X1] +0.1) + X1 X2 + Xo + exp(X3 + X4) with 4 informative and 16 nuisance variables, and each
X; and € follow the standard normal distribution. More details of the simulations are presented in Section 4.
Figure [T]shows the solution paths of GSCAD, GMCP, and GLASSO based on different types of optimization.
It is observed that non-pathwise optimization (top-left) leads to fluctuations or variations in the solution
path, whereas forward path-wise optimization tends to remain in the same sparse model (GMCP, top-middle)
or experience fluctuation solutions (GLASSO, top-right), until transitioning to a full model with a sufficiently
small A\. In contrast, backward path-wise optimization (bottom panels) yields smoother solution paths for
informative and nuisance variables. Notably, GLASSO (bottom-right) tends to over-shrink the weight vectors
of informative variables and include more variables in the model. In contrast, GSCAD (bottom-left) and
GMCP (bottom-middle) are designed to prevent over-shrinkage and offer a smooth transition from the full
to the null model.

In addition to providing stable and smooth solution paths, backward path-wise optimization is advantageous
computationally. In particular:



Under review as submission to TMLR

o The consecutive estimates of weights in the path are close, which reduces the rounds of gradient
descent needed for each iteration. Therefore, the bulk of the computational cost occurs at Ay, and
a lower number of iterations for the remaining As results in low computational costs.

e We observe that the excluded variables from previous solutions are rarely included in the following
solutions. By pruning the inputs of the neural network along the solution path, further reduction
in computation complexity can be achieved as the model becomes sparse. Since the computational
cost scales with the number of input features, this approach can significantly speed up computation,
particularly for high-dimensional data.

Non-pathwise Optimization, GMCP anorward Pathwise Optimization, GMCP Forward Pathwise Optimization, GLASSO
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Figure 1: Solution path of I, norm of the weight vector associated with each input node [Wy; /2.
Top left: Non-pathwise optimization using GMCP. All the neural network weights are initialized by drawing
from N(0,0.1) for each A. Top middle: forward path-wise optimization using GMCP. It starts from the null
model and computes the solution with decreasing A. Random initialization is used before the selection of the
first set of variables. Top right:forward path-wise optimization using GLASSO. Bottom left: backward
path-wise optimization using GSCAD. Bottom middle: backward path-wise optimization using GMCP.
Bottom right: backward path-wise optimization using GLASSO.

3.3 Tuning Parameter Selection

Two tuning parameters are required in our proposed framework: the group penalty coefficient A and the
ridge penalty coefficient «. The former controls the number of selected variables and yields sparser models
for larger values of A, while the latter imposes a penalty on the size of the network weights to prevent
overfitting.

In all numerical studies presented in this paper, we adopted a 20% holdout validation set from the training
data. The model was trained using the remaining data, and the optimal values for A and « were selected
from a fine grid of values based on their performance on the validation set.

Python code and examples for the proposed group concave regularized neural networks are available at
https://github.com/r08in/GCRNN.
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4 Simulation Studies

We assess the performance of the proposed regularized neural networks in feature selection and prediction
through several simulation settings with various types of outcomes. In particular, we consider the concave
regularization GMCP and GSCAD for our proposed framework. We name the method of regularized neural
networks using GLASSO, GMCP, and GSCAD as GLASSONet, GMCPNet, and GSCADNet, respectively.
We compare the proposed group concave regularized estimator GMCPNet and GSCADNet with GLAS-
SONet, neural network (NN) without feature selection (A = 0), random (survival) forest (RF), and the STG
method proposed in [Yamada et al.| (2020). We also include the oracle version of NN and RF (Oracle-NN
and Oracle-RF) as benchmarks, where true relevant variables are known in advance and used directly in
the model fitting process. In our implementation, we replace the gradient update in Step (2) with Adam to
improve computational efficiency and achieve faster convergence in practice. Specifically, we set the scaling
factor v = 1 in the thresholding operator and used a base learning rate of LR = 0.001 for Adam. For a
fair comparison across all neural network methods, we used a ReLU-activated multi-layer perceptron (MLP)
with two hidden layers of 10 and 5 units, respectively. A sensitivity analysis of these choices is provided in
Section [.3] and additional implementation details are can be found in Appendix [E}

4.1 Preliminary Simulation Study

In this section, we consider regression models of XOR-type and hierarchical signal structures for continuous
outcomes. We generate 500 i.i.d. random training samples according to the following models:

e XOR-type Signals: Y = X; + X5 + ¢,

e Hierarchical Signals: ¥ = X; + X; X5 + €.

In both models, X; and X, represent the first two coordinates of the covariate vector X € R%, each taking
values in {£1} with equal probability, while € denotes a standard normal error term. The remaining coor-
dinates, X; for ¢ = 3,...,d, are uninformative variables. We conducted 20 simulations for varying d values
ranging from 20 to 500. For each simulation, the performance of the trained model in both prediction and
variable selection was evaluated on 500 independently generated random samples. For prediction accuracy,

we report the test R? scores. For variable selection, we report the false positive rate (FPR)—the percent-
1SNS°|
[Se]

(FNR)—the percentage of important but non-selected covariates, defined as FNR = ‘S‘CSH‘S‘ x 100%. Recall

that S represents the true index sets of important variables and S = {j : |[Wy_;||2 # 0} denote the index
sets of selected variables. Simulation results are shown in Figure

age of selected but unimportant covariates, defined as FPR = x 100%; and the false negative rate

Our proposed methods, GMCPNet and GSCADNet, demonstrate clear advantages over other approaches,
achieving relatively high prediction scores with low FPR and FNR across both models. Notably, neural
networks without feature selection tend to overfit as the number of noisy features increases, underscoring
the importance of effective feature selection. Additionally, GLASSONet exhibits a tendency to overselect
variables, resulting in a high FPR due to the bias introduced by the LASSO penalty.

4.2 High-Dimensional Simulations with Continuous, Binary, and Time-to-Event Outcomes

We evaluate our proposed methods under a more complex nonlinear pattern across various outcome types,
considering both low- and high-dimensional scenarios. The data are generated through the following function:

f(X) = 10g(|X1‘ —+ 01) + X1X2 + X2 —+ exp(X3 + X4),

where each component of the covariate vector X = (Xy,---,X4)T € R? are generated from independent
standard normal distribution. Here d > 4 and function f(X) is sparse that only the first four variables are
relevant to the outcome. We generate n i.i.d. random samples with continuous outcomes, binary outcomes,
and time-to-event outcomes in the following three examples, respectively.
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Figure 2: Top row: simulation results for the model of XOR-type signals. Bottom row: simulation
results for the model of hierarchical signals. The R? scores, false positive rate (FPR), and false negative rate
(FNR) are presented in the left, middle, and right columns, respectively. The central lines are the means
while the shaded areas represent standard deviations.

Example 4.1 (Regression Model) The continuous response Y is generated from a standard regression
model with an additive error as follows
Y =f(X)+e

where € follows a standard normal distribution.

Example 4.2 (Classification Model) The binary response Y € {0,1} is generated from a Bernoulli
distribution with the following conditional probability

PO =1 = e i)

Example 4.3 (Proportional Hazards Model) The survival time T follows the proportional hazards model
with a hazard function of the form

h(t|X) = ho(t) exp (f(X)), (4)
where ho(t) is the baseline hazard function. Thus, T = Hy* (—log(U)exp f(X)), where U is a uniform
random variable in [0,1], and Hy is the baseline cumulative hazard function defined as Hy(t) = fot ho(u)du.
We considered a Weibull hazard function for Hy, with the scale parameter = 2 and the shape parameter = 2.

A proportion C of the n samples is randomly selected to be censored. The censoring indicator is defined as
0; = 1 for observed events and §; = 0 for censored observations. The observed time for the ith individual is

Y, = TZH((Sz = 1) + C'ZH((Sz = 0),

where T; is the event time and C; is the censoring time. For censored individuals, C; is drawn from a uni-
form distribution (0,T;), ensuring that censoring precedes the event. In our simulation studies, we consider
censoring proportions C =0, 0.2, and 0.4.

For each example, we consider the low and high dimensional settings in the following scenarios:
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1. Low dimension (LD): d = 20 and n = 300 and 500.
2. High dimension (HD): d = 1000 and n = 500.

We perform 200 simulations for each scenario. Similar to Section the performance of the trained model
is evaluated on independently generated n random samples. For prediction accuracy, we report the R? score,
classification accuracy, and C-index for the regression, classification, and proportional hazards model (PHM),
respectively. In addition to FPR and FNR, we also report the model size (MS), which is the average number
of selected covariates.

4.2.1 Results

Table [T] presents a summary of the feature selection performance of the four approaches: STG, GLASSONet,
GMCPNet, and GSCADNet, across all simulation scenarios. We exclude the results of the STG method for
Example as it either selects all variables or none of them for the survival outcome. For both LD and HD
settings, GMCPNet and GSCADNet consistently outperform the STG and GLASSONet in terms of feature
selection. These models exhibit superior performance, achieving model sizes that closely matched the true
model, along with low FPR and FNR for most scenarios. While STG performs well in certain LD settings, it
tends to over select variables in HD scenarios with a large variability in the model size. On the other hand,
GLASSONet is prone to selecting more variables, leading to larger model sizes in both LD and HD settings,
which aligns with the inherent nature of the LASSO penalty.

Figure [3]displays the distribution of testing prediction scores for the regression, classification, and PHM with
a censoring rate of C = 0.2. The complete results of the PHM are presented in Appendix Bl GMCPNet and
GSCADNet demonstrate comparable performance in both LD and HD settings, achieving similar results to
the Oracle-NN and outperforming NN, RF, and even Oracle-RF in most scenarios. STG performs similarly
to Oracle-NN in the LD setting of the regression model, but its performance deteriorates in the HD setting
and other models. Conversely, while GLASSONet outperforms or is comparable to the Oracle-RF method in
the LD settings, it suffers from overfitting in the HD settings by including a large number of false positives
in the final model.

It is worth pointing out that the Oracle-NN outperforms the Oracle-RF in every scenario, indicating that
neural network-based methods can serve as a viable alternative to tree-based methods when the sample size
is sufficiently large relative to the number of predictors.

Overall, the simulation results demonstrate the superior performance of the concave penalty in terms of
feature selection and prediction. The proposed GMCPNet and GSCADNet methods exhibit remarkable
capabilities in selecting important variables with low FPR and low FNR, while achieving accurate predictions
across various models. These methods show promise for tackling the challenges of feature selection and
prediction in high-dimensional data.

4.3 Hyperparameter Sensitivity Analysis

We evaluate the robustness of the proposed method by conducting a sensitivity analysis under a high-
dimensional regression setting (d = 1000,n = 500), as described in Example 1. The analysis examines the
effect of three key hyperparameters: the thresholding scaling factor (), the learning rate (LR) used in the
Adam optimizer, and the network structure. Similar to previous examples, 200 simulations are performed,
and the average values of R?, FPR, and FNR are reported for each configuration. Since GMCPNet exhibits
similar performance to GSCADNet, we focus on reporting the results for GSCADNet. The findings are
summarized in Figure [d which highlights the sensitivity to each hyperparameter individually while keeping
the other parameters fixed. The fixed hyperparameter choices used in this study (y = 1, LR = 0.001, and
network structure [10, 5], i.e., two hidden layers with 10 and 5 nodes, respectively) are marked on the plots
for reference.

For ~, the results show that v = 1 and v = 0.1 yield similar performance across all metrics, achieving
relatively high R? while maintaining low FPR and FNR. In contrast, smaller values of v (0.001,0.01) tend
to under-select relevant features, as indicated by higher FNR and consequently lower R? scores. For LR,
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Table 1: Feature selection results of STG, GLASSONet, GMCPNet, and GSCADNet under
the regression, classification, and proportional hazards models. The false positives rate (FPR
%), false negatives rate (FNR %), and model size (MS) with standard deviation (SD) in parentheses are
displayed.

n =300, d = 20 n = 500, d = 20 n = 500, d = 1000
Model Method
FPR, FNR MS (SD) FPR,FNR MS (SD) FPR, FNR MS (SD)
STG 7.8, 5.4 5.0 (2.0) 7.2,2.1 5.1 (1.7) 1.6, 12.1 19.2 (28.0)
GLASSONet | 86.7, 4.4 17.7 (4.7) | 96.0, 0.6 19.3 (2.2) | 24.3,29.2 245.0 (98.7)
Regression
GMCPNet 2.2, 4.5 4.2 (1.0) 2.1, 4.2 4.2 (1.0) 0.0, 5.8 4.1 (0.9)
GSCADNet 2.4, 5.0 4.2 (1.1) 2.0, 3.2 4.2 (0.9) 0.0, 7.1 4.1 (1.0)
STG 25.3, 16.5 7.4 (6.9) 10.1, 11.0 5.2 (4.8) 3.8, 15.6 40.9 (183.4)
GLASSONet | 89.2, 1.0 18.2 (2.8) | 94.7,0.2 19.1 (2.0) 16.3, 21.5 165.4 (92.9)
Classification
GMCPNet 14.4, 3.9 6.2 (3.6) 9.3, 0.8 5.5 (2.6) 0.3, 16.2 6.5 (4.2)
GSCADNet 11.6, 5.8 5.6 (2.9) 7.0, 1.0 5.1 (1.9) 0.3, 16.8 6.8 (5.9)
Survival GLASSONet | 97.2, 0.0 19.5 (1.0) | 99.2, 0.0 19.9 (0.5) 18.2, 20.0 184.8 (56.2)
urviva,
=0 GMCPNet 1.6, 0.4 4.2 (0.6) 0.8, 0.0 4.1 (0.4) 0.0, 1.5 4.1 (0.5)
B GSCADNet 1.9, 0.2 4.3 (0.6) 1.2, 0.0 4.2 (0.5) 0.0, 1.6 4.1 (0.7)
Survival GLASSONet | 98.0, 0.1 19.7 (0.8) | 99.6, 0.0 19.9 (0.3) 16.8, 18.0 170.6 (49.0)
urviva,
€ =02) GMCPNet 1.9,0.4 4.3 (0.9) 1.7, 0.0 4.3 (1.0) 0.0, 2.6 4.2 (0.9)
- GSCADNet 1.8, 0.2 4.3 (0.9) 1.7, 0.1 4.3 (0.8) 0.0, 3.5 4.1 (0.7)
Survival GLASSONet | 95.0, 0.0 19.2 (1.7) | 98.8, 0.0 19.8 (0.5) 15.2, 19.9 154.6 (48.4)
urviva
€ = 04) GMCPNet 5.8, 8.1 4.6 (1.5) 1.2, 0.1 4.2 (0.5) 0.0, 4.2 4.1 (1.0)
o GSCADNet 4.8, 7.5 4.5 (1.3) 1.7, 0.0 4.3 (0.7) 0.0, 4.9 4.2 (1.0)
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Figure 3: Top row: R? score of the proposed methods for the regression model outlined in Example
Middle row: Accuracy of the proposed methods for the classification model outlined in Example
Bottom row: C-Index of the proposed methods for the survival model outlined in Example[4.3] The dashed

lines represent the median score of the Oracle-NN, used as a benchmark for comparison.
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values of 0.001, 0.01, and 0.1 exhibit stable performance with competitive R?, low FPR, and low FNR.
Smaller LR values (0.0001) lead to slower convergence, resulting in lower R? and higher FNR, while larger
LR values (0.1) slightly improve R? and reduce FNR but also increase FPR. For network structures, more
complex architectures such as [10, 10, 5] and [20, 10, 5] provide modest improvements in R?, though they also
result in increased computational costs and potentially a higher risk of overfitting. In summary, although
we fixed these parameters in our implementation with LR= 0.001, v = 1, and network structure [10, 5]), our
analysis reveals that selection accuracy and prediction performance remain stable for v between 0.1 and 1,
LR between 0.001 and 0.1, and Network structures ranging from [10,5] to more complex architectures like
[20,10,5]. These findings suggest that our method is robust to a reasonable range of hyperparameter choices,
demonstrating consistent performance across different configurations.

—e
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FPR
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@ —e— R? —8— R2
% 04 | FPR | FPR
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Figure 4: Sensitivity analysis of GSCADNet to hyperparameters: Left: ~y, the scaling factor for the thresh-
olding operator. Middle: Learning rate (LR) in the Adam optimizer. Right: Network structure. The
network structure [l1, 1, ..., l;] represents the number of nodes in each hidden layer. The fixed choices used
in our numerical study (y = 1, LR = 0.001, and network structure [10,5]) are marked on the plots with
an“x" symbol for each metric (R%, FPR, and FNR).

5 Real Data Example

5.1 Survival Analysis on CALGB-90401 dataset

We utilize the data from the CALGB-90401 study, a double-blinded phase III clinical trial that compares
docetaxel and prednisone with or without bevacizumab in men with metastatic castration-resistant prostate
cancer (mCRPC) to illustrate the performance of our proposed method. The CALGB-90401 data consists of
498,801 single-nucleotide polymorphisms (SNPs) that are processed from blood samples from patients. We
assume a dominant model for SNPs and thus each of the SNPs is considered as a binary variable. Since our
interest is studying the DNA damage repair genes, we only consider 625 SNPs based on an updated literature
search (Mateo et al., [2015; Wyatt et al., 2016} [Beltran et al.l 2011 [Mosquera et al.l |2013; |Robinson et al.)
2015; |Abida et al.l 2019; De Laere et al., |2017)). We also include the eight clinical variables that have been
identified as prognostic markers of overall survival in patients with mCRPC (Halabi et al., |2014): opioid
analgesic use (PAIN), ECOG performance status, albumin (ALB), disease site (defined as lymph node only,
bone metastases with no visceral involvement, or any visceral metastases), LDH greater than the upper limit
of normal (LDH.High), hemoglobin (HGB), PSA, and alkaline phosphatase (ALKPHOS). The final dataset
contains d = 635 variables, n = 631 patients and a censoring rate C' = 6.8%.

We consider the PHM in the form of Eq. for our proposed methods to identify clinical variables or
SNPs that can predict the primary outcome of overall survival in these patients. To evaluate the feature
selection and prediction performance of the methods, we randomly split the dataset 100 times into training
sets (n=526) and testing sets (n=105) using a 5:1 allocation ratio. We apply the methods to each of the
training sets and calculate the time-dependent area under the receiver operating characteristic curve (tAUC)
on the corresponding testing sets. The tAUC assesses the discriminative ability of the predicted model and
is computed using the Uno method (Uno et all[2007). The results of the 100 random splits are presented in
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Figure[5| Our proposed method, GSCADNet, outperforms the others in survival prediction (left panel). It is
worth noting that the NN method, which lacks feature selection, tends to overfit in high-dimensional data and
performs poorly. Although these three regularized methods of sparse-input neural networks perform similarly
in survival prediction, GLASSONet has a tendency to over-select variables and the proposed GMCPNet and
GSCADNet select a relatively smaller set of variables without compromising prediction performance (middle
panel). The right panel of Figure demonstrates that GSCADNet successfully selects most of the key clinical
variables and detects some of the important SNPs in predicting overall survival.
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Figure 5: Left: Boxplots of tAUC from testing set over 100 random splits. Middle: the number of selected
variables for GLASSONet, GMCPNet, and GSCADNet. Right: Variables selected by GSCADNet with

selection proportion> 10% over 100 random splits.

5.2 Classification on High-Dimensional MNIST

We aim to visualize variable selection in a high-dimensional binary classification setting using the MNIST
dataset. The MNIST dataset is a well-known benchmark dataset in computer vision, consisting of grayscale
images of handwritten digits from 0 to 9. In this study, we focus on distinguishing digits 7 and 8, which share
structural similarities that make the classification task nontrivial. While other digit pairs may also exhibit
visual similarity, this choice provides a meaningful evaluation of feature selection methods in identifying
relevant pixels for classification. We evaluate our proposed methods GMCPNet and GSCADNet, along
with existing methods GLASSONet, STG, NN, and RF, based on their feature selection and classification
accuracy.

The MNIST dataset consists of grayscale images with 28x28 pixels, resulting in 784 variables. To create
a high-dimensional, low-sample setting, we construct a training dataset by selecting 250 images of 7s and
8s each, yielding d = 784 features and n = 500 samples. Importantly, the class labels depend primarily
on the central pixels, meaning an effective feature selection method should correctly identify and focus on
these relevant regions. To ensure the feature space is not inherently sparse, we introduce i.i.d. standard
Gaussian noise to the images. The trained models are evaluated on the testing dataset with 2002 images.
We repeated the process of random sampling and model fitting 100 times, and the feature (pixel) selection
and classification results are shown in Figure [fj We observe that GLASSONet, GMCPNet, GSCADNet
all achieve median accuracies greater than 91%, outperforming the other methods. While the heatmaps of
feature selection show that GLASSONet, GMCPNet, GSCADNet consistently select relevant pixels in high
frequencies, GLASSONet tends to over select variables and GMCPNet and GSCADNet choose irrelevant
pixels in much lower frequencies (indicated by dark red colors).

6 Discussion
In this paper, we have proposed a novel framework that utilizes group concave regularization for feature se-

lection and function estimation in complex modeling, specifically designed for sparse-input neural networks.
Unlike the convex penalty LASSO, the concave regularization methods such as MCP and SCAD gradu-
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Figure 6: Comparing feature selection and classification performance by STG, GLASSONet,
GMCPNet, and GSCADNet. Top left: the image that takes the average of all images in the training
set and shows relevant pixels in grayscale. Bottom right: testing accuracy for the classification of 7s and
8s in a high-dimensional, low-sample MNIST setting with training dataset size d = 784 and n = 500. Other
panels: heatmaps depicting the selection frequencies of each pixel across 100 repetitions for each method.
Lighter colors indicate higher selection frequencies, with white highest and darker colors lowest.
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ally reduce the penalization rate for large terms, preventing over-shrinkage and improving model selection
accuracy. Our optimization algorithm, based on the composite gradient descent, is simple to implement,
requiring only an additional thresholding operation after the regular gradient descent step on the smooth
component. Furthermore, we incorporate backward path-wise optimization to efficiently navigate the opti-
mization landscape across a fine grid of tuning parameters, generating a smooth solution path from dense
to sparse models. This path-wise optimization approach improves stability and computational efficiency,
potentially enhancing the applicability of our framework for sparse-input neural networks.

Among numerous feature selection methods, penalized regression has gained substantial popularity. How-
ever, many of these methods rely on the assumption and application of linear theory, which may not capture
the complex relationships between covariates and the outcome of interest. In biomedical research, for in-
stance, researchers often normalize data and employ penalized techniques under a linear model for feature
selection. However, relying solely on data transformation risks overlooking intricate biological relationships
and fails to address the dynamic nature of on-treatment biomarkers. Moreover, advancements in molecular
and imaging technologies have introduced challenges in understanding the non-linear relationships between
high-dimensional biomarkers and clinical outcomes. Novel approaches are urgently needed to tackle these
complexities, leading to an improved understanding of non-linear relationships and optimizing patient treat-
ment and care.

The runtime of our proposed method over a solution path of As (with a fixed «) can be comparable to or even
shorter than training a single model with a fixed A, such as the NN method without feature selection (A = 0).
To illustrate this, we examine the algorithm complexity of the NN method, which can be approximated as
O(ndT), where T denotes the number of epochs for learning the neural network. In contrast, training
our proposed method over a solution path of m As has a complexity of O(n(jT’ m), where d represents the
averaged number of inputs along the solution path with dimension pruning, and 7" is the number of epochs
for each X in the path. In our simulation with the HD scenario (d = 1000), we set T' = 5000, 7" = 200, and
m = 50. Assuming the number of inputs decreases equally along the solution path from the full model to
the null model, we have d = d/2 = 500. Thus, ndT = ndT"m indicates that solving for an entire path of our
proposed method requires a similar computation as training a single model. In real applications, especially
in high-dimensional scenarios, the dimensionality usually drops quickly along the solution path. Therefore,
d can be much smaller than d/2, and thus solving for a whole solution path can be more computationally
efficient. It is worth pointing out that we set 7" to be small for the first parameter Ay, as well in the HD
setting, to avoid overfitting of an initial dense model.

One limitation of the proposed method arises in ultra-high dimensional scenarios where the number of
variables reaches hundreds of millions. Directly applying the proposed sparse-input neural networks in such
cases can lead to an exceedingly complex optimization landscape, making it computationally infeasible. A
potential solution is to employ a pre-screening step to reduce dimensionality before applying the proposed
approach (Fan & Lvj 2010)).

Another limitation of the proposed group-regularized method is its focus on individual feature selection. This
limitation becomes particularly relevant when dealing with covariates exhibiting grouping structures, such
as a group of indicator variables representing a multilevel categorical covariate, or scientifically meaningful
groups based on prior knowledge. A potential future research direction could involve redefining the groups
within the proposed framework. This could be achieved by considering all outgoing connections from a group
of input neurons as a single group, enabling group selection and accommodating the presence of grouping
structures.

In conclusion, our study demonstrates the advantages of employing group concave regularization for sparse-
input neural networks. The findings highlight its effectiveness in consistently selecting relevant variables and
accurately modeling complex non-linear relationships between covariates and outcomes across both low- and
high-dimensional settings. The proposed approach holds promising potential to enhance modeling strategies
and find wide-ranging applications, particularly in diseases characterized by non-linear biomarkers, such as
oncology and infectious diseases. A key future direction is the development of theoretical properties of our
method, including selection consistency and estimation performance guarantees, to further strengthen its
theoretical foundation and applicability.
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A Empirical Loss Function

The empirical loss functions £, (w) for regression, classification, and survival models in Examples 4.3
are defined as follows:

e Mean squared error loss for regression tasks. This loss function measures the average squared
difference between the true values Y; and the predictions fy (X;):

n

La(w) = -3 (%~ fulX0)

=1

» Cross-entropy loss for classification tasks. It is widely used in classification problems and quantifies
the dissimilaArity between the true labels Y; and the predicted probabilities Y; of class 1. The predicted
probability Y; is obtained by applying the sigmoid function to f (X;):

n

La(w) =~ " [Yilog(¥) + (1 - ) log(1 - ;)]

i=1

e Negative log partial likelihood for proportional hazards models. It is derived from survival analysis
and aims to maximize the likelihood of observing events while considering censoring information. It
incorporates the event indicator d;, which is 1 if the event of interest occurs at time Y; and 0 if the
observation is right-censored. The negative log partial likelihood is defined as:

Lolw) = 2378 6. ful(X0) = dilog 3 explfu (X))

n < ;
i=1 JER;

Here, R; = {j : Y; > Y;} represents the risk set just before time Y;. The negative log partial
likelihood is specifically used in the proportional hazards model.

B Complete Results for Survival Model

Figure[7]shows that larger variations in C-index are associated with larger censoring rates overall. GMCPNet
and GSCADNet achieve comparable results to Oracle-NN while surpassing all other methods, including
Oracle-RSF.

C Simulation with Correlated Variables

The simulation study in Section 4 focuses on independent covariates. However, in real-world applications,
particularly in high-dimensional settings, the presence of correlations among covariates is common and
presents a challenge for feature selection. In this section, we assess the effectiveness of the proposed method
using simulated data that incorporates correlated variables.

To be more specific, we extend the high-dimensional scenario described in Section 4 by generating a correlated
covariate vector, denoted as X ~ N(0,3). The correlation structure is defined using a power decay pattern,
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Figure 7:

C-Index of the proposed methods for the survival model outlined in Example 4.3}

The dashed line represents the median C-Index of the Oracle-NN, used as a benchmark for comparison.

18



Under review as submission to TMLR

where 3;; = 0.5/"=71. This modification allows us to examine the performance of our method in the presence
of correlation among the covariates. Comparing the results of feature selection for independent covariates in
Table [I] to the outcomes presented in Table [2] it becomes evident that STG and GLSSONet exhibit larger
variations in selected model sizes, along with higher false negative rates (FNR) and false positive rates (FPR)
in the regression model. This behavior can be attributed to the presence of correlated features. In contrast,
the proposed GMCPNet and GSCADNet methods effectively identify relevant variables while maintaining
relatively low false positive and negative rates across all models. Furthermore, Figure [§] demonstrates that
both GMCPNet and GSCADNet perform comparably to the Oracle-NN method in the regression and survival
models, while outperforming other non-oracle approaches in the classification model. These findings indicate
that the proposed methods exhibit robustness against correlations among covariates in terms of feature
selection and model prediction.

Table 2: Feature selection results of STG, GLASSONet, GMCPNet, and GSCADNet using
correlated features in high-dimensional scenario (n = 500,d = 1000). The False positives rate (FPR
%), False negatives rate (FNR %), and model size (MS) with standard deviation (SD) in parentheses are
displayed.

Method Regression Classification Survival (C = 0.2)
FPR, FNR  MS (SD) FPR, FNR MS (SD) FPR, FNR MS (SD)

STG 8.4, 16.6 86.8(132.6) | 1.5, 21.0 18.6(121.1) | -, - ()
GLASSONet | 28.8, 26.6 290.0(144.6) | 19.3,22.4 195.7(116.4) | 16.0, 1.9 163.1(51.4)
GMCPNet 0.1, 13.4 4.0(1.4) 0.2, 13.9 5.5(4.5) 0.0, 0.0 4.1(0.4)
GSCADNet | 0.1, 13.2 4.0(1.2) 0.1, 11.8 4.8(2.9) 0.0, 0.0 4.1(0.6)
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Figure 8: Prediction scores of the proposed methods for the regression, classification, and
survival models (C = 0.2) using correlated features in high-dimensional scenario (n = 500,d =
1000). The dashed lines represent the median score of the Oracle-NN, used as a benchmark for comparison.

D Understanding the Impact of LASSO Bias on Feature Selection

Our numerical study demonstrates that GLASSONet tends to select many noisy variables due to the bias
introduced by the LASSO penalty. In contrast, the group-concave regularization used in our proposed
framework (e.g., GMCPNet and CSCADNet) reduces this bias and improves feature selection accuracy.
To further investigate the impact of LASSO’s bias on feature selection, we propose a modified version of
GLASSONet, applying a relaxed LASSO approach and terming it relaxed-GLASSONet.
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The relaxed-GLASSONet method follows a two-stage procedure: for each group LASSO parameter A, we
first select features using GLASSONet. Then, we refit a standard neural network with only the selected
features by setting A = 0, thereby reducing bias during model fitting. The final model is selected based on
its predictive performance on a validation set. Our goal is to explore whether the relaxed-GLASSONet can
mitigate the feature overselection observed in the LASSO-regularized approach by removing the bias, and
ultimately enhance prediction performance.

We apply the relaxed-GLASSONet method to synthetic data generated from the XOR-type signal regression
model, repeating the simulation described in Section We compare relaxed-GLASSONet with GLAS-
SONet, as well as our proposed GMCPNet and GSCADNet methods, with results presented in Figure [0
Our results indicate that relaxed-GLASSONet selects significantly fewer false positives across varying fea-
ture counts, thereby improving prediction accuracy. Notably, relaxed-GLASSONet performs comparably
to GMCPNet and GLASSONet in low-dimensional settings, but its performance declines as dimensionality
increases. These findings confirm that the LASSO penalty tends to over-select features to compensate for
its inherent bias. This overselection can be mitigated by reducing bias through model refitting with only the
selected features, leading to more accurate feature selection.

0.6 4
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Figure 9: Simulation results of relaxed-GLASSONet for XOR-Type signal model. The R? scores,
false positive rate (FPR), and false negative rate (FNR) are presented in the left, middle, and right panels,
respectively. The central lines are the means while the shaded areas represent standard deviations.

E Implementation Details

E.1 Simulation studies

To ensure a fair comparison among all the neural-net-based methods, we adopted a ReLu-activated Multi-
Layer Perceptron (MLP) with two hidden layers consisting of 10 and 5 units, respectively. The network
weights were initialized by sampling from a Gaussian distribution with mean 0 and standard deviation 0.1,
while the bias terms were set to 0 following the Xavier initialization technique (Glorot & Bengio, [2010). The
optimization of the neural networks was performed using the Adam optimizer with a base learning rate (LR)
of 0.001.

For all the methods falling within the framework of Equation (1) in the paper, we selected the optimal
values of A and «a from a two-dimensional grid, with A and « ranging over 50 and 10 evenly spaced values
on a logarithmic scale, respectively. The selection was based on their performance on the validation set,
which consisted of 20% of the training set. The parameter search ranges are displayed in Table 3] We set
A = 0 for NN and Oracle-NN to deactivate feature selection. For GLASSONet, GMCPNet, and GSCADNet,
the number of epochs at Ap,;, was set to 2000 for the low-dimensional (LD) scenario and 200 for the high-
dimensional (HD) scenario. For all other values of A, the number of epochs was set to 200 for both LD and
HD settings. The number of epochs for NN was consistently fixed at 5000.
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We employed Random Forest (RF) with 1000 decision trees for the model fitting process. We implemented
the STG method as described in [Yamada et al.| (2020) that the LR and regularization parameter A were
optimized via Optuna with 500 trials, using 10% of the training set as a validation set. The number of
epochs was 2000 for each trial.

Table 3: List of the search range for the tuning parameters used in our simulation.
Search range

Param D D

) [e3, 0.5 | [1e2, 0.5

a [le-3, 0.1] | [le-2, 0.1]

LR (STG) [1e4,01] | [led, 0.1]

X\ (STG) [le3,10] | [Le-2, 100]
A (LASSONet) | [5e-4, 2e-3] | [5e-4, 2¢-3]

E.2 Real Data Example

In the analysis of real data examples, the implementation details remain the same as the high dimension
(HD) scenario in the simulation studies, with the following modifications:

e For the survival analysis on the CALGB-90401 dataset, we utilized the MLP with two hidden layers,
each consisting of 10 nodes. In hyperparameter tuning, we explored 100 values of A ranging from
0.01 to 0.1 for GMCPNet and GSCADNet. Additionally, we increase the number of candidates for
a to 50.

o In the classification task on the MNIST dataset, we adjust the search range of « to [le-3, 0.1].

The data from CALGB 90401 is available from the NCTN Data Archive at https://nctn-data-
archive.nci.nih.gov/. The MNIST dataset is retrieved using their official source.
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