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ABSTRACT

Diffusion models have shown promising capabilities in trajectory generation for
planning in offline reinforcement learning (RL). However, conventional diffusion-
based planning methods often fail to account for the fact that generating trajecto-
ries in RL requires unique consistency between transitions to ensure coherence
in real environments. This oversight can result in considerable discrepancies be-
tween the generated trajectories and the underlying mechanisms of a real envi-
ronment. To address this problem, we propose a novel diffusion-based planning
method, termed as Diffusion Modulation via Environment Mechanism Modeling
(DMEMM). DMEMM modulates diffusion model training by incorporating key
RL environment mechanisms, particularly transition dynamics and reward func-
tions. Experimental results demonstrate that DMEMM achieves state-of-the-art
performance for planning with offline reinforcement learning.

1 INTRODUCTION

Offline reinforcement learning (RL) has garnered significant attention for its potential to leverage
pre-collected datasets to learn effective policies without requiring further interaction with the envi-
ronment (Levine et al., 2020). One emerging approach within this domain is the use of diffusion
models for trajectory generation (Janner et al.,[2022)). Diffusion models (Sohl-Dickstein et al., 2015
Ho et al.l 2020), initially popularized for tasks such as image synthesis, have demonstrated promis-
ing capabilities in generating coherent and diverse trajectories for planning in offline RL settings
(Janner et al., |2022; N1 et al.| 2023} |L1, 2024} |Goyal and Grand-Clement, [2023)). Nevertheless, the
essential differences between mechanisms in image synthesis and RL necessitate specific consider-
ations for the effective application of diffusion models in RL.

In image synthesis (Ho et al., [2020), diffusion models primarily aim to produce visually coherent
outputs consistent in style and structure, while RL tasks demand environment and task oriented
consistency between transitions in the generated trajectories (Janner et al., |2022)) to ensure that
the generated sequences are not only plausible but also effective for policy learning (Kumar et al.,
2020). This consistency is essential for ensuring that the sequence of actions within the generated
trajectories can successfully guide the RL agent from the current state to the target state. However,
conventional diffusion-based planning methods often overlook this need for transition coherence
(Janner et al.; 2022). By simply adopting traditional diffusion models like DDPM, which utilize
a fixed isotropic variance for Gaussian distributions, such diffusion-based planning models may
fail to adequately capture the transition dynamics necessary for effective RL, leading to inaccurate
trajectories and suboptimal learned policies (Wu et al., 2019} [Niu et al.| 2024)).

To address this problem, we introduce a novel diffusion-based planning method called Diffusion
Modulation via Environment Mechanism Modeling (DMEMM). This method modulates the diffu-
sion process by integrating RL-specific environment mechanisms, particularly transition dynamics
and reward functions, directly into the diffusion model training process on offline data, thereby en-
hancing the diffusion model to better capture the underlying transition and reward structures of the
offline data. Specifically, we modify the diffusion loss by weighting it with the cumulative reward,
which biases the diffusion model towards high-reward trajectories, and introduce two auxiliary mod-
ulation losses based on empirical transition and reward models to regularize the trajectory diffusion
process, ensuring that the generated trajectories are not only plausible but also reward-optimized.
Additionally, we also utilize the transition and reward models to guide the sampling process dur-
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ing planning trajectory generation from the learned diffusion model, further aligning the outputs
with the desired transition dynamics and reward structures. We conducted experiments on multiple
RL environments. Experimental results indicate that our proposed method achieves state-of-the-art
performance compared to previous diffusion-based planning approaches.

This work presents a significant step forward in the application of diffusion models for trajectory
generation in offline RL. The main contributions can be summarized as follows:

* We identify a critical problem in conventional diffusion model training for offline RL plan-
ning, where fixed isotropic variance and disregard for rewards may lead to a mismatch be-
tween generated trajectories and those desirable for RL. To address this, we propose a novel
method called Diffusion Modulation via Environment Mechanism Modeling (DMEMM).

* We incorporate RL-specific environment mechanisms, including transition dynamics and
reward functions, into diffusion model training through loss modulation, enhancing the
quality and consistency of the generated trajectories in a principled manner and providing
a fundamental framework for adapting diffusion models to offline RL tasks.

* Qur results on multiple RL environments show that the proposed method achieves state-of-
the-art performance in offline RL planning, validating the effectiveness of our approach.

2 RELATED WORKS

2.1 OFFLINE REINFORCEMENT LEARNING

Offline reinforcement learning (RL) has gained significant traction in recent years, with various
approaches proposed to address the challenges of learning from static datasets without online envi-
ronment interactions. [Fujimoto et al.| (2019) introduced Batch Constrained Q-Learning (BCQ) that
learns a perturbation model to constrain the policy to stay close to the data distribution, mitigating the
distributional shift issue. [Wu et al.| (2019) conducted Behavior Regularized Offline Reinforcement
Learning (BRAC) that incorporates behavior regularization into actor-critic methods to prevent the
policy from deviating too far from the data distribution. Conservative Q-Learning (CQL) by Kumar
et al.| (2020) uses a conservative Q-function to underestimate out-of-distribution actions, preventing
the policy from exploring unseen state-action regions. |[Kostrikov et al.[(2022) conducted Implicit
Q-Learning (IQL) to directly optimize the policy to match the expected Q-values under the data
distribution. |Goyal and Grand-Clement| (2023)) introduce Robust MDPs to formulate offline RL as a
robust optimization problem over the uncertainty in the dynamics model. Planning has emerged as a
powerful tool for solving offline RL tasks. MOPO (Yu et al., |2020) incorporates uncertainty-aware
planning into offline RL by penalizing simulated trajectories that deviate from the offline dataset.

2.2 DIFFUSION MODEL IN REINFORCEMENT LEARNING

Diffusion models have emerged as a powerful tool for RL tasks, particularly in the areas of planning
and policy optimization. Janner et al.|(2022)) first introduced the idea of using diffusion models for
trajectory planning in offline RL, casting it as a probabilistic model that iteratively refines trajecto-
ries. L1/ (2024)) propose the Latent Diffuser, which generates actions in a latent space by leveraging a
Score-based Diffusion Model (SDM) (Song et al.,2021)) and employs energy-based sampling to en-
hance the overall performance of diffusion-based planning. Subsequent work by |Venkatraman et al.
(2024) further extends this idea and introduces Latent Diffusion-Constrained Q-learning (LDCQ),
which learns latent skills and enables the agent to estimate Q-functions directly in the latent space.
Ajay et al.| (2023) propose Decision Diffuser (DD), a method that leverages classifier-free guid-
ance with low-temperature sampling to condition on returns, constraints, and skills, enabling the
generation of high-quality decision-making sequences. (Chen et al.| (2024) propose a Hierarchical
Diffuser, which achieves hierarchical planning by breaking down planning trajectories into seg-
ments and treating intermediate states as subgoals to ensure more precise planning. More recently,
Ni et al.| (2023) proposed a task-oriented conditioned diffusion planner (MetaDiffuser) for offline
meta-reinforcement learning. MetaDiffuser learns a context-conditioned diffusion model that can
generate task-oriented trajectories for planning across diverse tasks, demonstrating the outstanding
conditional generation ability of diffusion architectures. These works highlight the versatility of
diffusion models in addressing RL challenges.
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3 PRELIMINARIES

Reinforcement learning (RL) (Sutton and Barto, |2018) can be modeled as a Markov Decision Pro-
cess (MDP) M = (S, A,7T,R,v) in a given environment, where S denotes the state space, A
corresponds to the action space, 7 : S x A — & defines the transition dynamics, R : S x A — R
represents the reward function, and -y is a discount factor. Offline RL aims to train an RL agent from
an offline dataset D, consisting of a collection of trajectories {71, T2, -+ , 74, }, with each tra-
jectory 7; = (si,ad,rd, st al,rt, ... sk al, rt) sampled from the underlying MDP in the given
environment. In particular, the task of planning in offline RL aims to generate planning trajectories
from an initial state sy by simulating action sequences ag.r and predicting future states so.7 based
on those actions. The objective is to learn an optimal plan function such that the camulative reward
can be maximized when executing the plan under the underlying MDP of the given environment.

3.1 PLANNING WITH DIFFUSION MODEL

Diffusion probabilistic models, commonly known as “diffusion models” (Sohl-Dickstein et al.,
2015} Ho et al.l [2020), are a class of generative models that utilize a unique Markov chain frame-
work. When applied to planning in offline RL, the objective is to generate best planning trajectories
{7} by learning a diffusion model on the offline RL dataset D.

Trajectory Representation In the diffusion model applied to RL planning, it is necessary to pre-
dict both states and actions. Therefore, the trajectory representation in the model is in an image-like
matrix format. In particular, trajectories are represented as two-dimensional arrays (Janner et al.,
2022)), where each column corresponds to a state-action pair (s, a;) of the trajectory:

S0 S1 PN ST
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Trajectory Diffusion The diffusion model (Ho et al.,[2020) comprises two primary processes: the
forward process and the reverse process. The forward process (diffusion process) is a Markov chain
characterized by ¢(7%|7%~1) that gradually adds Gaussian noise at each time step k € {1,--- , K},
starting from an initial clean trajectory sample 7° ~ D. The conditional probability is particularly
defined as a Gaussian probability density function, such as:

q(T T = N (1= )T BiD), )
with {f1, - - , Bk } representing a predefined variance schedule. By introducing «, := 1 — /3, and
&y, = [[,_; o, one can succinctly express the diffused sample at any time step k as:

™ = VarT? + V1 — age, (2)

where € ~ A(0,I). The reverse diffusion process is an iterative denosing procedure, and can be
modeled as a parametric Markov chain characterized by py(7*~!|7*), starting from a Gaussian
noise prior 7 ~ N(0,I), such that:

p@(Tk_1|Tk) :N(Tk_l;NG(Tkvk)aaiI)7 (3)
with pg(T", k) = \/10[7 <7‘k - \}%eg(‘rk,k)) 4)

Training In the literature, the diffusion model is trained by predicting the additive noise ¢ (Ho
et al., 2020) using the noise network eg (7%, k) = eg(/arT° + /T — aye, k). The training loss is
expressed as the mean squared error between the additive noise € and the predicted noise eg (7%, k):

— - 2
Laitt = Bt (1, 10),e~n(0,1),70~D || € — €0(v/ AR’ + V1 = aye, k)| (5)
where U (1, K') denotes a uniform distribution over numbers in [1, 2, - - - , K. With the trained noise

network, the diffusion model can be used to generate RL trajectories for planning through the reverse
diffusion process characterized by Eq.(3).
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4 METHOD

In this section, we present our proposed diffusion approach, Diffusion Modulation via Environment
Mechanism Modeling (DMEMM), for planning in offline RL. This method integrates the essential
transition and reward mechanisms of reinforcement learning into an innovative modulation-based
diffusion learning framework, while maintaining isotropic covariance matrices for the diffusion
Gaussian distributions to preserve the benefits of this conventional setup—simplifying model com-
plexity, stabilizing training and enhancing performance. Additionally, the transition and reward
mechanisms are further leveraged to guide the planning phase under the trained diffusion model,
aiming to generate optimal planning trajectories that align well with both the underlying MDP of
the environment and the objectives of RL.

4.1 MODULATION OF DIFFUSION TRAINING

In an RL environment, the transition dynamics and reward function are two fundamental components
of the underlying MDP. Directly applying conventional diffusion models to offline RL can lead to
a mismatch between the generated trajectories and those optimal for the underlying MDP in RL.
This is due to the use of isotropic covariance and the disregard for rewards in traditional diffusion
models. To tackle this problem, we propose to modulate the diffusion model training by deploying
a reward-aware diffusion loss and enforcing auxiliary regularizations on the generated trajectories
based on environment transition and reward mechanisms.

Given tEe offline data D collected from the RL environment, we first learn a probabilistic transition
model 7 (s, a;) and a reward function R (s, a;) from D as regression functions to predict the next
state s;y1 and the corresponding reward r; respectively. These models can serve as estimations of
the underlying MDP mechanisms. In order to regularize diffusion model training for generating
desirable trajectories, using the learned transition model and reward function, we need to express
the output trajectories of the reverse diffusion process in terms of the diffusion model parameters, 6.
To this end, we present the following proposition.

Proposition 1. Given the reverse process encoded by Eq.(3) and Eq.[ ) in the diffusion model,
the output trajectory T° denoised from an intermediate trajectory T at step k has the following
Gaussian distribution:

?0 ~ N(ZZQ (Tk7 k)a 821)7 (6)

1 1— o .
where [ig(TF k) = —7% — Z L eg(T,1). 7
Va0 - a) [T o

Conveniently, we can use the mean of the Gaussian distribution above directly as the most likely
output trajectory, denoted as 7° = Jip(7%, k). This allows us to express the denoised output trajec-
tory explicitly in terms of the parametric noise network ey, and thus the parameters 6 of the diffusion
model. Moreover, by deploying Eq., we can get rid of the latent {7!,--- 7%} and re-express 7°
as the following function of a sampled clean trajectory 7° and some random noise €:

?g(T07k’76) 1_ak i\/ 1_%_ 69( di‘ro—i-\/l—die,i). ()

Next, we leverage this output trajectory function to modulate diffusion model training by developing
novel auxiliary modulation losses.

4.1.1 TRANSITION-BASED DIFFUSION MODULATION

As previously discussed, the deployment of a fixed isotropic variance in conventional diffusion
models has the potential drawback of overlooking the underlying transition mechanisms of the RL
environment. As a result, there can be potential mismatches between the transitions of generated
trajectories and the underlying transition dynamics. Consequently, the RL agent may diverge from
the expected states when executing the planning actions generated by the diffusion model, leading to
poor planning performance. To address this problem, the first auxiliary modulation loss is designed
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to minimize the discrepancy between the transitions in the generated trajectories from the diffusion

model and those predicted by the learned transition model 7, which encodes the underlying transi-
tion mechanism. Specifically, for each transition (s, as, s¢+1) in a generated trajectory 7y (7°, k, €),
we minimize the mean squared error between s, and the predicted next state using the transition

model 7. This leads to the following transition-based diffusion modulation loss:

Ly = Exnts(1,K),e~N (0,1),70~D Z 5001 — T (51, Clt)”2 ©))

(st,at,5041)€TG (10K €)

Here, the expectation is taken over the uniform sampling of time step & from [1 : K], the random
sampling of noise € from a standard Gaussian distribution, and the random sampling of input tra-
jectories from the offline training data D. Through function 7-90, this loss Ly is a function of the
diffusion model parameters . By minimizing this transition-based modulation loss, we enforce that
the generated trajectories from the diffusion model are consistent with the transition dynamics ex-
pressed in the offline dataset. This approach enhances the fidelity of the generated trajectories and
improves the overall performance of the diffusion model in offline reinforcement learning tasks.

4.1.2 REWARD-BASED DIFFUSION MODULATION

The goal of planning is to generate trajectories that maximize cumulative rewards when executed
under the underlying MDP of the given environment. Thus, focusing solely on the fit of the planning
trajectories to the transition dynamics is insufficient. It is crucial to guide the diffusion model train-
ing to directly align with the planning objective. Therefore, the second auxiliary modulation loss is
designed to maximize the reward induced in the generated trajectories. As the trajectories generated
from diffusion models do not have reward signals, we predict the reward scores of the state-action
pairs {(s¢, a;)} in each trajectory generated through function 7 (-, -, -) using the learned reward

function 7%(, -). Specifically, we formulate the reward-based diffusion modulation loss function as
the following negative expected trajectory-wise cumulative reward from the generated trajectories:

Ly = —Epti(1,K),e~N(0,1),70~D Z 7Q(St, at) (10)

(s1,a0) €T (70K €)

Through function 7, this loss L, again is a function of the diffusion model parameters §. By
computing the expected loss over different time steps k € [1 : K], different random noise €, and all
input trajectories from the offline dataset D, we ensure that the modulation is consistently enforced
across all instances of diffusion model training.

By minimizing this reward-based loss, we ensure that the generated trajectories are not only plau-
sible but also reward-optimized to align with the reward structure inherent in the offline data. This
approach improves the quality of the trajectories generated from the diffusion model and enhances
the overall policy learning process in offline reinforcement learning tasks.

4.1.3 REWARD-AWARE DIFFUSION LOSS

In addition to the auxiliary modulation losses, we propose to further align diffusion model training
with the goal of RL planning by devising a novel reward-aware diffusion loss to replace the origi-
nal one. The original diffusion loss (shown in Eq.(5)) minimizes the expected per-trajectory mean
squared error between the true additive noise and the predicted noise, which gives equal weights
to different training trajectories without differentiation. In contrast, we propose to weight each tra-
jectory instance 7V from the offline dataset D using its normalized cumulative reward, so that the
diffusion training can focus more on the more informative trajectory instances with larger cumula-
tive rewards. Specifically, we weight each training trajectory 7° using its normalized cumulative
reward and formulate the following reward-aware diffusion loss:

R(st,a _ - 2
Lyditt = Epnta(1,K),e~N(0,1),70~D [( Z T(trt)> e = eo(v/arT® + V1 — are, k)|
max max
(1n

(st,ar)eT?
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Algorithm 1 Diffusion Training

Require: Offline data D = {(sf,, ag, 7, - - - s, afp, 77}

Learn transition model 7 (s, a;) and reward function R (s, a;) from offline data D.
Initialize noise network eg (7%, k).
while not converged do
Sample a trajectory from offline data 7° ~ D.
Sample a random diffusion step k ~ U(1, K).
Sample a random noise € ~ N(0,T).
Calculate the gradient Vg Ly, of Eq. @) and take gradient descent step.
end while

Here, Z(St ar)ET0 R(st,ar) is the trajectory-wise cumulative reward on the original offline data

instance 70 € D; Tyax denotes the largest trajectory length and r,x denotes the maximum possible
per-step reward. By using Thax - Tmax @s the normalizer, we scale the cumulative reward to a ratio
within (0, 1] to weight the corresponding per-trajectory diffusion loss. This weighting mechanism
biases the diffusion model toward high-reward trajectories, ensuring that those trajectories yielding
higher cumulative rewards are more accurately represented, thus aligning diffusion training with
the planning objectives in offline RL. This approach improves the model’s performance on rare but
valuable trajectories, which are crucial for effective RL.

4.1.4 FULL MODULATION FRAMEWORK

The proposed full modulated diffusion model comprises all of the three loss components presented
above: the reward-aware diffusion loss Lygis, the transition-based auxiliary modulation loss L., and
the reward-based auxiliary modulation loss L.4. By integrating these loss terms together, we have
the following total loss for modulated diffusion training:

Liotat = Lyditt + MeLir + AeaLias (12)

where )\ and A4 are trade-off parameters that balance the contributions of the transition-based and
reward-based auxiliary losses, respectively. Standard diffusion training algorithm can be utilized to
train the model by minimizing this total loss function. By employing this integrated loss function,
we establish a comprehensive modulation framework that incorporates essential domain and task
knowledge into diffusion model training, offering a general capacity of enhancing the adaptation
and broadening the applicability of diffusion models.

4.1.5 DIFFUSION TRAINING ALGORITHM

The complete training process of the diffusion model is presented in Algorithm[I] Prior to training
the diffusion model, a probabilistic transition model T(st, a;) and a reward model R(st, a;) are
learned from the offline dataset D. Afterward, the noise network is initialized and iteratively trained.
During each iteration, an original trajectory 7 is sampled from the offline dataset D, along with a
randomly selected diffusion step k£ and noise sample €. Gradient descent is then applied to minimize
the total 10ss Lioar.

4.2 PLANNING WITH DUAL GUIDANCE

Once trained, the diffusion model can be used to generate trajectories for planning during an RL
agent’s online interactions with the environment. The generation procedure starts from an initial
noise trajectory 7% ~ A(0,I), and gradually denoises it by following the reverse diffusion process
=1 ~ N (=1, 021) for each time step k € {K, K —1,..., 1}, where pu*~! is estimated through
Eq. @) In each diffusion time step k, the first state sq of the trajectory T is fixed to the current
state s of the RL agent in the online environment to ensure the plan starts from it. The denoised
trajectory 70 after K diffusion time steps is treated as the plan for the RL agent, which is intended
to maximize the RL agent’s long-term performance without extra interaction with the environment.

To further enhance the objective of planning, some previous work (Janner et al.,|2022) has utilized
the learned reward function to guide the sampling process of planning. In this work, we propose to
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Algorithm 2 Planning with Dual Guidance

Require: Noise network ¢y, tradeoff parameter o, environment EN'V, covariances {a,%}.
Initialize environment step ¢ = 0.
while not finished do
Initialize noise trajectory 7/5: 7/ ~ A/(0,1).
for diffusion step k = K,...,1do
Compute the mean ;*~! using Eq. @)
Compute the guidance g using Eq. (14).
Sample next trajectory Ttkfl with Eq. lb
Set current state s; to the trajectory: 7, (sq) = ;.
end for
Execute the first action of plan 7 (ag): s¢+1 = ENV (s, 72(ao))
Increment environment step by 1: t =¢ 4 1
end while

deploy dual guidance Afor each reverse diffusion step &k by exploiting both the reward function R and
the transition model 7 learned from the offline dataset D. Following previous works on conditional
reverse diffusion (Dhariwal and Nichol, [2021)), we incorporate the dual guidance by perturbing the
mean of the Gaussian distribution N'(p*~1, 021) used for reverse diffusion sampling. Specifically,
we integrate the gradient g of the linear combination of the reward function and transition function
w.r.t the trajectory into p*~!, such that:

" N (B! + aojlg, 0}1) (13)
where g is computed as:
T R T—1 R
g = Z v(st,a,,)R(Sta at) + A Z V(s“at) logT(st+1|st, at) (14)
t=0 t=0

where « is a tradeoff parameter that controls the degree of guidance. By incorporating both the
reward and transition guidance, we aim to enhance the planning process to generate high-quality
trajectories that are both reward-optimized and transition-consistent, improving the overall planning
performance. The details of the proposed planning procedure is summarized in Algorithm 2]

5 EXPERIMENT

In this section, we present the experimental setup and results for evaluating our proposed method,
DMEMM, across various offline RL tasks. We conduct experiments on the D4RL locomotion suite
and Maze2D environments to assess the performance of DMEMM compared to several state-of-the-
art methods. The experiments are designed to demonstrate the effectiveness of our approach across
different tasks, expert levels, and complex navigation scenarios.

Environments We conduct our experiments on D4RL (Fu et al.,[2020) tasks to evaluate the perfor-
mance of planning in offline RL settings. Initially, we focus on the D4RL locomotion suite to assess
the general performance of our planning methods across different tasks and expert levels of demon-
strations. The RL agents are tested on three different tasks: HalfCheetah, Hopper, and Walker2d,
and three different levels of expert demonstrations: Med-Expert, Medium, and Med-Replay. We use
the normalized scores provided in the DARL (Fu et al.,|2020) benchmarks to evaluate performance.
Subsequently, we conduct experiments on Maze2D (Fu et al.,|2020) environments to evaluate per-
formance on maze navigation tasks.

Comparison Methods We benchmark our methods against several leading approaches in each
task domain, including Model Predictive Path Integral (MPPI) (Williams et al., [2016), Batch-
Constrained Deep Q-Learning (BCQ) (Fujimoto et al.,2019), Conservative Q-Learning (CQL) (Ku-
mar et al., 2020), Implicit Q-Learning (IQL) (Kostrikov et al., 2022)), and Decision Transformer
(DT) (Chen et al., 2021).Additionally, we compare our methods with the state-of-the-art offline
RL approach, Selecting from Behavior Candidates (SfBC) (Chen et al., [2023), as well as several
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Table 1: This table presents the scores on D4RL locomotion suites for various comparison methods.
Results are averaged over 5 seeds.

Gym Tasks BC DT IQL CQL SfBC LDCQ Diffuser DD HDMI HD-DA DMEMM (Ours)
HalfCheetah (Med-Expert) 552 868 867 91.6  92.6+0.5 90.2+0.9 88.9+03 90.6+1.3 92.1+14 925403 94.6+1.2
Hopper (Med-Expert) 525 107.6 915 1054 108.64+2.1 109.34+0.4 103.3£1.3 111.8+£1.8 113.5+£0.9 115.3%1.1 115.9+1.6
Walker2d (Med-Expert) 107.5 108.1 109.6 108.8 109.8+0.2 111.3+0.2 106.9+0.2 108.8+1.7 107.9£1.2 107.1+0.1 111.6+1.1
HalfCheetah (Medium) 426 426 474 440 459422  428+£0.7 428403  49.1+£1.0  48.0+£0.9 = 46.7+0.2 49.240.8
Hopper (Medium) 529 67.6 66.3 58.5 57.1+4.1 69.4+ 3.5 743+1.4 79.3+3.6 76.4+£2.6 99.3+0.3 101.2+1.4
Walker2d (Medium) 753 740 783 725 779425 66.2+£1.7  79.6£0.6  82.5+1.4  79.9+1.8  84.0+0.6 86.5+1.5
HalfCheetah (Med-Replay) 36.6  36.6 442 455 37.1+1.7 418404 37.7405 393+4.1 449420 38.14+0.7 46.1+1.3
Hopper (Med-Replay) 18.1 82.7 94.7 95.0 86.249.1 68.5+4.3 93.6+0.4  100.0+£0.7 99.6+1.5 94.74+0.7 100.6£0.9
Walker2d (Med-Replay) 260 666 739 772 651456 86.2+25 70.6£1.6 750443  80.7+£2.1  84.1+2.2 85.842.6
Average 519 74.7 77.0 71.6 75.6 76.2 71.5 81.8 82.6 84.6 87.9

Table 2: This table presents the scores on Maze2D navigation tasks for various comparison methods.
Results are averaged over 5 seeds.

Environment MPPI IQL  Diffuser HDMI HD-DA DMEMM (Ours)
Maze2D U-Maze 332 474 113943.1 120.14£2.5 128.4+3.6 132.4+3.0
Maze2D Medium 102 349 121.542.7 121.8+1.6 135.6+3.0 138.2+2.2
Maze2D Large 5.1 58.6 123.0+64 128.6+2.9 155.8+2.5 153.243.3
Multi2D U-Maze 412 248 1289+1.8 131.3+1.8 144.1£1.2 145.6+2.6
Multi2D Medium 154 12.1 1272434 131.6+1.9 140.2+1.6 140.8+2.2
Multi2D Large 8.0 139 132.1+£58 1354425 165.5+0.6 159.6+3.8
AntMaze U-Maze - 622  76.0+7.6  86.1+24  94.0+4.9 96.2+5.5
AntMaze Medium - 70.0  31.9+5.1 - 88.7+8.1 90.1+6.4
AntMaze Large - 475  0.0+0.0 71.5+£3.5  83.6+5.8 79.6+7.7

diffusion-based offline RL methods, including Diffuser (Janner et al., |2022), Decision Diffuser
(DD) (Ajay et all [2023), Latent Diffusion-Constrained Q-learning (LDCQ / LDGC) (Venkatra-
man et al., 2024)), Hierarchical Diffusion for Offline Decision Making (HDMI) (Li et al.|[2023), and
Hierarchical Diffuser with Dense Actions (HD-DA) (Chen et al., 2024).

5.1 EXPERIMENTAL RESULTS ON D4RL

The experimental results summarized in Table [T] highlight the performance of various comparison
methods across different Gym tasks, with scores averaged over 5 seeds. Our proposed method,
DMEMM, consistently outperforms other methods across all tasks. Notably, in the HalfCheetah
environments, DMEMM achieves a 2.0-point improvement on the Med-Expert dataset, and an 6.8-
point improvement on the Med-Replay dataset compared to the previous best results. Addition-
ally, DMEMM shows a 2.8-point increase on the Med-Expert Walker2D task, demonstrating that
DMEMM effectively extracts valuable information, particularly from data that is not purely expert-
level.

In most tasks, DMEMM outperforms the previous state-of-the-art method HD-DA, another variant
of a Diffuser based planning method, by more than 2.0 points on average. Compared to Diffuser,
DMEMM shows superior performance on all tasks, indicating that our method improves the consis-
tency and optimality of diffusion model training in offline RL planning.

Overall, DMEMM achieves outstanding performance. With an average score of 87.9, DMEMM
yields a substantial improvement over the second-highest average score of 84.6 achieved by HD-
DA. These results clearly demonstrate the robustness and superiority of DMEMM in enhancing
performance across various Gym tasks.

5.2 EXPERIMENTAL RESULTS ON MAZE2D

We present our experimental results on the Maze2D navigation tasks in Table 2] where the results
are averaged over 5 seeds. The table shows that in all three environments, particularly at the U-Maze
and Medium difficulty levels, our proposed DMEMM method significantly outperforms other com-
parison methods. Specifically, on Maze2D tasks, DMEMM achieves a 4.0 point improvement over
the state-of-the-art HD-DA method on the U-Maze task, and a 2.6 point increase on the Medium-
sized maze. Compared to Diffuser, DMEMM shows an almost 20-point improvement. These results
indicate that our method performs exceptionally well in generating planning solutions for navigation
tasks.
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Table 3: the scores on the Walker2D environment at three different levels for all four ablation vari-
ants. Results are averaged over 5 seeds.

Gym Tasks DMEMM DMEMM-w/o-weighting DMEMM-w/o-)\;, DMEMM-w/o-\.;, DMEMM-w/o-tr-guide

Med-Expert  111.6£1.1 110.4+0.8 108.4+1.2 110.440.6 109.9£+1.0
WMedium 86.5+1.5 85.6+1.2 82.8+1.4 84.4+0.9 83.0£1.8
Med-Replay ~ 85.8+2.6 84.61+2.2 82.2+1.7 83.7£2.5 82.6+3.2

However, HD-DA shows better performance on the large maze tasks. This is likely due to the hi-
erarchical structure of HD-DA, which offers an advantage in larger, more complex environments
by breaking long-horizon planning into smaller sub-tasks, an area where our method is not specifi-
cally designed to excel. Nevertheless, DMEMM remains competitive in larger environments, while
demonstrating superior performance in smaller and medium-sized tasks.

5.3 ABLATION STUDY

We conduct an ablation study to evaluate the effectiveness of the key components in our DMEMM
framework. We compare the full DMEMM model with four ablated variants: (1) DMEMM-w/o-
weighting, which removes the weighting function in the reward-aware diffusion loss; (2) DMEMM-
w/0- ¢, which omits the transition-based diffusion modulation loss; (3) DMEMM-w/0-\.4, which
omits the reward-based diffusion modulation loss; and (4) DMEMM-w/o-tr-guide, which removes
transition guidance in the dual-guided sampling procedure. The ablation study is conducted on all
locomotion tasks across three levels of expert demonstrations, while only the Walker2D results are
reported in the main paper. The complete results are provided in Table [5] of the Appendix. Table
summarizes the performance of all four ablation variants on the D4RL locomotion benchmarks,
averaged over five random seeds.

The results highlight the contribution of each component in DMEMM. Across all three difficulty
levels, the full DMEMM model consistently achieves the best performance. In particular, remov-
ing transition-related components, either the transition-based modulation loss (DMEMM-w/0-\¢,)
or the transition guidance (DMEMM-w/o-tr-guide), leads to substantial performance drops, under-
scoring the importance of explicitly modeling transition dynamics in our approach. Incorporating
transition information significantly improves the consistency and fidelity of generated trajectory
plans. Moreover, DMEMM-w/0-)\,q and DMEMM-w/o-weighting yield comparable results, with
DMEMM-w/o-\.q showing a slightly larger degradation. This indicates that the designed reward
model and its weighting mechanism play a key role in improving the optimality of planned trajecto-
ries.

Overall, the ablation study demonstrates that each component of our DMEMM method contributes
significantly to its performance. Removing any of these components results in a noticeable de-
crease in performance, highlighting the importance of the weighting function, transition-based and
reward-based diffusion modulation loss, and transition guidance in achieving optimal results in of-
fline reinforcement learning tasks.

6 CONCLUSION

In this work, we addressed a critical limitation of conventional diffusion-based planning methods in
offline RL, which often overlook the consistency of transition dynamics in planned trajectories. To
overcome this challenge, we proposed Diffusion Modulation via Environment Mechanism Model-
ing (DMEMM), a novel approach that integrates RL-specific environment mechanisms, particularly
transition dynamics and reward functions, into the diffusion model training process. By modulating
the diffusion loss with cumulative rewards and introducing auxiliary losses based on transition dy-
namics and reward functions, DMEMM enhances both the coherence and quality of the generated
trajectories, ensuring they are plausible and optimized for policy learning. Our experimental re-
sults across multiple offline RL environments demonstrate the effectiveness of DMEMM, achieving
state-of-the-art performance compared to previous diffusion-based planning methods. The proposed
approach significantly improves the alignment of generated trajectories, addressing the discrepan-
cies between offline data and real-world environments. This provides a promising framework for
further exploration of diffusion models in RL and their potential practical applications.
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A PROOF OF PROPOSITION ]
In this section, we present the proof of Proposition

Proof. To incorporate key RL mechanisms into the training of the diffusion model, we explore
the denoising process and trace the denoised data through the reverse diffusion process. Let 7°
represent the denoised output trajectory. It can be gradually denoised using the reverse process,

following the chain rule: 7° ~ py(75%) Hszl po(TE=1|7%), where the detailed reverse process is

defined in Eq. and Eq. @]) Starting from an intermediate trajectory 7" at step k, by combining
these two equations, the trajectory at the next diffusion step, k£ — 1, can be directly sampled from the

distribution: ) )
ol ON [ (- 2 (R k) )02 ) 15
(7 (- getrton) ot )

By applying the reparameterization trick (Kingma and Welling| 2014)), we can derive a closed-form
solution for the above distribution. Let €}, represent the noise introduced in the reverse process
po (71| 74), and the denoised trajectory can then be formulated as:

1 11—«
~k—1 k k k
= — e — k
! Ve (T MEG(T ’ )) ke
(16)
1 1— o

= 7' k) + o€
\/ak \/ l—ak Ckk

In the following diffusion step k —2, the denoised data 7%~2 is sampled from a similar Gaussian dis-
tribution. By the Central Limit Theorem, 75~ serves as an unbiased estimate of 75~1. Therefore,
the denoised data 7%~2 can be expressed as follows:

1 1— oy
Y L Tkl,kl),gz 1)
<¢m( o ) )%k

1 N 1 —ay—
_ (Tkl _ $GQ(T]€71’ k — 1)) + Op—1€K—1
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1 1 E_ 1-— (77 1-— A —1 k—1
= ‘r k) ———€g(T Jk—1)+ orer
Nor=i (m T—ana P Ta ! )
+ Oop—1€x-1
1 1-— 1—ap_
= Tk — — Ak eo(TF k) — 70% ! eo(TF 1 E—1)
\VOEOE—1 (1 - ak)akak_l (1 - ak_l)ak_l
1
+ Ok€k + 0k—1€K—1-
Qf—1
(17)

The introduced noise €;_; in diffusion step £k — 1 can be combined with the noise € at diffu-

2
sion step k into a joint noise term, €;_1, by merging two Gaussian distributions, A/ (0, a[;:]i - I) and

N (0,07 1), into NV(0, (ak -

data 752 with only directly computable terms, where

+0%_,)I). Consequently, we obtain the distribution for the denoised

1—ak

~ 1 1-—
Fh=2 — - — A (T k) — — eo(TF 1 E—1)
VOEOE—1 (1 — ozk)ozkozk_l (1 — ak_l)ozk_l
+ 02 +
O’ €L_
1 k—1 1
1 1-— 1-—
~N T* — o (TF, k) — Gkl (rF 1Lk —1),
VOEOE—1 \/ 1—Ozk QpQg_—1 \/ 1—Oék 1 Ozk 1

(18)
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By repeating the denoising process for k iterations, we can ultimately obtain a closed-form repre-
sentation of the denoised data 7°.

19)
1 r l-«
= —7"— E —————¢p(7",0) +
VO i1 (1 — 5[7;)0_41' 6( )

Using the closed-form representation of the reparameterization trick, the final denoised data 7° fol-
lows a Gaussian distribution, expressed as 7° ~ N (fig (7%, k), 5%I). The mean jip(T*, k) captures
the denoising trajectory and is formulated as:

fo(TF k) = 74 4). (20)

Z /71 — ZZ)oz,; €o

2 accounts for the accumulatlon of noise over all diffusion steps and is

Similarly, the covariance &
written as:

k
R D Q1)
O

B IMPLEMENTATION DETAILS

Reward model and transition model pretraining Before training the diffusion model, we first
pretrain both the reward model and the transition model on the concatenated inputs (s, a;) from
the same dataset used for diffusion training (e.g., D4RL (Fu et al.| 2020)), with the same Gaussian
normalization. The transition model is implemented as a MLP with two hidden layers of 512 units,
ReLU activations, and a linear output head predicting the next-state mean (s, a;) € R*dim trained
with mean squared error against s;1. The reward model is also an MLP with two hidden layers
of 256 units, ReLU activations, and a linear output head, trained by regression to the per-timestep
rewards in the dataset. Both models are pretrained using the Adam optimizer (learning rate 3x 10~%),
batch size 64, for 5 x 10° training steps. After pretraining, the reward and transition models are
frozen during diffusion model training.

Diffusion training We adopt the core diffusion model and reward guidance implementation from
Diffuser (Janner et al.l [2022). Both the diffusion backbone and the reward-guidance network use a
temporal U-Net trained on length-7" trajectories of concatenated (s, a;), with hard conditioning on
the initial observation sg. We set the planning horizon to T' = 32 for locomotion tasks, 7' = 128
for the three U-Maze tasks, T' = 256 for the three Medium-Maze tasks, and T = 384 for the
three Large-Maze tasks. Observations and actions are Gaussian-normalized using statistics from the
offline dataset.

During training, the diffusion model is optimized with our designed total 10ss Ly = Lywaitr +
ALy + AraLra, as defined in Eq. . The weights in the reward-aware diffusion loss Lyqig are
clipped by 7max, Which we set to 1 in practice. We use Ay, = 0.1 for the transition-based auxiliary
modulation loss Ly, and A\;q = 0.05 for the reward-based auxiliary modulation loss L,q. When a
domain lacks stepwise rewards, the reward bias term is omitted. The diffusion backbone is trained
with the Adam optimizer (learning rate 2 x 10~%), batch size 32, gradient accumulation factor 2,
and EMA decay 0.995.

Diffusion sampling Following [Janner et al.| (2022), we use N = 20 reverse diffusion steps and
apply reward-only gradient guidance with scale & = 10~ at each step, re-imposing conditioning
after every step. We report the top-scoring trajectories under reward guidance.

Computational resources All experiments were conducted on a cluster of 10 nodes, each
equipped with four Intel Xeon CPUs, 32 GB of RAM, and an NVIDIA GeForce RTX 2080 GPU
with 11 GB of VRAM.

13
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Table 4: Quarter-wise transition mismatch £; (mean squared state prediction error) for Diffuser and
DMEMM on D4RL locomotion tasks (Medium-Expert). Results are averaged over 5 runs.

Method Environment  Quarter 1 Quarter 2 Quarter 3 Quarter 4

Diffuser HalfCheetah  29.10+0.32 34.67+£0.40 34.96+0.37 38.71+0.42
DMEMM  HalfCheetah 9.744+0.05 9.88+0.04 9.91+0.09 9.99+0.06

Diffuser Hopper 1.01£0.06 096+0.05 1.35+£0.08 2.96+0.12
DMEMM Hopper 0.82+0.07 0.75+0.06 1.02+0.09 1.85+0.15

Diffuser Walker2D 1.42+£0.07 321£006 3.52+£0.11 4.03£0.13
DMEMM Walker2D 1.12+0.08 219+010 243+0.11 2.61+0.14

C EVALUATION OF TRANSITION MISMATCH

To investigate the potential transition mismatch problem in conventional Diffuser models (Janner
et al., 2022), we conduct an experiment to quantify the discrepancy between trajectories predicted
by the diffusion model and the actual environment rollouts. This analysis highlights how traditional
Diffuser suffers from model-environment dynamics gaps, and how our proposed DMEMM effec-
tively tackles this issue. We compare Diffuser and DMEMM on D4RL locomotion tasks (Fu et al.,
2020) at the Medium-Expert level.

We use the trained diffusion models with reward guidance from both Diffuser and DMEMM for
evaluation. During the online sampling stage, the planner at each timestep ¢ generates an imagined
future sequence {5}, 1,5} ,5,..., 5}, }, where H is the planning horizon. Each predicted state 5}, ,
is compared to the corresponding ground-truth state s, collected from the environment for h €
{1,..., H}. This measures the discrepancy caused by the mismatch between the diffusion model
and the true environment dynamics. At each prediction step we compute the L2-norm error ¢, ;, =

. 2 . . .
st L h— St+h H g¢ TQ reduce computation, we reuse previously generated plans by backtracking from
stored plans at earlier states rather than recomputing forward rollouts from scratch.

To better analyze prediction quality over different time scales, we divide the planning horizon
into four equal-length quarters and report the average error in each quarter. Early quarters reflect
short-term prediction accuracy, while later quarters capture long-horizon stability. Formally, let
the trajectory length be T, the horizon H, and let quarter i € {1,2,3,4} cover prediction steps

h e [% +1, %} . The average squared error for ¢-th quarter is:
1 T—-H-1 iH/4 )
i = (T _ H) CH Z HéttJrh - 8t+hH2' (22)
4 t=0 h=(i-1)H/4+1

These quarter-wise errors quantify how transition mismatch accumulates along the trajectory:
smaller E; in later quarters indicates better long-horizon predictive ability.

The results are summarized in Table @] We observe that DMEMM greatly outperforms Diffuser
in terms of transition mismatch on the HalfCheetah environment. On the other two environments,
DMEMM still surpasses Diffuser, though with a smaller relative improvement. We hypothesize that
transition mismatch is more severe in complex dynamical systems such as HalfCheetah, suggesting
that our method is particularly beneficial for environments with more challenging dynamics.

Furthermore, as the planning horizon increases, Diffuser’s prediction errors grow substantially, in-
dicating poor generalization to real online interactions despite strong offline fitting. In contrast,
DMEMM consistently maintains lower transition mismatch, especially in the later quarters, with-
out exhibiting the pronounced error escalation seen in Diffuser. Interestingly, although HalfCheetah
shows the highest absolute prediction errors, neither Diffuser nor DMEMM displays a sharp error
increase across quarters in this task.

Overall, these findings demonstrate the superior long-horizon prediction quality and robustness of
the proposed DMEMM method.
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Table 5: This table presents the scores on D4RL locomotion suites for all four ablation variants.
Results are averaged over 5 seeds.

Gym Tasks DMEMM DMEMM-w/o-weighting DMEMM-w/o-\;, DMEMM-w/o-)\,;, DMEMM-w/o-tr-guide
HalfCheetah (Med-Expert)  94.6+1.2 93.8+£0.9 92.2£0.6 92.8+1.2 92.5+1.3
Hopper (Med-Expert) 115.9£1.6 115.2+0.4 114.4+0.8 115.0+0.4 114.840.2
Walker2d (Med-Expert) 111.6+1.1 110.44+0.8 108.4£1.2 110.4+0.6 109.9+£1.0
HalfCheetah (Medium) 49.2+0.8 48.0£1.1 46.3+£0.4 47.1£0.6 46.9£0.9
Hopper (Medium) 101.2+1.4 100.4+1.2 98.6+1.8 100.1+1.1 99.8+1.6
Walker2d (Medium) 86.5+1.5 85.6+1.2 82.8+1.4 84.4+0.9 83.0£1.8
HalfCheetah (Med-Replay)  46.1+1.3 44.7+£1.7 42.5+£2.9 442+1.4 43.6£2.5
Hopper (Med-Replay) 100.6+0.9 98.8+1.2 97.0+£0.9 98.2+0.6 96.2+1.2
Walker2d (Med-Replay) 85.842.6 84.61+2.2 82.2+1.7 83.7£2.5 82.6+3.2
Hopper-Medium-Expert Hopper-Medium-Expert Walker2D-Medium-Expert Walker2D-Medium-Expert

Score
Score

1080

Atr Ard Atr Ard

Figure 1: Hyperparameter sensitivity analysis of the tradeoff parameters for transition-based diffu-
sion modulation loss (\¢-) and reward-based diffusion modulation loss (\,.;) on Hopper-Medium-
Expert and Walker2D-Medium-Expert environments.

D FULL ABLATION RESULTS

The complete ablation results of our DMEMM method compared with the four ablated variants (1)
DMEMM-w/o-weighting, which removes the weighting function in the reward-aware diffusion loss;
(2) DMEMM-w/0-\¢;, which omits the transition-based diffusion modulation loss; (3) DMEMM-
w/0-)\;q, which omits the reward-based diffusion modulation loss; and (4) DMEMM-w/o-tr-guide,
which removes transition guidance in the dual-guided sampling procedure are presented in Table 5]

The conclusions drawn from the full ablation results are consistent with those reported in the
main paper. Across all three environments and all expert demonstration levels, the performance
of DMEMM is substantially degraded when either the transition-based diffusion modulation loss or
the transition guidance is removed, highlighting the critical role of explicitly modeling transition dy-
namics. Dropping the weighting function or the reward-based diffusion modulation loss also harms
performance, with the reward auxiliary loss L.q appearing relatively more important between the
two. Overall, removing any single component leads to a noticeable performance drop compared to
the full DMEMM model, demonstrating the effectiveness and necessity of each key component in
our approach.

E HYPERPARAMETER SENSITIVITY ANALYSIS

In this section, we analyze the sensitivity of the tradeoff parameters A, (transition-based diffusion
modulation loss) and A4 (reward-based diffusion modulation loss) to understand their impact on
performance in offline RL tasks. The analysis is conducted on two environments: Hopper-Medium-
Expert and Walker2D-Medium-Expert.

Figures (1] illustrate the performance sensitivity to the tradeoff parameters. For ), the perfor-
mance peaks at approximately Ay = 0.1 in both the Walker2D-Medium-Expert and Hopper-
Medium-Expert environments. Beyond this optimal point, performance declines notably, regard-
less of whether A is increased or decreased. Similarly, for A4, the performance also peaks around
Ara = 0.05 in both environments. However, unlike ), performance shows little change when Ay
is adjusted within a small range, indicating that A4 is less sensitive than Ay. Overall, the hyper-
parameter sensitivity analysis shows that both Ay and A, have similar effects on performance and
are robust across different tasks. Additionally, it confirms that the selected hyperparameters for our
experiments are optimal.
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