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Abstract

Continual learning on edge devices poses unique
challenges due to stringent resource constraints.
This paper introduces a novel method that lever-
ages stochastic competition principles to pro-
mote sparsity, significantly reducing deep net-
work memory footprint and computational de-
mand. Specifically, we propose deep networks
that comprise blocks of units that compete locally
to win the representation of each arising new task;
competition takes place in a stochastic manner.
This type of network organization results in sparse
task-specific representations from each network
layer; the sparsity pattern is obtained during train-
ing and is different among tasks. Crucially, our
method sparsifies both the weights and the weight
gradients, thus facilitating training on edge de-
vices. This is performed on the grounds of win-
ning probability for each unit in a block. During
inference, the network retains only the winning
unit and zeroes-out all weights pertaining to non-
winning units for the task at hand. Thus, our ap-
proach is specifically tailored for deployment on
edge devices, providing an efficient and scalable
solution for continual learning in resource-limited
environments.

1. Introduction
Continual Learning (CL), also referred to as Lifelong Learn-
ing (Thrun, 1995), aims to learn sequential tasks and acquire
new information while preserving knowledge from previ-
ous learned tasks (Thrun & Mitchell, 1995). This paper’s
focus is on a variant of CL dubbed class-incremental learn-
ing (CIL) (Belouadah & Popescu, 2019; Gupta et al., 2020;
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Deng et al., 2021). The main principle of CIL is a CL sce-
nario where on each iteration we are dealing with data from
a specific task, and each task contains new classes that must
be learnt.

Edge devices, characterized by their limited computational
resources, necessitate efficient machine learning models
to perform tasks effectively. Sparsity in neural networks
emerges as a critical feature to address these limitations,
reducing memory requirements and computational costs.
This work introduces a stochastic competition mechanism
to induce sparsity, optimizing continual learning processes
specifically for such constrained environments.

Recently, different research groups have drawn inspira-
tion from the lottery ticket hypothesis (LTH) (Frankle &
Carbin, 2019) to introduce the lifelong tickets (LLT) method
(Chen et al., 2021), the Winning SubNetworks (WSN)
method (Kang et al., 2022), and, more recently, the Soft-
SubNetworks approach (Kang et al., 2023). However, these
recent advances are confronted with major limitations: (i)
LLT entails an iterative pruning procedure, that requires
multiple repetitions of the training algorithm for each task;
this is not suitable for edge devices. (ii) The existing al-
ternatives do not take into consideration the uncertainty in
the used datasets, which would benefit from the subnetwork
selection process being stochastic, as opposed to hard unit
pruning. In fact, it has been recently shown that stochastic
competition mechanisms among locally competing units
can offer important generalization capacity benefits for deep
networks used in as diverse challenges as adversarial ro-
bustness (Panousis et al., 2021), video-to-text translation
(Voskou et al., 2021), and model-agnostic meta-learning
(Kalais & Chatzis, 2022).

In a different vein, SparCL (Wang et al., 2022) has been the
first work on CL specifically designed to tackle applications
on edge devices, where resource constraints are significant.
Apart from weight sparsity, SparCL also considers data ef-
ficiency and gradient sparsity to accelerate training while
preserving accuracy. SparCL dynamically maintains impor-
tant weights for current and previous tasks and adapts the
sparsity during transitions between tasks, which helps in
mitigating catastrophic forgetting—a common challenge in
continual learning. Importantly, in contrast to LTH-based
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methods, the foundational characteristics of the approach
introduce sparsity into the gradient updates, which reduces
the computational cost during backpropagation. This com-
ponent is critical for efficient training on hardware with
limited computational capabilities, such as mobile phones
or other edge devices.

Inspired from these facts, this work proposes a radically
different regard toward addressing catastrophic forgetting
in CIL. Our approach is founded upon the framework of
stochastic local competition which is implemented in a task-
wise manner. Specifically, our proposed approach relies
upon the following novel contributions:

• Task-specific sparsity in the learned representa-
tions. We propose a novel mechanism that inherently
learns to extract sparse task-specific data representa-
tions. Specifically, each layer of the network is split
into blocks of competing units; local competition is
stochastic and it replaces traditional nonlinearities, e.g.
ReLU. Being presented with a new task, each block
learns a distribution over its units that governs which
unit specializes in the presented task. We dub this type
of nonlinear units as task winner-takes-all (TWTA).
Under this scheme, the network learns a Categorical
posterior over the competing block units; this is the
winning unit posterior of the block. Only the winning
unit of a block generates a non-zero output fed to the
next network layer. This renders sparse the generated
representations, with the sparsity pattern being task-
specific.

• Weight gradient pruning driven from the learned
stochastic competition posteriors. During training,
the network utilizes the learned Categorical posteriors
over winning block units to introduce sparsity into the
gradient updates. In a sense, the algorithm inherently
masks out the gradient updates of the block units with
lower winning posteriors. This is immensely important
when deep network training is carried out on edge
devices.

• Winner-based weight pruning at inference time.
During inference for a given task, we use the (Categor-
ical) winner posteriors learned for the task to select the
winner unit of each block; we zero-out the remainder
block units. This forms a task-winning ticket used for
inference. This way, the size of the network used at in-
ference time is significantly reduced; pruning depends
on the number of competing units per block, since we
drop all block units except for the selected winner with
maximum winning posterior.

We evaluate our approach, dubbed TWTA for CIL (TWTA-
CIL), on image classification benchmarks. We show that

our approach shows superior performance compared to both
conventional CL methods and CL-adapted sparse training
methods on all benchmark datasets. This leads to a (i)
considerable improvement in accuracy, while (ii) yielding
task-specific networks that require immensely less FLOPs
and impose a considerably lower memory footprint.

The remainder of this paper is organized as follows: In Sec-
tion 2, we introduce our approach and describe the related
training and inference processes. Section 3 briefly reviews
related work. In Section 4, we perform an extensive ex-
perimental evaluation and ablation study of the proposed
approach. In the last Section, we summarize the contribution
of this work.

2. Proposed Approach
2.1. Problem Definition

CIL objective is to learn a unified classifier from a sequential
stream of data comprising different tasks that introduce new
classes. CIL methods should scale to a large number of tasks
without immense computational and memory growth. Let us
consider a CIL problem T which consists of a sequence of n
tasks, T = {(C(1), D(1)), (C(2), D(2)), . . . , (C(n), D(n))}.
Each task t contains data D(t) = (x(t),y(t)) and new
classes C(t) = {cmt−1+1, cmt−1+2, . . . , cmt

}, where mt

is the number of presented classes up to task t. We de-
note as x(t) the input features, and as y(t) the one-hot label
vector corresponding to x(t).

When training for the t-th task, we use the data of the task,
D(t). We consider learners-classifiers that are deep net-
works parameterized by weights W , and we use f(x(t);W )
to indicate the output Softmax logits for a given input x(t).
Facing a new dataset D(t), the model’s goal is to learn new
classes and maintain performance over old classes.

2.2. Model formulation

Our approach integrates a stochastic competition mecha-
nism within the training process to promote sparsity. By
selectively activating a subset of neurons and pruning less
important connections, our method maintains a high level of
accuracy while significantly reducing the model’s complex-
ity. This sparsity not only ensures lower memory usage but
also accelerates inference, making it ideal for edge devices.

Let us denote as x(t) ∈ RE an input representation vector
presented to a dense ReLU layer of a traditional deep neural
network, with corresponding weights matrix W ∈ RE×K .
The layer produces an output vector y(t) ∈ RK , which is
fed to the subsequent layers.

In our approach, a group of J ReLU units is replaced by a
group of J competing linear units, organized in one block;
each layer contains I blocks of J units. Within each block,
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different units are specialized in different tasks; only one
block unit specializes in a given task t. The layer input
is now presented to each block through weights that are
organized into a three-dimensional matrix W ∈ RE×I×J .
Then, the j-th (j = 1, . . . , J) competing unit within the i-th
(i = 1, . . . , I) block computes the sum

∑E
e=1(we,i,j) · x(t)

e .

Fig. 1 illustrates the operation of the proposed architecture
when dealing with task t. As we observe, for each task only
one unit (the “winner”) in a TWTA block will present its
output to the next layer during forward passes through the
network; the rest are zeroed out. During backprop (training),
the strength of the updating signal is regulated from the re-
laxed (continuous) outcome of the competition process; this
is encoded into a (differentiable) sample from the postulated
Gumbel-Softmax.

Fig. 2 illustrates a full TWTA layer, comprising I blocks
with J competing units each. We introduce the hidden win-
ner indicator vector ξt,i = [ξt,i,j ]

J
j=1 of the i-th block per-

taining to the t-th task. It holds ξt,i,j = 1 if the j-th unit in
the i-th block has specialized in the t-th task (winning unit),
ξt,i,j = 0 otherwise. We also denote ξt ∈ {0, 1}I·J the
vector that holds all the ξt,i ∈ {0, 1}J subvectors. On this
basis, the output of the layer, y(t) ∈ RI·J , in our approach
is composed of I sparse subvectors y(t)

i ∈ RJ . Succinctly,
we can write y

(t)
i = [y

(t)
i,j ]

J
j=1, where:

y
(t)
i,j = ξt,i,j

E∑
e=1

(we,i,j) · x(t)
e ∈ R (1)

We postulate that the hidden winner indicator variables are
drawn from a Categorical posterior distribution that yields:

p(ξt,i) = Categorical(ξt,i|πt,i) (2)

The hyperparameters πt,i are optimized during model train-
ing, as we explain next. The network learns the global
weight matrix W , that is not specific to a task, but evolves
over time. During training, by learning different winning
unit distributions, p(ξt,i), for each task, we appropriately
mask-out large parts of the network, dampen the training
signal strength for these parts, and mainly direct the training
signal to update only a fraction of W that pertains to the
remainder of the network. This results in a very slim weight
updating scheme during backpropagation, which updates
only a small winning subnetwork; thus, we yield impor-
tant computational savings of immense significance to edge
devices.

In Fig. 1, we depict the operation principles of our proposed
network. As we show therein, the winning information
is encoded into the trained posteriors p(ξt,i), which are
used to regulate weight training, as we explain in Section
2.4. This is radically different from (Chen et al., 2021),

as we do not search for optimal winning tickets during
CIL via repetitive pruning and retraining for each arriving
task. This is also radically different from (Kang et al., 2023),
where a random uniform mask is drawn for regulating which
weights will be updated, and another mask is optimized
to select the subnetwork specializing to the task at hand.
Instead, we perform a single backward pass to update the
winning unit distributions, p(ξt,i), and the weight matrix,
W ; importantly, the updates of the former (winning unit
posteriors) regulate the updates of the latter (weight matrix).

Inference. As we depict in Fig. 1, during inference for a
given task t, we retain the unit with maximum hidden winner
indicator variable posterior, πt,i,j , in each TWTA block i,
and prune-out the weights pertaining to the remainder of the
network. The feedforward pass is performed, by definition,
by computing the task-wise discrete masks:

ξ̃t,i =onehot

(
argmax

j
πt,i,j

)
∈ RJ

Thus: winnert,i ≜ argmax
j

πt,i,j

(3)

Apparently, this way the proportion of retained weights for
task t is only equal to the 1

J ∗100% of the number of weights
the network is initialized with.

2.3. A Convolutional Variant

Further, to accommodate architectures comprising convolu-
tional operations, we consider a variant of the TWTA layer,
inspired from (Panousis et al., 2019). In the remainder of
this work, this will be referred to as the Conv-TWTA layer,
while the original TWTA layer will be referred to as the
dense variant. The graphical illustration of Conv-TWTA is
provided in Fig. 3.

Specifically, let us assume an input tensor X(t) ∈ RH×L×C

of a layer, where H,L,C are the height, length and chan-
nels of the input. We define a set of kernels, each with
weights Wi ∈ Rh×l×C×J , where h, l, C, J are the kernel
height, length, channels and competing feature maps, and
i = 1, . . . , I .

Here, analogously to the grouping of linear units in a dense
TWTA layer of Section 2.2, local competition is performed
among feature maps in a kernel. Thus, each kernel is treated
as a TWTA block, feature maps in a kernel compete among
them, and multiple kernels of competing feature maps con-
stitute a Conv-TWTA layer.

This way, the output Y (t) ∈ RH×L×(I·J) of a layer under
the proposed convolutional variant is obtained via concate-
nation along the last dimension of the subtensors Y (t)

i :

Y
(t)
i = ξt,i · (Wi ⋆X

(t)) ∈ RH×L×J (4)
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Figure 1. A detailed graphical illustration of the i-th block of a proposed TWTA layer (Section 2.2); for demonstration purposes, we
choose J = 2 competing units per block. Inputs x(t) = {x(t)

1 , . . . , x
(t)
E } are presented to each unit in the i-th block, when training on

task t. Due to the TWTA mechanism, during forward passes through the network, only one competing unit propagates its output to the
next layer; the rest are zeroed-out.

Figure 2. A detailed graphical illustration of a TWTA layer (Section 2.2); for demonstration purposes, we choose I = 2 blocks with
J = 3 competing units per block. Inputs x(t) = {x(t)

1 , . . . , x
(t)
E } are presented to each unit in all blocks, when training on task t.

where “⋆” denotes the convolution operation.

Here, the winner indicator variables ξt,i are drawn again
from the distribution of Eq. (2); they now govern competi-
tion among feature maps of a kernel.

Inference. At inference time, we employ a similar winner-
based weight pruning strategy as for dense TWTA layers; for
each task, the weights associated with one feature map (the
winner) are retained while the rest are zeroed-out. Specif-
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Figure 3. The convolutional TWTA variant (Section 2.3); for demonstration purposes, we choose J = 2 competing feature maps per
kernel. Due to the TWTA mechanism, during forward passes through the network, only one competing feature map propagates its output
to the next layer; the rest are zeroed-out.

ically, the winning feature map in a kernel i for task t is
selected through argmax over the hidden winner indicator
variable posteriors, πt,i,j ∀j, similar to Eq. (3). (see also
Fig. 3). This massively sparsifies weights, rendering the
network amenable to edge devices.

2.4. Training

For each task t, our approach consists in executing a single
full training cycle. The performed training cycle targets both
the network weights, W , and the posterior hyperparameters
πt,i of the winner indicator hidden variables pertaining to
the task, p(ξt,i) ∀i.

The vectors πt,i are initialized at random, while the network
weights, W , “continue” from the estimator obtained after
training on task t − 1. We denote as W (t) the updated
weights estimator obtained through the training cycle on the
t-th task.

To perform training, we resort to minimization of a sim-
ple categorical cross-entropy criterion. Let us consider the
u-th training iteration on task t, with data batch D

(t)
u =

(X
(t)
u , Y

(t)
u ). The training criterion is the categorical cross-

entropy CE(Y
(t)
u , f(X

(t)
u ;W (t), ξ̂t)) between the data la-

bels Y (t)
u and the class probabilities f(X(t)

u ;W (t), ξ̂t) gen-
erated from the penultimate Softmax layer of the network.
In this definition, ξ̂t = [ξ̂t,i]

I
i=1 is a vector concatenation of

single Monte-Carlo (MC) samples drawn from the Categori-
cal posteriors p(ξt,i).

To ensure low-variance gradients with only one drawn MC
sample, we reparameterize these samples by resorting to the

Gumbel-Softmax relaxation (Maddison et al., 2017). The
Gumbel-Softmax relaxation yields sampled instances ξ̂t,i
under the following expression:

ξ̂t,i = Softmax(([log πt,i,j + gt,i,j ]
J
j=1)/τ) ∈ RJ , ∀i

where : gt,i,j = − log(− logUt,i,j), Ut,i,j ∼ Uniform(0, 1)

(5)

and τ ∈ (0,∞) is a temperature factor that controls how
closely the Categorical distribution p(ξt,i) is approximated
by the continuous relaxation. This is similar to (Panousis
et al., 2019).

3. Related Work
Recent works in (Chen et al., 2021; Kang et al., 2022;
2023) have pursued to build computationally efficient con-
tinual learners by drawing inspiration from LTH (Frankle &
Carbin, 2019). These works compose sparse subnetworks
that achieve comparable or/and even higher predictive per-
formance than their initial counterparts. However, our work
is substantially different from the existing state-of-the-art,
as it specifically accounts for the constraints imposed in the
context of execution on an edge device:
(i) Contrary to (Chen et al., 2021), we do not employ itera-
tive pruning, which repeats multiple full cycles of network
training and pruning; this would be completely intractable
on an edge device. Instead, we perform a single training
cycle, at the end of which we retain a (task-specific) subnet-
work to perform inference for the task.
(ii) (Kang et al., 2022) and (Kang et al., 2023) select a sub-
network that will be used for the task at hand on the grounds
of an optimization criterion for binary masks imposed over
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the network weights. Once this subnetwork has been se-
lected, they train randomly selected subsets of the weights
of the whole network, to account for the case of a subop-
timal subnetwork selection. Similar to (Chen et al., 2021),
this is completely intractable on an edge device.

On the contrary, our method attempts to encourage different
units in a competing block to specialize to different tasks.
Training is performed concurrently for the winner unit in-
dicator hidden variables, the posteriors of which regulate
weight updates, as well as the network weights themselves.
Thus, network pruning comes at the end of weight updating
and not beforehand. We posit that this regulated updat-
ing scheme, which does not entail a priori hard pruning
decisions, facilitates generalization without harming catas-
trophic forgetting.

On the other hand, (Wang et al., 2022) are the first to di-
rectly attack the problem of CL on an edge device. To this
end, they suggest an weight importance metric and a re-
lated weight gradient importance metric, which attempt to
retain (1) weights of larger magnitude for output stability,
(2) weights important for the current task for learning ca-
pacity, and (3) weights important for past data to mitigate
catastrophic forgetting. However, the use of these metrics
requires the application of intra-task and inter-task adjust-
ment processes, which require extensive heuristic tuning. In
addition, the use of two different but related metrics for the
weights and their gradients is due to the heuristic thresholds
this method requires, which cannot be homogeneous. This is
a drawback that makes the method hard to use off-the-shelf
in a given scenario. Finally, for the method to

4. Experiments
To demonstrate the effectiveness of our method for edge
devices, we conducted experiments using a simulated edge
computing environment. We benchmarked our sparse model
against traditional dense models on various datasets, observ-
ing performance in terms of computational efficiency and
memory usage.

We evaluate on CIFAR-100 (Krizhevsky et al., 2012), Tiny-
ImageNet (Le & Yang, 2015), PMNIST (LeCun et al., 1998)
and Omniglot Rotation (Lake et al., 2017). Also, we evalu-
ate on the 5-Datasets (Saha et al., 2021) benchmark, in order
to examine how our method performs in case that cross-task
generalization concerns different datasets. We randomly di-
vide the classes of each dataset into a fixed number of tasks
with a limited number of classes per task. Specifically, in
each training iteration, we construct N -way few-shot tasks
by randomly picking N classes and sampling few training
samples for each class. In Supplementary Section A, we
specify further experimental details for our datasets.

We adopt the original ResNet18 network (He et al., 2016) for

Tiny-ImageNet, PMNIST and 5-Datasets; we use a 5-layer
AlexNet similar to (Saha et al., 2021) for the experiments on
CIFAR-100, and LeNet (LeCun et al., 1998) for Omniglot
Rotation. In the case of our approach, we modify those
baselines by replacing each ReLU layer with a layer of
(dense) TWTA blocks, and each convolutional layer with
a layer of Conv-TWTA blocks. See more details in the
Supplementary Section B.

For both the network weights, W , and the log hyperpa-
rameters, logπt,i, we employ Glorot Normal initialization
(Glorot & Bengio, 2010). At the first training iteration of
a new task, we initialize the Gumbel-Softmax relaxation
temperature τ to 0.67; as the training proceeds, we linearly
anneal its value to 0.01. We use SGD optimizer (Robbins,
2007) with a learning rate linearly annealed to 0, and initial
value of 0.1. We run 100 training epochs per task, with
batch size of 40.

4.1. Experimental results

In Table 1, we show how TWTA-CIL performs in various
benchmarks compared to popular alternative methods. We
emphasize that the performance of SoftNet and WSN is
provided for the configuration reported in the literature that
yields the best accuracy, as well as for the reported configu-
ration that corresponds to the proportion of retained weights
closest to our method. Turning to LLT, we report how the
method performs with no pruning and with pruning ratio
closest to our method.

As we observe, our method outperforms the existing state-of-
the-art in every considered benchmark. For instance, WSN
performs worse than TWTA-CIL (3.125%), irrespectively
of whether WSN retains a greater or a lower proportion
of the initial network. Thus, our approach successfully
discovers sparse subnetworks (winning tickets) that are pow-
erful enough to retain previous knowledge, while gener-
alizing well to new unseen tasks. Crucially, our method
outperforms all the alternatives, including the related, edge
device-oriented SparCL approach, in terms of both obtained
accuracy and number of retained parameters at inference
time (thus, memory footprint).

Finally, it is interesting to examine how the winning ticket
vectors differentiate across tasks. To this end, we compute
the overlap among the ξ̃t = [ξ̃t,i]i vectors, defined in Eq.
(3), for all consecutive pairs of tasks, (t−1, t), and compute
average percentages. We observe that average overlap per-
centages range from 6.38% to 10.67% across the considered
datasets; this implies clear differentiation.
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Table 1. Comparisons on CIFAR-100, Tiny-ImageNet, PMNIST, Omniglot Rotation and 5-Datasets. We set J = 32; thus, the proportion
of retained weights for each task, after training, is equal to the ( 1

J
∗ 100 = 3.125)% of the initial network. Also, we show the number of

retained weights after training (in millions), for our method and the alternative approaches for reducing model size.

Algorithm CIFAR-100 Tiny-ImageNet PMNIST Omniglot Rotation 5-Datasets

GEM (Lopez-Paz & Ranzato, 2017) 59.24 39.12 - - -
iCaRL (Rebuffi et al., 2017) 42.45 43.97 55.82 44.60 48.01
ER (Chaudhry et al., 2019) 59.12 37.65 - - -
IL2M (Belouadah & Popescu, 2019) 53.24 47.13 60.12 51.31 55.93
La-MAML (Gupta et al., 2020) 60.02 55.45 80.82 61.73 75.92
FS-DGPM (Deng et al., 2021) 63.81 59.74 80.92 62.83 76.10
GPM (Saha et al., 2021) 62.40 56.28 83.51 74.63 80.75

SoftNet (80%, 4.5M params) 48.52 54.02 64.02 55.82 57.60
SoftNet (10%, 0.69M params) 43.61 47.30 57.93 46.83 52.11
LLT (100%, 11M params) 61.46 58.45 80.38 70.19 74.61
LLT (6.87%, 0.77M params) 62.69 59.03 80.91 68.46 75.13
WSN (50%, 4.2M params) 64.41 57.83 84.69 73.84 82.13
WSN (8%, 0.68M params) 63.24 57.11 83.03 72.91 79.61

TWTA-CIL (3.125%, 0.0975M params) 66.53 61.93 85.92 76.48 83.77

SparCL (5%, 0.54M params) 59.55 52.16 76.82 66.53 72.84

Table 2. Average training wall-clock time (in secs), c.f. Table 1.

Algorithm CIFAR-100 Tiny-ImageNet PMNIST Omniglot Rotation 5-Datasets

TWTA-CIL (3.125%, 0.0975M params) 3.7× 1015 3× 1015 5.4× 1015 6.1× 1015 8.5× 1015

SparCL (5%, 0.54M params) 1.2× 1016 1.× 1016 3.1× 1016 4.4× 1016 9.3× 1016

Table 3. BTI over the considered algorithms and datasets of Table 1; the lower the better.

Algorithm CIFAR-100 Tiny-ImageNet PMNIST Omniglot Rotation 5-Datasets

iCaRL 13.41 6.45 8.51 18.41 23.56
IL2M 20.41 7.61 9.03 14.60 19.14
La-MAML 7.84 13.84 10.51 17.04 15.13
FS-DGPM 9.14 12.25 8.85 13.64 19.51
GPM 12.44 8.03 11.94 16.39 17.11

SoftNet (80%) 13.80 9.62 10.38 18.12 18.04
SoftNet (10%) 12.09 8.33 9.76 16.30 18.68
LLT (100%) 15.02 7.05 9.54 15.31 14.80
LLT (6.87%) 14.61 3.51 11.84 17.12 17.46
WSN (50%) 11.14 4.81 10.51 14.20 20.41
WSN (8%) 10.58 8.78 9.32 15.34 18.92

TWTA-CIL (12.50%) 6.14 2.50 8.04 13.64 13.51

4.1.1. COMPUTATIONAL TIMES FOR TRAINING CIL
METHODS

In Table 2, we report the training FLOPs for our method and
its direct competitor, that is SparCL (Wang et al., 2022). It
is apparent that our method yields much improved training
algorithm computational costs.

4.1.2. REDUCTION OF FORGETTING TENDENCIES

To examine deeper the obtained improvement in forgetting
tendencies, we report the backward-transfer and interfer-
ence (BTI) values of the considered methods in Table 3.
BTI measures the average change in the accuracy of each
task from when it was learnt to the end of the training, that
is training on the last task; thus, it is immensely relevant
to this empirical analysis. A smaller value of BTI implies
lesser forgetting as the network gets trained on additional
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Table 4. Effect of block size J ; Tiny-ImageNet and CIFAR-100 datasets. The higher the block size J the lower the fraction of the trained
network retained at inference time.

Tiny-ImageNet CIFAR-100

Algorithm Time Accuracy J Time Accuracy J

TWTA-CIL (50%) 2634.02 61.32 2 1493.79 65.73 2
TWTA-CIL (25%) 2293.81 61.04 4 1301.20 65.45 4
TWTA-CIL (12.50%) 1914.63 61.93 8 1039.73 66.53 8
TWTA-CIL (6.25%) 1556.09 61.45 16 801.46 65.89 16
TWTA-CIL (3.125%) 1410.64 60.86 32 785.93 65.40 32

tasks. As Table 3 shows, our approach forgets less than the
baselines on all benchmarks.

4.2. Effect of block size J

Finally, we re-evaluate TWTA-CIL with various block size
values J (and correspondingly varying number of layer
blocks, I). In all cases, we ensure that the total number
of feature maps, for a convolutional layer, or units, for a
dense layer, which equals I ∗ J , remains the same as in
the original architecture of Section 4.1. This is important,
as it does not change the total number of trainable param-
eters, but only the organization into blocks under the local
winner-takes-all rationale. Different selections of J result
in different percentages of remaining network weights at
inference time, as we can see in Table 4 (datasets Tiny-
ImageNet and CIFAR-100). As we observe, the “TWTA-
CIL (12.50%)” alternative, with J = 8, is the most accurate
configuration of TWTA-CIL. However, the most efficient
version, perfectly fit for application to edge devices, that is
TWTA-CIL (3.125%), yields only a negligible accuracy drop in
all the considered benchmarks.

5. Conclusion
This paper presented a sparsity-promoting method tailored
for continual learning on edge devices. By incorporating
stochastic competition, we achieved an approach that is
both efficient and effective, suitable for the limited capa-
bilities of edge computing. Specifically, the results clearly
demonstrated that our sparsity-promoting method signifi-
cantly outperforms traditional models on edge devices. We
observed a significant reduction in memory usage and an
increase in computational speed, confirming the suitabil-
ity of our approach for deployment in resource-constrained
environments. Future research may explore further opti-
mizations to enhance the adaptability of this method across
more diverse edge computing scenarios.
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A. More details on the used datasets
Datasets and Task Splittings 5-Datasets is a mixture of 5
different vision datasets: CIFAR-10, MNIST (LeCun et al.,
1998), SVHN (Netzer et al., 2011), FashionMNIST (Xiao
et al., 2017) and notMNIST (Bui & Chang, 2016). Each
dataset consists of 10 classes, and classification on each
dataset is treated as a single task. PMNIST is a variant of
MNIST, where each task is generated by shuffling the input
image pixels by a fixed permutation. In the case of Om-
niglot Rotation, we preprocess the raw images of Omniglot
dataset by generating rotated versions of (90◦, 180◦, 270◦)
as in (Kang et al., 2022). For 5-Datasets, similar to (Kang
et al., 2022), we pad 0 values to raw images of MNIST
and FashionMNIST, convert them to RGB format to have a
dimension of 3∗32∗32, and finally normalize the raw image
data. All datasets used in Section 4 were randomly split
into training and testings sets with ratio of 9:1. The number
of stored images in the memory buffer - per class - is 5 for
Tiny-ImageNet, and 10 for CIFAR-100, PMNIST, Omniglot
Rotation and 5-Datasets.

We randomly divide the 100 classes of CIFAR-100 into
10 tasks with 10 classes per task; the 200 classes of Tiny-
ImageNet into 40 tasks with 5 classes per task; the 200
classes of PMNIST into 20 tasks with 10 classes per task;
and in the case of Omniglot Rotation, we divide the avail-
able 1200 classes into 100 tasks with 12 classes per task.
The N -way few-shot settings for the constructed tasks in
each training iteration are: 10-way 10-shot for CIFAR-100,
PMNIST and 5-Datasets, 5-way 5-shot for Tiny-ImageNet,
and 12-way 10-shot for Omniglot Rotation.
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Table 5. Modified ResNet18 architecture parameters.

Layer Type (J = 2) (J = 4) (J = 8) (J = 16) (J = 32)

TWTA-Conv 8 4 2 1 1

4x TWTA-Conv 8 4 2 1 1
4x TWTA-Conv 8 4 2 1 1
4x TWTA-Conv 16 8 4 2 1
4x TWTA-Conv 16 8 4 2 1

TWTA-Dense 16 8 4 2 1

Table 6. Modified AlexNet architecture parameters.

Layer Type (J = 2) (J = 4) (J = 8) (J = 16) (J = 32)

TWTA-Conv 8 4 2 1 1

TWTA-Conv 8 4 2 1 1
TWTA-Conv 8 4 2 1 1
TWTA-Conv 16 8 4 2 1
TWTA-Dense 64 32 16 8 4

TWTA-Dense 64 32 16 8 4

Unlabeled Dataset The external unlabeled data are re-
trieved from 80 Million Tiny Image dataset (Torralba et al.,
2008) for CIFAR-100, PMNIST, Omniglot Rotation and
5-Datasets, and from ImageNet dataset (Krizhevsky et al.,
2012) for Tiny-ImageNet. We used a fixed buffer size of
128 for querying the same number of unlabeled images per
class of learned tasks at each training iteration, based on the
feature similarity that is defined by l2 norm distance.

B. Modified Network Architecture details
B.1. ResNet18

The original ResNet18 comprises an initial convolutional
layer with 64 3x3 kernels, 4 blocks of 4 convolutional layers
each, with 64 3x3 kernels on the layers of the first block,
128 3x3 kernels for the second, 256 3x3 kernels for the
third and 512 3x3 kernels for the fourth. These layers are
followed by a dense layer of 512 units, a pooling and a final
Softmax layer. In our modified ResNet18 architecture, we
consider kernel size = 3 and padding = 1; in Table 5, we
show the number of used kernels / blocks and competing
feature maps / units, J , in each modified layer.

B.2. AlexNet

The 5-layer AlexNet architecture comprises 3 convolutional
layers of 64, 128, and 256 filters with 4x4, 3x3, and 2x2
kernel sizes, respectively. These layers are followed by two
dense layers of 2048 units, with rectified linear units as acti-
vations, and 2x2 max-pooling after the convolutional layers.

The final layer is a fully-connected layer with a Softmax out-
put. In our modified AlexNet architecture, we replace each
dense ReLU layer with a layer of (dense) TWTA blocks,
and each convolutional layer with a layer of Conv-TWTA
blocks; in Table 6, we show the number of used kernels
/ blocks and competing feature maps / units, J , in each
modified layer.

B.3. LeNet

The LeNet architecture comprises 2 convolutional layers of
20, and 50 feature maps, followed by one feedforward fully
connected layer of 500 units, and a final Softmax layer. In
our modified LeNet architecture, we replace each of the 2
convolutional layers with one layer of Conv-TWTA blocks;
the former retains 2 kernels / blocks of 8 competing feature
maps, and the latter 6 kernels / blocks of 8 competing feature
maps. The fully connected layer is replaced with a dense
TWTA-layer, consisting of 50 blocks of 8 competing units.

10


