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ABSTRACT

With the increasing popularity of large language models, concerns over content
authenticity have led to the development of myriad watermarking schemes. These
schemes can be used to detect a machine-generated text via an appropriate key,
while being imperceptible to readers with no such keys. The corresponding de-
tection mechanisms usually take the form of statistical hypothesis testing for the
existence of watermarks, spurring extensive research in this direction. However,
the finer-grained problem of identifying which segments of a mixed-source text are
actually watermarked, is much less explored; the existing approaches either lack
scalability or theoretical guarantees robust to paraphrase and post-editing. In this
work, we introduce a unique perspective to such watermark segmentation problems
through the lens of epidemic change-points. By highlighting the similarities as well
as differences of these two problems, we motivate and propose WISER: a novel,
computationally efficient, watermark segmentation algorithm. We theoretically
validate our algorithm by deriving finite sample error-bounds, and establishing its
consistency in detecting multiple watermarked segments in a single text. Comple-
menting these theoretical results, our extensive numerical experiments show that
WISER outperforms state-of-the-art baseline methods, both in terms of computa-
tional speed as well as accuracy, on various benchmark datasets embedded with
diverse watermarking schemes. Our theoretical and empirical findings establish
WISER as an effective tool for watermark localization in most settings. It also
shows how insights from a classical statistical problem can lead to a theoretically
valid and computationally efficient solution of a modern and pertinent problem.

1 INTRODUCTION

An unfortunate consequence of the exponential ascent of the Large Language Models (LLM),
influencing all aspects of content creation, has been an increased propagation of synthetic texts across
the internet. This has raised significant doubts for content authenticity and copyright infringement
over multiple domains (Megías et al., 2022; Bender et al., 2021; Crothers et al., 2023; Liang et al.,
2024; Milano et al., 2023; Radford et al., 2023; Chen & Shu, 2023; Woodcock, 2023), indicating
an urgent need to distinguish human authorship from machine generation. “Watermarking methods”
have been proposed (Christ et al., 2024; Aaronson, 2023), and widely adopted (Biden, 2023; Bartz &
Hu, 2023) as a detection mechanism, embedding statistical signals into LLM-generated tokens that
remain largely un-noticeable without additional information. The key insight into the watermark-
based detection schemes is the use of the underlying randomness of LLM-generated outputs by
incorporating pseudo-randomness into the text-generation process. When a third-party user publishes
text potentially containing LLM-generated outputs with watermarks, the coupling between the LLM-
generated text and the pseudo-random numbers serves as a signal that can be used for detecting
the watermark. The knowledge of these pseudo-random numbers is imperative for the detection
mechanism to work, making the effect of watermarking un-traceable for general users, who usually
do not have access to such “keys”.

Such usefulness has stimulated a plethora of research proposing myriad watermarking schemes
(Kirchenbauer et al., 2024; Fernandez et al., 2023; Golowich & Moitra, 2024; Hu et al., 2024; Wu
et al., 2024; Zhao et al., 2025; 2024a; Liu & Bu, 2024; Zhu et al., 2024). Concurrently, much
attention has landed on the pursuit of efficient, statistically valid detection schemes (Li et al., 2025a;
Kuditipudi et al., 2024; Cai et al., 2024; Huang et al., 2023; Li et al., 2024a; Cai et al., 2025). These

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

detection schemes usually employ the knowledge of the pseudo-random keys or deterministic hash
functions to perform a composite-vs-composite test of hypotheses: H0 : the entire text ω1:n is
unwatermarked (i.e. human generated), vs H1 : the entire text ω1:n is watermarked or H ′

1 : the text
ω1:n contains watermarked segments. Interestingly, the literature on the more fine-grained problem
of identifying/localizing the said watermarked segments, is relatively sparse; some of the available
algorithms are painstakingly slow, unsuited to large texts. Moreover, to the best of our knowledge, no
such algorithm to efficiently identify multiple watermarked segments has sufficient theoretical validity.
This gap in the literature is also pointed out by Li et al. (2025b). In this paper, we propose WISER
(Watermark Identification via Segmenting Epidemic Regions): a first-of-its-kind computationally
efficient and provably consistent algorithm to locate multiple watermarked segments from mixed-
source input texts. Our method is inspired from the classical notion of epidemic change-points;
this perspective is instrumental to both the theoretical validity and computational efficiency of our
algorithm. We summarize our main contributions as follows.

1.1 MAIN CONTRIBUTIONS

Our key contributions are as follows.

Novel Perspective. In §2, we introduce a novel, epidemic change-point perspective to the watermark
segmentation problem by exploiting an inherent property of the watermarking schemes; see Figure
1 below. Since the segments can occur anywhere, the interpretation as an epidemic change-point
enables us to re-purpose some of the classical insights into a state-of-the-art algorithm to solve
a modern problem. At the same time, as discussed in §2.2.2 and 2.2.3, the particular setting of
watermark segmentation introduces new challenges, and makes our analysis significantly different
from the usual change-point theory.

Figure 1: (Left) A mixed source text with watermarked tokens 70-100. (Right) The corresponding
plot of pivot statistics vs. token.

WISER algorithm. The theoretical validity of the WISER segmentation algorithm arises as an
automatic consequence of our perspective. In principle, our algorithm is simple to describe; the
epidemic interpretation produces a natural estimate for the case of only one watermarked segment;
the general case of multiple watermarked segments can then be dealt with by appropriately restricting
the search spaces for each of these segments. The number of such segments is estimated by a series
of carefully orchestrated steps, before further restriction on the search space is ensured to lessen the
computational burden. The ingenuity of our algorithm is not only in its amalgamation of different
ideas from statistics, but also in its practicability. We describe the algorithm in detail in Figure 2.

Theoretical Contribution. Our proposed algorithm WISER is backed by the following key result.

Theorem 1.1 (Informal version of Theorem 3.2). Let Îj , j ∈ [K̂] be the output of the WISER
algorithm. With explicitly mentioned choices of the tuning parameters, under standard regularity
conditions, it holds that lim infn→∞ P

(
K̂ = K, maxk∈[K] |Îk∆Ik| ≈ small

)
≈ 1, where, Ij , j ∈

[K] are the true watermarked segments; ∆ is the symmetric difference operator, and K and K̂ are
true and estimated number of segments, respectively.

All the theoretical results are rigorously proved in Appendix §D. Additionally, we motivate the local
estimate used in the last stage of WISER by proving in Theorem 3.1 that it is consistent in the single
watermarked-segment case. To the best of our knowledge, WISER is the first watermark segmentation
algorithm with complete theoretical guarantees in the most general case.

Computational efficiency. In the numerical experiments performed in §4 and Appendix §C, the
theoretical guarantee shines through in WISER’s superiority over the other competitive methods
across different watermarking schemes and different language models. Another key aspect of its
enhanced performance is its speed. WISER is specifically designed with many localized steps that
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reduces its run-time, thereby making it the only O(n) watermark segmentation algorithm with
provable theoretical guarantees. We empirically also verify its speed-up in Figure 3. For a more
comprehensive set of experiments and additional insights, we direct the readers to Appendix §C.

Other contributions. We make some additional contributions that might be of independent interest.
In terms of theory, the arbitrary dependence between the pivot statistics (introduced in §2) from the
watermarked tokens, poses a significant hindrance to using the standard proof techniques from the
change-point literature. Instead, we develop novel proof techniques based on moment and cumulant
generating functions as well as Danskin (1967)’s results to conclude our proofs. On the application
front, we address the inherent asymmetry of the watermark segmentation problem (see §2.2.3) by
introducing a Modified Rand Index (MRI). We argue that this provides a more accurate description
of the performance of various algorithms. Due to space constraints, we have relegated both these
discussions in the Appendix, in Sections D and C.1.1 respectively.

1.2 RELATED LITERATURE

There has been an abundance of literature on testing for existence of watermarks and the more
general problems of machine-generated text detection or model equality testing (Lavergne et al.,
2008; Solaiman et al., 2019; Gehrmann et al., 2019; Su et al., 2023; Mitchell et al., 2023; Huang et al.,
2023; Vasilatos et al., 2023; Hans et al., 2024; Li et al., 2025a; Kuditipudi et al., 2024; Cai et al., 2024;
Gao et al., 2025; Song et al., 2025; Radvand et al., 2025). However, the relatively harder problem of
precisely localizing the watermarked segments from an input text has received only sparse attention.
Apart from WinMax (Kirchenbauer et al., 2024), which focuses only on Red-Green watermarking, to
the best of our knowledge, the only algorithms tackling the segmentation problem in its generality are
Li et al. (2024b); Pan et al. (2025) and Zhao et al. (2024b). Most of these algorithms are prohibitively
slow to be useful for long texts, while having little theoretical validity. In Appendix §C.1.3, we
discuss the crucial limitations of each of these algorithms in contrast to WISER.

1.3 NOTATIONS

In this paper, we denote the set {1, . . . , n} by [n]. The d-dimensional Euclidean space is Rd. We also
denote in-probability convergence, and stochastic boundedness by oP and OP, respectively. L(X)
denotes the law of X . For any interval I , IL and IR denote its left and right end-point respectively.

2 WATERMARK LOCALIZATION: AN EPIDEMIC CHANGE-POINT PERSPECTIVE

Before we introduce our novel perspective in the context of locating watermarked segments, it is
instrumental to establish a consistent framework of watermarking in LLM-generated texts. Let
W denotes the dictionary, enumerated as 1, 2, . . . , |W|. Given a text input in a tokenized form
ω1 . . . ωt−1, a watermarked LLM generates the next token ωt in an autoregressive manner as ωt =

S(Pt, ζt), where Pt = (Pt,w)
|W|
w=1 is the next token probability (NTP) distribution at step t; S is a

deterministic decoder function, and ζt is the pseudo-random variable at t. We grant Assumption 2.1
for the ζt’s.
Assumption 2.1. For any text ω1:n, there exists corresponding pseudo-random variables ζ1:n
available to the verifier, such that if the token ωt at step t is un-watermarked, then ωt and ζt
are independent conditional on ω1:(t−1).

It may seem that this assumption invalidates human edits after LLM generates a text. However, in
Appendix §A, we discuss how Assumption 2.1 applies even to the mixed-source texts.

2.1 PIVOT STATISTICS AND ELEVATED ALTERNATIVES

Note that, a text ω1:n with K disjoint watermarked intervals I1, . . . , IK , Ij ⊂ [n] for j ∈ [K], can be
modeled as

wt ∼
{

Pt, t /∈ I0 := ∪K
l=1Ik

S(Pt, ζt), otherwise,
t = 1, 2, . . . , n. (2.1)

We are interested in the statistical problem of estimating the individual intervals I1, . . . , IK as well
as K. Before proceeding further, it is appropriate to formally introduce the notion of pivot statistics.
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Definition 2.1. Y (ω, ζ) is called a pivot statistic if L(Y ) is same for all ω ∈ W .

Pivot statistic has been extremely effective in providing statistically valid testing strategies for the
existence of watermarks in mixed-source texts (Li et al., 2025a; 2024a; Cai et al., 2024), however,
in what follows, we will demonstrate their effectiveness in aiding a localization algorithm. This
effectiveness is a result of a simple property of the pivot statistics; they metamorphose the conditional
independence of ωt and ζt for un-watermarked tokens into Pt-independent distributions. Formally,
this property is described in the following result.
Lemma 2.2. If S denotes the set of un-watermarked tokens, then {Yt}t∈S are i.i.d.

This ancillarity is heavily used in all the available statistical analysis of watermarked schemes;
nevertheless, for the sake of completion we provide a proof in Appendix §D.3. Lemma 2.2 enables
us to use the notation µ0 := E0[Y (ω, ζ)] as the expectation of the pivot statistic Y when the token
ω ∼ P is not watermarked; on the other hand, E1,P [Y (ω, ζ)] will denote expectation with respect to
the randomness of ζ (i.e. conditional on P ) when ω is watermarked according to (S, ζ)-mechanism.
Finally, we denote Yt := Yt(ωt, ζt). Note that since Yt is a pivot statistic, so is h(Yt) for any score
function h : R → R. Usual tests for watermark detection look at

∑n
t=1 h(Yt) as a statistic for a one-

sided test, and put considerable effort into constructing an effective score function h (Kirchenbauer
et al., 2024; Zhao et al., 2024b; Li et al., 2025a; Cai et al., 2025). Intrinsic to this construction,
even though never explicitly stated, is the assumption that E1,P [h(Y )] is usually larger than µ0 for
any possible NTP distribution P . This hypothesis of “elevated alternatives" can also be empirically
viewed in Figure 1.

We formalize this observation with the following hypothesis.
Assumption 2.2 (Elevated Alternatives Hypothesis). Assume that the next token distribution (NTP)
P belongs to a distribution class P . Then, there exists d > 0 such that infP∈P E1,P [h(Y )] ≥
µ0 + d, where E1,P (·) = E1[·|P ] denotes the unknown distribution of h(Y ) when watermarking is
implemented on the NTP P ∈ P .

This assumption entails that the pivot statistics is effective conditional on any possible NTP from the
class P , ruling out trivial cases such as Y (ω, ζ) ≡ ζ. Most standard watermarking schemes satisfy
Assumption 2.2; see §B for some concrete examples. To summarize, the pivot statistics Yt has a
mean level µ0 when the token ωt is un-watermarked; on the other hand, we expect the pivot statistics
to take comparatively larger values inside the watermarked segments. Interestingly, this observation
establishes a ready-made connection to the notion of “epidemic change-points”, sporadically explored
in the classical time-series literature for the past few decades. We discuss this novel perspective in
the following section.

2.2 WATERMARK AND EPIDEMIC CHANGE-POINT

We first provide some background on epidemic change-points, given their relative obscurity, for the
convenience of readers who may be unfamiliar with the concept.

2.2.1 WHAT IS AN EPIDEMIC CHANGE-POINT?

An epidemic change-point refers to a situation where a stochastic process deviates in one of its
features in an interval and returns to the baseline. The simplest and yet the most popular formulation
of a ‘mean-shift’ epidemic model is as follows. Consider the time-series Xi = µi + Zi, where Zi is
mean-zero stationary process and

µi = µ if i ∈ {1, · · · , p} ∪ {q + 1, · · · , n} and µi = µ+ δ if i ∈ {p+ 1, · · · , q} (2.2)

The epidemic change-point framework originated with Levin & Kline (1985), who studied the testing
for existence of such epidemic patches for epidemiology applications, with a more comprehensive
discussion in Yao (1993); Inclán & Tiao (1994). Later on, Hušková (1995); Csörgö & Horváth (1997);
Chen et al. (2016) have discussed consistency, asymptotic theory as well as statistical powers of
these epidemic estimators and accompanying tests. Other related papers discussing inference tailored
to epidemic alternatives can be found in Račkauskas & Suquet (2004; 2006); Ning et al. (2012).
Compared to the vast literature for usual change-point analysis, the epidemic change-point literature
has been quite sparse, and even then, the focus has remained mostly on testing for the existence of
such temporary departure rather than on locating these patches with provable statistical guarantees.
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2.2.2 EPIDEMIC CHANGE-POINT WITH IRREGULAR SIGNALS

Note that, in the watermarked patches, it is unrealistic to assume a fixed mean of the pivot statistics,
since the next token probability distribution usually changes at each step. Therefore, results pertaining
to model (2.2) are not directly applicable here. However, invoking Assumption 2.2, we can assume
that the means of the pivot statistics are separated from the null by at least some margin. This puts us
in a position to solve an epidemic mean-shift problem of a new kind. Very recently Kley et al. (2024)
proposed usual change-point detection under the presence of such irregular signals. Concretely, for
noisy data of the form Xt = µt + Zt, t = 1, . . . , n where µt are means or signals and (Zt)t∈Z is a
stationary mean-zero noise, they considered the following hypothesis testing problem with irregular
‘non-constant-mean’ alternative:
H0 : µ1 = · · · = µn vs. H1 : ∃ τ ∈ {2, . . . , n}, d > 0 : µ1 = · · · = µτ−1, µτ , . . . , µn ≥ µ1+d.

They also proposed an estimation procedure for the location parameter τ . In this work, in the light
of the mean pattern of the pivot statistic corresponding to the watermarked region, we extend their
estimators to the epidemic alternative. Moreover, the intrinsic dependence introduced by the context
of how an LLM token sequence is generated also makes our premise for the error specification quite
novel and thus brings out significant technical challenges.

2.2.3 A SUBTLE DIFFERENCE WITH CHANGE-POINT PROBLEM

Although watermark segmentation closely resembles epidemic change-point detection, a crucial
difference arises in algorithm evaluation. Standard change-point problems are symmetric; under
model (2.2), the edge cases p = 1, q = n and p = q are equivalent. On the other hand, watermarking
problems exhibit asymmetry; the edge cases (i) “the entire sequence is un-watermarked” and (ii)
“the entire sequence is watermarked”, differ due to irregular means of the pivot statistics under
watermarking. In fact, the widely popular Rand Index (RI) - being borrowed from clustering
literature, and used in watermark segmentation (Li et al., 2024b; Pan et al., 2025) - fails to capture
this distinction. For the interested readers, we address this by introducing a Modified Rand Index
(MRI), and demonstrate its advantages over RI in Appendix §C.1.1.

3 THEORY FOR WATERMARK LOCALIZATION

In this section, we develop our algorithm by proceeding step-by-step. In the §3.1, we propose
an estimator to localize a single watermarked segment inside a text, and establish its theoretical
consistency with finite sample results. Building on this estimate, in §3.2 we formally propose the
WISER algorithm. Subsequently, we theoretically establish its consistency in segmenting multiple
watermarked patches, while also discussing its linear-time computational complexity.

3.1 SEGMENTING SINGLE WATERMARKED PATCH

Let us denote Xt = h(Yt). Recall Lemma 2.2, the notation µ0 = E0Xt, and Assumption 2.2. Let d̃
be such that there exists ρ ∈ (0, 1) satisfying d > 2ρd̃. Based on our discussion in §2.2.2, we adapt
the estimator from Kley et al. (2024) for our particular setting.

Î = argmin
s,t∈[n]

∑
k/∈[s,t]

(Xk − µ0 − ρd̃). (3.1)

The following theorem analyzes its convergence properties for the case of a single, un-interrupted
watermarked region. Subsequently, we discuss some of its connotations in successive remarks.
Theorem 3.1. Let {Xt}nt=1 := {h(Yt)}nt=1 be the pivot statistics based on the given input text, and
assume that I0 ⊂ {1, . . . , n} is the only watermarked interval. Grant Assumption 2.2. Denote

εt =

{
Xt − µ0, t /∈ I0,

Xt − µt, µt := E1,Pt [Xt], t ∈ I0.

Suppose the class of distributions P is closed and compact, and there exists η > 0 such that
supP∈P E1,P [exp(η|ε|)] < ∞. Moreover, assume that min{Var0(ε), supP Var1,P (ε)} > 0. If
there exists a constant c > 0 such that d̃ ≥ c, then |Î∆I0| = OP

(
d̃−1

)
. Here ∆ is the symmetric

difference operator and OP hides constants independent of n, d̃, ρ, and µ0.
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The O(d̃−1) rate can further be sharpened to O(d̃−2) under a local sub-Gaussianity condition (see
Proposition 1 in the Appendix §D ). In fact, under very mild conditions, Theorem 3.1 already tackles
a more general scenario compared to the only other theoretical result available in a similar context (Li
et al., 2024b). In contrast to a general watermarked patch, Li et al. (2024b) considered a specialized
scenario, where only the first half of the text till an arbitrary point is watermarked, reducing the
problem to a classical change-point setting.

The parameter d̃ serves as the signal strength in the convergence diagnostics of Î . It allows Î to look
for intervals such that the d̃-biased mean outside that interval is minimized. To ensure accuracy, d̃ has
to be large, but d̃ ≫ d might lead to overestimation. Since the minimum separation d in Assumption
3.1 is typically unknown, it cannot be used directly. In most cases (see examples in Appendix §B), a
distribution-dependent lower bound dL ≤ d may be available, but relying on d̃ = dL often sacrifices
power, as inft∈[n] E1,Pt [Xt − µ0] is usually much larger. Thus, a key step in practice is a data-driven
yet valid choice of d̃, which we discuss in §3.2. The tuning parameter ρ adjusts the impact of d̃ and
mitigates small errors in its selection. Choosing ρ ≈ 0 is undesirable, as it causes Î to overestimate I
due to fluctuations above µ0 under the null. Conversely, setting ρ ≈ 1 can violate the requirement
d > 2ρd̃ when d̃ is large. Empirically, ρ ∈ [0.1, 0.5] provides robust performance, and we revisit
these choices in our discussion of WISER as well as the ablation studies in Appendix §C.3.
Remark 3.1 (Connection with other performance metric). Even though Theorem 3.1 controls the
estimation error in terms of symmetric difference between estimated and true watermarked patches
Î and I respectively, it is straightforward to transform this result in terms of the more familiar
Intersection-Over-Union metric IOU(I, Î) = |I ∩ Î|/|I ∪ Î| as 1− IOU(I, Î) = |I∆Î|

|I∪Î| = OP

(
1

|I|d̃

)
.

As the text size increases (n → ∞), if |I| = O(1), then the number of un-watermarked tokens is
too large, overpowering the signal from the watermarked tokens. Under this “heavy-edit" regime,
no non-trivial test statistic can differentiate between H0 : the entire text ω1:n is un-watermarked (i.e.
human-generated) and H1 : the entire text ω1:n is watermarked, with reasonable power (Li et al.,
2025b). The estimation being a harder problem than testing, it is therefore reasonable to assume
|I| → ∞ as n → ∞. Therefore, Theorem 3.1 essentially entails that IOU(I, Î) → 1 as n → ∞.

Despite the attractive theoretical properties of Î given in (3.1), notwithstanding the yet unclear
choice of d̃, there are a couple of practical roadblocks to deploying Î . Firstly, Î has a computational
complexity of O(n2), which is quite prohibitive for a large body of text one usually encounters.
Secondly, it is not straightforward as to how Î can be generalized to localize multiple watermarked
segments. We answer these questions by proposing our WISER algorithm.

3.2 WISER: SEGMENTING MULTIPLE WATERMARKED PATCHES

The main motivation behind our proposed algorithm WISER is to use the estimator Î on localized
disjoint intervals that are more-or-less guaranteed to contain the true watermarked segments. Such
intervals with guarantees are usually recovered as a consequence of some first-stage screening. For the
convenience of readers, the detailed algorithm, along with a schematic diagram of WISER containing
the key steps, is illustrated in Figure 2.

Subsequently, we make a mild assumption that the true watermarked segments have a minimum
length, and are also well-separated to be considered as distinct segments. Formally, for two disjoint
intervals I1 = (I1,L, I1,R) and I2 = (I2,L, I2,R), let d(I1, I2) := min{|I1,L − I2,R|, |I1,R − I2,L|}.
Assumption 3.1 (Minimum separation). Let K be the number of true watermarked segments, with
the segments themselves denoted by Ij , j ∈ [K]. Then there exists a constant C0 > 0, such that
mink∈[K]{|Ik| ∧ d(Ik, Ik−1)} ≥ C0n

1/2+γ′
log n for some γ′ > 0.

In what follows, we explain the step-by-step rationale behind the algorithm. For clarity, we ignore
the niceties of ⌊·⌋’s and ⌈·⌉’s.

• Blocking stage. Let b =
√
n and the threshold Q be given. In the first stage, we partition the data

into
√
n consecutive blocks, each of size

√
n. Among these, we retain only those blocks for which

the corresponding sum of pivot statistics exceeds Q. Typically, to avoid multiple testing issues, Q
is chosen as the (1− α)-quantile of the null (i.e. when there is no watermarking in the entire text)
distribution of the maximum block sum over all

√
n blocks.
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• Discarding stage. Under Assumption 3.1, by definition of Q, O(
√
log n) successive un-

watermarked blocks will have sum exceeding Q only with vanishing probability. Therefore,
any connected interval of selected blocks from the first stage, with length at most c

√
n log n, must

necessarily be spurious. Hence, at this stage, we join consecutive selected blocks, and discard any
connected intervals smaller than c

√
n log n.

• Enlargement stage. The above two steps ensure K̂ = K with probability approaching 1. Also, the
intervals from the previous stage are almost accurate estimates of the true segments, except for some
additional watermarked regions that were part of discarded blocks. Because of Assumption 3.1
and the size of the discarded blocks, such regions have size at most O(

√
n). Therefore, we enlarge

each interval by ≍ n1/2 for a small 0 < γ ≪ 1/2. These enlarged intervals Dj’s remain disjoint
with high probability due to Assumption 3.1, and are therefore each amenable to (3.1) to yield Îj’s.

• Estimating d̃. To estimate d̃, we take the sample mean of (Xt − µ0) over ∪K̂
j=1Dj . This serves as

a proxy for the oracle average of (Xt − µ0) over ∪j∈[K]Ij , which may overestimate d. We choose
ρ to calibrate it so that d > 2ρd̃.

• Reducing computational cost. We alleviate the increased computational aspect of a naive
implementation of (3.1) by leveraging additional information from the screening stage to reduce
the search space. Indeed, due to our blocking and discarding steps, it can be guaranteed with high
probability that, for each j ∈ [K], Dj,L is at most ≍

√
n distance apart from Ij,L; similarly Dj,R

is also at most ≍
√
n distance apart from Ij,R. Therefore, from Dj we can produce search intervals

Lj , Rj of lengths ≍ n1/2 such that Ij,L ∈ Lj ad Ij,R ∈ Rj with high probability, and restrict the
search to s ∈ Lj , t ∈ Rj . Consequently, now each implementation of this modified (3.1) (see
Figure 2) takes O((n1/2)2) = O(n) amount of computational time, leading to a speed-up while
maintaining theoretical validity.

Figure 2: (Left): The Algorithm WISER; (Right) WISER in action with key steps.

The following result summarizes these insights into a formal consistency guarantee.
Theorem 3.2. Assume that the null distribution of the pivot statistics is absolutely continuous with
respect to the Lebesgue measure. Fix α ∈ (0, 1), and recall the quantities defined in WISER described
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in Figure 2. Let the block length b = bn satisfy bn ≍
√
n, and suppose the threshold Q = Qn is

selected so that P0(max1≤k≤⌈n/b⌉ Sk > Q) = α. Also assume that E0[|X − µ0|3+δ] < ∞ for some
δ > 0. Let supP∈P E1,P [X] < ∞, and assume there exists τ > 0 such that

κ := inf
θ≥0

θ(µ0 + τd) + log sup
P

E1,p[exp(−θX)] < 0. (3.2)

Additionally, let the number of watermarked intervals K be bounded, and Assumption 3.1 be granted
for the watermarked intervals Ik, k ∈ [K]. Then, given ε > 0 and d ≥ c for some constant c > 0,
under the assumptions of Theorem 3.1, there exists Mε ∈ R+, independent of n,K, and d, such that,

lim inf
n→∞

P
(
K̂ = K, max

k∈[K]
|Îk∆Ik| < Mεd

−1
)
≥ 1− ε. (3.3)

Remark 3.2. We briefly discuss arguably the only technical condition (3.2) in Theorem 3.2. This can
be construed as a Donsker-Varadhan strengthened version of Assumption 2.2. For an appropriate
choice of the score function h and some NTP distribution P ⋆ depending on P , the Donsker Varadhan
representation (Donsker & Varadhan, 1983) entails

inf
θ≥0

θµ0 + log sup
P∈P

E1,p[exp(−θX)] = −DKL(L0(X),L1,P⋆(X)),

where DKL denotes the Kullback-Leibler divergence, L0 denotes the law of un-watermarked pivot
statistics, and L1,P⋆ denotes the law of watermarked pivot statistics when the NTP is P ⋆. In light of
this, κ lifts the minimum separation between the un-watermarked and watermarked distributions into
a gap between the cumulant functions, and can therefore be understood to be mild. Equation (3.2)
establishes a weak uniform control over the behavior of pivot statistics under watermarked segments.
This allows us to rigorously bypass the possibly arbitrary and strong dependence across the pivot
statistics corresponding to watermarked tokens while deriving Theorem 3.2.

We reiterate that with b ≍
√
n, WISER has a run-time only of O(n) ignoring log factors. This, to

the best of our knowledge, is among the least computationally expensive algorithms available in the
literature. In view of its theoretical validity under very general conditions, this makes it a useful tool
for practical applications. We showcase it through a series of extensive numerical experiments.

4 NUMERICAL EXPERIMENTS

Building on the theoretical validation established in the previous sections, in this section we undertake
an empirical evaluation of the proposed WISER method, demonstrating its superiority over existing
state-of-the-art (SOTA) algorithms. In §4.1, we compare its accuracy against competitive methods on
a benchmark dataset across multiple watermarking schemes, and in §4.2, we assess its computational
efficiency. Due to space constraints, we provide additional numerical experiments in Appendix §C. We
encourage the readers to check it out for more practical insights, including, (i) a detailed explanation
of the benefits of WISER over other SOTA algorithms (§C.1.3), (ii) experiments quantifying the
effect of watermark intensity and length across different algorithms (§C.2), and (iii) an ablation study
(§C.3) highlighting the stability of our method across tuning parameter choices.

4.1 COMPARATIVE PERFORMANCE OF WISER

Within the relatively limited body of literature on the identification of watermarked segments
from mixed-source texts, Aligator (Zhao et al., 2024b), SeedBS-NOT (Li et al., 2024b) and
Waterseeker (Pan et al., 2025) algorithms have emerged as the leading methods, producing the
most accurate results so far. For an extensive comparison, our experimental setup involves completion
of randomly selected 200 prompts from the Google C4 news dataset1. We include language models
spanning a wide range of scales: parameter sizes varying from 125 million to 8 billion, and vocabulary
sizes ranging in 32-262 thousands; for watermarking schemes, we consider Gumbel-max trick (Aaron-
son, 2023), Inverse transform (Kuditipudi et al., 2024), Red-green watermark (Kirchenbauer et al.,
2023) and Permute-and-Flip watermark (Zhao et al., 2025). In each scenario, the first 50 tokens of
a news article have been provided as inputs to the language models, and n = 500 output tokens
are recorded. Among these 500 output tokens, there are two watermarked segments: 100-200 and

1https://www.tensorflow.org/datasets/catalog/c4
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325-400. The specific tuning parameter choices for WISER are provided in §C. Table 1 showcases
the results for the Gumbel watermarking scheme. It is evident that WISER outperforms all the other
algorithms across all the metrics for each model. The detailed discussion, including the specific
metrics used and additional results and insights, are provided in Appendix §C.1.

Model Name Vocab Size Method IOU Precision Recall F1 RI MRI

facebook/opt-125m 50272

WISER 0.944 1.000 0.995 0.997 0.984 0.979
Aligator 0.734 0.382 0.988 0.551 0.939 0.931
Waterseeker 0.672 1.000 0.802 0.890 0.864 0.850
SeedBS-NOT 0.479 0.730 0.625 0.673 0.844 0.823

google/gemma-3-270m 262144

WISER 0.896 0.965 0.960 0.962 0.953 0.950
Aligator 0.506 0.234 0.912 0.373 0.881 0.861
Waterseeker 0.645 0.968 0.775 0.861 0.851 0.836
SeedBS-NOT 0.362 0.610 0.478 0.536 0.753 0.704

facebook/opt-1.3b 50272

WISER 0.934 1.000 0.995 0.997 0.981 0.974
Aligator 0.497 0.235 0.920 0.375 0.892 0.871
Waterseeker 0.657 1.000 0.808 0.893 0.860 0.846
SeedBS-NOT 0.360 0.618 0.465 0.531 0.766 0.731

princeton-nlp/Sheared-LLaMA-1.3B 32000

WISER 0.939 1.000 0.998 0.999 0.983 0.978
Aligator 0.459 0.236 0.912 0.376 0.886 0.862
Waterseeker 0.659 1.000 0.812 0.897 0.862 0.847
SeedBS-NOT 0.278 0.520 0.388 0.444 0.731 0.699

mistralai/Mistral-7B-v0.1 32000

WISER 0.909 1.000 0.998 0.999 0.975 0.961
Aligator 0.292 0.215 0.745 0.334 0.811 0.774
Waterseeker 0.621 1.000 0.765 0.867 0.840 0.824
SeedBS-NOT 0.240 0.442 0.320 0.371 0.657 0.593

meta-llama/Meta-Llama-3-8B 128256

WISER 0.926 1.000 0.988 0.994 0.977 0.975
Aligator 0.546 0.367 0.925 0.525 0.911 0.891
Waterseeker 0.570 1.000 0.720 0.837 0.814 0.791
SeedBS-NOT 0.379 0.620 0.515 0.563 0.778 0.741

Table 1: Results for Gumbel Watermarking

4.2 TIME COMPARISON

Figure 3: Time complexity (seconds) for various algo-
rithms as a function of completion lengths (n). Y-axis
is in log-scale, with 95% confidence interval shown in
shades.

As established in §3.2, the proposed WISER al-
gorithm achieves a computational complexity of
≈ O(n). Figure 3 provides empirical evidence
supporting this theoretical claim and, in addi-
tion, compares the runtime behavior of WISER
with other state-of-the-art methods. For this
experiment, we randomly create an n/6-length
watermarked segment using the Gumbel-max
trick with NTP generated by Google’s Gemma-
3 model; block size was taken as ⌈

√
n⌉ and

ρ = 0.1. The results clearly indicate that
WISER consistently outperforms competing ap-
proaches in terms of computational efficiency,
emerging as the fastest among all methods con-
sidered in this study.

5 CONCLUDING REMARKS

In this paper, we introduced WISER, a first-of-its-kind algorithm for efficient and theoretically valid
segmentation of watermarked intervals in mixed-source texts. By framing watermark localization as
an epidemic change-point problem, we bridged a novel connection between classical statistical theory
and a modern challenge in generative AI, and also designed a linear time algorithm with provable
consistency guarantees, which were further confirmed by our extensive numerical experiments.
Beyond the findings of this paper, it is also crucial to theoretically investigate the robustness of the
proposed algorithm under human edits (Li et al., 2024a); as a roadmap, we have already included
some relevant discussion in Appendix §A. Its applicability to multimodal (e.g. audio, image, video)
settings (Qiu et al., 2024) also presents opportunities for future research.
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