

000 001 002 003 004 005 DIFFUSION MODULATION VIA ENVIRONMENT MECH- 006 ANISM MODELING FOR PLANNING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023

ABSTRACT

024 Diffusion models have shown promising capabilities in trajectory generation for
025 planning in offline reinforcement learning (RL). However, conventional diffusion-
026 based planning methods often fail to account for the fact that generating trajectories
027 in RL requires unique consistency between transitions to ensure coherence
028 in real environments. This oversight can result in considerable discrepancies
029 between the generated trajectories and the underlying mechanisms of a real envi-
030 ronment. To address this problem, we propose a novel diffusion-based planning
031 method, termed as Diffusion Modulation via Environment Mechanism Modeling
032 (DMEMM). DMEMM modulates diffusion model training by incorporating key
033 RL environment mechanisms, particularly transition dynamics and reward func-
034 tions. Experimental results demonstrate that DMEMM achieves state-of-the-art
035 performance for planning with offline reinforcement learning.
036
037

1 INTRODUCTION

038 Offline reinforcement learning (RL) has garnered significant attention for its potential to leverage
039 pre-collected datasets to learn effective policies without requiring further interaction with the envi-
040 ronment (Levine et al., 2020). One emerging approach within this domain is the use of diffusion
041 models for trajectory generation (Janner et al., 2022). Diffusion models (Sohl-Dickstein et al., 2015;
042 Ho et al., 2020), initially popularized for tasks such as image synthesis, have demonstrated promis-
043 ing capabilities in generating coherent and diverse trajectories for planning in offline RL settings
044 (Janner et al., 2022; Ni et al., 2023; Li, 2024; Goyal and Grand-Clement, 2023). Nevertheless, the
045 essential differences between mechanisms in image synthesis and RL necessitate specific consider-
046 ations for the effective application of diffusion models in RL.
047

048 In image synthesis (Ho et al., 2020), diffusion models primarily aim to produce visually coherent
049 outputs consistent in style and structure, while RL tasks demand environment and task oriented
050 consistency between transitions in the generated trajectories (Janner et al., 2022) to ensure that
051 the generated sequences are not only plausible but also effective for policy learning (Kumar et al.,
052 2020). This consistency is essential for ensuring that the sequence of actions within the generated
053 trajectories can successfully guide the RL agent from the current state to the target state. However,
054 conventional diffusion-based planning methods often overlook this need for transition coherence
055 (Janner et al., 2022). By simply adopting traditional diffusion models like DDPM, which utilize
056 a fixed isotropic variance for Gaussian distributions, such diffusion-based planning models may
057 fail to adequately capture the transition dynamics necessary for effective RL, leading to inaccurate
058 trajectories and suboptimal learned policies (Wu et al., 2019; Niu et al., 2024).
059

060 To address this problem, we introduce a novel diffusion-based planning method called Diffusion
061 Modulation via Environment Mechanism Modeling (DMEMM). This method modulates the diffu-
062 sion process by integrating RL-specific environment mechanisms, particularly transition dynamics
063 and reward functions, directly into the diffusion model training process on offline data, thereby en-
064 hancing the diffusion model to better capture the underlying transition and reward structures of the
065 offline data. Specifically, we modify the diffusion loss by weighting it with the cumulative reward,
066 which biases the diffusion model towards high-reward trajectories, and introduce two auxiliary mod-
067 ulation losses based on empirical transition and reward models to regularize the trajectory diffu-
068 sion process, ensuring that the generated trajectories are not only plausible but also reward-optimized.
069 Additionally, we also utilize the transition and reward models to guide the sampling process dur-
070

054
 055
 056
 057
 058
 059
 060
 ing planning trajectory generation from the learned diffusion model, further aligning the outputs
 with the desired transition dynamics and reward structures. We conducted experiments on multiple
 RL environments. Experimental results indicate that our proposed method achieves state-of-the-art
 performance compared to previous diffusion-based planning approaches.

061
 062
 063
 064
 065
 066
 067
 068
 This work presents a significant step forward in the application of diffusion models for trajectory
 generation in offline RL. The main contributions can be summarized as follows:

069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 • We identify a critical problem in conventional diffusion model training for offline RL plan-
 ning, where fixed isotropic variance and disregard for rewards may lead to a mismatch be-
 tween generated trajectories and those desirable for RL. To address this, we propose a novel
 method called Diffusion Modulation via Environment Mechanism Modeling (DMMEM).

• We incorporate RL-specific environment mechanisms, including transition dynamics and
 reward functions, into diffusion model training through loss modulation, enhancing the
 quality and consistency of the generated trajectories in a principled manner and providing
 a fundamental framework for adapting diffusion models to offline RL tasks.

• Our results on multiple RL environments show that the proposed method achieves state-of-
 the-art performance in offline RL planning, validating the effectiveness of our approach.

090 2 RELATED WORKS

091 2.1 OFFLINE REINFORCEMENT LEARNING

092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 Offline reinforcement learning (RL) has gained significant traction in recent years, with various
 approaches proposed to address the challenges of learning from static datasets without online envi-
 ronment interactions. Fujimoto et al. (2019) introduced Batch Constrained Q-Learning (BCQ) that
 learns a perturbation model to constrain the policy to stay close to the data distribution, mitigating the
 distributional shift issue. Wu et al. (2019) conducted Behavior Regularized Offline Reinforcement
 Learning (BRAC) that incorporates behavior regularization into actor-critic methods to prevent the
 policy from deviating too far from the data distribution. Conservative Q-Learning (CQL) by Kumar
 et al. (2020) uses a conservative Q-function to underestimate out-of-distribution actions, preventing
 the policy from exploring unseen state-action regions. Kostrikov et al. (2022) conducted Implicit
 Q-Learning (IQL) to directly optimize the policy to match the expected Q-values under the data
 distribution. Goyal and Grand-Clement (2023) introduce Robust MDPs to formulate offline RL as a
 robust optimization problem over the uncertainty in the dynamics model. Planning has emerged as a
 powerful tool for solving offline RL tasks. MOPO (Yu et al., 2020) incorporates uncertainty-aware
 planning into offline RL by penalizing simulated trajectories that deviate from the offline dataset.

108 2.2 DIFFUSION MODEL IN REINFORCEMENT LEARNING

109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 8010
 8011
 8012
 8013
 8014
 8015
 8016
 8017
 8018
 8019
 8020
 8021
 8022
 8023
 8024
 8025
 8026
 8027
 8028
 8029
 8030
 8031
 8032
 8033
 8034
 8035
 8036
 8037
 8038
 8039
 8040
 8041
 8042
 8043
 8044
 8045
 8046
 8047
 8048
 8049
 8050
 8051
 8052
 8053
 8054
 8055
 8056
 8057
 8058
 8059
 8060
 8061
 8062
 8063
 8064
 8065
 8066
 8067
 8068
 8069
 8070
 8071
 8072
 8073
 8074
 8075
 8076
 8077
 8078
 8079
 8080
 8081
 8082
 8083
 8084
 8085
 8086
 8087
 8088
 8089
 8090
 8091
 8092
 8093
 8094
 8095
 8096
 8097
 8098
 8099
 80100
 80101
 80102
 80103
 80104
 80105
 80106
 80107
 80108
 80109
 80110
 80111
 80112
 80113
 80114
 80115
 80116
 80117
 80118
 80119
 80120
 80121
 80122
 80123
 80124
 80125
 80126
 80127
 80128
 80129
 80130
 80131
 80132
 80133
 80134
 80135
 80136
 80137
 80138
 80139
 80140
 80141
 80142
 80143
 80144
 80145
 80146
 80147
 80148
 80149
 80150
 80151
 80152
 80153
 80154
 80155
 80156
 80157
 80158
 80159
 80160
 80161
 80162
 80163
 80164
 80165
 80166
 80167
 80168
 80169
 80170
 80171
 80172
 80173
 80174
 80175
 80176
 80177
 80178
 80179
 80180
 80181
 80182
 80183
 80184
 80185
 80186
 80187
 80188
 80189
 80190
 80191
 80192
 80193
 80194
 80195
 80196
 80197
 80198
 80199
 80200
 80201
 80202
 80203
 80204
 80205
 80206
 80207
 80208
 80209
 80210
 80211
 80212
 80213
 80214
 80215
 80216
 80217
 80218
 80219
 80220
 80221
 80222
 80223
 80224
 80225
 80226
 80227
 80228
 80229
 80230
 80231
 80232
 80233
 80234
 80235
 80236
 80237
 80238
 80239
 80240
 80241
 80242
 80243
 80244
 80245
 80246
 80247
 80248
 80249
 80250
 80251
 80252
 80253
 80254
 80255
 80256
 80257
 80258
 80259
 80260
 80261
 80262
 80263
 80264
 80265
 80266
 80267
 80268
 80269
 80270
 80271
 80272
 80273
 80274
 80275
 80276
 80277
 80278
 80279
 80280
 80281
 80282
 80283
 80284
 80285
 80286
 80287
 80288
 80289
 80290
 80291
 80292
 80293
 80294
 80295
 80296
 80297
 80298
 80299
 80300
 80301
 80302
 80303
 80304
 80305
 80306
 80307
 80308
 80309
 80310
 80311
 80312
 80313
 80314
 80315
 80316
 80317
 80318
 80319
 80320
 80321
 80322
 80323
 80324
 80325
 80326
 80327
 80328
 80329
 80330
 80331
 80332
 80333
 80334
 80335
 80336
 80337
 80338
 80339
 80340
 80341
 80342
 80343
 80344
 80345
 80346
 80347
 80348
 80349
 80350
 80351
 80352
 80353
 80354
 80355
 80356
 80357
 80358
 80359
 80360
 80361
 80362
 80363
 80364
 80365
 80366
 80367
 80368
 80369
 80370
 80371
 80372
 80373
 80374
 80375
 80376
 80377
 80378
 80379
 80380
 80381
 80382
 80383
 80384
 80385
 80386
 80387
 80388
 80389
 80390
 80391
 80392
 80393
 80394
 80395
 80396
 80397
 80398
 80399
 80400
 80401
 80402
 80403
 80404
 80405
 80406
 80407
 80408
 80409
 80410
 80411
 80412
 80413
 80414
 80415
 80416
 80417
 80418
 80419
 80420
 80421
 80422
 80423
 80424
 80425
 80426
 80427
 80428
 80429
 80430
 80431
 80432
 80433
 80434
 80435
 80436
 80437
 80438
 80439
 80440
 80441
 80442
 80443
 80444
 80445
 80446
 80447
 80448
 80449
 80450
 80451
 80452
 80453
 80454
 80455
 80456
 80457
 80458
 80459
 80460
 80461
 80462
 80463
 80464
 80465
 80466
 80467
 80468
 80469
 80470
 80471
 80472
 80473
 80474
 80475
 80476
 80477
 80478
 80479
 80480
 80481
 80482
 80483
 80484
 80485
 80486
 80487
 80488
 80489
 80490
 80491
 80492
 80493
 80494
 80495
 80496
 80497
 80498
 80499
 80500
 80501
 80502
 80503
 80504
 80505
 80506
 80507
 80508
 80509
 80510
 80511
 80512
 80513
 80514
 80515
 80516
 80517
 80518
 80519
 80520
 80521
 80522
 80523
 80524
 80525
 80526
 80527
 80528
 80529
 80530
 80531
 80532
 80533
 80534
 80535
 80536
 80537
 80538
 80539
 80540
 80541
 80542
 80543
 80544
 80545
 80546
 80547
 80548
 80549
 80550
 80551
 80552
 80553
 80554
 80555
 80556
 80557
 80558
 80559
 80560
 80561
 80562
 80563
 80564
 80565
 80566
 80567
 80568
 80569
 80570
 80571
 80572
 80573
 80574
 80575
 80576
 80577
 80578
 80579
 80580
 80581
 80582
 80583
 80584
 80585
 80586
 80587
 80588
 80589
 80590
 80591
 80592
 805

108 **3 PRELIMINARIES**

110 Reinforcement learning (RL) (Sutton and Barto, 2018) can be modeled as a Markov Decision Process (MDP) $M = (\mathcal{S}, \mathcal{A}, \mathcal{T}, \mathcal{R}, \gamma)$ in a given environment, where \mathcal{S} denotes the state space, \mathcal{A} corresponds to the action space, $\mathcal{T} : \mathcal{S} \times \mathcal{A} \rightarrow \mathcal{S}$ defines the transition dynamics, $\mathcal{R} : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ represents the reward function, and γ is a discount factor. Offline RL aims to train an RL agent from an offline dataset \mathcal{D} , consisting of a collection of trajectories $\{\tau_1, \tau_2, \dots, \tau_i, \dots\}$, with each trajectory $\tau_i = (s_0^i, a_0^i, r_0^i, s_1^i, a_1^i, r_1^i, \dots, s_T^i, a_T^i, r_T^i)$ sampled from the underlying MDP in the given environment. In particular, the task of planning in offline RL aims to generate planning trajectories from an initial state s_0 by simulating action sequences $a_{0:T}$ and predicting future states $s_{0:T}$ based on those actions. The objective is to learn an optimal plan function such that the cumulative reward can be maximized when executing the plan under the underlying MDP of the given environment.

120 **3.1 PLANNING WITH DIFFUSION MODEL**

122 Diffusion probabilistic models, commonly known as “diffusion models” (Sohl-Dickstein et al., 123 2015; Ho et al., 2020), are a class of generative models that utilize a unique Markov chain 124 framework. When applied to planning in offline RL, the objective is to generate best planning 125 trajectories $\{\tau\}$ by learning a diffusion model on the offline RL dataset \mathcal{D} .

127 **Trajectory Representation** In the diffusion model applied to RL planning, it is necessary to 128 predict both states and actions. Therefore, the trajectory representation in the model is in an image-like 129 matrix format. In particular, trajectories are represented as two-dimensional arrays (Janner et al., 130 2022), where each column corresponds to a state-action pair (s_t, a_t) of the trajectory:

$$\tau = \begin{bmatrix} s_0 & s_1 & \cdots & s_T \\ a_0 & a_1 & \cdots & a_T \end{bmatrix}$$

135 **Trajectory Diffusion** The diffusion model (Ho et al., 2020) comprises two primary processes: the 136 forward process and the reverse process. The forward process (diffusion process) is a Markov chain 137 characterized by $q(\tau^k | \tau^{k-1})$ that gradually adds Gaussian noise at each time step $k \in \{1, \dots, K\}$, 138 starting from an initial clean trajectory sample $\tau^0 \sim \mathcal{D}$. The conditional probability is particularly 139 defined as a Gaussian probability density function, such as:

$$q(\tau^k | \tau^{k-1}) := \mathcal{N}(\tau^k; (1 - \beta_k)\tau^{k-1}, \beta_k \mathbf{I}), \quad (1)$$

140 with $\{\beta_1, \dots, \beta_K\}$ representing a predefined variance schedule. By introducing $\alpha_k := 1 - \beta_k$ and 141 $\bar{\alpha}_k := \prod_{i=1}^k \alpha_i$, one can succinctly express the diffused sample at any time step k as:

$$\tau^k = \sqrt{\bar{\alpha}_k} \tau^0 + \sqrt{1 - \bar{\alpha}_k} \epsilon, \quad (2)$$

146 where $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$. The reverse diffusion process is an iterative denoising procedure, and can be 147 modeled as a parametric Markov chain characterized by $p_\theta(\tau^{k-1} | \tau^k)$, starting from a Gaussian 148 noise prior $\tau^K \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, such that:

$$p_\theta(\tau^{k-1} | \tau^k) = \mathcal{N}(\tau^{k-1}; \mu_\theta(\tau^k, k), \sigma_k^2 \mathbf{I}), \quad (3)$$

$$\text{with } \mu_\theta(\tau^k, k) = \frac{1}{\sqrt{\alpha_k}} \left(\tau^k - \frac{1 - \alpha_k}{\sqrt{1 - \bar{\alpha}_k}} \epsilon_\theta(\tau^k, k) \right). \quad (4)$$

154 **Training** In the literature, the diffusion model is trained by predicting the additive noise ϵ (Ho 155 et al., 2020) using the noise network $\epsilon_\theta(\tau^k, k) = \epsilon_\theta(\sqrt{\bar{\alpha}_k} \tau^0 + \sqrt{1 - \bar{\alpha}_k} \epsilon, k)$. The training loss is 156 expressed as the mean squared error between the additive noise ϵ and the predicted noise $\epsilon_\theta(\tau^k, k)$:

$$L_{\text{diff}} = \mathbb{E}_{k \sim \mathcal{U}(1, K), \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \tau^0 \sim \mathcal{D}} \|\epsilon - \epsilon_\theta(\sqrt{\bar{\alpha}_k} \tau^0 + \sqrt{1 - \bar{\alpha}_k} \epsilon, k)\|^2 \quad (5)$$

160 where $\mathcal{U}(1, K)$ denotes a uniform distribution over numbers in $[1, 2, \dots, K]$. With the trained noise 161 network, the diffusion model can be used to generate RL trajectories for planning through the reverse 162 diffusion process characterized by Eq.(3).

162 4 METHOD
163

164 In this section, we present our proposed diffusion approach, Diffusion Modulation via Environment
165 Mechanism Modeling (DMEMM), for planning in offline RL. This method integrates the essential
166 transition and reward mechanisms of reinforcement learning into an innovative modulation-based
167 diffusion learning framework, while maintaining isotropic covariance matrices for the diffusion
168 Gaussian distributions to preserve the benefits of this conventional setup—simplifying model com-
169 plexity, stabilizing training and enhancing performance. Additionally, the transition and reward
170 mechanisms are further leveraged to guide the planning phase under the trained diffusion model,
171 aiming to generate optimal planning trajectories that align well with both the underlying MDP of
172 the environment and the objectives of RL.

173 4.1 MODULATION OF DIFFUSION TRAINING
174

175 In an RL environment, the transition dynamics and reward function are two fundamental components
176 of the underlying MDP. Directly applying conventional diffusion models to offline RL can lead to
177 a mismatch between the generated trajectories and those optimal for the underlying MDP in RL.
178 This is due to the use of isotropic covariance and the disregard for rewards in traditional diffusion
179 models. To tackle this problem, we propose to modulate the diffusion model training by deploying
180 a reward-aware diffusion loss and enforcing auxiliary regularizations on the generated trajectories
181 based on environment transition and reward mechanisms.

182 Given the offline data \mathcal{D} collected from the RL environment, we first learn a probabilistic transition
183 model $\hat{T}(s_t, a_t)$ and a reward function $\hat{\mathcal{R}}(s_t, a_t)$ from \mathcal{D} as regression functions to predict the next
184 state s_{t+1} and the corresponding reward r_t respectively. These models can serve as estimations of
185 the underlying MDP mechanisms. In order to regularize diffusion model training for generating
186 desirable trajectories, using the learned transition model and reward function, we need to express
187 the output trajectories of the reverse diffusion process in terms of the diffusion model parameters, θ .
188 To this end, we present the following proposition.

189 **Proposition 1.** *Given the reverse process encoded by Eq.(3) and Eq.(4) in the diffusion model,
190 the output trajectory $\hat{\tau}^0$ denoised from an intermediate trajectory τ^k at step k has the following
191 Gaussian distribution:*

$$192 \quad \hat{\tau}^0 \sim \mathcal{N}(\hat{\mu}_\theta(\tau^k, k), \hat{\sigma}^2 \mathbf{I}), \quad (6)$$

$$194 \quad \text{where } \hat{\mu}_\theta(\tau^k, k) = \frac{1}{\sqrt{\bar{\alpha}_k}} \tau^k - \sum_{i=1}^k \frac{1 - \alpha_i}{\sqrt{(1 - \bar{\alpha}_i) \prod_{j=1}^i \alpha_j}} \epsilon_\theta(\tau^i, i). \quad (7)$$

198 Conveniently, we can use the mean of the Gaussian distribution above directly as the most likely
199 output trajectory, denoted as $\hat{\tau}^0 = \hat{\mu}_\theta(\tau^k, k)$. This allows us to express the denoised output trajec-
200 tory explicitly in terms of the parametric noise network ϵ_θ , and thus the parameters θ of the diffusion
201 model. Moreover, by deploying Eq.(2), we can get rid of the latent $\{\tau^1, \dots, \tau^k\}$ and re-express $\hat{\tau}^0$
202 as the following function of a sampled clean trajectory τ^0 and some random noise ϵ :

$$203 \quad \hat{\tau}_\theta^0(\tau^0, k, \epsilon) = \tau^0 + \frac{\sqrt{1 - \bar{\alpha}_k}}{\sqrt{\bar{\alpha}_k}} \epsilon - \sum_{i=1}^k \frac{1 - \alpha_i}{\sqrt{(1 - \bar{\alpha}_i) \prod_{j=1}^i \alpha_j}} \epsilon_\theta(\sqrt{\bar{\alpha}_i} \tau^0 + \sqrt{1 - \bar{\alpha}_i} \epsilon, i). \quad (8)$$

206 Next, we leverage this output trajectory function to modulate diffusion model training by developing
207 novel auxiliary modulation losses.

209 4.1.1 TRANSITION-BASED DIFFUSION MODULATION
210

211 As previously discussed, the deployment of a fixed isotropic variance in conventional diffusion
212 models has the potential drawback of overlooking the underlying transition mechanisms of the RL
213 environment. As a result, there can be potential mismatches between the transitions of generated
214 trajectories and the underlying transition dynamics. Consequently, the RL agent may diverge from
215 the expected states when executing the planning actions generated by the diffusion model, leading to
poor planning performance. To address this problem, the first auxiliary modulation loss is designed

216 to minimize the discrepancy between the transitions in the generated trajectories from the diffusion
 217 model and those predicted by the learned transition model $\widehat{\mathcal{T}}$, which encodes the underlying transi-
 218 tion mechanism. Specifically, for each transition (s_t, a_t, s_{t+1}) in a generated trajectory $\widehat{\tau}_\theta^0(\tau^0, k, \epsilon)$,
 219 we minimize the mean squared error between s_{t+1} and the predicted next state using the transition
 220 model $\widehat{\mathcal{T}}$. This leads to the following transition-based diffusion modulation loss:
 221

$$222 \quad L_{\text{tr}} = \mathbb{E}_{k \sim \mathcal{U}(1, K), \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \tau^0 \sim \mathcal{D}} \left[\sum_{(s_t, a_t, s_{t+1}) \in \widehat{\tau}_\theta^0(\tau^0, k, \epsilon)} \|s_{t+1} - \widehat{\mathcal{T}}(s_t, a_t)\|^2 \right] \quad (9)$$

226 Here, the expectation is taken over the uniform sampling of time step k from $[1 : K]$, the random
 227 sampling of noise ϵ from a standard Gaussian distribution, and the random sampling of input tra-
 228 jectories from the offline training data \mathcal{D} . Through function $\widehat{\tau}_\theta^0$, this loss L_{tr} is a function of the
 229 diffusion model parameters θ . By minimizing this transition-based modulation loss, we enforce that
 230 the generated trajectories from the diffusion model are consistent with the transition dynamics ex-
 231 pressed in the offline dataset. This approach enhances the fidelity of the generated trajectories and
 232 improves the overall performance of the diffusion model in offline reinforcement learning tasks.
 233

4.1.2 REWARD-BASED DIFFUSION MODULATION

235 The goal of planning is to generate trajectories that maximize cumulative rewards when executed
 236 under the underlying MDP of the given environment. Thus, focusing solely on the fit of the planning
 237 trajectories to the transition dynamics is insufficient. It is crucial to guide the diffusion model train-
 238 ing to directly align with the planning objective. Therefore, the second auxiliary modulation loss is
 239 designed to maximize the reward induced in the generated trajectories. As the trajectories generated
 240 from diffusion models do not have reward signals, we predict the reward scores of the state-action
 241 pairs $\{(s_t, a_t)\}$ in each trajectory generated through function $\widehat{\tau}_\theta^0(\cdot, \cdot, \cdot)$ using the learned reward
 242 function $\widehat{\mathcal{R}}(\cdot, \cdot)$. Specifically, we formulate the reward-based diffusion modulation loss function as
 243 the following negative expected trajectory-wise cumulative reward from the generated trajectories:

$$244 \quad L_{\text{rd}} = -\mathbb{E}_{k \sim \mathcal{U}(1, K), \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \tau^0 \sim \mathcal{D}} \left[\sum_{(s_t, a_t) \in \widehat{\tau}_\theta^0(\tau^0, k, \epsilon)} \widehat{\mathcal{R}}(s_t, a_t) \right] \quad (10)$$

247 Through function $\widehat{\tau}_\theta^0$, this loss L_{rd} again is a function of the diffusion model parameters θ . By
 248 computing the expected loss over different time steps $k \in [1 : K]$, different random noise ϵ , and all
 249 input trajectories from the offline dataset \mathcal{D} , we ensure that the modulation is consistently enforced
 250 across all instances of diffusion model training.
 251

252 By minimizing this reward-based loss, we ensure that the generated trajectories are not only plau-
 253 sible but also reward-optimized to align with the reward structure inherent in the offline data. This
 254 approach improves the quality of the trajectories generated from the diffusion model and enhances
 255 the overall policy learning process in offline reinforcement learning tasks.
 256

4.1.3 REWARD-AWARE DIFFUSION LOSS

258 In addition to the auxiliary modulation losses, we propose to further align diffusion model training
 259 with the goal of RL planning by devising a novel reward-aware diffusion loss to replace the origi-
 260 nal one. The original diffusion loss (shown in Eq.(5)) minimizes the expected per-trajectory mean
 261 squared error between the true additive noise and the predicted noise, which gives equal weights
 262 to different training trajectories without differentiation. In contrast, we propose to weight each tra-
 263 jectory instance τ^0 from the offline dataset \mathcal{D} using its normalized cumulative reward, so that the
 264 diffusion training can focus more on the more informative trajectory instances with larger cumula-
 265 tive rewards. Specifically, we weight each training trajectory τ^0 using its normalized cumulative
 266 reward and formulate the following reward-aware diffusion loss:
 267

$$268 \quad L_{\text{wdiff}} = \mathbb{E}_{k \sim \mathcal{U}(1, K), \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \tau^0 \sim \mathcal{D}} \left[\left(\sum_{(s_t, a_t) \in \tau^0} \frac{\mathcal{R}(s_t, a_t)}{T_{\max} \cdot r_{\max}} \right) \|\epsilon - \epsilon_\theta(\sqrt{\bar{\alpha}_k} \tau^0 + \sqrt{1 - \bar{\alpha}_k} \epsilon, k)\|^2 \right] \quad (11)$$

270 **Algorithm 1** Diffusion Training
 271 **Require:** Offline data $\mathcal{D} = \{(s_0^i, a_0^i, r_0^i, \dots, s_T^i, a_T^i, r_T^i)\}$.
 272 Learn transition model $\hat{T}(s_t, a_t)$ and reward function $\hat{\mathcal{R}}(s_t, a_t)$ from offline data \mathcal{D} .
 273 Initialize noise network $\epsilon_\theta(\tau^k, k)$.
 274 **while** not converged **do**
 275 Sample a trajectory from offline data $\tau^0 \sim \mathcal{D}$.
 276 Sample a random diffusion step $k \sim \mathcal{U}(1, K)$.
 277 Sample a random noise $\epsilon \sim \mathcal{N}(0, \mathbf{I})$.
 278 Calculate the gradient $\nabla_\theta L_{\text{total}}$ of Eq. (12) and take gradient descent step.
 279 **end while**
 280
 281

282 Here, $\sum_{(s_t, a_t) \in \tau^0} \mathcal{R}(s_t, a_t)$ is the trajectory-wise cumulative reward on the original offline data
 283 instance $\tau^0 \in \mathcal{D}$; T_{max} denotes the largest trajectory length and r_{max} denotes the maximum possible
 284 per-step reward. By using $T_{\text{max}} \cdot r_{\text{max}}$ as the normalizer, we scale the cumulative reward to a ratio
 285 within $(0, 1]$ to weight the corresponding per-trajectory diffusion loss. This weighting mechanism
 286 biases the diffusion model toward high-reward trajectories, ensuring that those trajectories yielding
 287 higher cumulative rewards are more accurately represented, thus aligning diffusion training with
 288 the planning objectives in offline RL. This approach improves the model’s performance on rare but
 289 valuable trajectories, which are crucial for effective RL.

290 4.1.4 FULL MODULATION FRAMEWORK

292 The proposed full modulated diffusion model comprises all of the three loss components presented
 293 above: the reward-aware diffusion loss L_{wdiff} , the transition-based auxiliary modulation loss L_{tr} , and
 294 the reward-based auxiliary modulation loss L_{rd} . By integrating these loss terms together, we have
 295 the following total loss for modulated diffusion training:

296
$$L_{\text{total}} = L_{\text{wdiff}} + \lambda_{\text{tr}} L_{\text{tr}} + \lambda_{\text{rd}} L_{\text{rd}}, \quad (12)$$

298 where λ_{tr} and λ_{rd} are trade-off parameters that balance the contributions of the transition-based and
 299 reward-based auxiliary losses, respectively. Standard diffusion training algorithm can be utilized to
 300 train the model θ by minimizing this total loss function. By employing this integrated loss function,
 301 we establish a comprehensive modulation framework that incorporates essential domain and task
 302 knowledge into diffusion model training, offering a general capacity of enhancing the adaptation
 303 and broadening the applicability of diffusion models.

304 4.1.5 DIFFUSION TRAINING ALGORITHM

306 The complete training process of the diffusion model is presented in Algorithm 1. Prior to training
 307 the diffusion model, a probabilistic transition model $\hat{T}(s_t, a_t)$ and a reward model $\hat{\mathcal{R}}(s_t, a_t)$ are
 308 learned from the offline dataset \mathcal{D} . Afterward, the noise network is initialized and iteratively trained.
 309 During each iteration, an original trajectory τ^0 is sampled from the offline dataset \mathcal{D} , along with a
 310 randomly selected diffusion step k and noise sample ϵ . Gradient descent is then applied to minimize
 311 the total loss L_{total} .

312 4.2 PLANNING WITH DUAL GUIDANCE

315 Once trained, the diffusion model can be used to generate trajectories for planning during an RL
 316 agent’s online interactions with the environment. The generation procedure starts from an initial
 317 noise trajectory $\tau^K \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, and gradually denoises it by following the reverse diffusion process
 318 $\tau^{k-1} \sim \mathcal{N}(\mu^{k-1}, \sigma_k^2 \mathbf{I})$ for each time step $k \in \{K, K-1, \dots, 1\}$, where μ^{k-1} is estimated through
 319 Eq. (4). In each diffusion time step k , the first state s_0 of the trajectory τ^k is fixed to the current
 320 state s of the RL agent in the online environment to ensure the plan starts from it. The denoised
 321 trajectory τ^0 after K diffusion time steps is treated as the plan for the RL agent, which is intended
 322 to maximize the RL agent’s long-term performance without extra interaction with the environment.

323 To further enhance the objective of planning, some previous work (Janner et al., 2022) has utilized
 324 the learned reward function to guide the sampling process of planning. In this work, we propose to

324 **Algorithm 2** Planning with Dual Guidance325 **Require:** Noise network ϵ_θ , tradeoff parameter α , environment ENV, covariances $\{\sigma_k^2\}$.326 Initialize environment step $t = 0$.327 **while** not finished **do**328 Initialize noise trajectory τ_t^K : $\tau_t^K \sim \mathcal{N}(0, \mathbf{I})$.329 **for** diffusion step $k = K, \dots, 1$ **do**330 Compute the mean μ^{k-1} using Eq. (4).331 Compute the guidance \mathbf{g} using Eq. (14).332 Sample next trajectory τ_t^{k-1} with Eq.(13)333 Set current state s_t to the trajectory: $\tau_t^{k-1}(s_0) = s_t$.334 **end for**335 Execute the first action of plan $\tau_t^0(a_0)$: $s_{t+1} = \text{ENV}(s_t, \tau_t^0(a_0))$ 336 Increment environment step by 1: $t = t + 1$ 337 **end while**338
339 deploy dual guidance for each reverse diffusion step k by exploiting both the reward function $\widehat{\mathcal{R}}$ and
340 the transition model $\widehat{\mathcal{T}}$ learned from the offline dataset \mathcal{D} . Following previous works on conditional
341 reverse diffusion (Dhariwal and Nichol, 2021), we incorporate the dual guidance by perturbing the
342 mean of the Gaussian distribution $\mathcal{N}(\mu^{k-1}, \sigma_k^2 \mathbf{I})$ used for reverse diffusion sampling. Specifically,
343 we integrate the gradient \mathbf{g} of the linear combination of the reward function and transition function
344 w.r.t the trajectory into μ^{k-1} , such that:

345
346
$$\tau^{k-1} \sim \mathcal{N}(\mu^{k-1} + \alpha \sigma_k^2 \mathbf{I} \mathbf{g}, \sigma_k^2 \mathbf{I}) \quad (13)$$

347 where \mathbf{g} is computed as:

348
349
$$\mathbf{g} = \sum_{t=0}^T \nabla_{(s_t, a_t)} \widehat{\mathcal{R}}(s_t, a_t) + \lambda \sum_{t=0}^{T-1} \nabla_{(s_t, a_t)} \log \widehat{\mathcal{T}}(s_{t+1} | s_t, a_t) \quad (14)$$

350 where α is a tradeoff parameter that controls the degree of guidance. By incorporating both the
351 reward and transition guidance, we aim to enhance the planning process to generate high-quality
352 trajectories that are both reward-optimized and transition-consistent, improving the overall planning
353 performance. The details of the proposed planning procedure is summarized in Algorithm 2.354

5 EXPERIMENT

355 In this section, we present the experimental setup and results for evaluating our proposed method,
356 DMEMM, across various offline RL tasks. We conduct experiments on the D4RL locomotion suite
357 and Maze2D environments to assess the performance of DMEMM compared to several state-of-the-
358 art methods. The experiments are designed to demonstrate the effectiveness of our approach across
359 different tasks, expert levels, and complex navigation scenarios.360 **Environments** We conduct our experiments on D4RL (Fu et al., 2020) tasks to evaluate the performance
361 of planning in offline RL settings. Initially, we focus on the D4RL locomotion suite to assess
362 the general performance of our planning methods across different tasks and expert levels of demon-
363 strations. The RL agents are tested on three different tasks: HalfCheetah, Hopper, and Walker2d,
364 and three different levels of expert demonstrations: Med-Expert, Medium, and Med-Replay. We use
365 the normalized scores provided in the D4RL (Fu et al., 2020) benchmarks to evaluate performance.
366 Subsequently, we conduct experiments on Maze2D (Fu et al., 2020) environments to evaluate per-
367 formance on maze navigation tasks.368
369 **Comparison Methods** We benchmark our methods against several leading approaches in each
370 task domain, including Model Predictive Path Integral (MPPI) (Williams et al., 2016), Batch-
371 Constrained Deep Q-Learning (BCQ) (Fujimoto et al., 2019), Conservative Q-Learning (CQL) (Ku-
372 mar et al., 2020), Implicit Q-Learning (IQL) (Kostrikov et al., 2022), and Decision Transformer
373 (DT) (Chen et al., 2021). Additionally, we compare our methods with the state-of-the-art offline
374 RL approach, Selecting from Behavior Candidates (SfBC) (Chen et al., 2023), as well as several

378

379
Table 1: This table presents the scores on D4RL locomotion suites for various comparison methods.
380
Results are averaged over 5 seeds.

Gym Tasks	BC	DT	IQL	CQL	SfBC	LDCQ	Diffuser	DD	HDMI	HD-DA	DMEMM (Ours)
HalfCheetah (Med-Expert)	55.2	86.8	86.7	91.6	92.6 \pm 0.5	90.2 \pm 0.9	88.9 \pm 0.3	90.6 \pm 1.3	92.1 \pm 1.4	92.5 \pm 0.3	94.6\pm1.2
Hopper (Med-Expert)	52.5	107.6	91.5	105.4	108.6 \pm 2.1	109.3 \pm 0.4	103.3 \pm 1.3	111.8 \pm 1.8	113.5 \pm 0.9	115.3 \pm 1.1	115.9\pm1.6
Walker2d (Med-Expert)	107.5	108.1	109.6	108.8	109.8 \pm 0.2	111.3 \pm 0.2	106.9 \pm 0.2	108.8 \pm 1.7	107.9 \pm 1.2	107.1 \pm 0.1	111.6\pm1.1
HalfCheetah (Medium)	42.6	42.6	47.4	44.0	45.9 \pm 2.2	42.8 \pm 0.7	42.8 \pm 0.3	49.1 \pm 1.0	48.0 \pm 0.9	46.7 \pm 0.2	49.2\pm0.8
Hopper (Medium)	52.9	67.6	66.3	58.5	57.1 \pm 4.1	69.4 \pm 3.5	74.3 \pm 1.4	79.3 \pm 3.6	76.4 \pm 2.6	99.3 \pm 0.3	101.2\pm1.4
Walker2d (Medium)	75.3	74.0	78.3	72.5	77.9 \pm 2.5	66.2 \pm 1.7	79.6 \pm 0.6	82.5 \pm 1.4	79.9 \pm 1.8	84.0 \pm 0.6	86.5\pm1.5
HalfCheetah (Med-Replay)	36.6	36.6	44.2	45.5	37.1 \pm 1.7	41.8 \pm 0.4	37.7 \pm 0.5	39.3 \pm 4.1	44.9 \pm 2.0	38.1 \pm 0.7	46.1\pm1.3
Hopper (Med-Replay)	18.1	82.7	94.7	95.0	86.2 \pm 9.1	68.5 \pm 4.3	93.6 \pm 0.4	100.0 \pm 0.7	99.6 \pm 1.5	94.7 \pm 0.7	100.6\pm0.9
Walker2d (Med-Replay)	26.0	66.6	73.9	77.2	65.1 \pm 5.6	86.2 \pm 2.5	70.6 \pm 1.6	75.0 \pm 4.3	80.7 \pm 2.1	84.1 \pm 2.2	85.8\pm2.6
Average	51.9	74.7	77.0	77.6	75.6	76.2	77.5	81.8	82.6	84.6	87.9

389
Table 2: This table presents the scores on Maze2D navigation tasks for various comparison methods.
390
Results are averaged over 5 seeds.

Environment	MPPI	IQL	Diffuser	HDMI	HD-DA	DMEMM (Ours)
Maze2D U-Maze	33.2	47.4	113.9 \pm 3.1	120.1 \pm 2.5	128.4 \pm 3.6	132.4\pm3.0
Maze2D Medium	10.2	34.9	121.5 \pm 2.7	121.8 \pm 1.6	135.6 \pm 3.0	138.2\pm2.2
Maze2D Large	5.1	58.6	123.0 \pm 6.4	128.6 \pm 2.9	155.8\pm2.5	153.2 \pm 3.3
Multi2D U-Maze	41.2	24.8	128.9 \pm 1.8	131.3 \pm 1.8	144.1 \pm 1.2	145.6\pm2.6
Multi2D Medium	15.4	12.1	127.2 \pm 3.4	131.6 \pm 1.9	140.2 \pm 1.6	140.8\pm2.2
Multi2D Large	8.0	13.9	132.1 \pm 5.8	135.4 \pm 2.5	165.5\pm0.6	159.6 \pm 3.8
AntMaze U-Maze	–	62.2	76.0 \pm 7.6	86.1 \pm 2.4	94.0 \pm 4.9	96.2\pm5.5
AntMaze Medium	–	70.0	31.9 \pm 5.1	–	88.7 \pm 8.1	90.1\pm6.4
AntMaze Large	–	47.5	0.0 \pm 0.0	71.5 \pm 3.5	83.6\pm5.8	79.6 \pm 7.7

400 diffusion-based offline RL methods, including Diffuser (Janner et al., 2022), Decision Diffuser
401 (DD) (Ajay et al., 2023), Latent Diffusion-Constrained Q-learning (LDCQ / LDGC) (Venkatraman et al., 2024), Hierarchical Diffusion for Offline Decision Making (HDMI) (Li et al., 2023), and
402 Hierarchical Diffuser with Dense Actions (HD-DA) (Chen et al., 2024).

404
405

5.1 EXPERIMENTAL RESULTS ON D4RL

407 The experimental results summarized in Table 1 highlight the performance of various comparison
408 methods across different Gym tasks, with scores averaged over 5 seeds. Our proposed method,
409 DMEMM, consistently outperforms other methods across all tasks. Notably, in the HalfCheetah
410 environments, DMEMM achieves a 2.0-point improvement on the Med-Expert dataset, and an 6.8-
411 point improvement on the Med-Replay dataset compared to the previous best results. Additionally,
412 DMEMM shows a 2.8-point increase on the Med-Expert Walker2D task, demonstrating that
413 DMEMM effectively extracts valuable information, particularly from data that is not purely expert-
414 level.

415 In most tasks, DMEMM outperforms the previous state-of-the-art method HD-DA, another variant
416 of a Diffuser based planning method, by more than 2.0 points on average. Compared to Diffuser,
417 DMEMM shows superior performance on all tasks, indicating that our method improves the
418 consistency and optimality of diffusion model training in offline RL planning.

419 Overall, DMEMM achieves outstanding performance. With an average score of 87.9, DMEMM
420 yields a substantial improvement over the second-highest average score of 84.6 achieved by HD-
421 DA. These results clearly demonstrate the robustness and superiority of DMEMM in enhancing
422 performance across various Gym tasks.

423
424

5.2 EXPERIMENTAL RESULTS ON MAZE2D

425 We present our experimental results on the Maze2D navigation tasks in Table 2, where the results
426 are averaged over 5 seeds. The table shows that in all three environments, particularly at the U-Maze
427 and Medium difficulty levels, our proposed DMEMM method significantly outperforms other com-
428 parison methods. Specifically, on Maze2D tasks, DMEMM achieves a 4.0 point improvement over
429 the state-of-the-art HD-DA method on the U-Maze task, and a 2.6 point increase on the Medium-
430 sized maze. Compared to Diffuser, DMEMM shows an almost 20-point improvement. These results
431 indicate that our method performs exceptionally well in generating planning solutions for navigation
432 tasks.

432

433 Table 3: the scores on the Walker2D environment at three different levels for all four ablation vari-
434 ants. Results are averaged over 5 seeds.

435

Gym Tasks	DMEMM	DMEMM-w/o-weighting	DMEMM-w/o- λ_{tr}	DMEMM-w/o- λ_{rd}	DMEMM-w/o-tr-guide
Med-Expert	111.6±1.1	110.4±0.8	108.4±1.2	110.4±0.6	109.9±1.0
WMedium	86.5±1.5	85.6±1.2	82.8±1.4	84.4±0.9	83.0±1.8
Med-Replay	85.8±2.6	84.6±2.2	82.2±1.7	83.7±2.5	82.6±3.2

439

440 However, HD-DA shows better performance on the large maze tasks. This is likely due to the hi-
441 erarchical structure of HD-DA, which offers an advantage in larger, more complex environments
442 by breaking long-horizon planning into smaller sub-tasks, an area where our method is not speci-
443 fically designed to excel. Nevertheless, DMEMM remains competitive in larger environments, while
444 demonstrating superior performance in smaller and medium-sized tasks.

445

5.3 ABLATION STUDY

447

448 We conduct an ablation study to evaluate the effectiveness of the key components in our DMEMM
449 framework. We compare the full DMEMM model with four ablated variants: (1) DMEMM-w/o-
450 weighting, which removes the weighting function in the reward-aware diffusion loss; (2) DMEMM-
451 w/o- λ_{tr} , which omits the transition-based diffusion modulation loss; (3) DMEMM-w/o- λ_{rd} , which
452 omits the reward-based diffusion modulation loss; and (4) DMEMM-w/o-tr-guide, which removes
453 transition guidance in the dual-guided sampling procedure. The ablation study is conducted on all
454 locomotion tasks across three levels of expert demonstrations, while only the Walker2D results are
455 reported in the main paper. The complete results are provided in Table 5 of the Appendix. Table 3
456 summarizes the performance of all four ablation variants on the D4RL locomotion benchmarks,
457 averaged over five random seeds.

458

459 The results highlight the contribution of each component in DMEMM. Across all three difficulty
460 levels, the full DMEMM model consistently achieves the best performance. In particular, remov-
461 ing transition-related components, either the transition-based modulation loss (DMEMM-w/o- λ_{tr}) or the
462 transition guidance (DMEMM-w/o-tr-guide), leads to substantial performance drops, under-
463 scoring the importance of explicitly modeling transition dynamics in our approach. Incorporating
464 transition information significantly improves the consistency and fidelity of generated trajectory
465 plans. Moreover, DMEMM-w/o- λ_{rd} and DMEMM-w/o-weighting yield comparable results, with
466 DMEMM-w/o- λ_{rd} showing a slightly larger degradation. This indicates that the designed reward
467 model and its weighting mechanism play a key role in improving the optimality of planned trajec-
468 tories.

469

470 Overall, the ablation study demonstrates that each component of our DMEMM method contributes
471 significantly to its performance. Removing any of these components results in a noticeable de-
472 crease in performance, highlighting the importance of the weighting function, transition-based and
473 reward-based diffusion modulation loss, and transition guidance in achieving optimal results in of-
474 fline reinforcement learning tasks.

475

6 CONCLUSION

476

477 In this work, we addressed a critical limitation of conventional diffusion-based planning methods in
478 offline RL, which often overlook the consistency of transition dynamics in planned trajectories. To
479 overcome this challenge, we proposed Diffusion Modulation via Environment Mechanism Model-
480 ing (DMEMM), a novel approach that integrates RL-specific environment mechanisms, particularly
481 transition dynamics and reward functions, into the diffusion model training process. By modulating
482 the diffusion loss with cumulative rewards and introducing auxiliary losses based on transition
483 dynamics and reward functions, DMEMM enhances both the coherence and quality of the generated
484 trajectories, ensuring they are plausible and optimized for policy learning. Our experimental
485 results across multiple offline RL environments demonstrate the effectiveness of DMEMM, achieving
486 state-of-the-art performance compared to previous diffusion-based planning methods. The proposed
487 approach significantly improves the alignment of generated trajectories, addressing the discrepan-
488 cies between offline data and real-world environments. This provides a promising framework for
489 further exploration of diffusion models in RL and their potential practical applications.

486 REFERENCES
487

488 S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement learning: Tutorial, review, and
489 perspectives on open problems,” *arXiv preprint arXiv:2005.01643*, 2020.

490 M. Janner, Y. Du, J. B. Tenenbaum, and S. Levine, “Planning with diffusion for flexible behavior
491 synthesis,” in *International Conference on Machine Learning (ICML)*, 2022.

492

493 J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsupervised learning
494 using nonequilibrium thermodynamics,” in *Proceedings of the 32nd International Conference on
495 Machine Learning*. PMLR, 2015.

496

497 J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” in *Advances in Neural
498 Information Processing Systems (NeurIPS)*, 2020.

499

500 F. Ni, J. Hao, Y. Mu, Y. Yuan, Y. Zheng, B. Wang, and Z. Liang, “Metadiffuser: Diffusion model
501 as conditional planner for offline meta-rl,” in *International Conference on Machine Learning
502 (ICML)*. PMLR, 2023.

503

504 W. Li, “Efficient planning with latent diffusion,” in *The Twelfth International Conference on Learn-
505 ing Representations (ICLR)*, 2024.

506

507 V. Goyal and J. Grand-Clement, “Robust markov decision process: Beyond rectangularity,” *Mathe-
508 matics of Operations Research*, 2023.

509

510 A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Conservative q-learning for offline reinforcement
511 learning,” *Advances in Neural Information Processing Systems (NeurIPS)*, 2020.

512

513 Y. Wu, G. Tucker, and O. Nachum, “Behavior regularized offline reinforcement learning,” *arXiv
514 preprint arXiv:1911.11361*, 2019.

515

516 H. Niu, Q. Chen, T. Liu, J. Li, G. Zhou, Y. Zhang, J. Hu, and X. Zhan, “xted: Cross-domain
517 adaptation via diffusion-based trajectory editing,” *arXiv preprint arXiv:2409.08687*, 2024.

518

519 S. Fujimoto, D. Meger, and D. Precup, “Off-policy deep reinforcement learning without explo-
520 ration,” in *International Conference on Machine Learning (ICML)*. PMLR, 2019.

521

522 I. Kostrikov, A. Nair, and S. Levine, “Offline reinforcement learning with implicit q-learning,” in
523 *International Conference on Learning Representations (ICLR)*, 2022.

524

525 T. Yu, G. Thomas, L. Yu, S. Ermon, J. Y. Zou, S. Levine, C. Finn, and T. Ma, “Mopo: Model-based
526 offline policy optimization,” *Advances in Neural Information Processing Systems (NeurIPS)*,
527 2020.

528

529 Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, “Score-based genera-
530 tive modeling through stochastic differential equations,” in *International Conference on Learning
531 Representations (ICLR)*, 2021.

532

533 S. Venkatraman, S. Khaitan, R. T. Akella, J. Dolan, J. Schneider, and G. Berseth, “Reasoning with
534 latent diffusion in offline reinforcement learning,” in *The Twelfth International Conference on
535 Learning Representations*, 2024.

536

537 A. Ajay, Y. Du, A. Gupta, J. Tenenbaum, T. Jaakkola, and P. Agrawal, “Is conditional genera-
538 tive modeling all you need for decision making?” in *The Eleventh International Conference on
539 Learning Representations (ICLR)*, 2023.

540

541 C. Chen, F. Deng, K. Kawaguchi, C. Gulcehre, and S. Ahn, “Simple hierarchical planning with
542 diffusion,” in *The Twelfth International Conference on Learning Representations (ICLR)*, 2024.

543

544 R. S. Sutton and A. G. Barto, *Reinforcement learning: An introduction*. MIT press, 2018.

545

546 P. Dhariwal and A. Q. Nichol, “Diffusion models beat GANs on image synthesis,” in *Advances in
547 Neural Information Processing Systems (NeurIPS)*, 2021.

540 J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine, “D4rl: Datasets for deep data-driven rein-
541forcement learning,” *arXiv preprint arXiv:2004.07219*, 2020.

542

543 G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou, “Aggressive driving with
544 model predictive path integral control,” in *2016 IEEE International Conference on Robotics and
545 Automation (ICRA)*. IEEE, 2016.

546

547 L. Chen, K. Lu, A. Rajeswaran, and J. Lee, Pieter Abbeel, “Decision transformer: Reinforcement
548 learning via sequence modeling,” *Advances in Neural Information Processing Systems (NeurIPS)*,
549 2021.

550

551 H. Chen, C. Lu, C. Ying, H. Su, and J. Zhu, “Offline reinforcement learning via high-fidelity gener-
552 ative behavior modeling,” in *The Eleventh International Conference on Learning Representations
(ICLR)*, 2023.

553

554 W. Li, X. Wang, B. Jin, and H. Zha, “Hierarchical diffusion for offline decision making,” in *Inter-
555 national Conference on Machine Learning (ICML)*. PMLR, 2023.

556

557 D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in *International Conference on
558 Learning Representations (ICLR)*, 2014.

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594 **A PROOF OF PROPOSITION 1**
 595

596 In this section, we present the proof of Proposition 1.
 597

598 *Proof.* To incorporate key RL mechanisms into the training of the diffusion model, we explore
 599 the denoising process and trace the denoised data through the reverse diffusion process. Let $\hat{\tau}^0$
 600 represent the denoised output trajectory. It can be gradually denoised using the reverse process,
 601 following the chain rule: $\hat{\tau}^0 \sim p_\theta(\tau^K) \prod_{k=1}^K p_\theta(\tau^{k-1} | \tau^k)$, where the detailed reverse process is
 602 defined in Eq. (3) and Eq. (4). Starting from an intermediate trajectory τ^k at step k , by combining
 603 these two equations, the trajectory at the next diffusion step, $k-1$, can be directly sampled from the
 604 distribution:

$$605 \hat{\tau}^{k-1} \sim \mathcal{N} \left(\frac{1}{\sqrt{\alpha_k}} \left(\tau^k - \frac{1 - \alpha_k}{\sqrt{1 - \bar{\alpha}_k}} \epsilon_\theta(\tau^k, k) \right), \sigma_k^2 \mathbf{I} \right). \quad (15)$$

607 By applying the reparameterization trick (Kingma and Welling, 2014), we can derive a closed-form
 608 solution for the above distribution. Let ϵ_k represent the noise introduced in the reverse process
 609 $p_\theta(\tau^{k-1} | \tau_k)$, and the denoised trajectory can then be formulated as:

$$610 \hat{\tau}^{k-1} = \frac{1}{\sqrt{\alpha_k}} \left(\tau^k - \frac{1 - \alpha_k}{\sqrt{1 - \bar{\alpha}_k}} \epsilon_\theta(\tau^k, k) \right) + \sigma_k \epsilon_k \\ 611 = \frac{1}{\sqrt{\alpha_k}} \tau^k - \frac{1 - \alpha_k}{\sqrt{(1 - \bar{\alpha}_k) \alpha_k}} \epsilon_\theta(\tau^k, k) + \sigma_k \epsilon_k. \quad (16)$$

615 In the following diffusion step $k-2$, the denoised data $\hat{\tau}^{k-2}$ is sampled from a similar Gaussian dis-
 616 tribution. By the Central Limit Theorem, $\hat{\tau}^{k-1}$ serves as an unbiased estimate of τ^{k-1} . Therefore,
 617 the denoised data $\hat{\tau}^{k-2}$ can be expressed as follows:

$$618 \hat{\tau}^{k-2} \sim \mathcal{N} \left(\frac{1}{\sqrt{\alpha_{k-1}}} \left(\tau^{k-1} - \frac{1 - \alpha_{k-1}}{\sqrt{1 - \bar{\alpha}_{k-1}}} \epsilon_\theta(\tau^{k-1}, k-1) \right), \sigma_{k-1}^2 \mathbf{I} \right) \\ 619 = \frac{1}{\sqrt{\alpha_{k-1}}} \left(\hat{\tau}^{k-1} - \frac{1 - \alpha_{k-1}}{\sqrt{1 - \bar{\alpha}_{k-1}}} \epsilon_\theta(\tau^{k-1}, k-1) \right) + \sigma_{k-1} \epsilon_{k-1} \\ 620 = \frac{1}{\sqrt{\alpha_{k-1}}} \left(\frac{1}{\sqrt{\alpha_k}} \tau^k - \frac{1 - \alpha_k}{\sqrt{(1 - \bar{\alpha}_k) \alpha_k}} \epsilon_\theta(\tau^k, k) - \frac{1 - \alpha_{k-1}}{\sqrt{1 - \bar{\alpha}_{k-1}}} \epsilon_\theta(\tau^{k-1}, k-1) + \sigma_k \epsilon_k \right) \\ 621 + \sigma_{k-1} \epsilon_{k-1} \\ 622 = \frac{1}{\sqrt{\alpha_k \alpha_{k-1}}} \tau^k - \frac{1 - \alpha_k}{\sqrt{(1 - \bar{\alpha}_k) \alpha_k \alpha_{k-1}}} \epsilon_\theta(\tau^k, k) - \frac{1 - \alpha_{k-1}}{\sqrt{(1 - \bar{\alpha}_{k-1}) \alpha_{k-1}}} \epsilon_\theta(\tau^{k-1}, k-1) \\ 623 + \frac{1}{\sqrt{\alpha_{k-1}}} \sigma_k \epsilon_k + \sigma_{k-1} \epsilon_{k-1}. \quad (17)$$

632 The introduced noise ϵ_{k-1} in diffusion step $k-1$ can be combined with the noise ϵ_k at diffu-
 633 sion step k into a joint noise term, $\bar{\epsilon}_{k-1}$, by merging two Gaussian distributions, $\mathcal{N}(0, \frac{\sigma_k^2}{\alpha_{k-1}} \mathbf{I})$ and
 634 $\mathcal{N}(0, \sigma_{k-1}^2 \mathbf{I})$, into $\mathcal{N}(0, (\frac{\sigma_k^2}{\alpha_{k-1}} + \sigma_{k-1}^2) \mathbf{I})$. Consequently, we obtain the distribution for the denoised
 635 data $\hat{\tau}^{k-2}$ with only directly computable terms, where
 636

$$637 \hat{\tau}^{k-2} = \frac{1}{\sqrt{\alpha_k \alpha_{k-1}}} \tau^k - \frac{1 - \alpha_k}{\sqrt{(1 - \bar{\alpha}_k) \alpha_k \alpha_{k-1}}} \epsilon_\theta(\tau^k, k) - \frac{1 - \alpha_{k-1}}{\sqrt{(1 - \bar{\alpha}_{k-1}) \alpha_{k-1}}} \epsilon_\theta(\tau^{k-1}, k-1) \\ 638 + \sqrt{\frac{\sigma_k^2}{\alpha_{k-1}} + \sigma_{k-1}^2} \bar{\epsilon}_{k-1} \\ 639 \sim \mathcal{N} \left(\frac{1}{\sqrt{\alpha_k \alpha_{k-1}}} \tau^k - \frac{1 - \alpha_k}{\sqrt{(1 - \bar{\alpha}_k) \alpha_k \alpha_{k-1}}} \epsilon_\theta(\tau^k, k) - \frac{1 - \alpha_{k-1}}{\sqrt{(1 - \bar{\alpha}_{k-1}) \alpha_{k-1}}} \epsilon_\theta(\tau^{k-1}, k-1), \right. \\ 640 \left. \left(\frac{\sigma_k^2}{\alpha_{k-1}} + \sigma_{k-1}^2 \right) \mathbf{I} \right). \quad (18)$$

648 By repeating the denoising process for k iterations, we can ultimately obtain a closed-form representation of the denoised data $\hat{\tau}^0$.
 649

$$\begin{aligned}
 651 \quad \hat{\tau}^0 &= \frac{1}{\sqrt{\prod_{i=1}^k \alpha_i}} \tau^k - \sum_{i=1}^k \frac{1 - \alpha_i}{\sqrt{(1 - \bar{\alpha}_i) \prod_{j=1}^i \alpha_j}} \epsilon_\theta(\tau^i, i) + \sqrt{\sigma_1^2 + \sum_{i=2}^k \frac{\sigma_i^2}{\prod_{j=1}^{i-1} \alpha_j} \bar{\epsilon}_1} \\
 652 \\
 653 \quad &= \frac{1}{\sqrt{\bar{\alpha}_k}} \tau^k - \sum_{i=1}^k \frac{1 - \alpha_i}{\sqrt{(1 - \bar{\alpha}_i) \bar{\alpha}_i}} \epsilon_\theta(\tau^i, i) + \sqrt{\sigma_1^2 + \sum_{i=2}^k \frac{\sigma_i^2}{\bar{\alpha}_{i-1}} \bar{\epsilon}_1}.
 \end{aligned} \tag{19}$$

654 Using the closed-form representation of the reparameterization trick, the final denoised data $\hat{\tau}^0$ follows a Gaussian distribution, expressed as $\hat{\tau}^0 \sim \mathcal{N}(\hat{\mu}_\theta(\tau^k, k), \hat{\sigma}^2 \mathbf{I})$. The mean $\hat{\mu}_\theta(\tau^k, k)$ captures
 655 the denoising trajectory and is formulated as:
 656

$$\hat{\mu}_\theta(\tau^k, k) = \frac{1}{\sqrt{\bar{\alpha}_k}} \tau^k - \sum_{i=1}^k \frac{1 - \alpha_i}{\sqrt{(1 - \bar{\alpha}_i) \bar{\alpha}_i}} \epsilon_\theta(\tau^i, i). \tag{20}$$

663 Similarly, the covariance $\hat{\sigma}^2$ accounts for the accumulation of noise over all diffusion steps and is
 664 written as:
 665

$$\hat{\sigma}^2 = \sigma_1^2 + \sum_{i=2}^k \frac{\sigma_i^2}{\bar{\alpha}_{i-1}}. \tag{21}$$

□

669 B IMPLEMENTATION DETAILS

670 **Reward model and transition model pretraining** Before training the diffusion model, we first
 671 pretrain both the reward model and the transition model on the concatenated inputs (s_t, a_t) from
 672 the same dataset used for diffusion training (e.g., D4RL (Fu et al., 2020)), with the same Gaussian
 673 normalization. The transition model is implemented as a MLP with two hidden layers of 512 units,
 674 ReLU activations, and a linear output head predicting the next-state mean $\mu(s_t, a_t) \in \mathbb{R}^{s_{\text{dim}}}$, trained
 675 with mean squared error against s_{t+1} . The reward model is also an MLP with two hidden layers
 676 of 256 units, ReLU activations, and a linear output head, trained by regression to the per-timestep
 677 rewards in the dataset. Both models are pretrained using the Adam optimizer (learning rate 3×10^{-4}),
 678 batch size 64, for 5×10^5 training steps. After pretraining, the reward and transition models are
 679 frozen during diffusion model training.
 680

681 **Diffusion training** We adopt the core diffusion model and reward guidance implementation from
 682 Diffuser (Janner et al., 2022). Both the diffusion backbone and the reward-guidance network use a
 683 temporal U-Net trained on length- T trajectories of concatenated (s_t, a_t) , with hard conditioning on
 684 the initial observation s_0 . We set the planning horizon to $T = 32$ for locomotion tasks, $T = 128$
 685 for the three U-Maze tasks, $T = 256$ for the three Medium-Maze tasks, and $T = 384$ for the
 686 three Large-Maze tasks. Observations and actions are Gaussian-normalized using statistics from the
 687 offline dataset.
 688

689 During training, the diffusion model is optimized with our designed total loss $L_{\text{total}} = L_{\text{wdiff}} +$
 690 $\lambda_{\text{tr}} L_{\text{tr}} + \lambda_{\text{rd}} L_{\text{rd}}$, as defined in Eq. (12). The weights in the reward-aware diffusion loss L_{wdiff} are
 691 clipped by r_{max} , which we set to 1 in practice. We use $\lambda_{\text{tr}} = 0.1$ for the transition-based auxiliary
 692 modulation loss L_{tr} and $\lambda_{\text{rd}} = 0.05$ for the reward-based auxiliary modulation loss L_{rd} . When a
 693 domain lacks stepwise rewards, the reward bias term is omitted. The diffusion backbone is trained
 694 with the Adam optimizer (learning rate 2×10^{-4}), batch size 32, gradient accumulation factor 2,
 695 and EMA decay 0.995.
 696

697 **Diffusion sampling** Following Janner et al. (2022), we use $N = 20$ reverse diffusion steps and
 698 apply reward-only gradient guidance with scale $\alpha = 10^{-3}$ at each step, re-imposing conditioning
 699 after every step. We report the top-scoring trajectories under reward guidance.
 700

701 **Computational resources** All experiments were conducted on a cluster of 10 nodes, each
 702 equipped with four Intel Xeon CPUs, 32 GB of RAM, and an NVIDIA GeForce RTX 2080 GPU
 703 with 11 GB of VRAM.
 704

702
 703 Table 4: Quarter-wise transition mismatch E_i (mean squared state prediction error) for Diffuser and
 704 DMEMM on D4RL locomotion tasks (Medium-Expert). Results are averaged over 5 runs.

Method	Environment	Quarter 1	Quarter 2	Quarter 3	Quarter 4
Diffuser	HalfCheetah	29.10 ± 0.32	34.67 ± 0.40	34.96 ± 0.37	38.71 ± 0.42
DMEMM	HalfCheetah	9.74 ± 0.05	9.88 ± 0.04	9.91 ± 0.09	9.99 ± 0.06
Diffuser	Hopper	1.01 ± 0.06	0.96 ± 0.05	1.35 ± 0.08	2.96 ± 0.12
DMEMM	Hopper	0.82 ± 0.07	0.75 ± 0.06	1.02 ± 0.09	1.85 ± 0.15
Diffuser	Walker2D	1.42 ± 0.07	3.21 ± 0.06	3.52 ± 0.11	4.03 ± 0.13
DMEMM	Walker2D	1.12 ± 0.08	2.19 ± 0.10	2.43 ± 0.11	2.61 ± 0.14

714 C EVALUATION OF TRANSITION MISMATCH

716 To investigate the potential transition mismatch problem in conventional Diffuser models (Janner
 717 et al., 2022), we conduct an experiment to quantify the discrepancy between trajectories predicted
 718 by the diffusion model and the actual environment rollouts. This analysis highlights how traditional
 719 Diffuser suffers from model–environment dynamics gaps, and how our proposed DMEMM effec-
 720 tively tackles this issue. We compare Diffuser and DMEMM on D4RL locomotion tasks (Fu et al.,
 721 2020) at the Medium-Expert level.

722 We use the trained diffusion models with reward guidance from both Diffuser and DMEMM for
 723 evaluation. During the online sampling stage, the planner at each timestep t generates an imagined
 724 future sequence $\{\hat{s}_{t+1}^t, \hat{s}_{t+2}^t, \dots, \hat{s}_{t+H}^t\}$, where H is the planning horizon. Each predicted state \hat{s}_{t+h}^t
 725 is compared to the corresponding ground-truth state s_{t+h} collected from the environment for $h \in$
 726 $\{1, \dots, H\}$. This measures the discrepancy caused by the mismatch between the diffusion model
 727 and the true environment dynamics. At each prediction step we compute the L2-norm error $e_{t,h} =$
 728 $\|\hat{s}_{t+h}^t - s_{t+h}\|_2^2$. To reduce computation, we reuse previously generated plans by backtracking from
 729 stored plans at earlier states rather than recomputing forward rollouts from scratch.

730 To better analyze prediction quality over different time scales, we divide the planning horizon
 731 into four equal-length quarters and report the average error in each quarter. Early quarters reflect
 732 short-term prediction accuracy, while later quarters capture long-horizon stability. Formally, let
 733 the trajectory length be T , the horizon H , and let quarter $i \in \{1, 2, 3, 4\}$ cover prediction steps
 734 $h \in \left[\frac{(i-1)H}{4} + 1, \frac{iH}{4}\right]$. The average squared error for i -th quarter is:

$$737 \quad E_i = \frac{1}{(T-H) \cdot \frac{H}{4}} \sum_{t=0}^{T-H-1} \sum_{h=(i-1)H/4+1}^{iH/4} \|\hat{s}_{t+h}^t - s_{t+h}\|_2^2. \quad (22)$$

741 These quarter-wise errors quantify how transition mismatch accumulates along the trajectory:
 742 smaller E_i in later quarters indicates better long-horizon predictive ability.

744 The results are summarized in Table 4. We observe that DMEMM greatly outperforms Diffuser
 745 in terms of transition mismatch on the HalfCheetah environment. On the other two environments,
 746 DMEMM still surpasses Diffuser, though with a smaller relative improvement. We hypothesize that
 747 transition mismatch is more severe in complex dynamical systems such as HalfCheetah, suggesting
 748 that our method is particularly beneficial for environments with more challenging dynamics.

749 Furthermore, as the planning horizon increases, Diffuser’s prediction errors grow substantially, in-
 750 dicating poor generalization to real online interactions despite strong offline fitting. In contrast,
 751 DMEMM consistently maintains lower transition mismatch, especially in the later quarters, with-
 752 out exhibiting the pronounced error escalation seen in Diffuser. Interestingly, although HalfCheetah
 753 shows the highest absolute prediction errors, neither Diffuser nor DMEMM displays a sharp error
 754 increase across quarters in this task.

755 Overall, these findings demonstrate the superior long-horizon prediction quality and robustness of
 the proposed DMEMM method.

756

757 Table 5: This table presents the scores on D4RL locomotion suites for all four ablation variants.
758 Results are averaged over 5 seeds.

Gym Tasks	DMEMM	DMEMM-w/o-weighting	DMEMM-w/o- λ_{tr}	DMEMM-w/o- λ_{rd}	DMEMM-w/o-tr-guide
HalfCheetah (Med-Expert)	94.6±1.2	93.8±0.9	92.2±0.6	92.8±1.2	92.5±1.3
Hopper (Med-Expert)	115.9±1.6	115.2±0.4	114.4±0.8	115.0±0.4	114.8±0.2
Walker2d (Med-Expert)	111.6±1.1	110.4±0.8	108.4±1.2	110.4±0.6	109.9±1.0
HalfCheetah (Medium)	49.2±0.8	48.0±1.1	46.3±0.4	47.1±0.6	46.9±0.9
Hopper (Medium)	101.2±1.4	100.4±1.2	98.6±1.8	100.1±1.1	99.8±1.6
Walker2d (Medium)	86.5±1.5	85.6±1.2	82.8±1.4	84.4±0.9	83.0±1.8
HalfCheetah (Med-Replay)	46.1±1.3	44.7±1.7	42.5±2.9	44.2±1.4	43.6±2.5
Hopper (Med-Replay)	100.6±0.9	98.8±1.2	97.0±0.9	98.2±0.6	96.2±1.2
Walker2d (Med-Replay)	85.8±2.6	84.6±2.2	82.2±1.7	83.7±2.5	82.6±3.2

755 Figure 1: Hyperparameter sensitivity analysis of the tradeoff parameters for transition-based diffu-
756 sion modulation loss (λ_{tr}) and reward-based diffusion modulation loss (λ_{rd}) on Hopper-Medium-
757 Expert and Walker2D-Medium-Expert environments.778

D FULL ABLATION RESULTS

781 The complete ablation results of our DMEMM method compared with the four ablated variants (1)
782 DMEMM-w/o-weighting, which removes the weighting function in the reward-aware diffusion loss;
783 (2) DMEMM-w/o- λ_{tr} , which omits the transition-based diffusion modulation loss; (3) DMEMM-
784 w/o- λ_{rd} , which omits the reward-based diffusion modulation loss; and (4) DMEMM-w/o-tr-guide,
785 which removes transition guidance in the dual-guided sampling procedure are presented in Table 5.786 The conclusions drawn from the full ablation results are consistent with those reported in the
787 main paper. Across all three environments and all expert demonstration levels, the performance
788 of DMEMM is substantially degraded when either the transition-based diffusion modulation loss or
789 the transition guidance is removed, highlighting the critical role of explicitly modeling transition dy-
790 namics. Dropping the weighting function or the reward-based diffusion modulation loss also harms
791 performance, with the reward auxiliary loss L_{rd} appearing relatively more important between the
792 two. Overall, removing any single component leads to a noticeable performance drop compared to
793 the full DMEMM model, demonstrating the effectiveness and necessity of each key component in
794 our approach.795

E HYPERPARAMETER SENSITIVITY ANALYSIS

798 In this section, we analyze the sensitivity of the tradeoff parameters λ_{tr} (transition-based diffusion
799 modulation loss) and λ_{rd} (reward-based diffusion modulation loss) to understand their impact on
800 performance in offline RL tasks. The analysis is conducted on two environments: Hopper-Medium-
801 Expert and Walker2D-Medium-Expert.802 Figures 1 illustrate the performance sensitivity to the tradeoff parameters. For λ_{tr} , the per-
803 formance peaks at approximately $\lambda_{tr} = 0.1$ in both the Walker2D-Medium-Expert and Hopper-
804 Medium-Expert environments. Beyond this optimal point, performance declines notably, regard-
805 less of whether λ_{tr} is increased or decreased. Similarly, for λ_{rd} , the performance also peaks around
806 $\lambda_{rd} = 0.05$ in both environments. However, unlike λ_{tr} , performance shows little change when λ_{rd}
807 is adjusted within a small range, indicating that λ_{rd} is less sensitive than λ_{tr} . Overall, the hyper-
808 parameter sensitivity analysis shows that both λ_{rd} and λ_{tr} have similar effects on performance and
809 are robust across different tasks. Additionally, it confirms that the selected hyperparameters for our
810 experiments are optimal.

838 Figure 2: Visualization of trajectories generated by Real environment rollouts, DMEMM, and Diffuser on HalfCheetah, Hopper, and Walker2D (32-long horizon per method). Figures are slightly
839 overlapped horizontally to highlight differences in posture and stability.
840

842 F TRAJECTORY CONSISTENCY VISUALIZATION

844 We provide a qualitative visualization of the trajectories generated during online planning to demon-
845 strate that our proposed DMEMM method improves transition consistency. Starting from a fixed
846 initial state, we sample trajectories using DMEMM and the standard Diffuser, and compare them
847 against ground-truth trajectories collected from the offline dataset. To ensure a fair comparison, we
848 visualize 32 consecutive frames for each method. The results are shown in Figure E.

849 From the figure, we observe that DMEMM produces trajectories that closely resemble the real tra-
850 jectories across all environments, especially on HalfCheetah. For Hopper, the trajectories generated
851 by all methods are visually similar, which is consistent with the quantitative results in Table 4. On
852 Walker2D, trajectories generated by DMEMM remain closer to the real trajectories than those pro-
853 duced by Diffuser, indicating that DMEMM can generate more consistent and stable motions than
854 the base Diffuser method.

855
856
857
858
859
860
861
862
863