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Abstract

Data scarcity presents a significant challenge for achieving optimal model performance in
medical imaging, due to the limited availability of high-quality data. One potential solu-
tion to address this issue is to synthesize medical images using powerful generative models
with conditioning prior. However, obtaining full anatomical annotations of all organs for
anatomical conditioning is impractical, resulting in synthetic images with incoherent or
hallucinated anatomy. In this paper, we propose an innovative medical image generation
method based on state-of-the-art latent diffusion models (LDM). To tackle the anatomy
compliance challenge, we leverage both the anatomical mask, which is specific to the organ
of interest, and the edge information, which is general and easy to compute in the full
field of view (FOV), as dual conditioning. Our method does not require extra annotations
to achieve anatomy compliance. Our method was evaluated on the ACDC dataset and
compared with GAN baselines. Results demonstrate that incorporating edge-based condi-
tioning strongly complements image semantics, leading to high-quality, anatomy-compliant
medical image generation.
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1. Introduction

Learning-based approaches have gained prominence in many medical image processing tasks
(Zhou et al., 2021). However, they rely heavily on high-quality labeled data, which is fre-
quently unavailable given the high acquisition costs, rare pathologies, privacy concerns, and
lack of annotation expertise (Castro et al., 2020). Generative AI offers a promising solution
to the data scarcity problem (Dorjsembe et al., 2024). Previous medical image synthesis
studies predominantly leveraged the SPADE (Park et al., 2019) framework which translates
the semantic map to an image with Generative Adversarial Networks (GAN) (Goodfellow
et al., 2014). Built upon SPADE, (Abbasi-Sureshjani et al., 2020) proposed generating car-
diac magnetic resonance (CMR) images given heart segmentation maps. However, GAN-
based generation can have degenerated quality (Müller-Franzes et al., 2023; Skandarani
et al., 2021) and has recently been outperformed by diffusion-based generation (Ho et al.,
2020; Dhariwal and Nichol, 2021; Rombach et al., 2022). Additionally and importantly, it
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is often overlooked that the available semantic maps usually only cover specific organs (i.e.
heart) (Abbasi-Sureshjani et al., 2020), leading to spurious and hallucinated generation of
surrounding organs in the thorax and abdomen (i.e. lung, liver).

Image edges can delineate anatomical structures with little computational effort and
can be used to guide image generation with GANs (Luo et al., 2021; Yu et al., 2019).
Nevertheless, its use has not been explored in state-of-the-art diffusion models which promise
superior quality to GANs. In this paper, we propose a novel LDM-based generative model
conditioned on both incomplete organ annotations and image edges in the full field of view as
dual anatomy conditioning. Our method ensures anatomical compliance in medical image
generation, which has been understudied but is important for downstream tasks such as
training AI models or educating radiologists (Skandarani et al., 2023).

2. Methods and Materials

We propose an LDM-based conditional generator G (Rombach et al., 2022) to translate
anatomy into realistic images, which performs the diffusion process in an auto-encoded
(AE) latent space. The anatomy is modeled by combining the partly labeled tissue map y
and the image edge ex. The edge e of an image x is retrieved by Canny detector (Canny,
2009). The conditions are integrated into G through a binary boundary map derived from
the image gradients, concatenated with a one-hot tensor representation of the semantic
labels map, as represented in Figure 1.

We trained our models using the publicly available Automated Cardiac Diagnosis Chal-
lenge (ACDC) dataset (Bernard et al., 2018), and compared the proposed model to GAN-
based conditional generation with SPADE (Park et al., 2019). To validate the utility of the
edge as an additional condition, we assessed both models’ performance with and without
edge guidance, and evaluate quantitatively using metrics of FID, SSIM, NMSE. Addition-
ally, we compared the Fourier space of generated images by different models.
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Figure 1: Illustration of the LDM-based edge conditioning pipeline.

3. Results and Conclusion

The quantitative evaluation results are reported in Table 1. The proposed LDM-based
generation achieved the best performance in terms of FID (61.9/98.1) compared to the best
SPADE variant (101.9/161.4), with or without edge guidance. Our LDM has a lower SSIM
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than the SPADE-based model without edge guidance. However, the edge-guided LDM
achieved an SSIM of 0.608 which is much higher than the SPADE variant (0.556). Using
edge guidance also significantly improved the generation quality for SPADE variants.

Figure 2 presents some examples of generated CMR images and their Fourier frequency
spectra. For LDM, we observe that the generated images are closest to the ground truth
and correctly delineate organ details that the other models fail to capture. Nevertheless,
we note that all edge-informed models show similar improvement. Moreover, we observe
that for the edge-informed models, LDM aligns closely with the ground truth in both low
and high-frequency ranges, whereas SPADE models only achieve closer alignment in higher
frequencies.

Table 1: Image generation performance measured by FID, SSIM and NMSE.
w/ edge conditioning w/o edge conditioning

Method FID ↓ SSIM ↑ NMSE ↓ FID ↓ SSIM ↑ NMSE ↓
LDM 61.9 0.608 ± 0.123 0.071 ± 0.035 98.1 0.283 ± 0.094 0.136 ± 0.080
SPADE 109.8 0.556 ± 0.119 0.117 ± 0.041 160.3 0.328 ± 0.093 0.132 ± 0.077
SPADE w/ VAE 101.9 0.556 ± 0.128 0.104 ± 0.034 161.4 0.338 ± 0.090 0.145 ± 0.093
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Figure 2: Qualitative results: (a) The ground truth and its Fourier spectrum. (b) Left:
Segmentation map. Right: Edge anatomical boundaries by the Canny operator.

(c),(d) Comparison of the average model spectra as a function of |
−→
R| =

√
x2 + y2,

representing a radius distance from the 2D grid origin.

In conclusion, we proposed a novel medical image generation method using LDM with
dual conditioning by both semantic labels and Canny edges. Our experiments showed that
our method improved image synthesis quality and anatomy compliance, without requiring
additional exhaustive annotations. Furthermore, we have shown that LDM outperforms
GAN-based models in both the image and frequency space.
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